WO2014034644A1 - 温度応答性クロマトグラフィーによる抗体の精製方法 - Google Patents

温度応答性クロマトグラフィーによる抗体の精製方法 Download PDF

Info

Publication number
WO2014034644A1
WO2014034644A1 PCT/JP2013/072821 JP2013072821W WO2014034644A1 WO 2014034644 A1 WO2014034644 A1 WO 2014034644A1 JP 2013072821 W JP2013072821 W JP 2013072821W WO 2014034644 A1 WO2014034644 A1 WO 2014034644A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
antibody
buffer
buffer solution
elution
Prior art date
Application number
PCT/JP2013/072821
Other languages
English (en)
French (fr)
Inventor
一郎 小熊
ルミ子 石川
洋 竹政
和雄 奥山
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to JP2014533013A priority Critical patent/JP6253584B2/ja
Priority to EP13832456.1A priority patent/EP2889617B1/en
Priority to US14/423,568 priority patent/US20150218208A1/en
Publication of WO2014034644A1 publication Critical patent/WO2014034644A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3809Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3861Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus
    • B01D15/3876Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus modifying the temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials

Definitions

  • the present invention relates to a method for purifying an antibody using temperature responsive chromatography which shows a change in binding property to an antibody with a change in temperature.
  • Immunoglobulin is a physiologically active substance that controls the immune reaction.
  • the antibody is obtained from blood of the immunized animal or a cell culture solution of cells possessing antibody-producing ability or an ascites culture solution of the animal.
  • blood and culture fluids containing these antibodies include proteins other than antibodies, or complex contaminants derived from the raw material used for cell culture, and in order to separate and purify antibodies from those impurity components A complicated and time-consuming operation is usually necessary.
  • Liquid chromatography is important for antibody separation and purification.
  • Chromatographic techniques for separating antibodies include gel filtration chromatography, affinity chromatography, ion exchange chromatography, reverse phase chromatography, and the like, and antibodies are separated and purified by combining these techniques.
  • antibodies having high purity and concentration are purified through the following steps (A) to (C).
  • a step of loading a sample mixed with an antibody and impurities onto a column (loading step)
  • Protein A has attracted attention as a ligand for affinity chromatography for purifying antibodies.
  • Protein A is derived from Staphylococcus aureus. Protein A has a specifically high affinity for the Fc region of an antibody under neutral conditions. Therefore, when purifying an antibody using natural protein A, first, a solution containing the antibody is brought into contact with a stationary phase having natural protein A as a ligand under neutral conditions, and the natural protein on the carrier is then contacted. An antibody is specifically adsorbed on A.
  • Patent Document 1 in the Examples, the antibody is eluted from the protein A carrier using an acidic solution composed of 25 mM sodium citrate (pH 2.8). Also in Patent Document 2, in the Examples, the antibody is eluted from the protein A carrier using an acidic solution composed of 25 mM citrate (pH 2.8) or 0.1 M acetic acid (pH 2.9). . Under such strong acidic conditions, there is a risk of causing denaturation and inactivation of the antibody to be purified.
  • HCP host cell-derived protein
  • DNA deoxyribonucleic acid
  • temperature-responsive protein A In an antibody purification method using temperature-responsive protein A, it is required to remove impurities remaining in an affinity column such as host cell-derived protein (HCP) and deoxyribonucleic acid (DNA). There is also a need to suppress the temperature-responsive protein A desorbed from the carrier from being mixed into the antibody eluate.
  • HCP host cell-derived protein
  • DNA deoxyribonucleic acid
  • the present invention is a method for purifying an antibody using temperature-responsive protein A bound to a carrier, wherein the antibody effectively removes impurities and has little desorption of temperature-responsive protein A from the carrier. It is an object of the present invention to provide a purification method. Another object of the present invention is to provide a method for purifying an antibody using temperature-responsive protein A that can maintain the activity of the antibody particularly high.
  • the present inventors have used a high salt concentration buffer in the washing step and a low salt concentration in the elution step in the antibody purification method using temperature-responsive protein A bound to a carrier. It has been found that by using a buffer solution, impurities are effectively removed, and desorption of temperature-responsive protein A from the carrier is also suppressed. In addition, the present inventors can also effectively remove impurities and reduce the temperature from the carrier by using a buffer solution having a high hydrogen ion index in the washing step and using a buffer solution having a low hydrogen ion index in the elution step. It was found that detachment of responsive protein A is also suppressed.
  • the present inventors have found a phenomenon that the temperature range in which the antibody is released from the temperature-responsive protein A shifts to a low temperature side by using a buffer solution having a low hydrogen ion index in the elution step. From this, it was found that the antibody can be eluted at a lower temperature than before by using a buffer solution having a low hydrogen ion index in the elution step of purification of the antibody using temperature-responsive protein A.
  • an antibody purification method using temperature-responsive protein A which comprises a stationary phase having temperature-responsive protein A A binding step for binding the antibody to the antibody, a buffer solution at a temperature at which the antibody and the temperature-responsive protein A bind to each other, a washing step for washing the stationary phase with the buffer solution having the first salt concentration, An elution step of eluting the antibody captured in the stationary phase using a buffer solution at a temperature free from the temperature-responsive protein A and having a second salt concentration lower than the first salt concentration.
  • a method for purifying an antibody using different buffers in the washing step and the elution step is provided.
  • a method for purifying an antibody using temperature-responsive protein A a binding step for binding the antibody to a stationary phase having temperature-responsive protein A, and a buffer solution at a temperature at which the antibody and temperature-responsive protein A are bound
  • An antibody purification method using different buffers in the washing step and the elution step comprising elution step of eluting the antibody captured in the stationary phase using a lower second hydrogen ion index buffer. Is done.
  • a method for purifying an antibody using temperature-responsive protein A bound to a carrier which effectively removes impurities and has little desorption of temperature-responsive protein A from the carrier.
  • a purification method is provided. Furthermore, according to the present invention, it is possible to provide a method for purifying an antibody using temperature-responsive protein A that can maintain the activity of the antibody at a particularly high level.
  • present embodiments exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is not limited to the following.
  • the technical idea of the present invention can be variously modified within the scope of the claims.
  • the antibody purification method is a method for purifying an antibody using temperature-responsive protein A, a binding step for binding the antibody to a stationary phase having temperature-responsive protein A, and the antibody and temperature-responsiveness.
  • a buffer solution at a temperature at which protein A binds a washing step of washing the stationary phase with a buffer solution having a first salt concentration, and a buffer solution at a temperature at which the antibody is released from temperature-responsive protein A.
  • a buffer solution having a second salt concentration lower than the first salt concentration is used to elute the antibody captured in the stationary phase, and a different buffer solution is used in the washing step and the elution step.
  • This is a method for purifying antibodies.
  • the antibody purification method is a method for purifying an antibody using temperature-responsive protein A, a binding step for binding the antibody to a stationary phase having temperature-responsive protein A, and the antibody and temperature.
  • a buffer solution at a temperature to which the responsive protein A binds a washing step for washing the stationary phase using the buffer solution having the first hydrogen ion index, and a buffer at a temperature at which the antibody is released from the temperature responsive protein A.
  • This is a method for purifying an antibody using a buffer solution.
  • the stationary phase having temperature-responsive protein A includes temperature-responsive protein A and a carrier to which temperature-responsive protein A is bound. Temperature-responsive protein A has a property of binding to an antibody in a low temperature region and releasing the antibody in a high temperature region.
  • the shape of the carrier is not particularly limited, and there are, for example, a flat membrane shape, a membrane shape such as a hollow fiber membrane shape, or a bead shape.
  • a hollow fiber carrier can be suitably used because it can be easily molded into a module and has a large membrane area that can be filled per module container.
  • a bead-shaped material generally has a larger surface area per volume than a film-shaped material and can adsorb a large amount of antibody, so that it can be suitably used.
  • the material of the carrier is not particularly limited, but when the carrier is in the form of a film, a polymer material that can form a porous membrane can be suitably used.
  • a polymer material that can form a porous membrane can be suitably used.
  • olefin resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate and polyethylene terephthalate
  • polyamide resins such as nylon 6 and nylon 66
  • fluorine-containing resins such as polyvinylidene fluoride and polychlorotrifluoroethylene
  • polystyrene polysulfone
  • Noncrystalline resins such as polyethersulfone and polycarbonate can be used.
  • the carrier is in the form of beads, glass, silica, polystyrene resin, methacrylic resin, crosslinked agarose, crosslinked dextran, crosslinked polyvinyl alcohol, crosslinked cellulose, and the like can be used as the material for the carrier.
  • Crosslinked polyvinyl alcohol and crosslinked cellulose are highly hydrophilic and can be suitably used because they can suppress the adsorption of impurity components.
  • the carrier used in this embodiment has, for example, a plurality of pores.
  • the pore diameter is not particularly limited, but is, for example, 5 to 1000 nm, preferably 10 to 700 nm, and more preferably 20 to 500 nm. If the pore diameter is 5 nm or less, the molecular weight of the separable antibody tends to be low. Further, when the pore diameter is 1000 nm or more, the surface area of the substrate is reduced, and the antibody binding capacity tends to be reduced.
  • An arbitrary coupling group may be introduced into the carrier. Since temperature-responsive protein A has a primary amino group, NHS-activated carboxyl group, carboxyl group, cyanogen bromide active group, epoxy group, formyl group and the like that can be coupled with the primary amino group are preferable.
  • a carboxyl group activated with NHS is preferably used because no other chemicals are required during the coupling reaction, and the reaction is rapid and forms a strong bond.
  • any method may be used for introducing the coupling group into the carrier, but a spacer is generally introduced between the carrier and the coupling group.
  • Methods for introducing coupling groups are disclosed in various literatures.
  • a graft polymer chain having a coupling group at the terminal and / or side chain may be introduced into the carrier.
  • a graft polymer chain having a coupling group By introducing a graft polymer chain having a coupling group into the carrier, it is possible to control the density of the coupling group arbitrarily.
  • a polymer chain having a coupling group is grafted to the carrier, or a polymer chain having a precursor functional group that can be converted into a coupling group is grafted to the carrier, and then the grafted precursor functional group is coupled to the coupling group. May be converted to
  • the graft polymer chain can be introduced by any method.
  • a polymer chain may be prepared in advance and coupled to a carrier. Further, the graft chain may be polymerized directly on the carrier by the technique of “living radical polymerization method” or “radiation graft polymerization method”.
  • the “radiation graft method” can be suitably used because there is no need to introduce a reaction initiator into the carrier in advance, and there are various types of applicable carriers.
  • any means can be adopted for generating radicals on the carrier, but in order to generate uniform radicals on the entire carrier, irradiation with ionizing radiation is required.
  • irradiation with ionizing radiation is required.
  • types of ionizing radiation ⁇ rays, electron beams, ⁇ rays, neutron rays and the like can be used.
  • electron beams or ⁇ rays are preferable for implementation on an industrial scale.
  • the ionizing radiation is obtained from radioactive isotopes such as cobalt 60, strontium 90, and cesium 137, or from an X-ray imaging apparatus, an electron beam accelerator, an ultraviolet irradiation apparatus, or the like.
  • the irradiation dose of ionizing radiation is, for example, preferably 1 kGy or more and 1000 kGy or less, more preferably 2 kGy or more and 500 kGy or less, and further preferably 5 kGy or more and 200 kGy or less. If the irradiation dose is less than 1 kGy, radicals tend not to be generated uniformly. Further, when the irradiation dose exceeds 1000 kGy, the physical strength of the carrier tends to be lowered.
  • a radical is generally generated on a carrier, and then a pre-irradiation method in which it is contacted with a reactive compound, and a radical is applied to the carrier in a state where the carrier is in contact with the reactive compound. It is roughly divided into the simultaneous irradiation method to be generated. In this embodiment, any method can be applied, but a pre-irradiation method with less oligomer formation is preferred.
  • the solvent used in the graft polymerization is not particularly limited as long as the reactive compound can be uniformly dissolved.
  • a solvent include alcohols such as ethanol, isopropanol and t-butyl alcohol; ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and 2-butanone; water, or a mixture thereof.
  • examples of the monomer having a coupling group used for graft polymerization include monomers such as acrylic acid and methacrylic acid when a carboxyl group is used as the coupling group.
  • a primary amino group is used as a coupling group, allylamine and the like can be mentioned.
  • an epoxy group is mentioned.
  • a monomer having a precursor functional group that can be converted into a coupling group may be grafted onto a carrier, and then the grafted precursor functional group may be converted into a coupling group.
  • Glycidyl methacrylate (GMA) having an epoxy group can be converted into various functional groups using ring-opening reactions of various epoxy groups, and thus can be suitably used industrially.
  • the epoxy group of GMA is hydrolyzed into a diol, and a cyclic acid anhydride is subjected to a ring-opening half esterification reaction with a hydroxyl group derived from the diol. It is possible to form a carboxyl group derived from a cyclic acid anhydride (ring-opening half esterification reaction).
  • the cyclic acid anhydride is preferably succinic anhydride or glutaric anhydride, but is not limited thereto.
  • the catalyst used in the ring-opening half esterification reaction is not particularly limited as long as it promotes this reaction, and specific examples include triethylamine, isobutylethylamine, pyridine, 4-dimethylaminopyridine, and the like. 4-Dimethylaminopyridine is preferred, and 4-dimethylaminopyridine is most preferred in view of reaction rate and yield.
  • the ring-opening half esterification reaction is preferably performed in an inert organic solvent such as toluene to which the above catalyst is added.
  • the NHS activation reaction is a step of converting a carboxyl group formed by the ring-opening half esterification reaction into an active ester. Since the active ester is more reactive than the carboxyl group, the active esterification step is preferably performed when it is desired to quickly fix the temperature-responsive protein A on the carrier.
  • the active ester serves to bind the hydrophilic compound and the substance to be immobilized by a covalent bond.
  • the active ester means a chemical structure of R—C ( ⁇ O) —X.
  • X is a leaving group such as, but not limited to, halogen, N-hydroxysuccinimide group or derivative thereof, 1-hydroxybenzotriazole group or derivative thereof, pentafluorophenyl group, and paranitrophenyl group.
  • N-hydroxysuccinimide ester is desirable in terms of reactivity, safety and production cost. Conversion of the carboxyl group to an N-hydroxysuccinimide ester is achieved by reacting the carboxyl group with N-hydroxysuccinimide and carbodiimide simultaneously.
  • carbodiimide means an organic compound having a chemical structure of —N ⁇ C ⁇ N—, such as dicyclohexylcarbodiimide, diisopropylcarbodiimide, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride.
  • concentration of N-hydroxysuccinimide and carbodiimide is 1 to 100 mmol / L
  • the reaction temperature is 0 ° C. or more and less than 100 ° C.
  • the reaction time is 2 minutes to 16 hours.
  • N, N′-dimethylformamide (DMF), toluene or the like can be used as the reaction solvent.
  • protein A mutated so that the binding property with an antibody changes depending on temperature can be prepared with reference to a patent document (WO2008 / 143199 pamphlet).
  • the coupling reaction between the NHS activated carboxyl group and the temperature-responsive protein A is performed as follows, for example. First, citrate buffer (pH 3.0 to 6.2), acetate buffer (pH 3.6 to 5.6), phosphate buffered saline (PBS, pH 5.8 to 8.5), or carbonate buffer A 0.1-100 mg / mL temperature-responsive protein A solution is prepared using a buffer solution that does not contain an amino group component such as a solution (pH 9.2 to 10.6). When this aqueous solution is brought into contact with the active ester surface, a functional group such as an amino group contained in the temperature-responsive protein A reacts with the active ester to form an amide bond.
  • citrate buffer pH 3.0 to 6.2
  • acetate buffer pH 3.6 to 5.6
  • phosphate buffered saline PBS, pH 5.8 to 8.5
  • carbonate buffer A 0.1-100 mg / mL temperature-responsive protein A solution is prepared using a buffer solution that does not contain an amino
  • temperature-responsive protein A is immobilized on the carrier by covalent bonds.
  • the contact time may be set in the range of 2 minutes to 16 hours.
  • a buffer solution containing about 0.5 mol / L salt (NaCl) and about 0.1% nonionic surfactant is used as the washing solution, physical adsorption is performed without covalent bonding to the carrier. Only temperature-responsive protein A can be removed, which is preferable.
  • the unreacted carboxyl group or active ester is bound to the low molecular weight compound having an amino group. It is preferable to convert the carboxyl group or active ester into a functional group having a lower reactivity. This can prevent unintentional molecules such as impurities from binding to the stationary phase unintentionally.
  • the functional group at the end of the temperature-responsive protein A fixing carrier is an active ester, this operation is preferably performed.
