WO2016199498A1 - 鋳型砂の再生方法及び再生設備 - Google Patents

鋳型砂の再生方法及び再生設備 Download PDF

Info

Publication number
WO2016199498A1
WO2016199498A1 PCT/JP2016/062274 JP2016062274W WO2016199498A1 WO 2016199498 A1 WO2016199498 A1 WO 2016199498A1 JP 2016062274 W JP2016062274 W JP 2016062274W WO 2016199498 A1 WO2016199498 A1 WO 2016199498A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
equipment
regeneration
facility
mold
Prior art date
Application number
PCT/JP2016/062274
Other languages
English (en)
French (fr)
Inventor
大羽 崇文
岩崎 順一
阿部 和也
達行 青木
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2017523143A priority Critical patent/JP6519654B2/ja
Priority to KR1020177036156A priority patent/KR20180018569A/ko
Priority to US15/577,508 priority patent/US20180133719A1/en
Priority to EP16807205.6A priority patent/EP3308875A4/en
Priority to CN201680033705.0A priority patent/CN107635693A/zh
Priority to MX2017014625A priority patent/MX2017014625A/es
Priority to RU2017142806A priority patent/RU2017142806A/ru
Priority to BR112017026569-9A priority patent/BR112017026569A2/ja
Publication of WO2016199498A1 publication Critical patent/WO2016199498A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/26Magnetic separation acting directly on the substance being separated with free falling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/06Mills with rollers forced against the interior of a rotary ring, e.g. under spring action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/02Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/02Dressing by centrifuging essentially or additionally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/04Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by grinding, blending, mixing, kneading, or stirring
    • B22C5/0404Stirring by using vibrations while grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/06Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sieving or magnetic separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/08Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sprinkling, cooling, or drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/10Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by dust separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/14Equipment for storing or handling the dressed mould material, forming part of a plant for preparing such material
    • B22C5/16Equipment for storing or handling the dressed mould material, forming part of a plant for preparing such material with conveyors or other equipment for feeding the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings

Definitions

  • the present invention relates to a method and a regenerating facility for reclaiming mold sand discharged from a green casting facility.
  • waste sands do not have sand properties that can be reused as the main mold or core sand as they are, so it is necessary to remove the impurities and deposits on the surface of the sand grains, adjust them to an appropriate particle size, and reuse them. There is. This process is called regeneration.
  • Patent Document 1 uses a mold sand regeneration device using thermal regeneration
  • Patent Document 2 uses a method for regenerating mold sand that combines heat regeneration and dry mechanical regeneration
  • Patent Document 3 uses dry mechanical regeneration.
  • Patent Document 4 discloses a method for reclaiming green waste sand combining dry mechanical regeneration and wet regeneration
  • Patent Document 5 describes self-hardness combining a plurality of dry mechanical regeneration.
  • a casting sand recycling apparatus is disclosed.
  • Patent Document 6 discloses a green sand management in which a plurality of reclaimed sand (replenishment sand) subjected to heat regeneration and dry regeneration under a plurality of processing conditions is added to recovered sand (green sand) at a predetermined ratio and reused. A system and management method are disclosed.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a method and a regeneration facility for reclaiming mold sand discharged from a green casting facility using only dry mechanical regeneration.
  • a method for reclaiming mold sand in the present invention includes a step of measuring the amount of moisture and magnetic deposits of mold sand discharged from a green casting facility, and the measured moisture content. The amount is compared with the first control value, and when the amount of water exceeds the first control value, the step of drying the mold sand until it becomes equal to or lower than the first control value, the measured magnetic deposit amount is set to the second control value. If the amount of magnetic deposits exceeds the second control value, the magnetic sand is magnetically selected until the second control value is less than or equal to the second control value.
  • the method includes a step of regenerating by dry-type machine regeneration until the control value is lower than the control value, and a step of classifying the mold sand until the total clay content is lower than the fourth control value.
  • the method for reclaiming mold sand according to the present invention is a process of collecting mold sand discharged from a green casting facility by separating it into overflow sand, product-attached sand, main-type core mixed sand, and sand lump and sand. , The overflow sand is dried until the moisture content is equal to or lower than the first control value, the foreign matter is removed and stored, the foreign matter on the product-attached sand is removed, and the amount of magnetic deposits is equal to or lower than the second control value.
  • a step of reproducing the expression of mechanical reproduction, and the formulated sand total clay content including the step of classifying until following the fourth control value, characterized by.
  • the molding sand recycling facility includes a drying facility for drying until the moisture content of the molding sand discharged from the green casting facility is equal to or lower than the first control value.
  • Magnetic separation equipment that performs magnetic separation until the control value falls below the control value
  • dry-type mechanical regeneration equipment that regenerates the loss on ignition of the mold sand until it falls below the third control value
  • the total clay content of the mold sand falls below the fourth control value
  • Classification equipment for classifying up to 1 first switching equipment for selecting whether to pass the drying equipment through the molding sand, and second switching equipment for selecting whether to pass the magnetic separation equipment through the molding sand It is characterized by this.
  • the mold sand regeneration facility includes an overflow sand recovery facility for recovering overflow sand discharged from the sand treatment process, a drying facility for drying the overflow sand until the water content is equal to or lower than a first control value, and overflow sand.
  • Overflow sand foreign material removal equipment that removes foreign material
  • overflow sand storage tank that stores overflow sand
  • product adhesion sand collection facility that collects product adhesion sand
  • product adhesion sand foreign material removal equipment that removes product adhesion sand foreign material
  • product adhesion Magnetic separation equipment that performs magnetic separation until the amount of magnetic deposits of sand falls below the second control value
  • product-attached sand storage tank that stores product-attached sand
  • main-type core-sand mixed sand that collects main-type core-sand mixed sand Equipment
  • crushing equipment for crushing main type core mixed sand, main type core mixed sand foreign matter removing equipment for removing foreign matter from main type core mixed sand, main type for storing main type core mixed sand Removes sand lump and sand recovery equipment for collecting sand lump and sand discharged from core sand removal tank, core litter removal process, crushing equipment for crushing sand lump and
  • the molding sand discharged from the green casting equipment can be regenerated only by dry mechanical regeneration.
  • FIG. 6 is an AA arrow view in FIG. 5.
  • FIG. 6 is a BB arrow view in FIG. 5. It is CC arrow line view in FIG.
  • FIG. 20 is a sectional view taken along line AA in FIG.
  • FIG. 20 is a flowchart which shows the reproduction
  • FIG. 20 is a schematic block diagram of the reproduction
  • FIG. 1 is a schematic configuration diagram of a molding sand recycling facility according to the first embodiment.
  • the regeneration facility 1 includes a drying facility D, a magnetic separation facility M, a switching facility V1, a switching facility V2, a bypass system BP1, a bypass system BP2, a dry machine regeneration facility R, a classification facility C, a switching facility V3, a return system PL1, and Dust collection equipment DC is provided.
  • Drying equipment D dries the molding sand S discharged from the green casting equipment.
  • the drying facility D is connected to the casting sand S inlet through the switching facility V1.
  • There is no limitation on the drying equipment D as long as it has an ability to dry until the amount of water contained in the mold sand S becomes equal to or less than the control value described below.
  • moisture content is mentioned.
  • the amount of water required to dry to a moisture level below the control value is determined by preliminarily measuring the moisture content before drying and drying to a moisture level below the control value.
  • the amount of heat required for this is determined and determined.
  • the drying facility D is preferably a drying facility having the ability to heat the mold sand S to 90 ° C. or higher.
  • the magnetic separation equipment M magnetically selects the mold sand S discharged from the green casting equipment and removes the magnetic deposits from the mold sand S.
  • a magnetic deposit is a sand particle in a state where a metal and a sand particle are welded.
  • the magnetic separation equipment M is connected to the drying equipment D via the bypass system BP1 and the switching equipment V2.
  • the magnetic separation equipment M may be any method as long as it has the ability to perform magnetic separation until the amount of magnetic deposits in the molding sand S is equal to or less than a control value described later.
  • the magnetic separation equipment M is preferably a semi-magnetic outer ring type magnetic separation equipment having a magnetic flux density of 0.15 T to 0.5 T.
  • the switching equipment V1 is provided in front of the drying equipment D, and the switching equipment V2 is provided in front of the magnetic separation equipment M.
  • the bypass system BP1 and the bypass system BP2 are connected to each other. When the measured value of the moisture contained in the mold sand S discharged from the green casting equipment does not exceed the control value, the mold sand S passes through the bypass system BP1 without passing through the drying equipment D in the switching equipment V1.
  • the configuration can be selected as described above.
  • the molding sand S discharged from the green casting equipment does not pass through the magnetic separation equipment M in the switching equipment V2 and bypass system BP2. It is the structure which can be selected so that it may pass. With such a configuration, the molding sand S discharged from the green casting equipment is transported to the dry machine regeneration equipment R via both the drying equipment D and the magnetic separation equipment M, or one of them. It is possible to select whether it is transported to the dry-type machine regeneration facility R via the, or directly to the dry-type machine regeneration facility R without passing through any of the facilities.
  • the dry-type machine regeneration equipment R regenerates the mold sand S by peeling off carbides, sintered products, metal compounds, etc. adhering to the surface of the mold sand S discharged from the green casting equipment.
  • the dry-type machine regeneration equipment R is connected behind the magnetic separation equipment M. There is no limitation on the dry-type machine regeneration equipment R as long as it has the ability to reduce the ignition loss below the control value described below.
  • the classification equipment C classifies the regenerated mold sand S by a specific gravity classification method, and separates the sand particles to be collected from fine powders such as carbides, sintered products, and metal compounds to be collected.
  • the classification equipment C is connected behind the dry-type machine regeneration equipment R. There is no limitation on the classification equipment C as long as it has the ability to remove fine powder until the amount of all clay in the regenerated mold sand S is equal to or less than the control value described below.
  • a switching facility V3 for switching is provided, and a return system PL1 for returning the classified recycled sand to the dry-type mechanical regeneration facility R is connected to the switching facility V3.
  • the classified recycled sand can be returned to the dry-type mechanical regeneration facility R.
  • the dust collection equipment DC is connected to the classification equipment C and collects dust (fine powder) generated in the classification equipment C.
  • FIG. 2 is a schematic cross-sectional view showing the structure of a fluidized bed type hot air drying facility which is a first example of the drying facility D.
  • the drying facility D which is a fluidized bed hot air drying facility, dries the mold sand S by heating the mold sand S to 90 ° C. or higher.
  • the drying equipment D includes a wind box D1, a bottom plate D2, a settling chamber D3, a sand discharge port D4, a sand input port D5, a weir D6, a hot air blowing pipe D7, and a dust collection port D8.
  • the wind box D1 is provided in the lower part of the drying equipment D, and the hot air sent from the hot air blowing pipe D7 is blown into the sedimentation chamber D3 via the wind box D1.
  • the bottom plate D2 is placed on the top of the wind box D1, so that the cast sand S that has been put in remains on the upper surface.
  • the bottom plate D2 is provided with an air outlet D2a for blowing hot air from the wind box D1 to the settling chamber D3.
  • the settling chamber D3 is provided in the upper part of the drying equipment D, and sinks the mold sand S that has received hot air to the bottom plate D2 side by gravity.
  • the sand discharge port D4 is installed at the front end of the bottom plate D2, and opens to the lower side of the machine body.
  • the mold sand S after drying is discharged from the sand discharge port D4.
  • the sand inlet D5 is installed in the upper part of the wind box D1, and is opened above the fuselage.
  • the mold sand S before drying is fed from the sand loading port D5. Note that the bottom plate D2 is slightly inclined so that the sand discharge port D4 side is lowered and the sand insertion port D5 side is raised.
  • the weir D6 is provided at a position adjacent to the sand discharge port D4 on the bottom plate D2.
  • the weir D6 temporarily dams the flowing mold sand S.
  • the hot air blowing pipe D7 is installed at the bottom of the wind box D1, and is connected to a hot air generator not shown.
  • the hot air blower tube D7 blows hot air generated by the hot air generator.
  • the dust collection port D8 is installed at the upper end of the sedimentation chamber D3, and is connected to a dust collection device (not shown). Dust adhering to the mold sand S is collected in the dust collector via the dust collection port D8.
  • hot sand generated by the hot air generator is blown into the hot air blowing pipe D7 at the same time as the casting sand S is introduced from the sand inlet D5.
  • the blown hot air flows into the wind box D1, and is further blown into the sedimentation chamber D3 through the air outlet D2a of the bottom plate D2.
  • the molding sand S collected on the bottom plate D2 receives hot air, so that moisture is reduced by evaporation.
  • the molding sand S is fluidized, slides on the bottom plate D2, and partially starts floating in the settling chamber D3. At this time, the dust adhering to the mold sand S is separated from the mold sand S.
  • the slid mold sand S advances toward the sand discharge side D4 along the inclination of the bottom plate D2, and then stops sliding by the weir D6. Therefore, the mold sand S begins to form a layer at this portion. Further, when the casting sand S is continuously fed from the sand feeding port D5, the layer of the casting sand S passes through the weir D6 and is discharged from the sand discharging port D4.
  • the mold sand S to be dried is not heated to a temperature sufficient to evaporate the moisture, the mold sand S cannot be dried below the control value of moisture.
  • FIG. 3 is a schematic cross-sectional view showing the structure of an internal combustion rotary kiln type drying facility that is a second example of the drying facility D.
  • the drying equipment D which is an internal combustion rotary kiln type hot air drying equipment, dries the mold sand S by heating the mold sand S to 90 ° C. or higher.
  • the drying equipment D includes a cylinder D101, a sand inlet D102, a burner D103, a sand outlet D104, a sand outlet D105, a stirring plate D106, a support base D107, and a drive source D108.