  • the operation of reacting a low molecular weight compound having an amino group with an active ester group may be particularly described as “blocking”.
  • the surface of the carrier after reacting the carboxyl group or the active ester with the low molecular weight compound is hydrophilic. This is because a hydrophilic surface generally has an effect of suppressing nonspecific adsorption of a biological substance.
  • Non-limiting examples of such low molecular weight compounds include ethanolamine, trishydroxymethylaminomethane, and diglycolamine (IUPAC name: 2- (2-aminoethoxy) ethanol).
  • reaction temperature may be set in the range of 4 to 37 ° C. and the reaction time in the range of 2 minutes to 16 hours.
  • a commercially available empty column or an empty column prepared from a glass tube may be used by packing a temperature-responsive protein A-immobilized carrier as a stationary phase.
  • a commercially available empty column with a jacket (trade name: XK column, GE Healthcare Japan) can be suitably used because the temperature of the column itself can be arbitrarily controlled by controlling the temperature of the jacket circulating water. it can.
  • the carrier When the carrier is in the form of a film, it may be fixed to a commercially available film holder or processed into an arbitrary module shape according to each shape.
  • the temperature-responsive protein A-immobilized carrier is stored at a low temperature of about 2-10 ° C. with a neutral solution in the pH range of 4-8 as a storage solution.
  • a neutral solution in the pH range of 4-8 as a storage solution.
  • 20% ethanol is preferable in consideration of antibacterial properties.
  • the mixture containing the antibody encodes a hybridoma producing the antibody, a myeloma cell such as NSO, and the antibody.
  • these culture supernatants are clarified. The clarification may be performed, for example, by filtration with a 0.2 ⁇ m membrane filter.
  • the antibody to be purified in the present embodiment is not limited, but for example, human antibodies, non-human animal antibodies such as mouse, cow, goat and sheep and other ungulates, human and non-human animal chimeric antibodies, and non-human animals.
  • humanized antibodies obtained by humanizing human animal antibodies and preferably human antibodies. More preferred are human monoclonal antibodies.
  • the class and subclass of the antibody are not limited, and antibodies of any class and subclass can be purified in the present embodiment, but IgG is preferable, and IgG1, IgG2, and IgG4 among them are preferable.
  • an antibody in which at least one amino acid of the naturally occurring heavy chain constant region amino acid is deleted, at least one amino acid of the naturally occurring heavy chain constant region amino acid It may be an antibody substituted with an amino acid, or an antibody with at least one amino acid added to a naturally occurring heavy chain constant region. Furthermore, the antibody may be covalently or coordinated with another compound.
  • Temperature-responsive protein A has the property of binding an antibody at a low temperature and releasing the antibody at a temperature higher than the temperature at which it binds to the antibody. It is preferable that the temperature at which the binding property of the temperature-responsive protein A with the antibody changes is confirmed in advance, and the antibody is adsorbed and desorbed on the stationary phase by changing the temperature so as to sandwich the temperature.
  • the temperature range in which the antibody and the temperature-responsive protein A are bound is a temperature range in which the binding amount of the antibody is 50% or more with respect to the maximum binding amount of the antibody that can bind to a certain amount of stationary phase having the antibody. Further, the temperature range in which the antibody is released from the temperature-responsive protein A is a temperature range in which the antibody binding amount is less than 50% with respect to the maximum binding amount of the antibody that can bind to a certain amount of stationary phase having the antibody. is there.
  • the temperature range in which the antibody and temperature-responsive protein A are bound and the temperature range in which the antibody is released from temperature-responsive protein A are determined, for example, according to the following procedure.
  • the antibody is allowed to bind to the stationary phase having temperature-responsive protein A under each temperature condition set at less than 1.5 ° C., 10 ° C., and thereafter at 10 ° C. intervals immediately below the temperature at which the antibody denatures.
  • the temperature is raised to just below the temperature at which the antibody denatures, the antibody is eluted from the stationary phase, and the antibody is quantified. 3.
  • the amount of antibody elution is plotted against the temperature at which the antibody is adsorbed to the stationary phase.
  • 50% of the maximum amount of antibody binding (elution amount) and the temperature at the intersection of the lines connecting the plots (hereinafter referred to as “50% binding temperature”) are the boundary.
  • the temperature range that gives an antibody binding amount of at least% is the temperature range at which the antibody and temperature-responsive protein A bind. Further, the temperature range that gives the amount of antibody binding of less than 50% is the temperature range in which the antibody is released from the temperature-responsive protein A.
  • the temperature range in which the antibody and the temperature-responsive protein A are bound is, for example, 0 ° C. or higher and lower than 20 ° C., preferably 1 ° C. or higher and lower than 15 ° C., more preferably 2 ° C. or higher and lower than 13 ° C.
  • the temperature range in which the antibody is released from the temperature-responsive protein A is, for example, a temperature range of 25 ° C. or more and less than 50 ° C., preferably 30 ° C. or more and less than 45 ° C.
  • the temperature range in which the antibody is released from the temperature-responsive protein A is preferably 15 ° C. or higher and 30 ° C. or lower, more preferably 20 ° C.
  • the temperature range is 25 ° C. or lower.
  • the antibody recovery rate is lower than when using a temperature region of 25 ° C. or more and less than 50 ° C.
  • the hydrogen ion index of the buffer used in the elution step is lower than the hydrogen ion index of the buffer used in the washing step. It is set.
  • the present inventors have set a temperature range at which the antibody is released from the temperature-responsive protein A as a temperature range in which the antibody and the temperature-responsive protein A are bound under the above conditions, for example, a buffer solution having a temperature of 0 ° C. or higher and lower than 20 ° C. As a range, for example, it has been found that a buffer solution having a temperature of 15 ° C. or more and less than 50 ° C.
  • the temperature range in which the antibody and the temperature-responsive protein A bind to and the temperature range in which the antibody is released from the temperature-responsive protein A partially overlap. As described above, this is a washing process and an elution process. Any difference in the hydrogen ion index is acceptable. Note that the temperature of the buffer solution in the elution step may be higher than the temperature of the buffer solution in the washing step.
  • the culture temperature of Chinese hamster ovary (CHO) cells used for the production of monoclonal antibodies is usually 37 ° C. If the temperature at which the antibody is eluted from temperature-responsive protein A is set to less than 37 ° C., the activity of the antibody Can be avoided. At this time, the temperature range suitable for the antibody to be released from the temperature-responsive protein A is a temperature range of 10 ° C. or higher and lower than 37 ° C., preferably 15 ° C. or higher and lower than 30 ° C.
  • the buffer containing the antibody eluted from the stationary phase having temperature-responsive protein A may be further purified by cation exchange chromatography.
  • cation exchange chromatography a stationary phase containing a temperature-responsive cation exchange resin that adsorbs antibodies at high temperatures and liberates antibodies at low temperatures is preferably used.
  • a temperature-responsive cation exchanger in which a copolymer containing N-isopropylacrylamide or the like is immobilized on the support surface can be used.
  • the copolymer has at least a cation exchange group.
  • the temperature-responsive cation exchanger according to the present embodiment is obtained by subjecting a monomer mixture comprising a monomer having a cation exchange group and / or a cation exchange group-introduced precursor monomer and an N-isopropylacrylamide monomer to a surface of a carrier by a surface graft polymerization method. It is formed by polymerization.
  • the shape of the carrier used in the temperature-responsive cation exchanger according to the present embodiment is not particularly limited, and examples thereof include a bead shape, a flat plate shape, and a tubular shape.
  • beads having various particle diameters are available and are not particularly limited, but the particle diameter is, for example, 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m. is there. If the particle size is 1 ⁇ m or less, consolidation of beads tends to occur in the column, and thus processing at a high flow rate tends to be difficult. On the other hand, when the particle size is 300 ⁇ m or more, the gap between the beads becomes large, and the solution tends to leak when the antibody is adsorbed.
  • the carrier has, for example, a plurality of pores.
  • the pore diameter is not particularly limited, but is, for example, 5 to 1000 nm, preferably 10 to 700 nm, and more preferably 20 to 500 nm. If the pore diameter is 5 nm or less, the molecular weight of the separable antibody tends to be low. On the other hand, when the pore diameter is 1000 nm or more, the surface area of the carrier decreases, and the binding capacity of the antibody tends to decrease.
  • the material of the carrier is not particularly limited, but when it is in the form of beads, glass, silica, polystyrene resin, methacrylic resin, crosslinked agarose, crosslinked dextran, crosslinked polyvinyl alcohol, crosslinked cellulose, and the like can be used.
  • a temperature-responsive polymer having a cation exchange group is immobilized on the carrier.
  • an immobilization method an atom transfer radical polymerization initiator is immobilized on the support surface, and a temperature responsive polymer is grown from the initiator in the presence of a catalyst, or the support is irradiated with radiation. Then, there is a “radiation graft polymerization method” in which a radical is generated and a temperature-responsive polymer is allowed to grow from the generated radical as a starting point, but is not particularly limited.
  • an immobilization method there is an “atom transfer radical polymerization method” which is a surface living radical polymerization method.
  • the “atom transfer radical polymerization method” can be preferably used because the polymer can be fixed at a high density on the surface of the carrier.
  • the initiator used at that time is not particularly limited, but when the carrier has a hydroxyl group as in this embodiment
  • examples thereof include silane and 2-bromoisobutyric acid bromide.
  • polymer chains are grown from this initiator.
  • the catalyst at that time is not particularly limited, and examples of the copper halide (CuIX) include CuICl and CuIBr.
  • the ligand complex for the copper halide is not particularly limited, but tris (2- (dimethylamino) ethyl) amine (Me6TREN), N, N, N ′′, N ′′ -pentamethyldiethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyltriethylenetetraamine (HMTETA), 1,4,8,11-tetramethyl 1,4,8,11-azacyclotetradecane (Me4Cyclam), And bipyridine.
  • any means can be used to generate radicals on the carrier, but ionizing radiation is used to generate uniform radicals throughout the carrier. Is preferable.
  • ionizing radiation ⁇ rays, electron beams, ⁇ rays, neutron rays and the like can be used. However, electron beams or ⁇ rays are preferable for implementation on an industrial scale.
  • the ionizing radiation is obtained from radioactive isotopes such as cobalt 60, strontium 90, and cesium 137, or by an X-ray imaging apparatus, an electron beam accelerator, an ultraviolet irradiation apparatus, or the like.
  • the irradiation dose of ionizing radiation is, for example, 1 kGy or more and 1000 kGy or less, preferably 2 kGy or more and 500 kGy or less, and more preferably 5 kGy or more and 200 kGy or less. If the irradiation dose is less than 1 kGy, radicals tend not to be generated uniformly. Further, when the irradiation dose exceeds 1000 kGy, the physical strength of the carrier tends to be lowered.
  • Graft polymerization by irradiation with ionizing radiation generally involves the formation of radicals on a carrier, followed by pre-irradiation in which the radicals are brought into contact with a reactive compound, and radicals on the carrier in a state where the membrane is in contact with the reactive compound. It is roughly divided into the simultaneous irradiation method to be generated. In this embodiment, any method can be applied, but a pre-irradiation method with less oligomer formation is preferred.
  • the solvent used at the time of polymerization is not particularly limited as long as it can uniformly dissolve the reactive compound.
  • solvents include alcohols such as ethanol, isopropanol, and t-butyl alcohol, ethers such as diethyl ether and tetrahydrofuran, ketones such as acetone and 2-butanone, water, and mixtures thereof.
  • the polymer coated on the carrier surface has a temperature-responsive monomer such as N-isopropylacrylamide.
  • Poly (N-isopropylacrylamide) is known to have a lower critical temperature at 32 degrees.
  • the carrier having the polymer introduced on the surface greatly changes the hydrophilic / hydrophobic surface properties at a critical temperature. For this reason, when a carrier grafted or coated with poly (N-isopropylacrylamide) is used as a stationary phase for chromatography, the holding force for the sample can be obtained depending on the temperature. As a result, the retention behavior can be controlled by temperature without changing the composition of the eluate.
  • hydrophilic comonomers such as acrylamide, methacrylic acid, acrylic acid, dimethylacrylamide, and vinylpyrrolidone, which are more hydrophilic monomers than isopropylacrylamide, are combined with N-isopropylacrylamide. It can be prepared by polymerizing.
  • the lower critical temperature is desired to be 32 ° C. or lower, it can be prepared by copolymerization with a hydrophobic comonomer such as styrene, alkyl methacrylate, alkyl acrylate or the like which is a hydrophobic monomer.
  • a monomer having a strong cation exchange group is included in the synthesis of the temperature-responsive polymer chain coated on the surface of the carrier.
  • a copolymerization method examples include (meth) acrylamide alkyl sulfonic acid, which is a structural unit of a polymer having sulfonic acid.
  • a method for giving a strong cation exchange group to a polymer coated on the surface of a carrier a method including copolymerizing a monomer having a “strong cation exchange group introduction precursor” and then converting the precursor into a sulfonic acid group Is mentioned.
  • the “strong cation exchange group-introduced precursor” may include “a strong cation exchange group precursor”.
  • the “precursor of a strong cation exchange group” is, for example, a strong cation exchange group with a protective group.
  • the monomer having a sulfonic acid group precursor include phenyl vinyl sulfonate, but the present embodiment is not limited thereto.
  • a copolymer which contains a monomer having a functional group capable of giving a strong cation exchange group and then a copolymer which can give a strong cation exchange group The method of converting a group into a sulfonic acid group is mentioned.
  • the monomer having a functional group capable of imparting a strong cation exchange group include glycidyl methacrylate.
  • a monomer composition in which the ratio of the monomer having a strong cation exchange group and / or the strong cation exchange group-introduced precursor monomer to N-isopropylacrylamide is 0.01 to 5 mol% is used as the surface graft weight. Polymerize by law. The ratio is preferably 0.1 to 4 mol%, more preferably 0.2 to 3 mol%, still more preferably 0.3 to 2 mol%, and most preferably 0.5 to 1.5 mol%. If the ratio exceeds 5 mol%, the amount of strong cation exchange groups relative to N-isopropylacrylamide in the copolymer will be excessive.
  • the adsorption amount of the antibody to the temperature-responsive cation exchanger increases, it tends to be difficult to elute the adsorbed antibody due to a temperature change.
  • the ratio is less than 0.01 mol%, the amount of strong cation exchange groups introduced is small, and the amount of antibody adsorption tends to be small.
  • the polymer coated on the surface of the carrier causes hydration and dehydration by changing the temperature.
  • the temperature range is 0 ° C. or more and less than 80 ° C., preferably 5 ° C. or more and less than 50 ° C., More preferably, it is 10 degreeC or more and less than 45 degreeC. If the temperature exceeds 80 ° C., the mobile phase is water, and thus evaporation occurs and the workability tends to deteriorate. On the other hand, if it is lower than 0 ° C., the mobile phase tends to freeze.
  • the column packed with the temperature-responsive cation exchanger obtained by the present embodiment is attached to a normal liquid chromatography apparatus and used as a liquid chromatography system.
  • the method of loading the temperature to the column filled with the temperature-responsive cation exchanger is not particularly limited, but, for example, an aluminum block, water bath, air layer, and the like, which has a predetermined temperature on the column filled with the temperature-responsive cation exchanger Or wearing a jacket or the like.
  • the target antibody is once adsorbed to the stationary phase containing the temperature-responsive cation exchange resin, and then the temperature is changed to change the surface of the stationary phase.
  • a catch-and-release method is used in which the adsorbed antibody is released by changing the above-mentioned characteristics.
  • the amount of antibody adsorbed on the stationary phase may or may not exceed the amount that can be adsorbed on the stationary phase.
  • this is a purification method in which the adsorbed antibody is released by once adsorbing the antibody to the stationary phase and then changing the characteristics of the stationary phase surface by changing the temperature.
  • the temperature range in which the antibody is adsorbed on the temperature-responsive cation exchange resin is, for example, a high temperature range of 25 ° C. or more and less than 50 ° C., preferably 30 ° C. or more and less than 45 ° C.
  • the temperature range in which the antibody is released from the temperature-responsive cation exchange resin is, for example, a low temperature range of 0 ° C. or higher and lower than 20 ° C., preferably 1 ° C. or higher and lower than 15 ° C., more preferably 2 ° C. or higher and lower than 13 ° C.
  • separation methods are not particularly limited, but a method of confirming the temperature at which the hydrophilic / hydrophobic surface properties of the stationary phase change in advance and separating impurities while changing the temperature so as to sandwich the temperature is performed. Is mentioned. In this case, since the hydrophilic / hydrophobic surface physical properties of the stationary phase are greatly changed only by temperature change, it is expected that a large difference occurs in the time (holding time) in which a signal appears depending on the solute. In the case of this embodiment, it is one of the most effective embodiments that the separation is performed with a temperature at which the hydrophilic / hydrophobic surface properties of the stationary phase greatly change.
  • the mixture solution containing the antibody is cooled to a temperature adsorbed to temperature-responsive protein A, Supplied to an affinity chromatography column with a stationary phase with temperature responsive protein A. In that case, the temperature at which the temperature-responsive protein A and the antibody bind to each other is confirmed in advance, and the temperature of the mixture solution containing the antibody is adjusted to that temperature.
  • the mixture solution containing the antibody may contain impurities such as protease and may be stored at a low temperature.
  • impurities such as protease
  • the storage temperature of the mixture containing the antibody is within the temperature range where the temperature-responsive protein A and the antibody bind, the antibody may be adsorbed to the temperature-responsive protein A as it is.
  • a heat exchanger is disposed immediately upstream of the temperature-responsive protein A column, and the temperature of the mixture solution containing the antibody is continuously changed while loading the antibody-containing mixture solution onto the temperature-responsive protein A column. It is also possible to adjust.
  • the temperature of the mixture solution containing the antibody by immersing the chromatography column in a constant temperature water bath adjusted to a predetermined temperature.
  • the chromatography column may be immersed in a constant temperature water bath adjusted to a predetermined temperature to adjust the temperature of the mixture solution containing the antibody.
  • a low-temperature buffer solution that binds the antibody and temperature-responsive protein A using a buffer solution having a first salt concentration and a first pH.
  • a buffer solution having a first salt concentration and a first pH can be used.
  • the low temperature at which the antibody and the temperature-responsive protein A binds is, for example, 0 ° C. or higher and lower than 20 ° C., preferably 0 ° C. or higher and 15 ° C. or lower, more preferably 1 ° C. or higher and lower than 15 ° C., and further preferably 2 ° C. or higher and 13 ° C. Is less than.
  • the first salt concentration is, for example, 150 to 1000 mmol / L, preferably 250 to 800 mmol / L, and more preferably 350 to 600 mmol / L.
  • the first pH is, for example, 7.5 to 9.0, preferably 7.6 to 9.0, more preferably 7.6 to 8.8, and more preferably 7.7 to 9.0. It is 8.6, more preferably 8.0 to 8.6.
  • HCP host cell-derived protein
  • DNA deoxyribonucleic acid
  • the temperature range in which the antibody is released from the temperature-responsive protein A is preferably set to 15 ° C. or higher and 30 ° C. or lower, more preferably 20 ° C. or higher and 25 ° C. or lower.
  • the second salt concentration is lower than the first salt concentration, for example, 0 to 1000 mmol / L, preferably 0 to 300 mmol / L, more preferably 0 to 100 mmol / L, most preferably 0 mmol. / L.
  • the second pH is lower than the first pH, for example, 5.0 to 8.0, preferably 5.0 to 7.0, and more preferably 5.0 to 6.5.
  • the temperature at which the antibody is eluted from the temperature-responsive protein A is less than 37 ° C., a decrease in the activity of the antibody can be avoided.
  • the present inventors set the temperature range for releasing the antibody from the temperature-responsive protein A to 10 ° C. or higher and lower than 37 ° C., preferably 10 ° C. or higher and 30 ° C. or lower, more preferably 15 ° C. or higher and 30 ° C. or lower, more preferably 20 ° C. It has been found that when the temperature is set to 25 ° C. or lower, the recovery rate can be increased by setting the second pH condition lower.
  • the second pH condition is, for example, pH 3.0 to 8.0, preferably pH 3.5 to 7.0, more preferably pH 3.9 to 6.5, still more preferably 4.0 or more. It is 6.0 or less.
  • a cation exchange chromatography column having a stationary phase containing a cation exchange resin can be used without desalting the buffer containing the antibody eluted from the stationary phase having temperature-responsive protein A. It can be supplied as it is.
  • the buffer solution containing the antibody eluted from the stationary phase having temperature-responsive protein A can be temporarily stored in a tank or the like, but from the temperature range where the antibody binds to the stationary phase containing the cation exchange resin. It is preferable to keep the temperature so as not to deviate.
  • the antibody is eluted by immersing the temperature-responsive cation exchange column in a constant temperature water bath adjusted to a predetermined temperature.
  • the antibody is eluted by immersing the temperature-responsive cation exchange column in a constant temperature water bath adjusted to a predetermined temperature. Is also possible.
  • An equilibration step in which a buffer solution having a low salt concentration and a high hydrogen ion index is brought into contact with a stationary phase having temperature-responsive protein A before the binding step of binding the antibody to temperature-responsive protein A of the stationary phase.
  • the salt concentration of the buffer in the equilibration step is, for example, 0 to 1000 mmol / L, preferably 0 to 250 mmol / L, and more preferably 0 to 100 mmol / L.
  • the pH of the buffer solution in the equilibration step is, for example, 5.0 to 9.0, preferably 6.0 to 9.0, and more preferably 7.0 to 9.0.
  • the same salt concentration as the buffer in the elution step for eluting the antibody captured in the stationary phase containing the cation exchange resin and A pH buffer may be contacted with the stationary phase with temperature responsive protein A in the equilibration step.
  • Temperature-responsive protein A was prepared with reference to Example 11 of the patent document (WO2008 / 143199 pamphlet).
  • a temperature-responsive protein A solution in which 150 mg of temperature-responsive protein A was dissolved in 3 mL of a coupling buffer (0.2 mol / L phosphate buffer, 0.5 mol / L NaCl, pH 8.3) was prepared. Then, the NHS-activated beads were put into a temperature-responsive protein A solution, and reacted at 25 ° C. for 4 hours while shaking. After a predetermined time, the beads were washed with a coupling buffer, and the temperature-responsive protein A that did not undergo a coupling reaction with the NHS active group on the carrier was washed and recovered.
  • Blocking Beads coupled with temperature-responsive protein A are immersed in 10 mL of a blocking reaction solution (0.5 mol / L ethanolamine, 0.5 mol / L NaCl, pH 8.0) and left at room temperature for 30 minutes. Residual NHS was blocked with ethanolamine. After the reaction, the beads were washed with pure water and then stored at 4 ° C. in a state sealed in a column with 20% ethanol.
  • a blocking reaction solution 0.5 mol / L ethanolamine, 0.5 mol / L NaCl, pH 8.0
  • the temperature-responsive protein A carrier was packed in an empty column (GE Healthcare Japan, Inc., Tricorn 5/20 column). The filling method was performed with reference to the instruction manual of the provider. Then, the column was mounted on a chromatography system (GE Healthcare Japan, AKTA FPLC).
  • a culture solution of Chinese hamster ovary (CHO) cells cultured at 37 ° C. is clarified, and a polyclonal antibody (Venesis, Inc., blood donated venoglobulin IH) is equivalent to 1 mg / mL.
  • the CHO cell culture medium is a CHO cell culture medium (cell density of about 8.9 ⁇ 106 / mL, viable cell rate of 66%) cultured in a serum-free medium (Irvine Scientific IS CHO-CD medium) and filtered.
  • the culture supernatant was obtained by filtration using a membrane (trade name: BioOptical (registered trademark) MF-SL, manufactured by Asahi Kasei Medical). Filtration was performed with reference to the instruction manual of the provider.
  • the culture supernatant containing the antibody was injected into the column under the following conditions, and the antibody was adsorbed on the carrier. Furthermore, the column was washed under the following conditions, and then the antibody was eluted from the column.
  • the pH of the elution buffer was made lower than the pH of the washing buffer.
  • the antibody concentration contained in the eluate was calculated using the following formula (1) by measuring ultraviolet absorption (UV absorption) at 280 nm.
  • Antibody concentration (mg / mL) Absorbance / 1.38 (1)
  • HCP host protein
  • the protein A content contained in the eluate was measured using a commercially available protein A assay kit (CYGNUS, Protein A ELISA Kit, catalog number: F400). The measurement was carried out with reference to the instruction manual (Immunoenzymatic for the Measurement of Protein A Catalog # F400) attached to the assay kit, but steps 1 to 4 in the protocol described on page 4 of the manual were conducted in a cold room (10 The other steps were performed at room temperature.
  • CYGNUS Protein A ELISA Kit, catalog number: F400
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer (pH 8.0) was used as the washing buffer. Also in Example 2, the pH of the elution buffer was lower than the pH of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer (pH 9.0) was used as the washing buffer. Also in Example 3, the pH of the elution buffer was lower than the pH of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer. Therefore, in Example 4, the pH of the wash buffer and the pH of the elution buffer were the same, but the salt concentration of the elution buffer was lower than the salt concentration of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 300 mM NaCl (pH 7.0) was used as the washing buffer. Therefore, in Example 5, the pH of the wash buffer and the pH of the elution buffer were the same, but the salt concentration of the elution buffer was lower than the salt concentration of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 450 mM NaCl (pH 7.0) was used as the washing buffer. Therefore, in Example 6, the pH of the wash buffer and the pH of the elution buffer were the same, but the salt concentration of the elution buffer was lower than the salt concentration of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 8.0) was used as the washing buffer. Therefore, in Example 7, the pH of the elution buffer was lower than the pH of the wash buffer. In addition, the salt concentration of the elution buffer was lower than the salt concentration of the washing buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 9.0) was used as the washing buffer. Therefore, in Example 8, the pH of the elution buffer was lower than the pH of the wash buffer. In addition, the salt concentration of the elution buffer was lower than the salt concentration of the washing buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • Example 9 The same method as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer + 150 mM NaCl (pH 6.0) was used as the elution buffer. Antibody purification was performed. Therefore, in Example 9, the pH of the elution buffer was lower than the pH of the wash buffer, but the salt concentration of the wash buffer and the salt concentration of the elution buffer were the same. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • Example 10 The same method as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer + 150 mM NaCl (pH 5.0) was used as the elution buffer. Antibody purification was performed. Therefore, in Example 10, the pH of the elution buffer was lower than the pH of the wash buffer, but the salt concentration of the wash buffer and the salt concentration of the elution buffer were the same. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was prepared in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer (pH 8.0) was used as the elution buffer. Purification was performed. Therefore, in Example 11, the pH of the elution buffer was higher than the pH of the wash buffer, but the salt concentration of the elution buffer was lower than the salt concentration of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was prepared in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer (pH 7.0) was used as the elution buffer. Purification was performed. Therefore, in Example 12, the pH of the wash buffer and the pH of the elution buffer were the same, but the salt concentration of the elution buffer was lower than the salt concentration of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was prepared in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer (pH 6.0) was used as the elution buffer. Purification was performed. Therefore, in Example 13, the pH of the elution buffer was lower than the pH of the wash buffer. In addition, the salt concentration of the elution buffer was lower than the salt concentration of the washing buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the antibody was prepared in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer (pH 5.0) was used as the elution buffer. Purification was performed. Therefore, in Example 14, the pH of the elution buffer was lower than the pH of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • a temperature-responsive cation exchange resin having a sulfonic acid group was synthesized by an atom transfer radical polymerization method.
  • the antibody purified in Example 13 was purified with a temperature-responsive cation exchange resin.
  • N-isopropylacrylamide (IPAAm, manufactured by Wako Pure Chemical Industries, Ltd.) 18.40 g, GMA 0.231 g, butyl methacrylate (BMA, manufactured by Tokyo Chemical Industry Co., Ltd.) 1.217 g, copper chloride I ( 0.085 g of CuCl, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.012 g of copper chloride II (CuCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 42.8 mL of 90% by volume isopropanol (IPA) aqueous solution. Nitrogen was bubbled for 30 minutes.
  • IPAAm N-isopropylacrylamide
  • BMA butyl methacrylate
  • the monomer solution and the copper catalyst are removed by immersing the reaction solution in a dialysis membrane (Spectra / po Dialyzation Membrane, MWCO1000, Spectrum Laboratories) and immersing in the order ethanol, 50 mmol / L-EDTA aqueous solution, and pure water. did.
  • the reaction solution was placed in a dialysis membrane and immersed in pure water to remove sodium sulfite and IPA, and the reaction solution was freeze-dried to obtain a copolymer.
  • the copolymerization ratio (composition) of the monomer unit having a strong cation exchange group with respect to N-isopropylacrylamide was calculated from the signal integrated value derived from the N-isopropylacrylamide unit and the signal integrated value derived from the sulfonic acid group.
  • the copolymerization ratio (composition) of the monomer unit having a strong cation exchange group with respect to N-isopropylacrylamide was 0.72 mol%.
  • Adsorption / elution amount measurement of antibody protein Beads are packed in an empty column (Tricorn 5/20 column, manufactured by GE Healthcare Japan Co., Ltd.), and a chromatography system (AKTA FPLC, manufactured by GE Healthcare Japan Co., Ltd.) is used.
  • AKTA FPLC a chromatography system
  • the temperature change operation of the column filled with beads is performed by temporarily stopping the pump of the chromatography system, immersing the column in a constant temperature water bath, and then incubating for 10 minutes or more, and then starting the pump of the chromatography system again. It was.
  • the antibody protein was adsorbed and eluted under the following conditions.
  • the temperature elution amount of the antibody protein was 30.7 mg / mL, indicating that the antibody protein can be eluted by a temperature change.
  • the salt elution amount was as small as 1.4 mg / mL. From the above results, it was shown that after purification with temperature-responsive protein A, the antibody protein can be industrially purified with a temperature-responsive cation exchange resin without the need to exchange the buffer.
  • Example 16 the pH of the elution buffer was lower than the pH of the wash buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the elution temperature of the antibody was 25 ° C., and elution was performed in a temperature range that avoids the risk of inactivation due to high temperature. Furthermore, when the antibody recovery rate was calculated using the following equation (4), the recovery rate was sufficiently high at 100%. (Measurement of antibody concentration) The antibody concentration contained in the eluate was calculated using the following equation (4) by measuring ultraviolet absorption (UV absorption) at 280 nm.
  • Example 17 the pH of the elution buffer was lower than the pH of the wash buffer.
  • HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the elution temperature of the antibody was 25 ° C., and elution was performed in a temperature range that avoids the risk of inactivation due to high temperature. The antibody recovery was 99%.
  • Example 18 the pH of the elution buffer was lower than the pH of the wash buffer.
  • HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small.
  • the elution temperature of the antibody was 25 ° C., and elution was performed in a temperature range that avoids the risk of inactivation due to high temperature. The antibody recovery was 100%.
  • Example 19 The antibody was prepared in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer + 300 mM NaCl (pH 6.0) was used as the elution buffer. Purification of was performed. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high.
  • Example 20 Example 1 except that 20 mM phosphate buffer + 300 mM NaCl (pH 8.0) was used as the washing buffer, 50 mM citrate buffer (pH 4.0) was used as the elution buffer, and the elution temperature was 25 ° C.
  • the antibody was purified in the same manner as described above. Therefore, in Example 20, the pH of the elution buffer is lower than the pH of the wash buffer, the salt concentration of the elution buffer is lower than the salt concentration of the wash buffer, and the elution buffer does not contain salt. It was. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, and the protein A content contained in the eluted fraction was also sufficiently small. Furthermore, the elution temperature of the antibody was 25 ° C., and elution was performed in a temperature range that avoids the risk of inactivation due to high temperature. The antibody recovery was 99%.
  • Example 1 The antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer (pH 6.0) was used as the washing buffer. As a result, as shown in Table 1, since the pH of the elution buffer was higher than the pH of the washing buffer, the HCP removability and the DNA removability were low.
  • Example 2 The antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer (pH 7.0) was used as the washing buffer. As a result, as shown in Table 1, since the salt concentration and pH were the same in the washing buffer and the elution buffer, the HCP removability and the DNA removability were low.
  • Example 3 The antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 100 mM NaCl (pH 7.4) was used as the washing buffer and elution buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, but the salt concentration and pH were the same in the washing buffer and elution buffer, so they were included in the elution fraction. Protein A content was high.
  • Example 4 The antibody was prepared in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer, and 20 mM phosphate buffer + 150 mM NaCl (pH 8.0) was used as the elution buffer. Purification of was performed. As a result, as shown in Table 1, the HCP removability and the DNA removability were sufficiently high, but the salt concentration was the same in the wash buffer and the elution buffer, and the elution buffer had a higher concentration than the pH of the wash buffer. Due to the high pH, the content of protein A contained in the eluted fraction was high.
  • Example 5 The antibody was purified in the same manner as in Example 1 except that 20 mM phosphate buffer + 150 mM NaCl (pH 7.0) was used as the washing buffer and elution buffer. As a result, as shown in Table 1, HCP removability and DNA removability were sufficiently high, but the salt concentration and pH were the same in the washing buffer and elution buffer, so they were included in the elution fraction. Protein A content was high.
  • Example 21 Antibody purification was performed in the same manner as in Example 1 except that the elution temperature was 25 ° C. The antibody recovery was as low as 24%.