  • the cylinder D101 is disposed at the center of the drying equipment D and is rotatably supported.
  • the cylinder D101 is configured such that the cast sand S that has been charged remains in the cylinder.
  • the sand inlet D102 is provided at one end of the cylinder D101.
  • the mold sand S before drying is fed from the sand loading port D102.
  • the burner D103 is disposed on the opposite end side of the sand inlet D102 in the cylinder D101 and inserted in the substantially central portion of the cylinder D101. By igniting the burner D103, the inside of the cylinder D101 is heated.
  • the sand discharge port D104 is disposed below the burner D103 and opens below the cylinder D101.
  • the mold sand S after drying is discharged from the sand discharge port D104.
  • the sand discharge port D105 is disposed above the burner D103 and opens above the cylinder D101.
  • a plurality of stirring plates D106 are spirally arranged on the inner surface of the cylinder D101. As the cylinder D101 rotates, the stirring plate D106 stirs the mold sand S in the cylinder D101.
  • the support base D107 is disposed below the cylinder D101 and rotatably supports the cylinder D101.
  • the drive source D108 is disposed below the cylinder D101 and rotates the cylinder D101.
  • the cylinder D101 is supported by the support base D107 in a slightly inclined state so that the sand inlet D102 side is high and the sand outlet D104 side is low.
  • the burner D103 is ignited in advance, and the temperature inside the cylinder D101 is raised.
  • the cylinder D101 is rotated, and the molding sand S is introduced from the sand introduction port D102.
  • the mold sand S is heated while being stirred by the stirring plate D106 in the heated cylinder D101 and dried. Thereafter, the mold sand S reaches the sand discharge port D104 and is discharged from the sand discharge port D104.
  • the mold sand S to be dried is not heated to a temperature sufficient to evaporate the moisture, the mold sand cannot be dried below the control value of moisture.
  • the configuration of the drying equipment D is not limited to these two, and any configuration may be used as long as the sand mold S can be heated to 90 ° C. or higher.
  • it may be a drying facility with a mechanism for blowing hot air while vibrating and drying, or a drying facility for continuously stirring and drying the mold sand S while blowing hot air, and the heating source is outside the cylinder.
  • a drying facility such as an external combustion type rotary kiln arranged in the above is used.
  • the drying facility D has the ability to heat the mold sand S to 90 ° C. or higher, it is possible to efficiently dry the moisture remaining in the sand grains to a control value or less.
  • FIG. 4 is a schematic cross-sectional view of the magnetic separation equipment M.
  • the magnetic separation equipment M magnetically selects the mold sand S with a magnetic flux density within a range of 0.15T to 0.5T, and removes magnetic deposits from the mold sand S.
  • the magnetic separation equipment M is a semi-magnetic outer ring type magnetic separation equipment.
  • the magnetic separation equipment M includes a permanent magnet M1, a rotating drum M2, an inlet side damper M3, an outlet side separation plate M4, a sand inlet M5, a sand outlet M6, a magnetic deposit outlet M7, and a housing M8.
  • the permanent magnet M1 is fixed to the center of the facility and is arranged to apply a magnetic force within the transport range of the molding sand S.
  • the rotating drum M2 is closely arranged on the outer periphery of the permanent magnet M1, and has a mechanism that is rotated by a power source (not shown).
  • the rotating drum M2 has an upper end M2a and a lower end M2c.
  • the inlet side damper M3 is disposed immediately above the rotary drum M2 and has a mechanism that can freely adjust the opening degree.
  • the outlet side separation plate M4 is disposed so as to have a gap between the rotary drum M2 and the rotary drum M2 immediately below the rotary drum M2, and has a mechanism that can freely adjust the opening degree.
  • the sand inlet M5 is disposed immediately above the rotary drum M2 and adjacent to the inlet damper M3.
  • the sand discharge port M6 opens downward on the permanent magnet M1 side between the outlet side separation plate M4 and the housing M8, just below the rotary drum M2.
  • the magnetic deposit discharge port M7 opens downward on the side of the anti-sand discharge port M6 between the outlet side separation plate M4 and the housing M8 immediately below the rotary drum M2.
  • the housing M8 covers the entire magnetic separation equipment M.
  • the mold sand S is introduced from the sand introduction port M5 while the rotary drum M2 is rotated counterclockwise.
  • the casting sand S is conveyed from the position of the upper end M2a of the rotating drum M2 in a state of being layered on the rotating drum M2.
  • the mold sand S falls from the rotary drum M2 and is discharged from the sand discharge port M6.
  • the magnetic deposit E is conveyed to the lower end M2c of the rotating drum M2, where it falls from the rotating drum M2.
  • the outlet side separation plate M4 is tilted to the mold sand discharge port M6 side, the ratio of the magnetic material E falling at the lower end M2c of the rotary drum M2 to be discharged from the magnetic material discharge port M7 increases.
  • the side separation plate M4 is tilted toward the magnetized material discharge port M7, the ratio of the magnetic material E falling at the lower end M2c of the rotating drum M2 to be discharged from the sand discharge port M6 increases. Therefore, the position of the outlet side separation plate M4 needs to be adjusted to an appropriate position in consideration of the yield of the magnetic deposit E.
  • the efficiency of magnetic separation is determined not only by the magnetic flux density but also by the thickness of the molding sand S layered on the rotating drum M2. If this thickness is excessive, the magnetic material E falls between the intermediate point M2b of the rotating drum M2 and the lower end M2c of the rotating drum M2, even if magnetic selection with an appropriate magnetic flux density is performed. It stays in S continuously. Therefore, it is necessary to select the diameter and width of the permanent magnet M1 in consideration of the supply amount of the mold sand S so that the thickness of the mold sand S formed on the rotating drum M2 is 5 mm or less.
  • the magnetic separation equipment M is a semi-magnetic outer ring type having a magnetic flux density of 0.15 T to 0.5 T, it is possible to efficiently remove magnetic deposits remaining on the mold sand S.
  • FIG. 5 is a schematic cross-sectional view of a mechanical regeneration facility that is a first example of a dry-type mechanical regeneration facility R.
  • 6 is an AA arrow view in FIG. 5
  • FIG. 7 is a BB arrow view in FIG. 5
  • FIG. 8 is a CC arrow view in FIG.
  • the dry-type machine regeneration facility R regenerates the mold sand S by peeling off carbides, sintered products, metal compounds, etc. adhering to the surface of the mold sand S.
  • the dry-type machine regeneration facility R includes a sand supply chute R2 provided with a sand dropping port at the lower end and a rotary drum R4 disposed so as to be horizontally rotatable below the sand supply chute R2, And one or more roller R12 arrange
  • a funnel-shaped sand supply chute R2 is suspended from the upper end portion of the treatment tank R1 in which the pyramid portion R1b is connected to the lower portion of the rectangular tube portion R1a, and the lower end of the sand supply chute R2 is not shown.
  • a sand supply port R3 is provided through which a constant flow of sand always flows through the gate.
  • a rotating drum R4 is disposed below the sand supply chute R2, and the rotating drum R4 includes an inclined peripheral wall R4b extending obliquely upward and outward from the peripheral end of the circular bottom plate R4a, and an inner side from the upper end of the inclined peripheral wall R4b.
  • the protruding weir R4c is integrally connected to each other.
  • connection between the rotating drum R4 and the motor R9 is not particularly limited.
  • the rotating shaft R5 is fixed to the center of the lower surface of the circular bottom plate R4a of the rotating drum R4, and the rotating shaft R5 is hollow. Is supported rotatably via a bearing R7 mounted on a support frame R6.
  • a V pulley R8a is attached to the lower end of the rotating shaft R5, and is transmitted to the rotating shaft R10 of the motor R9 mounted on the support frame R6 via the V belt R11 and the V pulley R8b outside the processing tank R1. Connected as possible.
  • a slight gap is provided with respect to the inclined peripheral wall R4b, and two rollers R12 and R12 are disposed at a right angle to the inclined peripheral wall R4b.
  • Support shafts R13 and R13 are coupled to each other so as to be relatively rotatable.
  • the upper ends of the support shafts R13, R13 are fixed to one end of support arms R14, R14 extending in the lateral direction (parallel to the rollers R12, R12), and the other ends of the support arms R14, R14 are connected via bearings R15, R15. It is connected to one end of a horizontal axis R16, R16 that is supported so as to be vertically rotatable and extends in a direction crossing the support arms R14, R14. The other ends of the horizontal axes R16 and R16 pass through the rectangular tube portion R1a and protrude to the outside, and are fixed to the upper ends of the rotary arms R17 and R17.
  • the lower ends of the two rotary arms R17 and R17 are connected by a cylinder R18, and constitute a roller pressurizing mechanism P as a whole. That is, a constant pressure is always applied to the rollers R12 and R12 in the direction of the inclined peripheral wall R4b via the rotary arm R17, the horizontal axis R16, and the arm R14. Similar effects can be obtained by connecting the lower ends of the rotary arms R17 and R17 via a compression coil spring instead of the cylinder R18.
  • the mold sand S is supplied into the sand supply chute R2 in a state where the motor R9 is driven and the rotary drum R4 is rotated in the direction of the arrow in FIG.
  • a fixed amount of casting sand S is continuously supplied from the sand supply port R3 to the center of the circular bottom plate R4a of the rotary drum R4.
  • the supplied mold sand S is moved outward by the centrifugal force of the rotating drum R4, and further accumulated while being pressed against the inner surface of the inclined peripheral wall R4b by the centrifugal force, and the thickness thereof is increased to form a sand layer L. .
  • the rollers R12 and R12 start to rotate due to the frictional force with the mold sand S.
  • the sand layer L further increases in thickness and surpasses the weir R4c. Thereafter, the thickness is kept constant substantially equal to the width of the weir R4c.
  • the sand layer L rotates together with the rotating drum R4.
  • the sand layer L reaches the position of the rollers R12 and R12, the sand layer L is sandwiched between the inclined peripheral walls of the rollers R12 and R12 and the rotating drum R4, and receives a certain pressurizing force.
  • deposits on the surface of the mold sand S are peeled off and removed to regenerate the sand.
  • This sand regeneration is performed by a shearing action in a state where the sand is pressed at a constant pressure by the roller R12, so that the deposits are efficiently peeled and the sand is not crushed.
  • the regenerated sand passes over the weir R4c and falls below the treatment tank R1, and is subsequently sent to the classification equipment C shown in FIG.
  • the mold sand S is supplied to the rotary drum R4, the sand is regenerated and the sand is discharged in the rotary drum R4, and the mold sand S is continuously regenerated.
  • the reason why the peripheral wall R4b of the rotating drum R4 is an upwardly extending inclined surface extending upward and outward is that when the sand layer L is formed by centrifugal force, the inner diameter of the deposited layer becomes smaller due to the influence of gravity. This is for keeping the thickness of the sand layer L constant in the vertical direction, whereby even pressure is applied by the rollers R12 and R12, and more efficient sand regeneration is achieved.
  • two rollers R12 are provided, but one roller may be used, or three or more rollers R12 may be used.
  • the sand sandwiched between the inclined peripheral wall R4b of the rotating drum R4 and the rollers R12 and R12 is polished by the polishing material. Simultaneously receiving the action, the reproduction efficiency can be further improved.
  • the rollers R12 and R12 are in a state where a constant pressure is applied in the direction of the inclined peripheral wall R4b, so that even if there is some wear, the mold sand S can be pressed at a constant pressure, and the sand regeneration can be stabilized. It becomes possible to measure.
  • the strength of regeneration is expressed by the load current of the motor R9.
  • the load current of the motor R9 is determined by the thickness of the sand layer L and the pressure of the roller pressurizing mechanism P. . Therefore, the most efficient regeneration can be performed by adjusting the width of the weir R4c and the pressing force of the roller pressurizing mechanism P to the optimum ones.
  • the power of the cylinder R18 is not particularly limited, such as pneumatic, hydraulic, hydraulic, electric, etc., but it is possible to react quickly when adjusting the applied pressure by adopting a pneumatic / hydraulic compound cylinder in particular. It becomes.
  • the machine regeneration facility R can perform regeneration very efficiently.
  • FIG. 9 is a schematic cross-sectional view of a machine regeneration facility that is a second example of the dry-type machine regeneration facility R.
  • FIG. 10 is a diagram illustrating the input sand flow rate and the motor in the second example of the dry-type machine regeneration facility R.
  • FIG. 11 is a graph showing a relative relationship with a target current value, and FIG. 11 is a flowchart in a second example of the dry-type mechanical regeneration facility R.
  • the dry-type machine regeneration facility R regenerates the mold sand S by peeling off carbides, sintered products, metal compounds, etc. adhering to the surface of the mold sand S.
  • the dry-type machine regeneration facility R is capable of rotating in the horizontal direction below the sand throwing portion R101 and the sand throwing portion R101 having a sand dropping port at the lower end for throwing sand (mold sand S).
  • a rotating drum R102 disposed in the motor, a motor driving means R104 for rotating the rotating drum R102 by a motor R103, rollers R105 and R105 disposed in the rotating drum R102 with a gap, and a roller R105 and a roller R105, R105 and a cylinder R106.
  • R106 is connected to sand that is put into the sand dropping unit of the sand throwing unit in the sand sand recycling facility equipped with roller pressurizing mechanisms R107 and R107 that press the rollers R105 and R105 toward the rotating drum R102.
  • Current value of sand flow detector R108 for detecting the flow rate and motor drive means R104 A current detector R109 for detecting a pressure control means R110 cylinder R106, R106, and a control unit R111 is provided.
  • the rotary drum R102 has a configuration in which an inclined peripheral wall R102b extending obliquely upward and outward from the peripheral end of the circular bottom plate R102a and a weir R102c extending inward from the upper end of the inclined peripheral wall R102b are connected.
  • the rollers R105 and R105 are arranged with a slight gap with respect to the inclined peripheral wall R102b.
  • a chute R112 is provided so as to surround the rotating drum R102.
  • the motor driving means R104 is not particularly limited, but a mechanism for driving the rotating drum R102 with the motor R103 and a belt can be used.
  • a rotary shaft R115a pivotally supported by a bearing portion R114 attached to the portal frame R113 is fixed to a central portion of the lower surface of the circular bottom plate R102a in the rotary drum R102.
  • a pulley R116a is attached to the lower end of the rotation shaft R115a.
  • a motor R103 is attached to the frame R117 on the outside of the machine body. As a result, the driving force of the motor R103 can be transmitted to the rotating drum R102 by the pulley R116b attached to the rotating shaft R115b of the motor R103 and the belt R118 wound around the pulley R116a.
  • the roller pressurizing mechanism R107 is not particularly limited as long as a mechanism that pressurizes the roller R105 with the cylinder R106 can be used.
  • the cylinder R106 has a rod rotatably connected to the upper end of the arm R121. In this configuration, two rollers R105 are provided, but the number of rollers R105 can be selected as appropriate.
  • the sand flow rate detector R108 is not particularly limited as long as the sand flow rate detector R108 is a detector that can be installed at the sand dropping port of the sand throwing unit R101 and can detect the flow rate of sand to be thrown in. A device for measuring the load of sand falling from the height of the can be used.
  • the current detector R109 is not particularly limited as long as it is a detector that can detect the current value of the motor driving means R104.
  • a current transformer signal used for current display is numerical data. It is possible to use a device that converts to
  • the pressure control means R110 is not particularly limited as long as it is a mechanism capable of adjusting the pressure applied to the cylinder R106.
  • the electromagnetic switching valve R123 and the pressure control valve R124 connected to the hydraulic pipe R122 are used.
  • the mechanism is composed of a hydraulic pump R125 and a hydraulic tank R126.
  • This pressure control valve R124 controls the oil sent to a pressure proportional to the magnitude of the output signal of the control means R111 and sends it to the cylinder R106 side.
  • the cylinder R106 is a hydraulic cylinder, but may be a pneumatic cylinder, a pneumatic / hydraulic composite cylinder, or an electric cylinder. In this case, a mechanism that can appropriately adjust the pressure of the cylinder according to the type of the cylinder can be employed.
  • the control means R111 is configured to adjust the pressure applied to the roller R105 by the cylinder R106 in accordance with the sand flow rate detected by the sand flow rate detector R108.
  • the sand flow rate detector R108 detects the relative flow rate between the sand flow rate to be input to the rotating drum R102 and the current value of the motor R103 corresponding to the sand flow rate.
  • a target current calculation unit that calculates the current value of the motor R103 corresponding to the sand flow rate, and a comparison unit that compares the target current value of the motor R103 corresponding to the calculated sand flow rate and the current value of the actually measured motor R103 during operation
  • a control unit that adjusts the pressure applied to the roller R105 by the cylinder R106 so that the current value of the motor R103 during operation becomes the target current value based on the result of the comparison unit.
  • the calculation content is a negative feedback amount. That is, in order to approach the target current value, it is calculated how much the current set pressure should be increased, decreased, or left as it is.
  • the relative relationship is the current value determined by the difference between the sand flow rate determined by the specification and the degree of polishing required for reclaimed sand, for example, about 80 to 100 A for sand that is easy to polish, and about 100 to 120 A for sand that is difficult to polish.
  • the current value of the motor R103 required to regenerate the sand flow rate input to the rotary drum R102 can be obtained as the target current value. For example, when considering a facility for a sand flow rate of about 2 to 5 t / h, as shown in FIG.
  • the comparison unit compares the target current value of the motor R103 corresponding to the sand flow rate inputted with the current value of the actually measured motor R103 during operation, and then calculates an increase / decrease rate with respect to the pressing force of the roller R105 by the cylinder R106. It is preferable to include a calculation unit for calculation.
  • the pressure increase / decrease rate pressure increase rate or pressure reduction rate obtained from the following equation (1) is calculated at a cycle of 1 second to adjust the pressure applied to the cylinder R106.
  • the sensitivity is for adjusting a rapid change in the increase / decrease rate, and can be set to 0.2, for example.
  • a calculation means for calculating the cumulative weight value of the treated sand is provided as a function added to the control means R111.
  • This calculation means integrates the sand flow rate measured by the sand flow rate detector R108 with respect to the processing time, and calculates the cumulative weight value of the processed sand. For example, as a method of integrating the measured sand flow rate with respect to the processing time, the sampling time is set to 1 second, the sand amount subtotal at the start of processing is set to zero, and the sand amount during sand processing is expressed by the following formula ( Calculation is performed every second according to 2).
  • the cumulative weight value (sand cumulative value) of the treated sand at the time of completion of the treatment can be calculated by the following equation (3).
  • the accumulated weight value of the processed sand is displayed on a display device such as a personal computer or a graphic touch panel, and recorded on a memory card or the like.
  • the information (data) of the accumulated weight value of the processed sand to be recorded is used for management of the sand amount in the mold making process and management of replacement timing of the consumable parts of the equipment such as the roller R105 and the rotating drum R102. be able to.
  • the equipment configured in this way operates according to the flowchart of FIG.
  • the target current value of the motor to be used is set to 100A for equipment with a sand flow rate to be regenerated of 5 t / h.
  • the relative relationship at this time is shown in FIG. Therefore, the relative relationship between the sand flow rate put into the rotating drum and the target current value of the motor corresponding to the sand flow rate is set and stored (step S1).
  • the sand recycling facility is activated.
  • the sand is started to be put into the rotating drum (step S2).
  • the current input sand flow rate is calculated by the sand flow rate detector installed in the sand input unit (step S3).
  • the target current value of the motor corresponding to the input sand flow rate is calculated from the relative relationship (step S4).
  • step S7 the increase / decrease rate obtained from the equation (1) is calculated every sampling time, for example, every second, the cylinder pressure setting value is increased or decreased, and the motor current value is increased or decreased.
  • the sensitivity at this time was set to 0.2 (step S8).
  • the quality of the regenerated sand can be improved by controlling the pressure applied to the cylinder in accordance with the target current value of the motor corresponding to the flow rate of the sand.
  • the main data in the regenerative facility is recorded while it is in operation, and the sampling records are analyzed to monitor changes in equipment operating conditions and sand properties.
  • the quality of recycled sand can be controlled by preventing the occurrence of major problems.
  • the main data can include the set sand flow rate, motor current, cylinder extension, and pressure settings. For example, the sand flow rate is monitored because an extreme decrease in the sand flow rate can cause the roller to heat up and cause cracking.
  • Record and monitor the motor current value in order to manage fluctuations in the current value because the target current value and the motor current value are different. If an abnormality is displayed only when the cylinder extension exceeds an appropriate range (for example, 70 to 110 mm), recording is performed because the process up to that point is unknown. In addition, if the elongation of the cylinder becomes large despite the fact that the sand properties and the pressure applied to the roller have not changed, the wear of the roller or rotating drum is considered, so the elongation of the cylinder is monitored. The elongation of the cylinder can be measured by connecting a position sensor, for example, linear gauges R127 and R127, to the rod of the cylinder R106. Also, since the roller pressing force has a controllable range, the roller pressing force is also monitored.
  • an appropriate range for example, 70 to 110 mm
  • the recording unit that records the main data during operation the determination unit that determines whether the main data to be recorded are in an appropriate range, and the result of the determination unit, the main data is in an appropriate range. It is preferable to include an alarm command unit that issues an alarm for prompting countermeasures when it is outside.
  • the machine regeneration equipment R is controlled to the optimum state of the roller pressing force to the optimum condition in accordance with the fluctuation of the properties of the supplied sand (mold sand S), and the recycled sand It becomes possible to always keep the property of.
  • FIG. 12 is a schematic configuration diagram of the compressed air injection means 2.
  • the compressed air injection means 2 injects compressed air onto the deposited fine powder deposited and deposited on the inclined peripheral wall of the dry-type machine regeneration facility R to remove it. This is because fine powder peeled off from the molding sand S due to regeneration adheres and accumulates on the inclined peripheral wall, forms a layer and adheres, and pressure may be insufficient and regeneration efficiency may be significantly reduced. This is because the compressed air is sprayed and removed before the layers are fixed.
  • the compressed air injection means 2 includes a pressure adjusting valve R201 that adjusts the pressure of compressed air from a compressed air source (not shown), a flow rate adjusting valve R202 that adjusts the flow rate of compressed air from the pressure adjusting valve R201, a pressure adjusting valve R201, and a flow rate.
  • the nozzle R203 which injects the compressed air which flowed through the regulation valve R202, and the control means R204 which controls the pressure regulation valve R201 and the flow volume regulation valve R202 are comprised.
  • the processing tank is provided with a circular bottom plate R205a rotatably arranged in a horizontal plane, an inclined peripheral wall R205b extending obliquely upward and outward from the peripheral end of the circular bottom plate 205a, and an inner side from the upper end of the inclined peripheral wall R205b.
  • a roller R206 that is rotatably supported on the inclined peripheral wall R205b, and a nozzle R203 is provided in the processing tank. The tip of the nozzle R203 faces the inclined peripheral wall R205b.
  • the rotary drum R205 corresponds to the rotary drums R4 and R102 of the above-described dry-type mechanical regeneration facility
  • the circular bottom plate R205a corresponds to R4a and R102a of the above-mentioned dry-type mechanical regeneration facility
  • the inclined peripheral wall R205b is Corresponding to the inclined peripheral walls R4b and R102b of the dry-type machine regeneration equipment described above
  • the weir R205c corresponds to the weirs R4c and R102c of the above-mentioned dry-type machine regeneration equipment
  • the roller R206 is a roller of the above-described dry-type machine regeneration equipment. It corresponds to R12 and R105.
  • the roller R206 is connected to the cylinder R207 via a roller pressurizing mechanism R208. Further, a position sensor R209 is connected to the cylinder rod, and information on the extension of the cylinder rod is sent to the control means R204.
  • the control means R204 stores, as the injection condition selection means, conditions of specific compressed air pressure and flow rate and injection time determined by the growth rate of the deposited fine powder.
  • the cylinder R207 corresponds to the cylinders R18 and R106 of the above-described dry-type machine regeneration equipment
  • the roller pressurizing mechanism R208 corresponds to the roller pressurization mechanisms P and R107 of the above-described dry-type machine regeneration equipment.
  • the information on the position sensor R209 at the start of pressurization is stored in the control means R204, and then the information on the position sensor R209 is continuously collected by the control means R204, so that the rod of the cylinder R207
  • the change in elongation is acquired as information of the control means R204.
  • the distance between the roller R206 and the inclined peripheral wall R205b determined from the ratio of the total length of the cylinder rod and the length of the pressurization control mechanism. From the relationship, the thickness of the fine powder accumulation layer is calculated by the control means R204. When the thickness of the fine powder accumulation layer that satisfies the preset injection conditions is reached, the fine powder accumulation layer is removed by jetting compressed air to the fine powder accumulation layer.
  • the injection condition selection means stored in the control means R204 For example, a compressed air having a high pressure, a large air volume, and a long injection time is selected.
  • the injection condition selection means stored in the control means R204 for example, a compressed air having a low pressure, a small air volume, and a short injection time is selected.
  • FIG. 13 is a schematic cross-sectional view of the classification equipment C.
  • the classification equipment C classifies the regenerated mold sand S by a specific gravity classification method, and separates sand particles to be collected from fine powders such as carbides, sintered products, and metal compounds to be collected.
  • the classification equipment C includes a wind box C1, a bottom plate C2, a settling chamber C3, a sand discharge port C4, a sand inlet C5, a weir C6, a blower pipe C7, and a dust collecting port C8.
  • the wind box C1 is provided in the lower part of the classification equipment C, and the air sent from the blower pipe C7 is blown into the sedimentation chamber C3 via the wind box C1.
  • the bottom plate C2 is placed on the top of the wind box C1 so that the cast sand S that has been thrown in remains on the top surface.
  • the bottom plate C2 is provided with an air outlet C2a for blowing wind (air) from the wind box C1 to the settling chamber C3.
  • the settling chamber C3 is provided in the upper part of the classification equipment C, and the mold sand S that has received the wind flows (floats) therein.
  • the sand discharge port C4 is installed at the tip of the sedimentation chamber C3, and is opened below the fuselage.
  • the mold sand S is discharged from the sand discharge port C4.
  • the sand inlet C5 is installed in the upper part of the wind box C1, and is opened above the fuselage.
  • the regenerated mold sand S is fed from the sand slot C5.
  • the bottom plate C2 is slightly inclined so that the sand discharge port C4 side is lowered and the sand insertion port C5 side is raised.
  • the weir C6 is provided at a position adjacent to the sand discharge port C4 on the bottom plate C2.
  • the weir C6 temporarily dams the flowed (floating) casting sand S.
  • the blower tube C7 is installed at the bottom of the wind box C1, and is connected to a blower (not shown).
  • the blower tube C7 blows the wind generated by the blower.
  • the dust collection port C8 is installed at the upper end of the settling chamber C3, and is connected to a dust collector (not shown). Fine powders such as carbides, sintered products, and metal compounds separated from the mold sand S are collected in a dust collector through a dust collection port C8.
  • the floated mold sand S advances toward the sand discharge port side C4 along the inclination of the bottom plate C2, and then stops sliding by the weir C6. Therefore, the mold sand S begins to form a layer at this portion. Further, when the casting sand S is continuously fed from the sand feeding port C5, the layer of the casting sand S passes over the weir C6 and is discharged from the sand discharging port C4.