Abstract

 温度応答性プロテインAを用いた抗体の精製方法であって、温度応答性プロテインAを有する固定相を洗浄する洗浄工程と、固定相に捕捉された抗体を溶出する溶出工程に、異なる緩衝液を用いる方法であり、抗体と温度応答性プロテインAが結合する温度の緩衝液であって、第1の塩濃度の緩衝液を用いて、固定相を洗浄する洗浄工程と、抗体が温度応答性プロテインAから遊離する温度の緩衝液であって、第1の塩濃度より低い第2の塩濃度の緩衝液を用いて、固定相に捕捉された抗体を溶出する溶出工程と、を含む。

Description

温度応答性クロマトグラフィーによる抗体の精製方法
 本発明は、温度変化に伴い抗体との結合性に変化を示す温度応答性クロマトグラフィーを利用した、抗体の精製方法に関する。
 免疫グロブリン(抗体)は、免疫反応を司る生理活性物質である。近年、医薬品、診断薬或いは対応する抗原タンパク質の分離精製材料等の用途において、抗体の利用価値が高まっている。抗体は免疫した動物の血液あるいは抗体産生能を保有する細胞の細胞培養液又は動物の腹水培養液から取得される。但し、それらの抗体を含有する血液や培養液は、抗体以外のタンパク質、又は細胞培養に用いた原料液に由来する複雑な夾雑成分を包含し、それらの不純物成分から抗体を分離精製するには、煩雑で長時間を要する操作が通常必要である。
 液体クロマトグラフィーは、抗体の分離精製に重要である。抗体を分離するためのクロマトグラフィー手法として、ゲルろ過クロマトグラフィー、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、及び逆相クロマトグラフィー等があり、これらの手法を組み合わせることで抗体が分離精製される。
 アフィニティークロマトグラフィーにおいては、下記(A)~(C)の工程を経て、純度及び濃度の高い抗体が精製される。
 (A)抗体と不純物とが混じった試料をカラムに負荷する工程(負荷工程)
 (B)負荷したカラムから精製対象とする抗体以外の不純物を取り除く工程(洗浄工程)
 (C)精製対象とする抗体をカラムから溶出し、回収する工程(溶出工程)
 近年、抗体を精製するためのアフィニティークロマトグラフィーのリガンドとして、プロテインAが注目を集めている。プロテインAは、スタフィロコッカス属黄色ブドウ球菌(Staphylococcus aureus)に由来する。プロテインAは、中性条件下で、抗体のFc領域に対して特異的に高い親和性を有する。そのため、天然のプロテインAを用いて抗体を精製する際には、まず、天然のプロテインAをリガンドとして有する固定相に抗体を含む溶液を中性条件下で接触させて、担体上の天然のプロテインAに抗体を特異的に吸着させる。そして、中性の緩衝液で担体に吸着しなかった成分を洗浄し、除去した後、pH3.0付近の酸性の溶液を用いて、担体上の天然のプロテインAから抗体を遊離させる(例えば、特許文献1、2参照。)。特許文献1では、実施例において、25mMクエン酸ナトリウム(pH2.8)からなる酸性の溶液を用いて、プロテインA担体から抗体を溶出させている。また、特許文献2でも、実施例において、25mMクエン酸塩(pH2.8)、又は0.1M酢酸(pH2.9)からなる酸性の溶液を用いて、プロテインA担体から抗体を溶出させている。このような強い酸性条件では、精製対象である抗体の、変性や失活を引き起こすリスクを有する。
 天然のプロテインAは、上述したように緩衝液の水素イオン指数の変化に応じて抗体との親和性を変化させるため、精製対象となる抗体を酸性条件にさらす必要がある。そのため、精製対象となる抗体の活性を損なう場合がある。これに対し、緩衝液の水素イオン指数を変化させることなく、温度変化に伴う立体構造の変化等によって、抗体との親和性が変化する変異プロテインA(温度応答性プロテインA)を用いた、抗体の精製方法が提案された(例えば、特許文献3、4参照。)。温度応答性プロテインAをアフィニティークロマトグラフィーのリガンドとして用いることにより、緩衝液を酸性にする必要がなくなるため、抗体の活性を保つことが可能となる。しかしながら、温度応答性プロテインA担体を用いた抗体の精製において、宿主細胞由来タンパク質(HCP)及びデオキシリボ核酸(DNA)等の不純物の除去性を高め、プロテインAの脱離を抑制する手段については研究が進んでいなかった。
特開2009-196998号公報 特表2007-526897公報 国際公開第2008/143199号 国際公開第2011/017514号
 温度応答性プロテインAを用いた抗体の精製方法において、宿主細胞由来タンパク質(HCP)及びデオキシリボ核酸(DNA)等のアフィニティーカラム内に残留しうる不純物の除去が求められている。また、担体から脱離した温度応答性プロテインAが抗体の溶出液に混入することを抑制することも求められている。
 また、温度応答性プロテインAを用いる抗体の精製方法では、抗体の溶出の際に40℃程度まで温度を上昇させる必要があるが、高温に設定することよって、抗体の活性がある程度低下することは、これまで避けられなかった。抗体の活性の低下を避けるためには、抗体が温度応答性プロテインAから遊離する温度範囲を低温側にシフトさせることが有効であるが、それを実現する手段についてはこれまで検討されてこなかった。
 そこで、本発明は、担体に結合された温度応答性プロテインAを用いた抗体の精製方法であって、不純物を効果的に除去し、かつ担体からの温度応答性プロテインAの脱離が少ない抗体の精製方法を提供することを課題とする。また、抗体の活性を特に高く維持できる温度応答性プロテインAによる抗体の精製方法を提供することを課題とする。
 従来において、固定相が天然のプロテインAを有する場合は、洗浄工程と、溶出工程とで、異なる緩衝液を用いなければならなかった。これに対し、固定相が温度応答性プロテインAを有する場合は、洗浄工程と、溶出工程とで、同じ緩衝液を用いることができることがメリットとして考えられていた。そのため、固定相が温度応答性プロテインAを有する場合に、洗浄工程と、溶出工程とで、塩濃度及び水素イオン指数の少なくとも一つが異なる緩衝液を用いることは検討されてこなかった。
 また、温度応答性プロテインAを用いた抗体の精製において、溶出工程に用いる緩衝液の塩濃度及び水素イオン指数が、溶出温度に与える影響は検討されてこなかった。
 しかし、本発明者らは鋭意研究の末、担体に結合された温度応答性プロテインAを用いた抗体の精製方法において、洗浄工程において高塩濃度の緩衝液を用い、溶出工程において低塩濃度の緩衝液を用いることによって、不純物が効果的に除去され、かつ担体からの温度応答性プロテインAの脱離も抑制されることを見出した。また、本発明者らは、洗浄工程において高い水素イオン指数の緩衝液を用い、溶出工程において低い水素イオン指数の緩衝液を用いることによっても、不純物が効果的に除去され、かつ担体からの温度応答性プロテインAの脱離も抑制されることを見出した。
 さらに、本発明者らは、溶出工程において低い水素イオン指数の緩衝液を用いることによって、抗体が温度応答性プロテインAから遊離する温度範囲が低温側にシフトする現象を見出した。このことから温度応答性プロテインAを用いた抗体の精製の溶出工程において、低い水素イオン指数の緩衝液を用いることで、抗体を従来よりも低温で溶出させることが可能であることを見出した。
 上述した本発明者らが初めて見出した知見の少なくとも一つに基づく本発明の態様によれば、温度応答性プロテインAを用いた抗体の精製方法であって、温度応答性プロテインAを有する固定相に抗体を結合させる結合工程と、抗体と温度応答性プロテインAが結合する温度の緩衝液であって、第1の塩濃度の緩衝液を用いて、固定相を洗浄する洗浄工程と、抗体が温度応答性プロテインAから遊離する温度の緩衝液であって、第1の塩濃度より低い第2の塩濃度の緩衝液を用いて、固定相に捕捉された抗体を溶出する溶出工程と、を含む、洗浄工程と溶出工程で異なる緩衝液を用いる、抗体の精製方法が提供される。
 また、温度応答性プロテインAを用いた抗体の精製方法であって、温度応答性プロテインAを有する固定相に抗体を結合させる結合工程と、抗体と温度応答性プロテインAが結合する温度の緩衝液であって、第1の水素イオン指数の緩衝液を用いて、固定相を洗浄する洗浄工程と、抗体が温度応答性プロテインAから遊離する温度の緩衝液であって、第1の水素イオン指数より低い第2の水素イオン指数の緩衝液を用いて、固定相に捕捉された抗体を溶出する溶出工程と、を含む、洗浄工程と溶出工程で異なる緩衝液を用いる、抗体の精製方法が提供される。
 本発明によれば、担体に結合された温度応答性プロテインAを用いた抗体の精製方法であって、不純物を効果的に除去し、かつ担体からの温度応答性プロテインAの脱離が少ない抗体の精製方法が提供される。また、本発明によれば、抗体の活性を特に高く維持できる温度応答性プロテインAによる抗体の精製方法を提供可能である。
 以下、本発明の実施の形態(以下において、「本実施形態」という。)を詳細に説明する。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想が下記のものに特定されることはない。この発明の技術的思想は、特許請求の範囲内において種々の変更を加えることができる。 
 本実施形態に係る抗体の精製方法は、温度応答性プロテインAを用いた抗体の精製方法であって、温度応答性プロテインAを有する固定相に抗体を結合させる結合工程と、抗体と温度応答性プロテインAが結合する温度の緩衝液であって、第1の塩濃度の緩衝液を用いて、固定相を洗浄する洗浄工程と、抗体が温度応答性プロテインAから遊離する温度の緩衝液であって、第1の塩濃度より低い第2の塩濃度の緩衝液を用いて、固定相に捕捉された抗体を溶出する溶出工程と、を含む、洗浄工程と溶出工程で異なる緩衝液を用いる、抗体の精製方法である。
 また、本実施形態に係る抗体の精製方法は、温度応答性プロテインAを用いた抗体の精製方法であって、温度応答性プロテインAを有する固定相に抗体を結合させる結合工程と、抗体と温度応答性プロテインAが結合する温度の緩衝液であって、第1の水素イオン指数の緩衝液を用いて、固定相を洗浄する洗浄工程と、抗体が温度応答性プロテインAから遊離する温度の緩衝液であって、第1の水素イオン指数より低い第2の水素イオン指数の緩衝液を用いて、固定相に捕捉された抗体を溶出する溶出工程と、を含む、洗浄工程と溶出工程で異なる緩衝液を用いる、抗体の精製方法である。
 温度応答性プロテインAを有する固定相は、温度応答性プロテインAと、温度応答性プロテインAが結合された担体と、を備える。温度応答性プロテインAは、低温領域で抗体と結合し、高温領域で抗体を遊離させる性質を有する。担体の形状は、特に限定されるものではなく、例えば平膜状、中空糸膜状等の膜状、又はビーズ状のものがある。中空糸状の担体は、モジュール成型が容易であり、モジュール容器あたりに充填できる膜面積が大きいため、好適に用いることができる。また、ビーズ状のものは一般的に、体積あたりの表面積が膜状のものと比較して大きく、大量の抗体を吸着できるため、好適に用いることができる。
 担体の材料は、特に限定されるものではないが、担体が膜状である場合、多孔性膜を形成しうる高分子材料が好適に用いることができる。例えば、ポリエチレンやポリプロピレン等のオレフィン樹脂、ポリエチレンテレフタレート、ポリエチレンテレナフタレート等のポリエステル樹脂、ナイロン6、ナイロン66等のポリアミド樹脂、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等の含フッ素樹脂、ポリスチレン、ポリスルホン、ポリエーテルスルホン、及びポリカーボネート等の非結晶性樹脂などが使用できる。担体がビーズ状である場合、担体の材料としては、ガラス、シリカ、ポリスチレン樹脂、メタクリル樹脂、架橋アガロース、架橋デキストラン、架橋ポリビニルアルコール、及び架橋セルロースなどが使用できる。架橋ポリビニルアルコール、及び架橋セルロースは親水性が高く、不純物成分の吸着を抑制できるため好適に用いることができる。
 本実施形態で使用する担体は、例えば複数の細孔を有する。細孔径は、特に限定されるものではないが、例えば5~1000nmであり、好ましくは10~700nmであり、さらに好ましくは20~500nmである。細孔径が5nm以下であると、分離できる抗体の分子量が低くなる傾向にある。また細孔径が1000nm以上であると基材の表面積が少なくなり、抗体の結合容量が小さくなる傾向にある。
 担体には、任意のカップリング基を導入してよい。温度応答性プロテインAは一級アミノ基を有しているため、一級アミノ基とカップリングできるNHS活性化されたカルボキシル基、カルボキシル基、臭化シアン活性基、エポキシ基、及びホルミル基等が好ましい。特に、NHSで活性化されたカルボキシル基は、カップリング反応時に他の薬品が不要であり、反応が迅速で強固な結合を形成するため好適に用いられる。
 本実施形態では、担体へのカップリング基の導入方法はいかなる方法でもよいが、担体と、カップリング基と、の間にスペーサーを導入するのが一般的である。カップリング基の導入方法は、さまざまな文献によって開示されている。
 本実施形態では、カップリング基を末端、及び/又は側鎖に有するグラフト高分子鎖を担体に導入してもよい。カップリング基を有するグラフト高分子鎖を担体に導入することで、カップリング基の密度を任意に高める等、制御することが可能となる。カップリング基を有する高分子鎖を担体にグラフトするか、あるいはカップリング基に変換しうる前駆体官能基を有する高分子鎖を担体にグラフトし、その後にグラフトした前駆体官能基をカップリング基に変換してもよい。
 グラフト高分子鎖の導入方法はいかなる方法でもよい。あらかじめ高分子鎖を調製し、担体にカップリングしてもよい。また、「リビングラジカル重合法」や「放射線グラフト重合法」の手法により、担体上で直接グラフト鎖を重合してもよい。「放射線グラフト法」は、担体にあらかじめ反応開始剤を導入する必要がなく、適応可能な担体が多種であるため、好適に用いることができる。
 「放射線グラフト重合法」でグラフト鎖を導入する場合、担体にラジカルを生成させるためにはいかなる手段も採用し得るが、担体全体に均一なラジカルを生成させるためには、電離性放射線の照射が好ましい。電離性放射線の種類としては、γ線、電子線、β線、及び中性子線等が利用できるが、工業規模での実施には電子線又はγ線が好ましい。電離性放射線はコバルト60、ストロンチウム90、及びセシウム137などの放射性同位体から、あるいはX線撮影装置、電子線加速器及び紫外線照射装置等から得られる。
 電離性放射線の照射線量は、例えば1kGy以上1000kGy以下が好ましく、より好ましくは2kGy以上500kGy以下、さらに好ましくは5kGy以上200kGy以下である。照射線量が1kGy未満では、ラジカルが均一に生成しにくくなる傾向にある。また、照射線量が1000kGyを超えると、担体の物理的強度の低下を引き起こす傾向にある。
 電離性放射線の照射によるグラフト重合法には、一般に担体にラジカルを生成した後、次いでそれを反応性化合物と接触させる前照射法と、担体を反応性化合物と接触させた状態で担体にラジカルを生成させる同時照射法と、に大別される。本実施形態においては、いかなる方法も適用し得るが、オリゴマーの生成が少ない前照射法が好ましい。
 本実施形態においてグラフト重合時に使用する溶媒は、反応性化合物を均一溶解できるものであれば特に限定されない。このような溶媒として、例えば、エタノールやイソプロパノール、t-ブチルアルコール等のアルコール類;ジエチルエーテルやテトラヒドロフラン等のエーテル類;アセトンや2-ブタノン等のケトン類;水、又はそれらの混合物等が挙げられる。
 本実施形態において、グラフト重合に使用されるカップリング基を有するモノマーとしては、カルボキシル基をカップリング基とする場合、アクリル酸、及びメタクリル酸等のモノマーが挙げられる。一級アミノ基をカップリング基とする場合、アリルアミン等が挙げられる。そして、エポキシ基をカップリング基とする場合、グリシジルメタクリレート等が挙げられる。
 本実施形態において、カップリング基に変換しうる前駆体官能基を有するモノマーを担体にグラフトし、その後にグラフトした前駆体官能基をカップリング基に変換してもよい。エポキシ基を有するグリシジルメタクリレート(GMA)は、さまざまなエポキシ基の開環反応を利用してさまざまな官能基に変換することが可能であるため、工業的にも好適に用いることが可能である。
 カルボキシル基をカップリング基とする場合には、まずGMAをグラフト重合後、GMAのエポキシ基を加水分解してジオールとし、ジオール由来の水酸基に環状酸無水物を開環ハーフエステル化反応させることにより、環状酸無水物に由来するカルボキシル基を形成(開環ハーフエステル化反応)することが可能である。製造コストの点で、環状酸無水物は無水コハク酸又は無水グルタル酸であることが望ましいが、これらに限定されない。
 開環ハーフエステル化反応に用いられる触媒としては本反応を促進するものであれば特に限定されないが、具体的にはトリエチルアミン、イソブチルエチルアミン、ピリジン、及び4-ジメチルアミノピリジンなどが挙げられ、トリエチルアミン又は4-ジメチルアミノピリジンが好ましく、反応速度や収率の点で4-ジメチルアミノピリジンが最も好ましい。
 開環ハーフエステル化反応は、上記触媒を添加したトルエン等の不活性有機溶媒中で行われることが好ましい。
 本実施形態においてNHS活性反応とは、上記開環ハーフエステル化反応により形成されたカルボキシル基を活性エステルに変換する工程である。カルボキシル基と比較して活性エステルは反応性が高いことから、温度応答性プロテインAを担体上に迅速に固定することが望まれる場合には活性エステル化工程を行うことが好ましい。