  • the carbide, sintered product, metal compound, etc. floating in the classification equipment C (sedimentation chamber C3) and the mold sand S are directed toward the dust collection port C8.
  • the reusable mold sand S falls by gravity before reaching the dust collection port C8 and is discharged from the sand discharge port C4.
  • carbides, sintered products, metal compounds, and the like separated from the mold sand S are lighter in weight than the mold sand S, so that they do not drop due to gravity and are discharged together with air from the dust collection port C8. In this way, it is separated from the mold sand S.
  • the classification facility C uses a specific gravity classification method, it is possible to efficiently classify sand particles and fine powder without having a complicated structure.
  • the fluidized bed type hot air drying facility which is the first example of the drying facility D and the classification facility C are structurally similar.
  • the drying equipment D can be used as the classification equipment C by switching the hot air generator connected to the hot air blow pipe D7 to a blower.
  • the classification equipment C can be used as the drying equipment D by switching the blower connected to the blower pipe C7 to the hot air generator. Therefore, it is possible to divert the drying equipment D to the classification equipment C or the classification equipment C to the drying equipment D.
  • the mold sand S discharged from the green casting equipment used in the present regeneration method is sand that may contain moisture and / or may have magnetic deposits attached thereto.
  • sand that may contain moisture includes overflow sand in which old sand has overflowed in a sand treatment facility.
  • the sand with the possibility that the magnetic deposits may adhere includes the product adhesion sand discharged from the shot blasting process.
  • the overflow sand has bentonite and a green additive adhering to the surface of the sand grain, and further, a porous sintered layer called “auritics” formed by sintering bentonite is formed on the sand grain surface. If bentonite and green additive remain on the surface of the sand grains, the air permeability and filling properties of green sand are lowered. Further, when the green additive is gasified, it also causes gas defects in the casting. Furthermore, if the au- lytics remain excessively, the filling property of the mold is lowered and the fire resistance is lowered at the same time. Therefore, in overflow sand, it is necessary to remove bentonite and green additive on the surface of the sand grain, and further peel and remove the auxetics on the surface of the sand grain.
  • FIG. 14 is a flowchart showing a method for regenerating mold sand using the regenerator 1 according to the first embodiment.
  • the mold sand S used in this regeneration method may contain moisture and / or may have a magnetic deposit attached thereto.
  • the amount of water and the amount of magnetic deposits contained in the mold sand S are measured (first step).
  • a known measurement method can be used to measure the moisture content of the sand.
  • JIS Z 2601 Annex 5 “Moisture testing method for foundry sand” can be mentioned.
  • a known measurement method can be used to measure the amount of sand magnetic deposits.
  • the Testing Procedure AFS 51011-00-S “MAGNETICMA” is a test procedure that is defined by the Mold & Core Test Handbook 3rd Edition issued by AFS (American Foundry Society). .
  • MAGNETICMA Magnetic & Core Test Handbook
  • the mold sand S is dried by the drying equipment D (second step).
  • the control value of the moisture amount is preferably 0.5%. If the water content is 0.5% or less, shelves will not be hung in the regenerating equipment 1, and problems such as poor core strength due to the high water content will not occur. Because.
  • the mold sand S is magnetically selected by the magnetic separation equipment M (second step).
  • the management value of the amount of magnetic deposits is preferably 5.0%. This is because if the amount of magnetic deposits is 5.0% or less, problems such as seizure defects of castings caused by using recycled sand and poor core strength due to residual metal content will not occur. .
  • the molding sand S does not need to be magnetically selected by the magnetic separation equipment M, and therefore the molding sand S is bypassed BP2 using the switching equipment V2. Is set to pass through (second step).
  • the molding sand S needs to be dried by the drying equipment D and does not need to be magnetically selected by the magnetic separation equipment M. Therefore, it sets so that casting sand S may pass bypass system BP1 using switching equipment V1, and setting so that casting sand S may pass bypass system BP2 using switching equipment V2 (second process). Note that a path passing through both the bypass system BP1 and the bypass system BP2 is referred to as a bypass system BP3.
  • the mold sand S is regenerated in the dry-type machine regeneration facility R (third process).
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by the classification equipment C of the specific gravity classification method (fourth process).
  • the total clay content of the molding sand S is reduced.
  • Mold sand S (recycled sand) that has undergone the third step (regeneration treatment) and the fourth step (classification treatment) has both reduced ignition loss and total clay content, but in the end, Each numerical value must be below the control value. Accordingly, when the ignition loss of the mold sand S and the total clay content exceeds the control value, the mold sand S is passed again through the third process (regeneration process) and the fourth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R via the return system PL1 using the switching equipment V3. Then, the molding sand S passes through the dry-type machine regeneration equipment R and the classification equipment C again. This step is repeated until the ignition loss of the mold sand S and the measured value of the total clay content are equal to or lower than the control value.
  • the mold sand S is set to be discharged from the regeneration facility 1 using the switching equipment V3. Is discharged from the regeneration facility 1. This completes the reproduction process.
  • the control value of ignition loss is preferably 0.6%. If the ignition loss is 0.6% or less, the volatile matter adhering to the surface of the sand grains will be gasified during pouring and cause casting defects, or the curing reaction may be hindered when used for the core. This is because the above problem does not occur.
  • a known measuring method can be used. For example, as a measuring method of ignition loss, JIS Z 2601 Annex 6 “Ignition loss test method for foundry sand” can be mentioned.
  • the management value of the total clay content is preferably 0.6%. If the total clay content is 0.6% or less, the volatile matter adhering to the surface of the sand grains will be gasified during pouring, causing casting defects, or inhibiting the curing reaction when used for the core, etc. This is because the above problem does not occur. Moreover, it is because the problem of lowering
  • a known measuring method can be used to measure the total clay content of the sand. For example, as a method for measuring the total clay content, JIS Z 2601 Annex 1 “Clay content test method for foundry sand” can be mentioned.
  • the number of passes through the dry machine regeneration equipment R and the classification equipment C is referred to as a pass.
  • the first pass is referred to as one pass, and is hereinafter referred to as two passes, three passes, etc. as the number of passes increases.
  • the dust collection equipment DC is connected to the classification equipment C, and dust (fine powder) generated in the classification equipment C can be collected.
  • the dust generated in the first pass is mainly bentonite and green additive adhering to the surface of the sand grains. Therefore, these dusts can be reused in the kneading process as an alternative to bentonite and green additive. Therefore, the dust generated in this step may be collected independently of the dust collected in the subsequent passes.
  • the dust collected in the dust collection equipment DC in the first pass can be reused by collecting it separately from the dust after the second pass, for example, by discharging it before starting the second pass. The dust in the first pass can be effectively reused without being mixed with other dust.
  • the mold sand S In general, in the heat regeneration using a roasting furnace, it is necessary to heat the mold sand S to about 800 ° C. In the drying equipment D of the present embodiment, the mold sand S is heated at 90 ° C. or more and 105 ° C. or less. Therefore, energy consumption can be suppressed, and the cost required for regeneration can be reduced.
  • the mold sand containing moisture and magnetic deposits discharged from the green casting facility is regenerated only by dry mechanical regeneration. can do.
  • there is no need to neutralize wastewater or separate impurities generated when using wet regeneration which can greatly reduce energy consumption when using heat regeneration, and reduce the size of the regeneration equipment.
  • it can be simplified it is possible to increase the efficiency required for sand regeneration and to reduce the cost for sand regeneration.
  • the amount of moisture and the amount of magnetic deposits contained in the mold sand are again measured for the mold sand that has undergone the drying process in the drying equipment and / or the magnetic separation process in the magnetic separation equipment. Then, the drying process in the drying equipment and / or the magnetic separation process in the magnetic separation equipment is repeated until the respective numerical values are below the control value.
  • a second embodiment will be described with reference to the accompanying drawings. Of the mold sand recycling method and the recycling facility according to the present embodiment, parts different from the first embodiment will be described. The other parts are the same as those in the first embodiment, so the description is omitted with reference to the above description.
  • FIG. 15 is a schematic configuration diagram of the mold sand recycling facility according to the second embodiment.
  • Regeneration equipment 11 includes drying equipment D, magnetic separation equipment M, switching equipment V1, switching equipment V2, bypass system BP1, bypass system BP2, dry machine regeneration equipment R, classification equipment C, switching equipment V3, return system PL1, dust collection A facility DC, a switching facility V4, and a return system PL2 are provided.
  • a switching equipment V4 is provided for returning the molding sand S to the front of the switching equipment V1 and switching again between the drying process and / or the magnetic separation process.
  • the switching equipment V4 dries the molding sand S.
  • a return system PL2 for returning to the equipment D and / or the magnetic separation equipment M is connected. The amount of moisture and the amount of magnetic deposits contained in the molding sand S are measured, and when the numerical values are not less than the control values, the molding sand S is returned to the drying equipment D and / or the magnetic separation equipment M.
  • the configuration is possible.
  • FIG. 16 is a flowchart showing a method for reclaiming mold sand using the regenerating equipment 11 according to the second embodiment.
  • the mold sand S used in this regeneration method may contain moisture and / or may have a magnetic deposit attached thereto.
  • the amount of water and the amount of magnetic deposits contained in the mold sand S are measured (first step).
  • the mold sand S is dried by the drying equipment D (second step).
  • the control value of the moisture amount is preferably 0.5%.
  • the mold sand S is magnetically selected by the magnetic separation equipment M (second step).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • the mold sand S does not need to be dried by the drying equipment D, so the mold sand S uses the switching equipment V1 to bypass the bypass system BP1.
  • Set to pass (second step) If the measured value of the amount of magnetic deposits contained in the molding sand S does not exceed the control value, the molding sand S does not need to be magnetically selected by the magnetic separation equipment M, and therefore the molding sand S is bypassed BP2 using the switching equipment V2. Is set to pass through (second step).
  • the molding sand S needs to be dried by the drying equipment D and does not need to be magnetically selected by the magnetic separation equipment M. Therefore, it sets so that casting sand S may pass bypass system BP1 using switching equipment V1, and setting so that casting sand S may pass bypass system BP2 using switching equipment V2 (second process). Note that a path passing through both the bypass system BP1 and the bypass system BP2 is referred to as a bypass system BP3.
  • the amount of water and the amount of magnetic deposits contained in the mold sand S are measured again (third step). If the measured value of the amount of moisture contained in the mold sand S exceeds the control value and / or if the measured value of the amount of magnetic deposits contained in the mold sand S exceeds the control value, the second step is performed again.
  • the switching equipment V4 In order to allow the molding sand S to pass through (drying process and / or magnetic separation process), the switching equipment V4 is set so that the casting sand S returns to the front of the switching equipment V1 via the return system PL2. Three steps). And the molding sand S passes through the drying equipment D and / or the magnetic separation equipment M again.
  • the molding sand S is set to be sent to the machine regeneration equipment R using the switching equipment V4. It is sent to the dry-type machine regeneration facility R (third process).
  • the mold sand S is regenerated by the dry-type machine regeneration facility R (fourth step).
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by the classification facility C of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • the molding sand S (regenerated sand) that has undergone the fourth step (regeneration treatment) and the fifth step (classification treatment) has both reduced ignition loss and the total clay content.
  • Each numerical value must be below the control value. Accordingly, when the ignition loss of the mold sand S and the total clay content exceeds the control value, the mold sand S is passed again through the fourth process (regeneration process) and the fifth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R via the return system PL1 using the switching equipment V3.
  • the mold sand S is set to be discharged from the regeneration facility 1 using the switching facility V3. This completes the reproduction process.
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the drying in the drying facility is performed until the amount of moisture contained in the mold sand and the amount of magnetic deposits are below the control values. Since the process and / or the magnetic separation process in the magnetic separation equipment M can be repeated, the amount of moisture and the amount of magnetic deposits contained in the mold sand can be reliably reduced to the control value or less.
  • the molding sand discharged from the green casting facility is a method for regenerating and regenerating sand that may contain moisture and / or that magnetic deposits may adhere to it.
  • the facility has been described, in the third embodiment, a method and a regeneration facility for regenerating various types of mold sand S discharged from the green casting facility at once will be described.
  • a third embodiment will be described with reference to the accompanying drawings.
  • the mold sand recycling method and the recycling facility according to the present embodiment parts different from the first embodiment will be described. The other parts are the same as those in the first embodiment, so the description is omitted with reference to the above description.
  • FIG. 17 is a schematic configuration diagram of the mold sand recycling facility according to the third embodiment.
  • the regeneration equipment 21 is an overflow sand recovery equipment PO, a drying equipment D, an overflow sand foreign substance removal equipment IO, an overflow sand storage tank SSO, a product adhesion sand collection equipment PS, a product adhesion sand foreign substance removal equipment IS, a magnetic separation equipment M, a product adhesion sand.
  • Storage tank SSS main core sand mixed sand recovery equipment PL, crushing equipment L, main core core mixed sand foreign substance removal equipment IL, main core core mixed sand storage tank SSL, sand lump and sand recovery equipment PC, solution Crushing equipment L, sand lump and sand extraneous material removal equipment IC, sand lump and sand storage tank SSC, sand cutting / mixing equipment F, dry-type machine regeneration equipment R, classification equipment C, switching equipment V3, return system PL1, and collection Dust equipment DC is provided.
  • the overflow sand recovery equipment PO recovers the overflow sand (mold sand S) discharged from the sand processing equipment (not shown) of the green casting equipment.
  • the overflow sand recovery facility PO for example, there is a scraper that scrapes collected sand of a certain flow rate or more flowing through the sand transport system of the green casting facility and separates and recovers it from the sand transport system.
  • the drying equipment D dries the overflow sand collected in the overflow sand collection equipment PO.
  • the overflow sand foreign matter removal equipment IO removes foreign matter from the overflow sand after drying.
  • overflow sand foreign matter removing equipment IO equipment having a known structure such as a rotary sieve or a vibrating sieve can be used.
  • the overflow sand storage tank SSO stores the overflow sand after removing foreign matter.
  • a sand hopper having a known structure can be used as the overflow sand storage tank SSO.
  • Product adhering sand collection equipment PS collects product adhering sand (mold sand S).
  • Examples of the structure of the product adhesion sand recovery equipment PS include a structure in which the shot balls discharged from the shot blast and the product adhesion sand are classified by specific gravity to take out the product adhesion sand.
  • the product adhesion sand foreign matter removal equipment IS removes foreign matter from the product adhesion sand.
  • a known equipment such as a rotary sieve or a vibrating sieve can be used as the structure of the product adhering sand foreign matter removing equipment IS.
  • the magnetic separation equipment M magnetically selects the product-adhered sand after removing the foreign matter, and removes the magnetic deposit from the product-adhered sand.
  • the product adhesion sand storage tank SSS stores the product adhesion sand after removal of magnetic deposits.
  • a sand hopper having a known structure can be used as the product adhesion sand storage tank SSS.
  • the main core sand mixed sand recovery facility PL recovers the main core sand mixed sand (mold sand S).
  • the crushing equipment L crushes the main core mixed sand.
  • a crushing equipment that pulverizes sand by rubbing it by applying vibration to the main core mixed sand can be used.
  • Main type core mixed sand foreign matter removing equipment IL removes foreign matters from main type core mixed sand.
  • the main core mixed sand foreign matter removing equipment IL equipment having a known structure such as a rotary sieve or a vibrating sieve can be used.
  • the main-type core mixed sand storage tank SSL stores the main-type core mixed sand after removing foreign matter.
  • a sand hopper having a known structure can be used as the main core mixed sand storage tank SSL.
  • Sand lump and sand collection equipment PC collects sand lump and sand (mold sand S) discharged from the core sand dropping process.
  • the sand lump and sand recovery equipment PC include a system in which the core remaining in the cast product is subjected to striking or vibration to peel off and recover the core remaining in the cast product.
  • the crushing equipment L crushes sand lump and sand. As a structure of the crushing equipment L, what crushes by applying a vibration to a sand lump and sand and rubbing a sand grain is mentioned, for example.
  • the sand lump and sand foreign matter removing equipment IC removes the sand lump and sand foreign matter.
  • sand lump and sand foreign substance removal equipment IC equipment having a known structure such as a rotary sieve or a vibrating sieve can be used.
  • the sand lump and sand storage tank SSC stores the sand lump and sand after removing foreign matter.
  • a sand hopper having a known structure can be used as the sand mass and the sand storage tank SSC.
  • Sand cutting / mixing equipment F includes an overflow sand storage tank SSO, a product adhesion sand storage tank SSS, a main core mixed sand storage tank SSL, and sand stored in a sand lump and sand storage tank SSC (mold sand S). Are taken out (taken out) so that the ratio is always constant, and these sands are blended.
  • Examples of the structure of the sand cutting / blending facility F include a structure in which a slide gate for quantitative cutting is provided after the storage step, and sand discharged from the slide gate is blended with a vibration feeder or a screw conveyor.
  • the dry-type machine regeneration facility R regenerates the mold sand S by peeling off carbides, sintered products, metal compounds, etc. adhering to the surface of the blended mold sand S.
  • the classification equipment C classifies the regenerated mold sand S by a specific gravity classification system, and separates the sand particles to be collected from fine powders such as carbides, sintered products, and metal compounds to be collected. After the classifying facility C, whether the classified reclaimed sand (mold sand S) is discharged from the reclaiming facility 21 or whether the classified reclaimed sand is returned to the inlet of the dry regenerating facility R and regenerated again.
  • a switching facility V3 for switching is provided, and a return system PL1 for returning the classified recycled sand to the dry-type mechanical regeneration facility R is connected to the switching facility V3.
  • the dust collection equipment DC is connected to the classification equipment C, and collects dust (fine powder) generated in the classification equipment C.
  • FIG. 18 is a front view of the crushing equipment L
  • FIG. 19 is a plan view of the crushing equipment L
  • FIG. 20 is a cross-sectional view taken along line AA in FIG.
  • a cylindrical container L1 whose upper surface is released is supported on a support L2 via an elastic body L3 such as a coil spring.
  • the upper part of the container L1 has a chute L4 that opens in a funnel shape, and a plurality of pedestals L5 that support the elastic body L3 are disposed on the outer edges of the container L1 and the chute L4.
  • a vibrator L7 is attached to the lower surface of the container L1 via a mounting plate L6.
  • a liner L9 provided with a slit L8 is screwed to mounting seats L10a and L10b attached to the inner surface of the container L1 by screws L11a and L11b over the entire circumference.
  • a discharge port L12 is attached to the side surface of the container L1, and a door L13 for taking out the foreign matter staying on the liner L9 is fixed by a handle L14.
  • a crushing method using the crushing equipment L will be described below.
  • the vibrator L7 is operated, and the main core mixed sand on the liner L9 or the collision and friction between the sand lump and the sand, or the main core mixed sand, or the sand lump and sand and the liner L9, Crushing is performed by collision and friction.
  • the sand particles that have been crushed and become finer than the width of the slit L8 pass through the slit L8, move through the space between the liner L9 and the container L1, and are discharged out of the pulverization facility L through the discharge port L12.
  • the width of the slit L8 is preferably between 2 mm and 5 mm.
  • vibration is generated that moves them along the circumference of the container L1. It is desirable to make it.
  • the vibrator L7 it is desirable to install the vibrator L7 so that the center line thereof is at an angle of approximately 45 ° with respect to the installation floor surface. Furthermore, although one vibrator L7 is used in FIG. 18, instead of attaching two vibrators L7 to the left and right of the mounting plate L6 so that the respective center lines draw an X shape, 2 Since the vertical vibration generated by the vibrator of the table is reversed, the vertical vibration is canceled out and only the circumferential vibration of the container L1 is obtained. good. _
  • FIG. 22 is a flowchart showing a method for reclaiming mold sand using the regenerating equipment 21 according to the third embodiment.
  • the overflow sand discharged from the sand processing equipment is collected in the overflow sand collecting equipment PO (first step 1).
  • the overflow sand is a porous material called au- ritics, which is formed by adhering bentonite and a green additive to the sand particle surface, and further sintering the bentonite on the sand particle surface. A sintered layer is formed. If bentonite and green additive remain on the surface of the sand grains, the air permeability and filling properties of green sand are lowered. Further, when the green additive is gasified, it also causes gas defects in the casting. Furthermore, if the au- lytics remain excessively, the filling property of the mold is lowered and the fire resistance is lowered at the same time. Therefore, in overflow sand, it is necessary to remove bentonite and green additive on the surface of the sand grain, and further peel and remove the auxetics on the surface of the sand grain.
  • the overflow sand is dried with the drying equipment D until the water content becomes below the control value (1 of the second step).
  • the control value of the moisture amount is preferably 0.5%. Drying can be performed using the method described in the first embodiment.
  • the overflow sand foreign matter removal equipment IO removes foreign matter from the overflow sand after drying (second step 1).
  • the overflow sand after removing the foreign matter is stored in the overflow sand storage tank SSO (1 of the second step).
  • the product adhering sand is collected in the product adhering sand recovery equipment PS (first step 2).
  • bentonite is sintered and changed to au- lytics because the product-attached sand receives a very severe heat history.
  • Many other types of green additives and core binders are gasified and volatilized, but some remain carbonized in the surface of the sand grains. More importantly, this sand is rich in magnetic deposits (sand particles in which metal and sand particles are welded). When sand with excessive magnetic deposits is mixed into the mold, it causes seizure defects in the casting, and also causes poor strength development of the binder for the core when used in the core. Therefore, in the product-attached sand, it is necessary to remove the carbides on the surface after removing the magnetic deposits by magnetic separation.
  • the foreign substance on the product adhering sand is removed by the product adhering sand foreign substance removing equipment IS (second step 2).
  • the product adhering sand after removing the foreign matter is magnetically selected by the magnetic separation equipment M until the amount of magnetic deposits on the product adhering sand is equal to or lower than the control value (second step 2).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • Magnetic separation can be performed using the method described in the first embodiment.
  • the product adhesion sand after magnetic separation is stored in the product adhesion sand storage tank SSS (2 in the second step).
  • the main core mixed sand is recovered in the main core sand mixed sand recovery facility PL (first step 3).
  • the main core mixed sand is exposed to a high temperature due to the heat of the molten metal, so there is very little moisture.
  • bentonite is almost sintered and made autistic.
  • the carbonaceous green additive and the core organic binder are either volatilized or carbonized and adhered to the sand grain surface.
  • the problems with excessive Auritics are as described above.
  • carbides adhering to the surface of the sand grains can cause gas defects during pouring, and poor strength development when used in core sand. There are problems such as occurrence. Therefore, it is necessary to remove these residues from the main core mixed sand by a regeneration process.
  • the main core mixed sand is crushed by the crushing equipment L (second step 3).
  • the main type core mixed sand foreign matter removing equipment IL removes foreign matters from the crushed main type core mixed sand (second step 3).
  • the main-type core mixed sand after removing the foreign matter is stored in the main-type core mixed sand storage tank SSL (second step 3).
  • the sand lump and sand discharged from the core sand dropping step are collected by the sand lump and sand collecting facility PC (4 in the first step).
  • the sand lump and sand discharged from the core sand removal process contain almost no components of green sand, but a part of the core binder residue remains on the surface of the sand particles. These residues also cause problems such as causing gas defects during pouring as described above, and causing poor strength development when used for core sand. Therefore, it is also necessary to remove these residues from the sand lump and sand discharged from the core sand dropping process by regeneration treatment.
  • the lump and sand discharged from the core sand dropping process are crushed by the crushing equipment L (second process 4).
  • the sand lump and sand foreign matter removing equipment IC, the sand lump after crushing and the foreign matter of sand are removed (second step 4).
  • the sand lump and sand after removing the foreign matter are stored in the sand lump and sand storage tank SSC (second step 4).
  • Overflow sand storage tank SSO, product adhesion sand storage tank SSS, main core mixed sand storage tank SSL, and sand (mold sand S) stored in sand lump and sand storage tank SSC are sand cutting / mixing equipment F
  • the sand is cut out (taken out) and blended so that the ratio of the sand (mold sand S) cut out (taken out) from these storage tanks is always constant (third step).
  • the carbide, sintered material, metal compound, etc. adhering to the surface of the mold sand S blended in the dry-type machine regeneration facility R are peeled off to regenerate the mold sand S (fourth step).
  • the reproduction can be performed using the method described in the first embodiment.
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by the classification equipment C of the specific gravity classification method (fifth step). Classification can be performed using the method described in the first embodiment. By the classification treatment, the total clay content of the molding sand S is reduced.
  • the molding sand S (regenerated sand) that has undergone the fourth step (regeneration treatment) and the fifth step (classification treatment) has both reduced ignition loss and the total clay content.
  • Each numerical value must be below the control value. Accordingly, when the ignition loss of the mold sand S and the total clay content exceeds the control value, the mold sand S is passed again through the fourth process (regeneration process) and the fifth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R via the return system PL1 using the switching equipment V3. Then, the molding sand S passes through the dry-type machine regeneration equipment R and the classification equipment C again. This step is repeated until the ignition loss of the mold sand S and the measured value of the total clay content are equal to or lower than the control value.
  • the mold sand S is set to be discharged from the regeneration facility 1 using the switching equipment V3. Is discharged from the regeneration facility 1. This completes the reproduction process.
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the dust collection equipment DC is connected to the classification equipment C and can collect dust (fine powder) generated in the classification equipment C.
  • the dust generated in the first pass is mainly bentonite and green additive adhering to the surface of the sand grains. Therefore, these dusts can be reused in the kneading process as an alternative to bentonite and green additive. Therefore, the dust generated in this step may be collected independently of the dust collected in the subsequent passes.
  • the dust collected in the dust collection equipment DC in the first pass can be reused by collecting it separately from the dust after the second pass, for example, by discharging it before starting the second pass. The dust in the first pass can be effectively reused without being mixed with other dust.
  • the molding method used for the core used in the present embodiment is, for example, a furan resin acid curing self-hardening process, a furan resin SO 2 gas curing process, a furan resin thermosetting process, a phenol resin thermosetting process.
  • Process phenol resin superheated steam curing process, phenol resin ester curing self-hardening process, phenol resin acid curing self-hardening process, phenol resin methyl formate gas curing process, phenol resin CO 2 gas curing process, phenol resin urethanization reaction Self-hardening process, phenol resin urethanization reaction amine gas curing process, oil-modified alkyd resin urethanization reaction self-hardening process, polyol resin urethanization reaction self-hardening process, water glass ferrosilicon self-hardening process, water glass dicalcium silicate self-hardening pro Scan, water glass ester self-hardening processes include water glass CO 2 gas curing process.
  • the pre-treatment is performed in a state in which the mold sand having different properties discharged from each part of the green mold casting facility is separated, and always constant. After cutting and blending so as to obtain a ratio, dry mechanical regeneration is performed and fine powder is further removed, so that the properties of the regenerated sand can always be kept constant. Therefore, the recycled sand can be reused as it is.
  • FIG. 22 is a schematic configuration diagram of the molding sand recycling facility 31 according to the fourth embodiment.
  • the regeneration equipment 31 is an overflow sand recovery equipment PO, a drying equipment D, an overflow sand foreign matter removal equipment IO, an overflow sand storage tank SSO, a product attached sand recovery equipment PS, a product attached sand foreign matter removal equipment IS, a magnetic separation equipment M, a product attached sand.