 活性エステルは、親水性化合物と、固定対象物質と、を共有結合によって結びつける役目を果たす。ここで、活性エステルとはR-C(=O)-Xという化学構造を意味する。Xは、ハロゲンやN-ヒドロキシスクシンイミド基又はその誘導体、1-ヒドロキシベンゾトリアゾール基又はその誘導体、ペンタフルオロフェニル基、並びにパラニトロフェニル基などの脱離性基であるが、これらに限定されない。活性エステルとしては、反応性、安全性及び製造コストの点で、N-ヒドロキシスクシンイミドエステルが望ましい。カルボキシル基のN-ヒドロキシスクシンイミドエステルへの変換は、カルボキシル基にN-ヒドロキシスクシンイミドと、カルボジイミドと、を同時に反応させることによって達成される。ここで、カルボジイミドとは-N=C=N-の化学構造を有する有機化合物を意味し、例えば、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩等が挙げられるが、これらに限定されない。N-ヒドロキシスクシンイミド及びカルボジイミドの濃度は1~100mmol/L、反応温度は0℃以上100℃未満、反応時間は2分~16時間の範囲で設定されるのが望ましい。反応溶媒としては、N,N'-ジメチルホルムアミド(DMF)やトルエンなどを使用することができる。
 本実施形態において、温度に依存して抗体との結合性が変化するよう変異されたプロテインAは、特許文献(WO2008/143199号パンフレット)を参考に調製することができる。
 本実施形態において、NHS活性化されたカルボキシル基と、温度応答性プロテインAと、のカップリング反応は、例えば以下のように行われる。まず、クエン酸緩衝液(pH3.0~6.2)、酢酸緩衝液(pH3.6~5.6)、リン酸緩衝生理食塩水(PBS、pH5.8~8.5)、又は炭酸緩衝液(pH9.2~10.6)などのアミノ基成分を含まない緩衝液を用いて、0.1~100mg/mLの温度応答性プロテインA溶液を準備する。この水溶液を活性エステル表面と接触させると、温度応答性プロテインAに含まれるアミノ基等の官能基が活性エステルと反応し、アミド結合が形成される。その結果、温度応答性プロテインAは共有結合によって担体に固定される。ここで、接触時間は2分~16時間の範囲で設定するとよい。温度応答性プロテインAを担体に固定した後は、適当な洗浄液で担体を洗浄することが望ましい。このとき、洗浄液として、0.5mol/L程度の塩(NaCl)及び0.1%程度の非イオン性界面活性剤を含む緩衝液を用いると、担体に共有結合せずに物理吸着しているだけの温度応答性プロテインAを取り除くことができ、好ましい。
 温度応答性プロテインAを担体表面に固定した後(好ましくは更に温度応答性プロテインA固定化担体を洗浄した後)は、未反応のカルボキシル基又は活性エステルを、アミノ基を有する低分子化合物と結合させることにより、当該カルボキシル基又は活性エステルを反応性のより低い官能基に変換させることが好ましい。これによって、不純物等の精製対象外の分子が不本意に固定相に結合するのを防ぐことができる。特に温度応答性プロテインA固定用担体の末端の官能基が活性エステルである場合、この操作がされることが好ましい。
 ここでは、活性エステル基にアミノ基を有する低分子化合物を反応させる操作を特に「ブロッキング」と記述することがある。ただし、カルボキシル基又は活性エステルを低分子化合物と反応させた後の担体表面は、親水性であることが望ましい。なぜなら、親水性の表面は一般に生体関連物質の非特異的吸着を抑制する効果をもつからである。このためにはアミノ基を含有する低分子化合物として、アミノ基以外に親水性基を更に有する低分子化合物を使用することが好ましい。このような低分子化合物の非限定的な例としては、エタノールアミン、トリスヒドロキシメチルアミノメタン、及びジグリコールアミン(IUPAC名:2-(2-アミノエトキシ)エタノール)が挙げられる。これらの低分子化合物はPBSなどの緩衝液に10~1,000mmol/Lとなるように溶解し、溶解液を温度応答性プロテインAを固定化した担体と接触させる。例えば、反応温度は4~37℃、反応時間は2分~16時間の範囲で設定するとよい。
 温度応答性プロテインAがビーズ状の担体に固定された場合は、市販の空カラム又はガラス管から作製した空カラムに、固定相である温度応答性プロテインA固定化担体を詰めて用いてもよい。市販のジャケット付き空カラム(商品名 XKカラム、GEヘルスケア・ジャパン)は、カラム自体の温度をジャケット循環水の温度を制御することで任意に制御することができるので、好適に使用することができる。担体が膜状の場合は、それぞれの形状に従い、市販の膜ホルダーに固定するか、任意のモジュール形状に加工して使用してもよい。
 温度応答性プロテインA固定化担体は、pH4~8の範囲の中性溶液を保存液とし、2~10℃程度の低温で保存する。保存液としては、抗菌性を考慮して、20%エタノールが好ましい。
 以上説明した温度応答性プロテインAを有する固定相を用いて抗体を含有する混合物から抗体を精製する場合、抗体を含有する混合物には、抗体を産生するハイブリドーマ、NSO等のミエローマ細胞、抗体をコードする遺伝子で形質転換され抗体を発現産生し得る動物細胞、及び酵母等の培養液の上清が含まれる。好ましくは、本実施形態の方法による精製を行なうときは、これらの培養上清は清澄化しておく。清澄化は例えば、0.2μmのメンブランフィルターによる濾過等により行なえばよい。
 本実施形態で精製する抗体には、限定はされないが、例えばヒト抗体、マウス、ウシ、ヤギ、及びヒツジ等の有蹄動物等の非ヒト動物抗体、ヒトと非ヒト動物のキメラ抗体、並びに非ヒト動物抗体をヒト化したヒト化抗体等が含まれ、好ましくはヒト抗体である。さらに好ましくはヒトモノクローナル抗体である。また、抗体のクラス、サブクラスは限定されず、いずれのクラス、サブクラスの抗体も本実施形態において精製し得るが、好ましくはIgG、その中でもIgG1、IgG2及びIgG4である。また、重鎖定常領域のアミノ酸配列において、天然に存在する重鎖定常領域のアミノ酸の少なくとも一つのアミノ酸が欠失した抗体、天然に存在する重鎖定常領域のアミノ酸の少なくとも一つのアミノ酸が他のアミノ酸に置換した抗体、あるいは天然に存在する重鎖定常領域に少なくとも一つのアミノ酸が付加した抗体であってもよい。さらに、抗体が他の化合物と共有あるいは配位結合していてもよい。
 温度応答性プロテインAは、低温で抗体を結合し、抗体と結合する時の温度よりも高い温度で抗体を遊離させる特性がある。あらかじめ温度応答性プロテインAの抗体との結合特性が変わる温度を確認しておき、その温度を挟むようにして温度変化させることにより抗体を固定相に吸脱着させることが好ましい。抗体と温度応答性プロテインAが結合する温度範囲は、抗体を有する一定量の固定相に結合可能な抗体の最大結合量に対して、抗体の結合量が50%以上となる温度範囲である。また、抗体が温度応答性プロテインAから遊離する温度範囲は、抗体を有する一定量の固定相に結合可能な抗体の最大結合量に対して、抗体の結合量が50%未満となる温度範囲である。
 抗体と温度応答性プロテインAが結合する温度範囲、及び抗体が温度応答性プロテインAから遊離する温度範囲は、例えば以下の手順に従って決定される。
  1.5℃未満、10℃、以後、抗体が変性する温度の直下までの10℃間隔で設定されたそれぞれの温度条件下において、温度応答性プロテインAを有する固定相に抗体を結合させる。
  2.抗体が変性する温度の直下まで昇温して固定相から抗体を溶出し、抗体を定量する。
  3.抗体を固定相に吸着させた時の温度に対して抗体の溶出量をプロットする。次に、抗体の結合量(溶出量)の最大値の50%と、プロットと、の間を結んだ線の交点における温度(以下、「50%結合温度」と呼ぶ。)を境とし、50%以上の抗体の結合量を与える温度範囲を、抗体と温度応答性プロテインAが結合する温度範囲とする。また、50%未満の抗体の結合量を与える温度範囲を、抗体が温度応答性プロテインAから遊離する温度範囲とする。
 抗体と温度応答性プロテインAが結合する温度範囲は、例えば0℃以上20℃未満、好ましくは1℃以上15℃未満、より好ましくは2℃以上13℃未満の温度範囲である。抗体が温度応答性プロテインAから遊離する温度範囲は、例えば25℃以上50℃未満、好ましくは30℃以上45℃未満の温度領域である。あるいは、当該抗体が温度応答性プロテインAから遊離する温度範囲は、不純物除去性を高め、プロテインAの脱離を抑制するという観点から、好ましくは15℃以上30℃以下、より好ましくは20℃以上25℃以下の温度領域である。ここで、15℃以上30℃以下の温度領域を用いる場合、25℃以上50℃未満の温度領域を用いる場合と比較して抗体の回収率が低下すると考えられるが、本実施形態によれば、抗体の溶出工程に用いる緩衝液の水素イオン指数を低下させることで、不純物除去性を高め、プロテインAの脱離を抑えつつ、抗体の回収率を維持することが可能である。
 ここで、上述したように、本実施形態に係る温度応答性プロテインAを用いる抗体の精製方法において、溶出工程に用いる緩衝液の水素イオン指数を、洗浄工程に用いる緩衝液の水素イオン指数より低く設定している。本発明者らは、当該条件の下、抗体と温度応答性プロテインAが結合する温度範囲として、例えば0℃以上20℃未満の温度の緩衝液を、抗体が温度応答性プロテインAから遊離する温度範囲として、例えば15℃以上50℃未満の温度の緩衝液を(特に15℃以上30℃以下の温度の緩衝液であっても回収率を低下させることなく)用いることができることを見出した。抗体と温度応答性プロテインAが結合する温度範囲と、抗体が温度応答性プロテインAから遊離する温度範囲と、が、一部重複しているが、これは上述したように、洗浄工程と溶出工程における水素イオン指数の違いがあれば許容されるものである。なお、溶出工程における緩衝液の温度は、洗浄工程における緩衝液の温度より高くてもよい。
 なお、モノクローナル抗体の製造に使用されるチャイニーズハムスター卵巣(CHO)細胞の培養温度は通常37℃であり、抗体を温度応答性プロテインAから溶出させる温度を37℃未満に設定すれば、抗体の活性の低下を避けることができる。この時、抗体が温度応答性プロテインAから遊離するのに適した温度範囲は、10℃以上37℃未満、好ましくは15℃以上30℃未満の温度領域である。
 温度応答性プロテインAを有する固定相から溶出された抗体を含む緩衝液を、カチオン交換クロマトグラフィーによってさらに精製してもよい。カチオン交換クロマトグラフィーにおいては、好ましくは、高温で抗体を吸着し、低温で抗体を遊離させる温度応答性カチオン交換樹脂を含む固定相が用いられる。
 温度応答性カチオン交換樹脂を含む固定相としては、N-イソプロピルアクリルアミド等を含む共重合体を担体表面に固定した温度応答性カチオン交換体が使用可能である。共重合体は、少なくともカチオン交換基を有する。例えば、本実施形態に係る温度応答性カチオン交換体は、カチオン交換基を有するモノマー及び/又はカチオン交換基導入前駆体モノマー、及びN-イソプロピルアクリルアミドモノマーからなるモノマー混合物を表面グラフト重合法によって担体表面に重合して形成される。
 本実施形態に係る温度応答性カチオン交換体で使用する担体の形状は、特に限定されるものではなく、例えばビーズ状、平板状、管状のものがある。ビーズ状の場合、さまざまな粒径のビーズが入手可能であり特に限定されるものではないが、粒径は例えば1~300μmであり、好ましくは10~200μmであり、さらに好ましくは20~150μmである。粒径が1μm以下であると、カラム内でビーズの圧密化が起きやすいために、高流速での処理が困難になる傾向にある。また粒径が300μm以上ではビーズ間の隙間が大きくなり、抗体を吸着させる際に、溶液の漏れが発生する傾向にある。
 担体は、例えば複数の細孔を有する。細孔径は、特に限定されるものではないが、例えば5~1000nmであり、好ましくは10~700nmであり、さらに好ましくは20~500nmである。細孔径が5nm以下であると、分離できる抗体の分子量が低くなる傾向にある。また細孔径が1000nm以上であると担体の表面積が少なくなり、抗体の結合容量が小さくなる傾向にある。
 担体の材料は、特に限定されるものではないが、ビーズ状である場合、ガラス、シリカ、ポリスチレン樹脂、メタクリル樹脂、架橋アガロース、架橋デキストラン、架橋ポリビニルアルコール、及び架橋セルロースなどが使用できる。
 本実施形態では、上記担体にカチオン交換基を有する温度応答性ポリマーが固定化される。その固定化方法としては、担体表面に原子移動ラジカル重合開始剤を固定化し、その開始剤から触媒の存在下で温度応答性ポリマーを成長反応させる「原子移動ラジカル法」や、担体に放射線を照射してラジカルを生成し、生成したラジカルを起点として温度応答性ポリマーを成長反応させる「放射線グラフト重合法」等があるが、特に限定されるものではない。他に、固定化方法として、表面リビングラジカル重合法である「原子移動ラジカル重合法」がある。「原子移動ラジカル重合法」は、担体表面にポリマーを高密度に固定することができるため、好適に用いることができる。
 温度応答性ポリマーが「原子移動ラジカル重合法」で固定される場合、その際に使用する開始剤は特に限定されるものではないが、本実施形態のように担体に水酸基を有している場合、例えば、1-トリクロロシリル-2-(m,p-クロロメチルフェニル)エタン、2-(4-クロロスルホニルフェニル)エチルトリメトキシシラン、(3-(2-ブロモイソブチリル)プロピル)ジメチルエトキシシラン、及び2-ブロモイソ酪酸ブロミドなどが挙げられる。本実施形態では、この開始剤よりポリマー鎖を成長させる。その際の触媒としては特に限定されるものでないが、ハロゲン化銅(CuIX)としてCuICl、CuIBr等を挙げることができる。また、そのハロゲン化銅に対するリガンド錯体も特に限定されるものではないが、トリス(2-(ジメチルアミノ)エチル)アミン(Me6TREN)、N,N,N'',N''-ペンタメチルジエチレントリアミン(PMDETA)、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラアミン(HMTETA)、1,4,8,11-テトラメチル 1,4,8,11-アザシクロテトラデカン(Me4Cyclam)、及びビピリジン等が挙げられる。
 温度応答性ポリマーが「放射線グラフト重合法」で固定される場合、担体にラジカルを生成させるためにはいかなる手段も採用し得るが、担体全体に均一なラジカルを生成させるためには、電離性放射線の照射が好ましい。電離性放射線の種類としては、γ線、電子線、β線、及び中性子線等が利用できるが、工業規模での実施には電子線又はγ線が好ましい。電離性放射線はコバルト60、ストロンチウム90、及びセシウム137などの放射性同位体から、又はX線撮影装置、電子線加速器及び紫外線照射装置等により得られる。
 電離性放射線の照射線量は、例えば1kGy以上1000kGy以下であり、好ましくは2kGy以上500kGy以下であり、より好ましくは5kGy以上200kGy以下である。照射線量が1kGy未満では、ラジカルが均一に生成しにくくなる傾向にある。また、照射線量が1000kGyを超えると、担体の物理的強度の低下を引き起こす傾向にある。
 電離性放射線の照射によるグラフト重合法には、一般に担体にラジカルを生成した後、次いでそれを反応性化合物と接触させる前照射法と、膜を反応性化合物と接触させた状態で担体にラジカルを生成させる同時照射法と、に大別される。本実施形態においては、いかなる方法も適用し得るが、オリゴマーの生成が少ない前照射法が好ましい。
 本実施形態において重合時に使用する溶媒は、反応性化合物を均一溶解できるものであれば特に限定されない。このような溶媒として、例えば、エタノールやイソプロパノール、t-ブチルアルコール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2-ブタノン等のケトン類、水、又はそれらの混合物等が挙げられる。
 本実施形態において、担体表面に被覆されるポリマーは、N-イソプロピルアクリルアミド等の温度応答性モノマーを有する。ポリ(N-イソプロピルアクリルアミド)は32度に下限臨界温度を有することが知られている。このポリマーを表面に導入した担体は、臨界温度で親水性/疎水性の表面物性を大きく変化させる。そのため、ポリ(N-イソプロピルアクリルアミド)をグラフトもしくはコーティングした担体をクロマトグラフィーの固定相として使用した場合、試料に対する保持力が温度によって得られるようになる。その結果、溶出液の組成を変化させずに保持挙動を温度によって制御することができるようになる。
 下限臨界温度を32℃以上にするためには、イソプロピルアクリルアミドよりも親水性のモノマーであるアクリルアミド、メタクリル酸、アクリル酸、ジメチルアクリルアミド、及びビニルピロリドンなどの親水性のコモノマーをN-イソプロピルアクリルアミドと共重合させることによって調製することが可能である。また、下限臨界温度を32℃以下にしたいときは、疎水性モノマーであるスチレン、アルキルメタクリレート、アルキルアクリレートなどとの疎水性のコモノマーとの共重合によって調製することができる。
 担体表面に被覆されるポリマーにスルホン酸基等の強カチオン交換基を与える第1の方法として、担体表面に被覆される温度応答性ポリマー鎖を合成する際、強カチオン交換基を有するモノマーを含めて共重合する方法が挙げられる。スルホン酸基を有するモノマーとしては、スルホン酸を有するポリマーの構成単位である(メタ)アクリルアミドアルキルスルホン酸等が挙げられる。
 担体表面に被覆されるポリマーに強カチオン交換基を与える第2の方法として、「強カチオン交換基導入前駆体」を有するモノマーを含めて共重合した後、前駆体をスルホン酸基に変換する方法が挙げられる。なお、「強カチオン交換基導入前駆体」とは、「強カチオン交換基の前駆体」を含みうる。また、「強カチオン交換基の前駆体」とは、例えば強カチオン交換基に保護基がついたものである。スルホン酸基の前駆体を有するモノマーとして、フェニルビニルスルホネート等が挙げられるが、本実施形態はこれらに限定されるものではない。
 担体表面に被覆されるポリマーに強カチオン交換基を与える第3の方法として、強カチオン交換基を付与し得る官能基を有するモノマーを含めて共重合した後、強カチオン交換基を付与し得る官能基をスルホン酸基に変換する方法が挙げられる。強カチオン交換基を付与し得る官能基を有するモノマーとしては、グリシジルメタクリレート等が挙げられる。強カチオン交換基を有するモノマーを表面リビングラジカル重合法により重合する場合、十分な重合速度が得られない場合が多いが、グリシジルメタクリレート等の強カチオン交換基導入前駆体モノマーを用いることで、十分な重合速度を得ることが可能となる。
 本実施形態においては、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー及び/又は強カチオン交換基導入前駆体モノマーの比率が、0.01~5mol%であるモノマー組成物を、表面グラフト重合法によって重合する。上記比率は、好ましくは0.1~4mol%、より好ましくは0.2~3mol%、さらに好ましくは0.3~2mol%、最も好ましくは0.5~1.5mol%である。上記比率が5mol%を超えると、共重合体中のN-イソプロピルアクリルアミドに対する強カチオン交換基の量が過剰量となってしまう。そのため、温度応答性カチオン交換体への抗体の吸着量が増大するものの、吸着した抗体を温度変化によって溶出することが困難になる傾向にある。一方、上記比率が0.01mol%未満では、強カチオン交換基導入量が少ないため、抗体の吸着量が少なくなる傾向にある。
 本実施形態において、担体表面に被覆されているポリマーは温度を変えることで水和、脱水和を起こすものであり、その温度域は0℃以上80℃未満、好ましくは5℃以上50℃未満、さらに好ましくは10℃以上45℃未満である。80℃を越えると移動相が水であるので蒸発等が生じ、作業性が悪くなる傾向にある。また、0℃より低いと移動相が凍結する傾向にある。
 本実施形態によって得られる温度応答性カチオン交換体を充填したカラムは、通常の液体クロマトグラフィー装置に取り付けて、液体クロマトグラフィーシステムとして利用される。その際、温度応答性カチオン交換体を充填したカラムへの温度の負荷方法は特に限定されないが、例えば温度応答性カチオン交換体を充填したカラムに所定の温度にしたアルミブロック、水浴、空気層、あるいはジャケットなどを装着すること等が挙げられる。
 以上説明した温度応答性プロテインAを有する固定相を用いて抗体を精製する場合、温度応答性カチオン交換樹脂を含む固定相に目的とする抗体を一度吸着させ、その後、温度を変えて固定相表面の特性を変化させることで吸着した抗体を遊離させるキャッチアンドリリース法が例えば用いられる。その際に固定相に吸着させる抗体量は固定相に吸着しうる量を超えていてもよく、超えていなくてもよい。いずれにせよ抗体を固定相に一度吸着させ、その後、温度を変えて固定相表面の特性を変化させることで、吸着した抗体を遊離させる精製法である。
 温度応答性カチオン交換樹脂に抗体が吸着する温度範囲は、例えば25℃以上50℃未満、好ましくは30℃以上45℃未満の高い温度範囲である。温度応答性カチオン交換樹脂から抗体が遊離する温度範囲は、例えば0℃以上20℃未満、好ましくは1℃以上15℃未満、より好ましくは2℃以上13℃未満の低い温度範囲である。
 その他の分離方法は特に限定されるものではないが、あらかじめ固定相の親水性/疎水性の表面物性が変わる温度を確認しておき、その温度を挟むようにして温度変化させながら不純物の分離を行う方法が挙げられる。この場合、温度変化だけで固定相の親水性/疎水性の表面物性が大きく変わるので、溶質によってはシグナルの出てくる時間(保持時間)に大きな差が生じることが期待される。本実施形態の場合、この固定相の親水性/疎水性の表面物性が大きく変わる温度を挟むようにして分離することが最も効果的な実施形態の一つである。
 以下、本実施形態に係る抗体の精製方法を、工程毎に説明する。
 1)固定相の温度応答性プロテインAに抗体を結合させる結合工程
 本実施形態の精製方法において、上記抗体を含有する混合物溶液は、温度応答性プロテインAに吸着される温度まで冷却された後に、温度応答性プロテインAを有する固定相を備えるアフィニティークロマトグラフィーカラムに供給される。その場合、予め、温度応答性プロテインAと抗体が結合する温度を確認しておき、抗体を含有する混合物溶液の温度をその温度に調整する。
 抗体を含有する混合物溶液は、プロテアーゼ等の不純物を含有している場合があり、低温で保存されている場合がある。抗体を含有する混合物の保存温度が、温度応答性プロテインAと抗体が結合する温度の範囲内の場合は、そのまま抗体を温度応答性プロテインAに吸着させてもよい。また、温度応答性プロテインAカラムの直上流に熱交換器を配置して、抗体を含有する混合物溶液を温度応答性プロテインAカラムにロードしながら、連続的に抗体を含有する混合物溶液の温度を調節することも可能である。
 あるいは、クロマトグラフィーカラムを所定の温度に調節した恒温水槽に浸漬することによって、抗体を含有する混合物溶液の温度を調節することも可能である。クロマトグラフィーカラムの直上流に熱交換器を配置することに加えて、クロマトグラフィーカラムを、所定の温度に調節した恒温水槽に浸漬し、抗体を含有する混合物溶液の温度を調節してもよい。
 2)温度応答性プロテインAを有する固定相を洗浄する洗浄工程
 抗体と温度応答性プロテインAが結合する低い温度の緩衝液であって、第1の塩濃度及び第1のpHの緩衝液を用いて、固定相を洗浄する。緩衝液としては、リン酸緩衝液及びトリス塩酸緩衝液等が使用可能である。抗体と温度応答性プロテインAが結合する低い温度とは、例えば0℃以上20℃未満、好ましくは0℃以上15℃以下、より好ましくは1℃以上15℃未満、さらに好ましくは2℃以上13℃未満である。第1の塩濃度とは、例えば150乃至1000mmol/Lであり、好ましくは250乃至800mmol/Lであり、より好ましくは350乃至600mmol/Lである。また、第1のpHとは、例えば7.5乃至9.0であり、好ましくは7.6乃至9.0、さらに好ましくは7.6乃至8.8であり、より好ましくは7.7乃至8.6、さらに好ましくは8.0乃至8.6である。当該洗浄工程における緩衝液の塩濃度及びpHをこれらの範囲に設定することによって、宿主細胞由来タンパク質(HCP)及びデオキシリボ核酸(DNA)等のカラム内に残留していた夾雑物が好適に除去され、後に回収する抗体の純度を高めることが可能となる。なお、緩衝液の塩濃度及びpHの両方をこれらの範囲に設定することが好ましいが、塩濃度のみ、あるいはpHのみをこれらの範囲に設定してもよい。
 3)温度応答性プロテインAを有する固定相に捕捉された抗体を溶出する溶出工程
 抗体が温度応答性プロテインAから遊離する温度の緩衝液であって、第2の塩濃度及び(又は)第2のpHの緩衝液をカラムに通して、固定相に捕捉された抗体を溶出する。抗体が温度応答性プロテインAから遊離する温度とは、例えば25℃以上50℃未満、好ましくは30℃以上45℃未満である。ただし、緩衝液の温度を可能な限り低く設定することによって、不純物除去性を高め、担体から温度応答性プロテインAが脱離することを抑制することが可能となる。このような効果を最大限高めるためには、抗体が温度応答性プロテインAから遊離する温度範囲を、好ましくは15℃以上30℃以下、より好ましくは20℃以上25℃以下に設定する。また、第2の塩濃度とは、第1の塩濃度より低く、例えば0乃至1000mmol/Lであり、好ましくは0乃至300mmol/Lであり、より好ましくは0乃至100mmol/L、最も好ましくは0mmol/Lである。第2のpHとは、第1のpHより低く、例えば5.0乃至8.0であり、好ましくは5.0乃至7.0であり、より好ましくは5.0乃至6.5である。当該溶出工程における緩衝液の塩濃度及びpHをこれらの範囲に設定することによって、担体から温度応答性プロテインAが脱離することを抑制することが可能となる。そのため、抗体の溶出液に、温度応答性プロテインAが混入することを抑制することが可能となる。なお、緩衝液の塩濃度及びpHの両方をこれらの範囲に設定することが好ましいが、塩濃度のみ、あるいはpHのみをこれらの範囲に設定してもよい。
 なお、前記のように、抗体を温度応答性プロテインAから溶出させる温度を37℃未満にすれば抗体の活性の低下を避けることができる。本発明者らは、抗体を温度応答性プロテインAから遊離させる温度範囲を10℃以上37℃未満、好ましくは10℃以上30℃以下、より好ましくは15℃以上30℃以下、さらに好ましくは20℃以上25℃以下に設定するとき、第2のpH条件を低めに設定することで回収率を高められることを見出した。この第2のpH条件は、例えば、pH3.0乃至8.0であり、好ましくはpH3.5乃至7.0であり、より好ましくはpH3.9乃至6.5、さらに好ましくは4.0以上6.0以下である。
 4)カチオン交換樹脂を含む固定相に抗体を吸着させる吸着工程
 温度応答性プロテインAを有する固定相から溶出された抗体を含む緩衝液は、温度、塩濃度、及びpHを同じに保ったまま、カチオン交換樹脂を含む固定相を備えるカチオン交換クロマトグラフィーカラムに供給される。これにより、カチオン交換樹脂を含む固定相に、抗体が吸着される。なお、上述したように、温度応答性プロテインAを有する固定相に捕捉された抗体を溶出する際の緩衝液の塩濃度を、温度応答性プロテインAを有する固定相に抗体を結合させる際の緩衝液の塩濃度よりも低くすると、温度応答性プロテインAを有する固定相から溶出された抗体を含む緩衝液を脱塩すること無しに、カチオン交換樹脂を含む固定相を備えるカチオン交換クロマトグラフィーカラムにそのまま供給することが可能となる。
 温度応答性プロテインAを有する固定相から溶出された抗体を含む緩衝液は、タンク等で一時的に貯蔵することも可能であるが、カチオン交換樹脂を含む固定相に抗体が結合する温度範囲から逸脱しない程度に保温することが好ましい。
 5)カチオン交換樹脂を含む固定相に捕捉された抗体を溶出する溶出工程
 抗体がカチオン交換樹脂から遊離する低い温度の緩衝液をカラムに通して、固定相に捕捉された抗体を溶出する。抗体がカチオン交換樹脂から遊離する低い温度とは、例えば0℃以上20℃未満、好ましくは1℃以上15℃未満、より好ましくは2℃以上13℃未満である。例えば、カチオン交換樹脂を含む固定相から抗体を溶出する際、温度応答性カチオン交換カラムの直上流に熱交換器を配置して、連続的に所定の温度の緩衝液を通液してもよい。また、温度応答性カチオン交換カラムを、所定の温度に調節した恒温水槽に浸漬することによって抗体を溶出することも可能である。温度応答性カチオン交換カラムの直上流に配した熱交換器を用いるだけでなく、さらに、温度応答性カチオン交換カラムを、所定の温度に調節した恒温水槽に浸漬することによって、抗体を溶出することも可能である。
 なお、1)固定相の温度応答性プロテインAに抗体を結合させる結合工程の前に、低塩濃度及び高水素イオン指数の緩衝液を温度応答性プロテインAを有する固定相に接触させる平衡化工程があってもよい。平衡化工程における緩衝液の塩濃度は、例えば0乃至1000mmol/Lであり、好ましくは0乃至250mmol/Lであり、より好ましくは0乃至100mmol/Lである。平衡化工程における緩衝液のpHは、例えば5.0乃至9.0であり、好ましくは6.0乃至9.0であり、より好ましくは7.0乃至9.0である。当該平衡化工程における緩衝液の塩濃度及びpHをこれらの範囲に設定することによって、その後の結合工程における温度応答性プロテインAを有する固定相の抗体の結合容量を大きくすることが可能となる。
 ただし、温度応答性プロテインAを有する固定相を備えるアフィニティーカラムが繰り返し使用される場合は、5)カチオン交換樹脂を含む固定相に捕捉された抗体を溶出する溶出工程における緩衝液と同じ塩濃度及びpHの緩衝液を、平衡化工程において、温度応答性プロテインAを有する固定相に接触させてもよい。
 [実施例]
 以下に、本実施形態を実施例に基づいて更に詳しく説明するが、これらは本実施形態を何ら限定するものではない。
(温度応答性プロテインA担体の調製)
 架橋ポリビニルアルコールビーズにカルボキシル基を導入した後、カルボキシル基をNHS活性化した。さらに、NHS活性化された架橋ポリビニルアルコールビーズと、温度応答性プロテインAと、を接触させることで、温度応答性プロテインAを架橋ポリビニルアルコールビーズに固定化した。詳細は以下のとおりである。
1)カルボキシル基の導入
 無水コハク酸3.0g及び4-ジメチルアミノピリジン3.6gをトルエン450mLに溶解させた反応液を用意した。次に、特開昭59-17354号公報の実施例1に記載の方法で調製した架橋ポリビニルアルコールビーズ(平均粒子径100μm)8.5gを反応液と50℃で接触させ、2時間攪拌した。これにより、架橋ポリビニルアルコールビーズにカルボキシル基を導入した。その後、架橋ポリビニルアルコールビーズを脱水イソプロピルアルコールで洗浄した。
2)NHS活性化
 カルボキシル基を導入したビーズ3mLを、NHS活性化反応液(NHS0.09g、脱水イソプロピルアルコール60mL、ジイソプロピルカルボジイミド0.12mL)に投入し、40℃で30分間反応し、ビーズ表面のカルボキシル基をNHS活性化した。反応後、氷冷した脱水イソプロピルアルコールでビーズを洗浄し、さらに、氷冷した1mM 塩酸で洗浄した。
3)温度応答性プロテインAのカップリング
 温度応答性プロテインAは、特許文献(WO2008/143199号パンフレット)の実施例11を参考にして調製した。温度応答性プロテインA150mgを3mLのカップリング緩衝液(0.2mol/L リン酸緩衝液、0.5mol/L NaCl、pH8.3)に溶解した温度応答性プロテインA溶液を用意した。そして、上記、NHS活性化されたビーズを、温度応答性プロテインA溶液に投入し、25℃で、振とうしながら、4時間反応させた。所定時間経過後、ビーズをカップリング緩衝液で洗浄し、担体上のNHS活性基とカップリング反応しなかった温度応答性プロテインAを洗浄し、回収した。
4)ブロッキング
 温度応答性プロテインAをカップリングしたビーズを、ブロッキング反応液(0.5mol/L エタノールアミン、0.5mol/LNaCl、pH8.0)10mLに浸漬し、室温で30分間放置することで、残留NHSをエタノールアミンでブロッキングした。反応後、このビーズを純水で洗浄し、その後20%エタノールでカラムに封入した状態で、4℃で保存した。
(温度応答性プロテインA担体による抗体の精製)
 温度応答性プロテインA担体を、空カラム(GEヘルスケア・ジャパン(株)、Tricorn 5/20 column)に充填した。充填方法は、提供者の取扱説明書を参考に、実施した。そして、カラムをクロマトグラフィーシステム(GEヘルスケア・ジャパン(株)、AKTA FPLC)に装着した。
 また、不純物を含む培養上澄みとしては、37℃で培養した、チャイニーズハムスター卵巣(CHO)細胞の培養液を清澄化し、ポリクロナール抗体((株)ベネシス社、献血ヴェノグロブリンIH)を1mg/mL相当量を加えたものを用いた。CHO細胞培養液は、無血清培地(Irvine Scientific社 IS CHO-CD培地)にて培養したCHO細胞の培養液(細胞密度約8.9×106/mL、生細胞率66%)を用い、ろ過膜(旭化成メディカル社製、商品名 BioOptimal(登録商標) MF-SL)を用いてろ過し、培養上澄みを取得した。ろ過は、提供者の取扱い説明書を参考に実施した。
 次に、下記の条件で、カラムに抗体を含む培養上澄みを注入し、担体に抗体を吸着させた。さらに、下記の条件で、カラムを洗浄し、その後、カラムから抗体を溶出させた。ここで、洗浄緩衝液のpHより、溶出緩衝液のpHを低くした。
 1-1)吸着ステップ
・      抗体濃度:1mg/mL
・      平衡化緩衝液:20mMリン酸緩衝液(pH7.5)
・      平衡化:10ビーズ体積(吸着緩衝液使用)
・      抗体負荷量:11mL
・      流速:0.4mL/min
・      ビーズ体積:0.55mL
・      吸着温度:2℃
 1-2)洗浄ステップ
・      洗浄緩衝液:20mMリン酸緩衝液(pH7.5)
・      流速:0.4mL/min
・      洗浄温度:2℃
 1-3)溶出ステップ
・      溶出緩衝液:20mMリン酸緩衝液(pH7.0)
・      流速:0.4mL/min
・      透過液量:20mL
・      溶出温度:40℃
(抗体の濃度測定)
 溶出液中に含まれる抗体濃度を、280nmの紫外線吸収(UV吸収)を測定することで、下記(1)式を用いて算出した。
 抗体濃度(mg/mL)=吸光度/1.38・・・(1)
(宿主タンパク(HCP)の濃度測定)
 溶出液中に含まれるHCP濃度を、市販のHCP測定キット(CYGNUS社、CHO Host Cell Proteins 3rd Generation ELISA Kit、カタログ番号:F550)を用いて測定した。測定は、提供者の取扱い説明書を参考に実施した。精製前の、抗体量1mg当たりに含まれるHCP量をC1、精製後の、抗体1mg当たりに含まれるHCP量をC2とすると、精製によるHCP除去性は、対数除去係数(LRV)で表すことができる。ここで、対数除去係数は下記(2)式を用いて算出した。
 対数除去係数(LRV)=Log10(C1/C2)]・・・(2)
(DNAの濃度測定)
 溶出液中に含まれるDNA濃度を、市販のDNAアッセイキット(invitrogen社、Qubit(登録商標) dsDNA HS Assay Kit)及び、測定装置(invitrogen社、Qubit(登録商標)Fluorometer)を用いて測定した。測定は、提供者の取扱い説明書を参考に実施した。精製前の、抗体量1mg当たりに含まれるDNA量をC3、精製後の、抗体1mg当たりに含まれるDNA量をC4とすると、精製によるDNA除去性は、対数除去係数(LRV)で表すことができる。ここで、対数除去係数は下記(3)式を用いて算出した。
 対数除去係数(LRV)=Log10(C3/C4)]・・・(3)
(プロテインA含量の測定方法)