  • Storage tank SSS main core sand mixed sand recovery equipment PL, crushing equipment L, main core core mixed sand foreign material removal equipment IL, heating equipment TR, main core core mixed sand storage tank SSL, sand lump and sand recovery Equipment PC, crushing equipment L, sand lump and sand extraneous material removal equipment IC, heating equipment TR, sand lump and sand storage tank SSC, sand cutting / mixing equipment F, dry machine regeneration equipment R, classification equipment C, switching equipment V3 , A return system PL1, and a dust collection equipment DC.
  • the heating equipment TR heats the sand mold S to 400 ° C or higher.
  • two heating facilities TR are provided. One of them is provided between the main core mixed sand foreign matter removing equipment IL and the main core mixed sand storage tank SSL, and heats the main core mixed sand after removing the foreign matters.
  • the other is provided between the sand lump and sand foreign matter removing equipment IC and the sand lump and sand storage tank SSC, and heats the sand lump and sand after removing the foreign matter.
  • the core used in the green casting equipment is a heat dehydration hardening type water glass process
  • a little amorphous silicate hydrate and metal oxide, which are the main components of water glass remain, It causes problems such as the occurrence of significant strength failure when used on sand. Therefore, in this case, the amorphous silicate hydrate remaining in the main type core mixed sand and the sand lump and sand discharged from the core sand dropping process are heated.
  • the metal oxide is sealed inside. Thereafter, dry mechanical regeneration is performed, so that it is possible to detoxify amorphous silicate hydrates and metal oxides that are harmful to the strength development of the mold.
  • FIG. 23 is a flowchart showing a method for reclaiming mold sand using the regenerating equipment according to the fourth embodiment.
  • the overflow sand discharged from the sand processing equipment is collected in the overflow sand collecting equipment PO (first step 1).
  • the overflow sand is dried with the drying equipment D until the water content becomes the control value or less (1 of the second step).
  • the control value of the moisture amount is preferably 0.5%.
  • the overflow sand foreign matter removal equipment IO removes foreign matter from the overflow sand after drying (second step 1).
  • the overflow sand after removing the foreign matter is stored in the overflow sand storage tank SSO (1 of the second step).
  • the product adhering sand is collected in the product adhering sand recovery equipment PS (first step 2).
  • the foreign substance in the product adhesion sand is removed by the product adhesion sand foreign substance removal equipment IS (second step 2).
  • the product adhering sand after removing the foreign matter is magnetically selected by the magnetic separation equipment M until the amount of magnetic deposits on the product adhering sand is equal to or lower than the control value (second step 2).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • the product adhesion sand after magnetic separation is stored in the product adhesion sand storage tank SSS (2 in the second step).
  • the main core mixed sand is recovered in the main core sand mixed sand recovery facility PL (first step 3).
  • the main-type core mixed sand is crushed by the crushing equipment L (second step 3).
  • the main type core mixed sand foreign matter removing equipment IL removes foreign matters from the crushed main type core mixed sand (second step 3).
  • the main core mixed sand after removing the foreign matter is heated to 400 ° C. or higher (second step 3).
  • the main core mixed sand after heating is stored in the main core mixed sand storage tank SSL (second step 3).
  • the sand lump and sand discharged from the core sand dropping step are collected by the sand lump and sand collecting facility PC (4 in the first step).
  • the lump and sand discharged from the core sand dropping step are crushed by the crushing equipment L (second step 4).
  • the sand lump and sand foreign matter are removed with the sand lump and sand foreign matter removing equipment IC (second step 4).
  • the sand block and the sand after removing the foreign matter are heated to 400 ° C. or higher (second step 4).
  • the sand lump and sand after heating are stored in the sand lump and sand storage tank SSC (second step 4).
  • the sand stored in the overflow sand storage tank SSO, the product adhesion sand storage tank SSS, the main core mixed sand storage tank SSL, and the sand lump and sand storage tank SSC is stored in the storage tank by the sand cutting / blending facility F.
  • the sand is cut out and blended so that the percentage of the sand cut out from is always constant (third step).
  • the carbide, sintered material, metal compound, etc. adhering to the surface of the mold sand S blended in the dry-type machine regeneration facility R are peeled off to regenerate the mold sand S (fourth step).
  • the regenerated mold sand S is classified by the classification facility C of the specific gravity classification method (fifth step).
  • the mold sand S is again passed through the fourth process (regeneration process) and the fifth process (classification process).
  • the switching equipment V3 setting is made so that the molding sand S returns to the dry-type machine regeneration equipment R via the return system PL1.
  • the mold sand S is set to be discharged from the regeneration facility 1 using the switching equipment V3. Is discharged from the regeneration facility 1. This completes the reproduction process.
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the mold sand regeneration method and regeneration facility according to the fourth embodiment, even when the core used in the green casting facility is a heat dehydration hardening type water glass process, When the main-type core mixed sand discharged from various places and the sand lump and sand discharged from the core sand dropping process are heated to vitrify the amorphous silicate hydrate remaining in them. At the same time, the metal oxide is sealed inside. Thereafter, dry mechanical regeneration is performed, so that it is possible to detoxify amorphous silicate hydrates and metal oxides that are harmful to the strength development of the mold.
  • FIG. 24 is a schematic configuration diagram of the molding sand recycling facility according to the fifth embodiment.
  • the regeneration facility 41 includes a drying facility D, a magnetic separation facility M, a switching facility V1, a switching facility V2, a bypass system BP1, a bypass system BP2, four dry machine regeneration facilities R411, R412, R421, and R422, and four classification facilities.
  • C411, C412, C421, and C422, a switching facility V3, a return system PL1, and two dust collecting facilities DC and DO are provided.
  • the dry-type machine regeneration facilities R411, R412, R421, and R422 recycle the mold sand S by peeling off carbides, sintered products, metal compounds, etc. adhering to the surface of the mold sand S discharged from the green casting facility. I do.
  • the dry-type machine regeneration facilities R411, R412, R421, and R422 all have the same mechanism, but it does not matter what method is used as long as it has the ability to reduce ignition loss below the control value. .
  • the classification equipment C411, C412, C421, and C422 classify the regenerated mold sand S by a specific gravity classification method, and separate fine particles such as sand particles to be collected and carbides, sintered products, and metal compounds to be collected. .
  • Classifying equipment C411, C412, C421 and C422 all have the same mechanism, but if they have the ability to remove fine powder until the total amount of clay in the regenerated mold sand S is below the control value. It doesn't matter what type it is.
  • the dry-type mechanical regeneration facility R411 connected behind the bypass system BP2 is connected in series with the classification facility C411, the dry-type mechanical regeneration facility R412 and the classification facility C412 and is connected to the switching facility V3 behind it.
  • the dry-type machine regeneration equipment R421 connected behind the bypass system BP2 is connected in series with the classification equipment C421, the dry-type machine regeneration equipment R422, and the classification equipment C422, and connected to the switching equipment V3 behind it. is doing.
  • the configurations of R422 and classification equipment C422 are arranged in parallel between the bypass system BP2 and the switching equipment V3.
  • the classified reclaimed sand (mold sand S) is discharged from the reclaiming equipment 41, or the classified reclaimed sand is returned to the inlet of the dry-type reclaiming equipment R411 and R421.
  • the switching equipment V3 is provided for switching whether to regenerate again, and the switching equipment V3 includes dry machine regeneration equipment R411, classification equipment C411, dry machine regeneration equipment R412, Further, the route of the classifying equipment C412 and the dry-type machine regeneration equipment R421, the classifying equipment C421, the dry-type machine regeneration equipment R422, and the return system PL1 for returning to the path of the classifying equipment C422 are connected.
  • the classified reclaimed sand is divided into dry machine regenerator R411, classifier C411, dry regenerator R412, And it is the structure which can be returned to the path
  • the dust collection equipment DC is connected to the classification equipment C411 and C421, and collects dust (fine powder) generated in the classification equipment C411 and C421.
  • the dust collection equipment DO is connected to the classification equipment C412 and C422, and collects dust (fine powder) generated in the classification equipment C412 and C422.
  • FIG. 25 is a flowchart showing a method for reclaiming mold sand using the regenerating equipment 41 according to the fifth embodiment.
  • the mold sand S used in the present regeneration method may contain moisture and / or may have magnetic deposits attached thereto.
  • the amount of water and the amount of magnetic deposits contained in the mold sand S are measured (first step).
  • the mold sand S is dried by the drying equipment D (second step).
  • the control value of the moisture amount is preferably 0.5%.
  • the mold sand S is magnetically selected by the magnetic separation equipment M (second step).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • the mold sand S does not need to be dried by the drying equipment D, so the mold sand S uses the switching equipment V1 to bypass the bypass system BP1.
  • Set to pass (second step) If the measured value of the amount of magnetic deposits contained in the molding sand S does not exceed the control value, the molding sand S does not need to be magnetically selected by the magnetic separation equipment M, and therefore the molding sand S is bypassed BP2 using the switching equipment V2. Is set to pass through (second step).
  • the molding sand S needs to be dried by the drying equipment D and does not need to be magnetically selected by the magnetic separation equipment M. Therefore, it sets so that casting sand S may pass bypass system BP1 using switching equipment V1, and setting so that casting sand S may pass bypass system BP2 using switching equipment V2 (second process). Note that a path passing through both the bypass system BP1 and the bypass system BP2 is referred to as a bypass system BP3.
  • the mold sand S is regenerated in the dry-type machine regeneration facilities R411 and R421 (third step).
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by the classification equipment C411 and C421 of the specific gravity classification method (fourth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • the dust collected from the classification equipment C411 and C421 is collected independently by the dust collection equipment DC.
  • the dust generated in the first (first pass) is mainly bentonite and green additive adhering to the surface of the sand grains. Therefore, by independently collecting the dust generated in this step, it is possible to reuse these dusts when kneading the mold sand as an alternative to bentonite and green additive.
  • each mold sand S that has been once regenerated is regenerated again in the dry-type machine regeneration facilities R412 and R422 (third step).
  • the ignition loss of the mold sand S is reduced by the regeneration process again.
  • the regenerated mold sand S is classified again with the classification equipment C412 and C422 of the specific gravity classification method (fourth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • Mold sand S (recycled sand) that has undergone two third steps (regeneration treatment) and two fourth steps (classification treatment) has both reduced ignition loss and total clay content.
  • the mold sand S is passed again through the third process (regeneration process) and the fourth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R411 and R421 via the return system PL1 using the switching equipment V3.
  • the ignition loss of the mold sand S and the total clay content are below the control value, It sets so that the molding sand S may be discharged
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the dust collection equipment DO collects dust generated in the classification equipment C412 and C422 and dust generated in the classification equipment C411 and C421 after the second time.
  • the mold sand regeneration method and the regeneration facility according to the fifth embodiment it is not necessary to configure a combination of regeneration facilities having different mechanisms, and the processing amount, ignition loss, and total clay content are eliminated. It is possible to easily determine the configuration of the regeneration facility according to the management value.
  • the unnecessary process can be stopped appropriately according to the fluctuation of the load on the process such as the processing amount and the required processing capacity. It becomes possible to cope with load fluctuations more flexibly than in the first embodiment.
  • two regeneration processes and two classification processes can be performed at a time. It is possible to reduce the number of times sand is returned to the regeneration process and the classification process.
  • the mold sand containing moisture and magnetic deposits discharged from the green casting facility is regenerated only by dry mechanical regeneration. Can do. As a result, there is no need to neutralize wastewater or separate impurities generated when using wet regeneration, which can greatly reduce energy consumption when using heat regeneration, and reduce the size of the regeneration equipment. And since it can be simplified, it is possible to increase the efficiency required for sand regeneration and to reduce the cost for sand regeneration.
  • FIG. 26 is a schematic configuration diagram of the molding sand recycling facility according to the sixth embodiment.
  • the regeneration facility 51 includes a drying facility D, a magnetic separation facility M, a switching facility V1, a switching facility V2, a bypass system BP1, a bypass system BP2, four dry machine regeneration facilities R411, R412, R421, and R422, and four classification facilities.
  • C411, C412, C421, and C422, switching equipment V3, return system PL1, two dust collection equipment DC, DO switching equipment V4, and return system PL2 are provided.
  • the dry-type machine regeneration facilities R411, R412, R421, and R422 recycle the mold sand S by peeling off carbides, sintered products, metal compounds, etc. adhering to the surface of the mold sand S discharged from the green casting facility. I do.
  • the dry-type machine regeneration facilities R411, R412, R421, and R422 all have the same mechanism, but it does not matter what method is used as long as it has the ability to reduce ignition loss below the control value. .
  • the classification equipment C411, C412, C421, and C422 classify the regenerated mold sand S by a specific gravity classification method, and separate fine particles such as sand particles to be collected and carbides, sintered products, and metal compounds to be collected. .
  • the classifying equipment C411, C412, C421, and C422 all have the same mechanism, but the classifying equipment C can remove fine powder until the total amount of clay in the regenerated mold sand S is below the control value. It doesn't matter what kind of system it has, if it has the ability.
  • the dry-type machine regeneration facility R411 connected behind the switching facility V4 is connected in series with the classification facility C411, the dry-type machine regeneration facility R412 and the classification facility C412 and is connected behind it with the switching facility V3.
  • the dry-type machine regeneration equipment R421 connected behind the switching equipment V4 is connected in series with the classification equipment C421, the dry-type machine regeneration equipment R422, and the classification equipment C422, and is connected behind the switching equipment V3. is doing.
  • the configurations of R422 and classification equipment C422 are arranged in parallel between the switching equipment V4 and the switching equipment V3.
  • the classified reclaimed sand (mold sand S) is discharged from the reclaiming equipment 41, or the classified reclaimed sand is returned to the inlet of the dry-type reclaiming equipment R411 and R421.
  • the switching equipment V3 is provided for switching whether to regenerate again, and the switching equipment V3 includes dry machine regeneration equipment R411, classification equipment C411, dry machine regeneration equipment R412, Further, the route of the classifying equipment C412 and the dry-type machine regeneration equipment R421, the classifying equipment C421, the dry-type machine regeneration equipment R422, and the return system PL1 for returning to the path of the classifying equipment C422 are connected.
  • the classified reclaimed sand is classified into a dry-type machine regenerator R411, a classifier C411, a regenerator R412, and It is possible to return to the route of the classification equipment C412 and the route of the dry machine regeneration equipment R421, the classification equipment C421, the dry machine regeneration equipment R422, and the classification equipment C422.
  • the dust collection equipment DC is connected to the classification equipment C411 and C421, and collects dust (fine powder) generated in the classification equipment C411 and C421.
  • the dust collection equipment DO is connected to the classification equipment C412 and C422, and collects dust (fine powder) generated in the classification equipment C412 and C422.
  • FIG. 27 is a flowchart showing a method for reclaiming mold sand using the regenerating equipment 51 according to the sixth embodiment.
  • the mold sand S used in the regeneration method may contain moisture and / or may have magnetic deposits attached thereto.
  • the amount of water and the amount of magnetic deposits contained in the mold sand S are measured (first step).
  • the mold sand S is dried by the drying equipment D (second step).
  • the control value of the moisture amount is preferably 0.5%.
  • the mold sand S is magnetically selected by the magnetic separation equipment M (second step).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • the mold sand S does not need to be dried by the drying equipment D, so the mold sand S uses the switching equipment V1 to bypass the bypass system BP1.
  • Set to pass (second step) If the measured value of the amount of magnetic deposits contained in the molding sand S does not exceed the control value, the molding sand S does not need to be magnetically selected by the magnetic separation equipment M, and therefore the molding sand S is bypassed BP2 using the switching equipment V2. Is set to pass through (second step).
  • the molding sand S needs to be dried by the drying equipment D and does not need to be magnetically selected by the magnetic separation equipment M. Therefore, it sets so that casting sand S may pass bypass system BP1 using switching equipment V1, and setting so that casting sand S may pass bypass system BP2 using switching equipment V2 (second process). Note that a path passing through both the bypass system BP1 and the bypass system BP2 is referred to as a bypass system BP3.
  • the amount of water and the amount of magnetic deposits contained in the mold sand S are measured again (third step). If the measured value of the amount of moisture contained in the mold sand S exceeds the control value and / or if the measured value of the amount of magnetic deposits contained in the mold sand S exceeds the control value, the second step is performed again.
  • the switching equipment V4 In order to allow the molding sand S to pass through (drying process and / or magnetic separation process), the switching equipment V4 is set so that the casting sand S returns to the front of the switching equipment V1 via the return system PL2. Three steps). And the molding sand S passes through the drying equipment D and / or the magnetic separation equipment M again.
  • the molding sand S is set to be sent to the machine regeneration equipment R using the switching equipment V4. It is sent to the dry-type machine regeneration facility R (third process).
  • the mold sand S is regenerated in the dry-type machine regeneration facilities R411 and R421 (fourth step).
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by classification equipment C411 and C421 of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • the dust collected from the classification equipment C411 and C421 is collected independently by the dust collection equipment DC.
  • the dust generated in the first (first pass) is mainly bentonite and green additive adhering to the surface of the sand grains. Therefore, by independently collecting the dust generated in this step, it is possible to reuse these dusts when kneading the mold sand as an alternative to bentonite and green additive.
  • each mold sand S that has been once regenerated is regenerated again in the dry mechanical regeneration facilities R412 and R422 (fourth step).
  • the ignition loss of the mold sand S is reduced by the regeneration process again.
  • the regenerated mold sand S is classified again with the classification equipment C412 and C422 of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • Mold sand S (recycled sand) that has undergone two fourth steps (regeneration treatment) and two fifth steps (classification treatment) has both reduced ignition loss and total clay content. In the end, it is necessary to make each numerical value below the control value. Accordingly, when the ignition loss of the mold sand S and the total clay content exceeds the control value, the mold sand S is passed again through the fourth process (regeneration process) and the fifth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R411 and R421 via the return system PL1 using the switching equipment V3.
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the dust collection equipment DO collects dust generated in the classification equipment C412 and C422 and dust generated in the classification equipment C411 and C421 after the second time.
  • the mold sand regeneration method and the regeneration facility according to the sixth embodiment it is not necessary to combine the regeneration facilities having different mechanisms, and the processing amount, the ignition loss, and the total clay content can be reduced. It is possible to easily determine the configuration of the regeneration facility according to the management value.
  • two regeneration treatments and two classification treatments can be performed at a time. It is possible to reduce the number of times sand is returned to the regeneration process and the classification process.
  • FIG. 28 is a schematic configuration diagram of the molding sand recycling facility according to the seventh embodiment.
  • the regeneration equipment 61 is an overflow sand recovery equipment PO, a drying equipment D, an overflow sand foreign substance removal equipment IO, an overflow sand storage tank SSO, a product adhesion sand collection equipment PS, a product adhesion sand foreign substance removal equipment IS, a magnetic separation equipment M, a product adhesion sand.
  • Storage tank SSS main core sand mixed sand recovery equipment PL, crushing equipment L, main core core mixed sand foreign substance removal equipment IL, main core core mixed sand storage tank SSL, sand lump and sand recovery equipment PC, solution Crushing equipment L, sand lump and sand extraneous substance removal equipment IC, sand lump and sand storage tank SSC, sand cutting / mixing equipment F, four dry-type machine regeneration equipment R411, R412, R421, and R422, four classification equipment C411 , C412, C421, and C422, classification equipment C, switching equipment V3, return system PL1, and two dust collection equipment DC and DO.
  • the four dry-type machine regeneration facilities R411, R412, R421, and R422 peel off carbides, sintered products, metal compounds, etc. adhering to the surface of the blended mold sand S, and regenerate the mold sand S.
  • the dry-type machine regeneration facilities R411, R412, R421, and R422 all have the same mechanism, but it does not matter what method is used as long as it has the ability to reduce ignition loss below the control value. .
  • the classification equipment C411, C412, C421, and C422 classify the regenerated mold sand S by a specific gravity classification method, and separate fine particles such as sand particles to be collected and carbides, sintered products, and metal compounds to be collected. .
  • the classification facilities C411, C412, C421, and C422 all have the same mechanism, but have the ability to remove fine powder until the total clay content in the reclaimed mold sand S is below the control value. Any method is acceptable.
  • the dry-type machine regeneration equipment R411 arranged in the subsequent stage of the sand cutting / mixing equipment F is connected in series with the classification equipment C411, the dry-type machine regeneration equipment R412 and the classification equipment C412, and then connected to the switching equipment V3. ing.
  • the dry-type machine regeneration equipment R421 connected behind the bypass system BP2 is connected in series with the classification equipment C421, the dry-type machine regeneration equipment R422, and the classification equipment C422, and connected to the switching equipment V3 behind it. is doing.
  • the configurations of R422 and classification equipment C422 are arranged in parallel between the bypass system BP2 and the switching equipment V3.
  • the classified reclaimed sand (mold sand S) is discharged from the reclaiming equipment 41, or the classified reclaimed sand is returned to the inlet of the dry-type reclaiming equipment R411 and R421.
  • the switching equipment V3 is provided for switching whether to regenerate again, and the switching equipment V3 includes dry machine regeneration equipment R411, classification equipment C411, dry machine regeneration equipment R412, Further, the route of the classifying equipment C412 and the dry-type machine regeneration equipment R421, the classifying equipment C421, the dry-type machine regeneration equipment R422, and the return system PL1 for returning to the path of the classifying equipment C422 are connected.
  • the classified reclaimed sand is classified into a dry-type machine regenerator R411, a classifier C411, a regenerator R412, and It is possible to return to the route of the classification equipment C412 and the route of the dry machine regeneration equipment R421, the classification equipment C421, the dry machine regeneration equipment R422, and the classification equipment C422.
  • the dust collection equipment DC is connected to the classification equipment C411 and C421, and collects dust (fine powder) generated in the classification equipment C411 and C421.
  • the dust collection equipment DO is connected to the classification equipment C412 and C422, and collects dust (fine powder) generated in the classification equipment C412 and C422.
  • FIG. 29 is a flowchart showing a method for regenerating mold sand using the regenerating equipment 61 according to the seventh embodiment.
  • the overflow sand discharged from the sand processing equipment is collected in the overflow sand collecting equipment PO (first step 1).
  • the overflow sand is dried with the drying equipment D until the water content becomes the control value or less (1 of the second step).
  • the control value of the moisture amount is preferably 0.5%.
  • the overflow sand foreign matter removal equipment IO removes foreign matter from the overflow sand after drying (second step 1).
  • the overflow sand after removing the foreign matter is stored in the overflow sand storage tank SSO (1 of the second step).
  • the product adhering sand is collected in the product adhering sand recovery equipment PS (first step 2).
  • the foreign substance in the product adhesion sand is removed by the product adhesion sand foreign substance removal equipment IS (second step 2).
  • the product adhering sand after removing the foreign matter is magnetically selected by the magnetic separation equipment M until the amount of magnetic deposits on the product adhering sand is equal to or lower than the control value (second step 2).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • the product adhesion sand after magnetic separation is stored in the product adhesion sand storage tank SSS (2 in the second step).
  • the main core mixed sand is recovered in the main core sand mixed sand recovery facility PL (first step 3).
  • the main-type core mixed sand is crushed by the crushing equipment L (second step 3).
  • the main type core mixed sand foreign matter removing equipment IL removes foreign matters from the crushed main type core mixed sand (second step 3).
  • the main-type core mixed sand is stored in the main-type core mixed sand storage tank SSL (second step 3).
  • the sand lump and sand discharged from the core sand dropping step are collected by the sand lump and sand collecting facility PC (4 in the first step).
  • the lump and sand discharged from the core sand dropping step are crushed by the crushing equipment L (second step 4).
  • the sand lump and sand foreign matter removing equipment IC, the sand lump after crushing and the foreign matter of sand are removed (second step 4).
  • the sand lump and sand are stored in the sand lump and sand storage tank SSC (second step 4).
  • the sand stored in the overflow sand storage tank SSO, the product adhesion sand storage tank SSS, the main core mixed sand storage tank SSL, and the sand lump and sand storage tank SSC is stored in the storage tank by the sand cutting / blending facility F.
  • the sand is cut out and blended so that the ratio of the sand cut out from is always constant (third step).
  • the mold sand S is regenerated in the dry-type machine regeneration facilities R411 and R421 (fourth step).
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by classification equipment C411 and C421 of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • the dust collected from the classification equipment C411 and C421 is collected independently by the dust collection equipment DC.
  • the dust generated in the first (first pass) is mainly bentonite and green additive adhering to the surface of the sand grains. Therefore, by independently collecting the dust generated in this step, it is possible to reuse these dusts when kneading the mold sand as an alternative to bentonite and green additive.
  • each mold sand S that has been once regenerated is regenerated again in the dry mechanical regeneration facilities R412 and R422 (fourth step).
  • the ignition loss of the mold sand S is reduced by the regeneration process again.
  • the regenerated mold sand S is classified again with the classification equipment C412 and C422 of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • Mold sand S (recycled sand) that has undergone two fourth steps (regeneration treatment) and two fifth steps (classification treatment) has both reduced ignition loss and total clay content. In the end, it is necessary to make each numerical value below the control value. Accordingly, when the ignition loss of the mold sand S and the total clay content exceeds the control value, the mold sand S is passed again through the fourth process (regeneration process) and the fifth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R411 and R421 via the return system PL1 using the switching equipment V3.
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the dust collection equipment DO collects dust generated in the classification equipment C412 and C422 and dust generated in the classification equipment C411 and C421 after the second time.
  • the casting sand regeneration method and the regeneration facility according to the seventh embodiment it is not necessary to configure a combination of regeneration facilities having different mechanisms. It is possible to easily determine the configuration of the regeneration facility according to the management value.
  • two regeneration processes and two classification processes can be performed at one time. It is possible to reduce the number of times sand is returned to the regeneration process and the classification process.
  • various types of molding sand discharged from the green casting facility can be recovered only by dry mechanical regeneration.
  • the pre-treatment is performed in a state where the mold sands having different properties discharged from the various parts of the green mold casting facility are separated, and always constant. After cutting and blending so as to obtain a ratio, dry mechanical regeneration is performed and fine powder is further removed, so that the properties of the regenerated sand can always be kept constant. Therefore, it is possible to reuse the recycled sand as it is in the green casting equipment.
  • FIG. 30 is a schematic configuration diagram of the mold sand recycling facility 71 according to the eighth embodiment.
  • Regeneration equipment 71 includes overflow sand recovery equipment PO, drying equipment D, overflow sand foreign matter removal equipment IO, overflow sand storage tank SSO, product attached sand recovery equipment PS, product attached sand foreign matter removal equipment IS, magnetic separation equipment M, product attached sand.
  • Storage tank SSS main core sand mixed sand recovery equipment PL, crushing equipment L, main core core mixed sand foreign material removal equipment IL, heating equipment TR, main core core mixed sand storage tank SSL, sand lump and sand recovery Equipment PC, crushing equipment L, sand lump and sand extraneous substance removal equipment IC, heating equipment TR, sand lump and sand storage tank SSC, sand cutting / blending equipment F, four dry-type machine regeneration equipment R411, R412, R421, and , R422, four classification facilities C411, C412, C421, and C422, a switching facility V3, a return system PL1, and two dust collection facilities DC and DO.
  • the four dry-type machine regeneration facilities R411, R412, R421, and R422 peel off carbides, sintered products, metal compounds, etc. adhering to the surface of the blended mold sand S, and regenerate the mold sand S.
  • the dry-type machine regeneration facilities R411, R412, R421, and R422 all have the same mechanism, but it does not matter what method is used as long as it has the ability to reduce ignition loss below the control value. .
  • the classification equipment C411, C412, C421, and C422 classify the regenerated mold sand S by a specific gravity classification method, and separate fine particles such as sand particles to be collected and carbides, sintered products, and metal compounds to be collected. .
  • the classification facilities C411, C412, C421, and C422 all have the same mechanism, but have the ability to remove fine powder until the total clay content in the reclaimed mold sand S is below the control value. Any method is acceptable.
  • the dry-type machine regeneration equipment R411 arranged in the subsequent stage of the sand cutting / mixing equipment F is connected in series with the classification equipment C411, the dry-type machine regeneration equipment R412 and the classification equipment C412, and then connected to the switching equipment V3. ing.
  • the dry-type machine regeneration equipment R421 connected behind the bypass system BP2 is connected in series with the classification equipment C421, the dry-type machine regeneration equipment R422, and the classification equipment C422, and connected to the switching equipment V3 behind it. is doing.
  • the configurations of R422 and classification equipment C422 are arranged in parallel between the bypass system BP2 and the switching equipment V3.
  • the classified reclaimed sand (mold sand S) is discharged from the reclaiming equipment 41, or the classified reclaimed sand is returned to the inlet of the dry-type reclaiming equipment R411 and R421.
  • the switching equipment V3 is provided for switching whether to regenerate again, and the switching equipment V3 includes dry machine regeneration equipment R411, classification equipment C411, dry machine regeneration equipment R412, Further, the route of the classifying equipment C412 and the dry-type machine regeneration equipment R421, the classifying equipment C421, the dry-type machine regeneration equipment R422, and the return system PL1 for returning to the path of the classifying equipment C422 are connected.
  • the classified reclaimed sand is classified into a dry-type machine regenerator R411, a classifier C411, a regenerator R412, and It is possible to return to the route of the classification equipment C412 and the route of the dry machine regeneration equipment R421, the classification equipment C421, the dry machine regeneration equipment R422, and the classification equipment C422.
  • the dust collection equipment DC is connected to the classification equipment C411 and C421, and collects dust (fine powder) generated in the classification equipment C411 and C421.
  • the dust collection equipment DO is connected to the classification equipment C412 and C422, and collects dust (fine powder) generated in the classification equipment C412 and C422.
  • FIG. 31 is a flowchart showing a method for regenerating mold sand using the regenerating equipment 71 according to the eighth embodiment.
  • the overflow sand discharged from the sand processing equipment is collected in the overflow sand collecting equipment PO (first step 1).
  • the overflow sand is dried with the drying equipment D until the water content becomes the control value or less (1 of the second step).
  • the control value of the moisture amount is preferably 0.5%.
  • the overflow sand foreign matter removal equipment IO removes foreign matter from the overflow sand after drying (second step 1).
  • the overflow sand after removing the foreign matter is stored in the overflow sand storage tank SSO (1 of the second step).
  • the product adhering sand is collected in the product adhering sand recovery equipment PS (first step 2).
  • the foreign substance in the product adhesion sand is removed by the product adhesion sand foreign substance removal equipment IS (second step 2).
  • the product adhering sand after removing the foreign matter is magnetically selected by the magnetic separation equipment M until the amount of magnetic deposits on the product adhering sand is equal to or lower than the control value (second step 2).
  • the management value of the amount of magnetic deposits is preferably 5.0%.
  • the product adhesion sand after magnetic separation is stored in the product adhesion sand storage tank SSS (2 in the second step).
  • the main core mixed sand is recovered in the main core sand mixed sand recovery facility PL (first step 3).
  • the main-type core mixed sand is crushed by the crushing equipment L (second step 3).
  • the main type core mixed sand foreign matter removing equipment IL removes foreign matters from the crushed main type core mixed sand (second step 3).
  • the main core mixed sand after removing the foreign matter is heated to 400 ° C. or higher (second step 3).
  • the main core mixed sand after heating is stored in the main core mixed sand storage tank SSL (second step 3).
  • the sand lump and sand discharged from the core sand dropping step are collected by the sand lump and sand collecting facility PC (4 in the first step).
  • the lump and sand discharged from the core sand dropping step are crushed by the crushing equipment L (second step 4).
  • the sand lump and sand foreign matter removing equipment IC, the sand lump after crushing and the foreign matter of sand are removed (second step 4).
  • the sand block and the sand after removing the foreign matter are heated to 400 ° C. or higher (second step 4).
  • the sand lump and sand after heating are stored in the sand lump and sand storage tank SSC (second step 4).
  • the sand stored in the overflow sand storage tank SSO, the product adhesion sand storage tank SSS, the main core mixed sand storage tank SSL, and the sand lump and sand storage tank SSC is stored in the storage tank by the sand cutting / blending facility F.
  • the sand is cut out and blended so that the percentage of the sand cut out from is always constant (third step).
  • the mold sand S is regenerated in the dry-type machine regeneration facilities R411 and R421 (fourth step).
  • the ignition loss of the molding sand S is reduced by the regeneration process.
  • the regenerated mold sand S is classified by classification equipment C411 and C421 of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • the dust collected from the classification equipment C411 and C421 is collected independently by the dust collection equipment DC.
  • the dust generated in the first (first pass) is mainly bentonite and green additive adhering to the surface of the sand grains. Therefore, by independently collecting the dust generated in this step, it is possible to reuse these dusts when kneading the mold sand as an alternative to bentonite and green additive.
  • each mold sand S that has been once regenerated is regenerated again in the dry mechanical regeneration facilities R412 and R422 (fourth step).
  • the ignition loss of the mold sand S is reduced by the regeneration process again.
  • the regenerated mold sand S is classified again with the classification equipment C412 and C422 of the specific gravity classification method (fifth step). By the classification treatment, the total clay content of the molding sand S is reduced.
  • Mold sand S (recycled sand) that has undergone two fourth steps (regeneration treatment) and two fifth steps (classification treatment) has both reduced ignition loss and total clay content. In the end, it is necessary to make each numerical value below the control value. Accordingly, when the ignition loss of the mold sand S and the total clay content exceeds the control value, the mold sand S is passed again through the fourth process (regeneration process) and the fifth process (classification process). Therefore, it sets so that the molding sand S may return to the dry-type machine regeneration equipment R411 and R421 via the return system PL1 using the switching equipment V3.
  • the control value of ignition loss is preferably 0.6%.
  • the management value of the total clay content is 0.6%.
  • the dust collection equipment DO collects dust generated in the classification equipment C412 and C422 and dust generated in the classification equipment C411 and C421 after the second time.
  • the casting sand regeneration method and the regeneration facility according to the eighth embodiment it is not necessary to configure a combination of regeneration facilities having different mechanisms. It is possible to easily determine the configuration of the regeneration facility according to the management value.
  • two regeneration treatments and two classification treatments can be performed at a time, so that the casting equipment using the switching equipment can be used. It is possible to reduce the number of times sand is returned to the regeneration process and the classification process.
  • the mold sand regeneration method and regeneration facility according to the eighth embodiment even when the core used in the green casting facility is a heat dehydration hardening type water glass process, The main core mixed sand discharged and the sand lump and sand discharged from the core sand dropping process are heated to vitrify the amorphous silicate hydrate remaining on them, A metal oxide is sealed inside. Thereafter, dry mechanical regeneration is performed, so that it is possible to detoxify amorphous silicate hydrates and metal oxides that are harmful to the strength development of the mold.
  • RCS resin coated sand
  • the evaluation method has dimensions of 10 mm width ⁇ 10 mm height ⁇ 60 mm length in accordance with JACT test method SM-1 “bending strength test method” defined by Japan Casting Technology Promotion Association (JACT), 250 Evaluation was performed using a test piece formed by baking at 60 ° C. for 60 seconds.
  • Comparative Example 1 for the purpose of regenerating green sand into a shell core, 6-pass regeneration was performed using a centrifugal friction type casting sand regenerator after roasting, and the properties of the regenerated sand and the physical properties of the core were evaluated.
  • the method for preparing RCS and the method for evaluating physical properties are the same as in Example 1.
  • Example 2 for the purpose of regenerating green sand into a shell core, regeneration was performed for 30 minutes using a batch-type grinding stone polishing cast sand regenerator, and the properties of the regenerated sand and the physical properties of the core were evaluated.
  • the method for preparing RCS and the method for evaluating physical properties are the same as in Example 1.
  • Comparative Example 3 for the purpose of regenerating green sand into a shell core, regeneration was performed for 45 minutes using a batch-type grinding stone polishing mold sand regenerator, and the properties of the regenerated sand and the physical properties of the core were evaluated.
  • the method for preparing RCS and the method for evaluating physical properties are the same as in Example 1.
  • Comparative Example 4 for the purpose of regenerating green sand into a shell core, regeneration was performed for 60 minutes using a batch type grindstone polishing type cast sand regenerator, and the properties of the regenerated sand and the physical properties of the core were evaluated.
  • the method for preparing RCS and the method for evaluating physical properties are the same as in Example 1.
  • Example 5 the sand properties and core properties were evaluated using the mold sand in a state before regeneration.
  • the method for preparing RCS and the method for evaluating physical properties are the same as in Example 1.
  • Comparative Example 6 sand of the same brand as used in Examples 1 and 2 and Comparative Examples 1 to 5 (mullite artificial sand by spray dryer method) is in an unused state, so-called new sand, Properties and core properties were evaluated.
  • the method for preparing RCS and the method for evaluating physical properties are the same as in Example 1.
  • Table 1 shows a list of the results of sand properties and core properties of Examples 1 and 2 and Comparative Examples 1 to 6.
  • the results in Examples 1 and 2 were better than those in Comparative Examples 1-6.
  • mullite artificial sand by the spray dryer method is difficult to machine regenerate, and the evaluation results in Comparative Examples 1 to 4 which are conventional methods are inferior to the comparison amount 6 which is the evaluation result of new sand. .
  • the result in Example 1 and 2 exceeded the comparative example 6 which is an evaluation result of fresh sand. This means that when the molding sand is regenerated using the regenerating equipment 1 of the first embodiment, it is possible to produce reclaimed sand having a higher quality than fresh sand.
  • Example 1 of the first embodiment for the purpose of regenerating green sand mainly composed of dredged sand into a phenol urethane self-hardening core, three-pass regeneration is performed. The physical properties of the child were evaluated.
  • Core sand is prepared by blending phenol resin 0.85% (for sand), polyisocyanate 0.85% (for sand), and curing catalyst 0.1% (for sand).
  • the evaluation method is JACT test method HM. -1 It was carried out in accordance with “Compressive strength test method”.
  • Example 7 the same processing amount and required power as in Example 7 were used by using a continuous centrifugal friction type casting sand regenerator for the purpose of regenerating green sand mainly composed of dredged sand to a phenol urethane self-hardening core. 10 passes were regenerated, and the properties of the reclaimed sand and the core properties were evaluated.
  • the method for preparing core sand and the method for evaluating physical properties are the same as in Example 3.
  • Table 2 shows the properties of the recycled sand and the core properties of Example 3 and Comparative Example 7.
  • the sand property is almost the same, but Example 3 is superior in strength to Comparative Example 7.
  • 10 passes are required in Comparative Example 7 with the same processing amount and required power, but 3 passes are sufficient in Example 3. From this result, it can be said that Example 3 is superior to Comparative Example 7 in terms of energy consumption.
  • test piece having a size of width 10 mm ⁇ height 10 mm ⁇ length 60 mm and molded under blow conditions 0.4 MPa ⁇ 3 seconds and gassing / purge conditions 0.2 MPa ⁇ 10 seconds each. .
  • Table 3 shows the properties of the reclaimed sand and the core properties of Example 4 and Comparative Example 8.
  • Example 4 Magnetic separation is performed in advance, and Example 4 having a smaller amount of magnetic deposits is superior in strength. Even with the same regeneration method, it is clear that sand with a large amount of magnetic deposit tends to decrease in strength.
  • the active clay content, the total clay content, and the loss on ignition of the first pass dust generated when green sand mainly composed of dredged sand was regenerated were measured.
  • the measurement method for the activated clay content is based on the Testing Procedure AFS 2210-00-S “METHYLENE BLUE PLAY TEST, ULTRASOND METHODN, which is defined in Mold & Core Test Handbook 3rd Edition issued by AFS. 4.5 was adopted.
  • the measuring method of the total clay content was performed based on the above-mentioned JIS Z 2601 Annex 1 “Clay content test method of foundry sand”.
  • the ignition loss test method was performed in accordance with JIS Z 2601 Annex 6 “Ignition loss test method for foundry sand” described above.
  • the active clay content, the total clay content and the ignition loss of the second pass dust generated when the green sand mainly composed of dredged sand is regenerated. was measured.
  • the method for measuring the active clay content, the total clay content, and the loss on ignition is the same as in Example 5.
  • Table 4 shows the results of active clay content, total clay content and ignition loss of the dust of Example 5 and Comparative Example 9.
  • Example 5 contains more effective bentonite and volatile additives such as coal powder
  • Comparative Example 9 is a component that is not nonvolatile and effective bentonite, that is, It shows that it contains a lot of fine particles of sand grains polished by regeneration.
  • 6-pass reclaim was performed to evaluate the properties of the reclaimed sand.
  • regenerated sand was added to the main mold at a rate of 1 t / day, and the properties of the