 溶出液中に含まれるプロテインA含量を、市販のプロテインAアッセイキット(CYGNUS社、Protein A ELISA Kit、カタログ番号:F400)を用いて測定した。測定は、アッセイキットに付属の取扱い説明書(Immunoenzymetric Assay for the Measurement of Protein A Catalog #F400)を参考に実施したが、説明書4ページ記載のプロトコールにおける1~4の工程を、冷室(10℃)内で実施し、それ以外の工程を、室温で行った。
 上記精製実験の結果を、表1にまとめた。その結果、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液(pH8.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。実施例2においても、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液(pH9.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。実施例3においても、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例4においては、洗浄緩衝液のpHと、溶出緩衝液のpHと、は同じであるが、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+300mM NaCl(pH7.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例5においては、洗浄緩衝液のpHと、溶出緩衝液のpHと、は同じであるが、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+450mM NaCl(pH7.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例6においては、洗浄緩衝液のpHと、溶出緩衝液のpHと、は同じであるが、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH8.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例7においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。また、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH9.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例8においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。また、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用い、溶出緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH6.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例9においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かったが、洗浄緩衝液の塩濃度と、溶出緩衝液の塩濃度と、は同じであった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用い、溶出緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH5.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例10においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かったが、洗浄緩衝液の塩濃度と、溶出緩衝液の塩濃度と、は同じであった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用い、溶出緩衝液として、20mMリン酸緩衝液(pH8.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例11においては、洗浄緩衝液のpHより、溶出緩衝液のpHが高かったが、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用い、溶出緩衝液として、20mMリン酸緩衝液(pH7.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例12においては、洗浄緩衝液のpHと、溶出緩衝液のpHと、は同じであったが、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用い、溶出緩衝液として、20mMリン酸緩衝液(pH6.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例13においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。また、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用い、溶出緩衝液として、20mMリン酸緩衝液(pH5.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例14においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。
 原子移動ラジカル重合法によって、スルホン酸基を有する温度応答性カチオン交換樹脂を合成した。そして、実施例13で精製された抗体を、温度応答性カチオン交換樹脂で精製した。
1)開始剤の固定
 架橋ポリビニルアルコールビーズ1g(粒径100μm)を純水で湿潤させ、300mLのガラス製三角フラスコに入れた。三角フラスコに、テトラヒドラフラン(安定剤不含、関東化学(株)社製)200mL、2-ブロモイソ酪酸ブロミド(東京化成工業(株)製)1.23mL、及びトリエチルアミン(和光純薬工業(株)社製)1.40mLを加え、室温で16時間震とうさせた。反応後、ろ過してから200mLエタノールで3回洗浄し、脱水イソプロパノール中で保存した。これにより、架橋ポリビニルアルコールビーズ表面に原子移動ラジカル重合(ATRP)開始剤である2-ブロモイソ酪酸ブロミドが導入された。
2)表面グラフト重合
 スルホン酸基の前駆体モノマーであるグリシジルメタクリレート(GMA、東京化成工業(株)製)を、N-イソプロピルアクリルアミドに対して1mol%の割合で含有するモノマー組成物を調整した。具体的には、N-イソプロピルアクリルアミド(IPAAm、和光純薬工業(株)製)18.40g、GMA0.231g、ブチルメタクリレート(BMA、東京化成工業(株)製)1.217g、塩化銅I(CuCl、和光純薬工業(株)製) 0.085g、及び塩化銅II(CuCl2、和光純薬工業(株)製)0.012gを90容量%イソプロパノール(IPA)水溶液42.8mLに溶解させ、30分間、窒素バブリングした。その後、窒素雰囲気下で溶液にトリス(2-ジメチルアミノエチル)アミン(Me6TREN)(Alfa Aesar社製)0.221gを加えて、5分間攪拌しCuCl/CuCl2/Me6TRENの触媒を形成させた。この反応溶液を窒素雰囲気下で開始剤導入架橋ポリビニルアルコールビーズに反応させ、室温で16時間のATRPをおこなった。反応後、エタノール、50mmol/L―EDTA水溶液、純水の順に洗浄し、モノマー、ポリマー、及び銅触媒を洗浄した。
3)スルホン酸基の導入
 原子移動ラジカル重合法によりグラフト鎖を導入したビーズを、亜硫酸ナトリウムと、IPAと、の混合水溶液(亜硫酸ナトリウム/IPA/純水=10/15/75wt%)200gに投入し、80℃で24時間反応を行い、グラフト鎖中のエポキシ基をスルホン酸基に変換した。反応後、このビーズを純水で洗浄した。その後、このビーズを0.5mol/L硫酸中に投入し、80℃で2時間反応を行うことで、グラフト鎖中に残存していたエポキシ基をジオール基に変換した。反応後、このビーズを純水で洗浄し、実施例1に係る温度応答性吸着剤とした。
4)共重合比率の測定
 スルホン酸基の前駆体モノマーであるグリシジルメタクリレート(GMA、東京化成工業(株)製)を、N-イソプロピルアクリルアミドに対して1mol%の割合で含有するモノマー組成物を用い、基材を用いずに共重合体を重合した。具体的には、上記2)記載の反応溶液を窒素雰囲気下で2-ブロモイソ酪酸エチルに反応させ、室温で16時間のATRPをおこなった。反応後、反応溶液を透析膜(Spectra/por Dialysis Membrane,MWCO1000,Spectrum Laboratories社製)に入れ、エタノール、50mmol/L―EDTA水溶液、純水の順に浸漬することにより、モノマー、及び銅触媒を除去した。次に反応溶液を凍結乾燥することで得られた共重合体を、亜硫酸ナトリウムと、IPAと、の混合水溶液(亜硫酸ナトリウム/IPA/純水=10/15/75wt%)200gに投入し、80℃で24時間反応を行い、グラフト鎖中のエポキシ基をスルホン酸基に変換した。反応後、反応溶液を透析膜に入れ、純水に浸漬することにより、亜硫酸ナトリウムとIPAを除去し、さらに反応溶液を凍結乾燥することで共重合体を得た。
 上記共重合体30mgを重水670mgに溶解し、核磁気共鳴装置(Bruker Avenve-600)を用いて1H-NMRを測定した。その後、N-イソプロピルアクリルアミド単位由来シグナル積分値と、スルホン酸基由来シグナル積分値と、から、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー単位の共重合比率(組成)を計算した。その結果、N-イソプロピルアクリルアミドに対する、強カチオン交換基を有するモノマー単位の共重合比率(組成)は0.72mol%であった。
 5)抗体タンパク質の吸着・溶出量測定
 ビーズを空カラム(Tricorn5/20column、GEヘルスケア・ジャパン(株)製)に充填し、クロマトグラフィーシステム(AKTA FPLC、GEヘルスケア・ジャパン(株)製)を用いて、温度変化による抗体タンパク質(献血ヴェノグロブリン-IH、株式会社ベネシス製)の吸着・溶出試験を行った。ビーズを充填したカラムの温度変化操作は、クロマトグラフィーシステムのポンプを一時停止し、カラムを恒温水槽中に浸漬し、その後10分間以上温置した後にクロマトグラフィーシステムのポンプを再度起動することにより行った。抗体タンパク質の吸着、及び溶出は、以下の条件で行った。
(吸着ステップ)
・抗体タンパク質濃度:2.5mg/mL
・吸着バッファー:20mMリン酸緩衝液(pH6.0)
・抗体タンパク質溶液ロード量:20mL
・流速:0.4mL/min
・カラム体積:0.54mL
・吸着温度:40℃
(洗浄ステップ)
・洗浄バッファー:20mMリン酸緩衝液(pH6.0)
・流速:0.4mL/min
・洗浄温度:40℃
(温度溶出ステップ)
・溶出バッファー:20mMリン酸緩衝液(pH6.0)
・流速:0.4mL/min
・流量:20mL
・溶出温度:2℃
(塩溶出ステップ)
・溶出バッファー:20mMリン酸緩衝液+1M NaCl(pH6.0)
・流速:0.4mL/min
・流量:20mL
・溶出温度:2℃
 温度溶出後、温度で溶出しきれない抗体タンパク質を、20mMリン酸緩衝液+1M NaCl(pH6.0)で溶出させた。各ステップの分画のUV吸収(280nm)を測定し、抗体タンパク質濃度を算出することにより、抗体タンパク質の温度溶出量を算出した。
(結果)
 抗体タンパク質の温度溶出量は30.7mg/mLであり、抗体タンパク質を温度変化によって溶出できることが示された。温度溶出後のビーズに残った抗体タンパク質を塩バッファーで溶出したところ塩溶出量は1.4mg/mLと少なかった。以上の結果から、温度応答性プロテインAによる精製の後、緩衝液を交換する必要なく、温度応答性カチオン交換樹脂で、抗体タンパク質を工業的に精製できることが示された。
 洗浄緩衝液として、20mMリン酸緩衝液+300mM NaCl(pH8.0)を用い、溶出緩衝液として、50mMクエン酸緩衝液+300mM NaCl(pH3.0)を用い、溶出温度25℃で実施した以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例16においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。さらに、抗体の溶出温度は25℃であり、高温による失活のリスクを避ける温度領域で溶出が行われた。さらに、抗体の回収率を下記(4)式を用いて算出したところ、回収率は100%と十分に高かった。
 (抗体の濃度測定)
 溶出液中に含まれる抗体濃度を、280nmの紫外線吸収(UV吸収)を測定することで、下記(4)式を用いて算出した。
 回収率(%)=(溶出ステップ画分中の抗体濃度(mg/mL)×(溶出ステップ画分 の量(mL))×100/((吸着ステップ供給液の抗体濃度(mg/mL)×吸着ステップの量(mL))-(吸着ステップ画分の抗体濃度(mg/mL))×吸着ステップ画分の量(mL))-(洗浄ステップ画分中の抗体濃度(mg/mL))×洗浄ステップ画分の量(mL)))・・・(4)
 洗浄緩衝液として、20mMリン酸緩衝液+300mM NaCl(pH8.0)を用い、溶出緩衝液として、50mMクエン酸緩衝液+300mM NaCl(pH4.0)を用い、溶出温度25℃で実施した以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例17においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。さらに、抗体の溶出温度は25℃であり、高温による失活のリスクを避ける温度領域で溶出が行われた。抗体の回収率は99%であった。
 洗浄緩衝液として、20mMリン酸緩衝液+300mM NaCl(pH8.0)を用い、溶出緩衝液として、50mMクエン酸緩衝液+300mM NaCl(pH5.0)を用い、溶出温度25℃で実施した以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例18においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低かった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。さらに、抗体の溶出温度は25℃であり、高温による失活のリスクを避ける温度領域で溶出が行われた。抗体の回収率は100%であった。
[実施例19]
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)、及び溶出緩衝液として、20mMリン酸緩衝液+300mM NaCl(pH6.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高かった。
[実施例20]
 洗浄緩衝液として、20mMリン酸緩衝液+300mM NaCl(pH8.0)を用い、溶出緩衝液として、50mMクエン酸緩衝液(pH4.0)を用い、溶出温度25℃で実施した以外、実施例1と同様の方法で抗体の精製を実施した。よって、実施例20においては、洗浄緩衝液のpHより、溶出緩衝液のpHが低く、且つ、洗浄緩衝液の塩濃度より、溶出緩衝液の塩濃度が低く、溶出緩衝液は塩を含まなかった。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高く、且つ、溶出画分中に含まれるプロテインA含有量も十分に少なかった。さらに、抗体の溶出温度は25℃であり、高温による失活のリスクを避ける温度領域で溶出が行われた。抗体の回収率は99%であった。
[比較例1]
 洗浄緩衝液として、20mMリン酸緩衝液(pH6.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。その結果、表1に示すように、洗浄緩衝液のpHより溶出緩衝液のpHが高いため、HCP除去性、DNA除去性が低かった。
[比較例2]
 洗浄緩衝液として、20mMリン酸緩衝液(pH7.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。その結果、表1に示すように、洗浄緩衝液と溶出緩衝液とで塩濃度とpHが同じであるため、HCP除去性、DNA除去性が低かった。
[比較例3]
 洗浄緩衝液、及び溶出緩衝液として、20mMリン酸緩衝液+100mM NaCl(pH7.4)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高かったが、洗浄緩衝液と溶出緩衝液とで塩濃度とpHが同じであるため、溶出画分中に含まれるプロテインA含有量が多かった。
[比較例4]
 洗浄緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)、及び溶出緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH8.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高かったが、洗浄緩衝液と溶出緩衝液とで塩濃度が同じであり、洗浄緩衝液のpHより溶出緩衝液のpHが高いため、溶出画分中に含まれるプロテインA含有量が多かった。
[比較例5]
 洗浄緩衝液、及び溶出緩衝液として、20mMリン酸緩衝液+150mM NaCl(pH7.0)を用いた以外、実施例1と同様の方法で抗体の精製を実施した。その結果、表1に示すように、HCP除去性、DNA除去性は十分に高かったが、洗浄緩衝液と溶出緩衝液とで塩濃度とpHが同じであるため、溶出画分中に含まれるプロテインA含有量が多かった。
[実施例21]
 溶出温度25℃で実施した以外、実施例1と同様の方法で抗体の精製を実施した。抗体の回収率は24%と低かった。
Figure JPOXMLDOC01-appb-T000001

Claims (17)

  1.  温度応答性プロテインAを用いた抗体の精製方法であって、
     前記温度応答性プロテインAを有する固定相に前記抗体を結合させる結合工程と、
     前記抗体と前記温度応答性プロテインAが結合する温度の緩衝液であって、第1の塩濃度の緩衝液を用いて、前記固定相を洗浄する洗浄工程と、
     前記抗体が前記温度応答性プロテインAから遊離する温度の緩衝液であって、前記第1の塩濃度より低い第2の塩濃度の緩衝液を用いて、前記固定相に捕捉された抗体を溶出する溶出工程と、
     を含む、前記洗浄工程と前記溶出工程で異なる緩衝液を用いる、抗体の精製方法。
  2.  前記洗浄工程に用いる緩衝液の水素イオン指数より、前記溶出工程に用いる緩衝液の水素イオン指数が低い、請求項1に記載の抗体の精製方法。
  3.  温度応答性プロテインAを用いた抗体の精製方法であって、
     前記温度応答性プロテインAを有する固定相に前記抗体を結合させる結合工程と、
     前記抗体と前記温度応答性プロテインAが結合する温度の緩衝液であって、第1の水素イオン指数の緩衝液を用いて、前記固定相を洗浄する洗浄工程と、
     前記抗体が前記温度応答性プロテインAから遊離する温度の緩衝液であって、前記第1の水素イオン指数より低い第2の水素イオン指数の緩衝液を用いて、前記固定相に捕捉された抗体を溶出する溶出工程と、
     を含む、前記洗浄工程と前記溶出工程で異なる緩衝液を用いる、抗体の精製方法。
  4.  前記洗浄工程に用いる緩衝液の塩濃度より、前記溶出工程に用いる緩衝液の塩濃度が低い、請求項3に記載の抗体の精製方法。
  5.  前記洗浄工程に用いる緩衝液の塩濃度が150乃至1000mmol/Lであり、前記溶出工程に用いる緩衝液の塩濃度が0乃至1000mmol/Lである、請求項1乃至4のいずれか1項に記載の抗体の精製方法。
  6.  前記洗浄工程における緩衝液の水素イオン指数が7.5乃至9.0であり、前記溶出工程における緩衝液の水素イオン指数が3.0乃至8.0である、請求項1乃至5のいずれか1項に記載の抗体の精製方法。
  7.  前記洗浄工程における緩衝液の温度が0乃至20℃である、請求項1乃至6のいずれか1項に記載の抗体の精製方法。
  8.  前記溶出工程における緩衝液の温度が15乃至50℃である、請求項1乃至7のいずれか1項に記載の抗体の精製方法。
  9.  前記溶出工程における緩衝液の温度が前記洗浄工程における緩衝液の温度より高いことを特徴とする、請求項1乃至8のいずれか1項に記載の抗体の精製方法。
  10.  前記温度応答性プロテインAを有する固定相から溶出された前記抗体を含む緩衝液を、カチオン交換樹脂を含む固定相と接触させ、前記カチオン交換樹脂を含む固定相に前記抗体を吸着させる吸着工程を更に含む、請求項1乃至9のいずれか1項に記載の抗体の精製方法。
  11.  前記吸着工程における緩衝液の塩濃度及び水素イオン指数が、前記溶出工程における緩衝液の塩濃度及び水素イオン指数と同じである、請求項10に記載の抗体の精製方法。
  12.  前記吸着工程における緩衝液の温度が、前記溶出工程における緩衝液の温度と同じである、請求項10又は11に記載の抗体の精製方法。
  13.  前記カチオン交換樹脂が、温度応答性カチオン交換樹脂である、請求項10乃至12のいずれか1項に記載の抗体の精製方法。
  14.  前記結合工程の前に、前記溶出工程における緩衝液と同じ塩濃度及び水素イオン指数の緩衝液を前記温度応答性プロテインAを有する固定相に接触させる平衡化工程を更に含む、請求項1乃至13のいずれか1項に記載の抗体の精製方法。
  15.  前記結合工程の前に、低塩濃度及び高水素イオン指数の緩衝液を前記温度応答性プロテインAを有する固定相に接触させる平衡化工程を更に含む、請求項1乃至13のいずれか1項に記載の抗体の精製方法。
  16.  前記溶出工程に用いる緩衝液の温度が、37℃未満である、請求項3乃至15のいずれか1項に記載の抗体の精製方法。
  17.  前記溶出工程における緩衝液の水素イオン指数が3.5乃至7.0である、請求項3乃至16のいずれか1項に記載の抗体の精製方法。
PCT/JP2013/072821 2012-08-27 2013-08-27 温度応答性クロマトグラフィーによる抗体の精製方法 WO2014034644A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014533013A JP6253584B2 (ja) 2012-08-27 2013-08-27 温度応答性クロマトグラフィーによる抗体の精製方法
EP13832456.1A EP2889617B1 (en) 2012-08-27 2013-08-27 Antibody purification method by means of temperature-responsive chromatography
US14/423,568 US20150218208A1 (en) 2012-08-27 2013-08-27 Method for purifying antibody by temperature-responsive chromatography

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-186930 2012-08-27
JP2012186930 2012-08-27
JP2013-086121 2013-04-16
JP2013086121 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014034644A1 true WO2014034644A1 (ja) 2014-03-06

Family

ID=50183456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072821 WO2014034644A1 (ja) 2012-08-27 2013-08-27 温度応答性クロマトグラフィーによる抗体の精製方法

Country Status (4)

Country Link
US (1) US20150218208A1 (ja)
EP (1) EP2889617B1 (ja)
JP (1) JP6253584B2 (ja)
WO (1) WO2014034644A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171437A1 (ja) * 2013-04-16 2014-10-23 旭化成メディカル株式会社 抗体タンパク質の精製方法
WO2016199550A1 (ja) * 2015-06-12 2016-12-15 株式会社日立ハイテクノロジーズ 吸着材及び当該吸着材を用いた抗体精製装置
DE102015011884A1 (de) 2015-09-10 2017-03-16 Sartorius Stedim Biotech Gmbh Adsorptionsmedium, Verfahren zu dessen Herstellung, sowie Verwendung desselben zur Aufreinigung von Biomolekülen
JP2018171556A (ja) * 2017-03-31 2018-11-08 日立化成株式会社 分離材及びカラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
US20100267933A1 (en) 2006-12-21 2010-10-21 Moya Wilson Purification of proteins
CN102257122B (zh) 2008-12-16 2015-07-29 Emd密理博公司 搅拌槽反应器及方法
CN102892791B (zh) 2010-05-17 2017-05-17 Emd密理博公司 用于纯化生物分子的刺激响应性聚合物
CN104756395B (zh) * 2012-08-30 2018-02-02 阿莱戈微系统有限责任公司 用于根据电动机的绕组中检测到的零电流自动调整向电动机施加的驱动信号的相位以及用于检测零电流的电子电路及方法
JP6885611B2 (ja) 2015-12-18 2021-06-16 ユニバーシティ オブ カンタベリー 分離媒体
AU2017298984B2 (en) 2016-07-22 2023-08-31 Amgen Inc. Methods of purifying Fc-containing proteins

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917354A (ja) 1982-07-22 1984-01-28 旭化成株式会社 アフイニテイ−クロマトグラフイ−用吸着体
JP2007526897A (ja) 2003-07-28 2007-09-20 ジェネンテック・インコーポレーテッド プロテインaアフィニティークロマトグラフィーの間のプロテインaの浸出の低減
WO2008143199A1 (ja) 2007-05-21 2008-11-27 Nomadic Bioscience Co., Ltd. 新規ポリペプチド,アフィニティークロマトグラフィー用材,及びイムノグロブリンの分離及び/又は精製方法
JP2009196998A (ja) 2002-02-05 2009-09-03 Genentech Inc タンパク質精製法
WO2011017514A1 (en) 2009-08-07 2011-02-10 Millipore Corporation Methods for purifying a target protein from one or more impurities in a sample
WO2012086838A1 (ja) * 2010-12-24 2012-06-28 旭化成メディカル株式会社 温度応答性リガンド固定化膜モジュールを用いた生理活性物質の分離方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429746A (en) * 1994-02-22 1995-07-04 Smith Kline Beecham Corporation Antibody purification
GB2341115B (en) * 1998-09-04 2002-02-06 Actinova Ltd Chromatography
CA2405369A1 (en) * 2000-04-05 2002-10-03 Japan Chemical Innovation Institute Separatory material and separation method using the same
ES2666170T3 (es) * 2007-10-30 2018-05-03 Genentech, Inc. Purificación de anticuerpos mediante cromatografía de intercambio catiónico
EP2657254A4 (en) * 2010-12-24 2014-01-08 Asahi Kasei Medical Co Ltd PROCESS FOR IMMOBILIZING THE TEMPERATURE-REACTIVE PROTEIN A

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917354A (ja) 1982-07-22 1984-01-28 旭化成株式会社 アフイニテイ−クロマトグラフイ−用吸着体
JP2009196998A (ja) 2002-02-05 2009-09-03 Genentech Inc タンパク質精製法
JP2007526897A (ja) 2003-07-28 2007-09-20 ジェネンテック・インコーポレーテッド プロテインaアフィニティークロマトグラフィーの間のプロテインaの浸出の低減
WO2008143199A1 (ja) 2007-05-21 2008-11-27 Nomadic Bioscience Co., Ltd. 新規ポリペプチド,アフィニティークロマトグラフィー用材,及びイムノグロブリンの分離及び/又は精製方法
WO2011017514A1 (en) 2009-08-07 2011-02-10 Millipore Corporation Methods for purifying a target protein from one or more impurities in a sample
WO2012086838A1 (ja) * 2010-12-24 2012-06-28 旭化成メディカル株式会社 温度応答性リガンド固定化膜モジュールを用いた生理活性物質の分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2889617A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171437A1 (ja) * 2013-04-16 2014-10-23 旭化成メディカル株式会社 抗体タンパク質の精製方法
US10400007B2 (en) 2013-04-16 2019-09-03 Asahi Kasei Medical Co., Ltd. Method for purifying antibody protein
WO2016199550A1 (ja) * 2015-06-12 2016-12-15 株式会社日立ハイテクノロジーズ 吸着材及び当該吸着材を用いた抗体精製装置
DE102015011884A1 (de) 2015-09-10 2017-03-16 Sartorius Stedim Biotech Gmbh Adsorptionsmedium, Verfahren zu dessen Herstellung, sowie Verwendung desselben zur Aufreinigung von Biomolekülen
WO2017041868A1 (de) 2015-09-10 2017-03-16 Sartorius Stedim Biotech Gmbh Adsorptionsmedium, verfahren zu dessen herstellung, sowie verwendung desselben zur aufreinigung von biomolekülen
JP2018171556A (ja) * 2017-03-31 2018-11-08 日立化成株式会社 分離材及びカラム

Also Published As

Publication number Publication date
JP6253584B2 (ja) 2017-12-27
EP2889617A1 (en) 2015-07-01
EP2889617A4 (en) 2015-08-19
EP2889617B1 (en) 2017-10-11
US20150218208A1 (en) 2015-08-06
JPWO2014034644A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6253584B2 (ja) 温度応答性クロマトグラフィーによる抗体の精製方法
JP5981133B2 (ja) 強カチオン交換基を有する温度応答性吸着剤、及びその製造方法
US10400007B2 (en) Method for purifying antibody protein
JP6437553B2 (ja) 陽イオン交換クロマトグラフィー担体及びその使用方法
WO2014003137A1 (ja) 高アフィニティー抗体、及びその製造方法
WO2016093251A1 (ja) 生理活性物質の精製方法
WO2012121409A1 (ja) 温度応答性クロマトグラフィー担体による生理活性物質の精製方法
WO2015138928A2 (en) Mixed mode ligands
WO2012086837A1 (ja) 温度応答性プロテインaの固定化方法
US11801505B2 (en) Strong cation exchange chromatographic matrix and method for using same
JP2014129319A (ja) 抗体タンパク質の精製方法
WO2014003142A1 (ja) 抗体
JP2015124177A (ja) 吸着材、吸着材の製造方法、及び抗体の精製方法
WO2012086838A1 (ja) 温度応答性リガンド固定化膜モジュールを用いた生理活性物質の分離方法
JP6621176B2 (ja) タンパク質の精製方法
JP2016108287A (ja) カチオン交換クロマトグラフィー担体を用いた生理活性物質の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533013

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423568

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013832456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013832456

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE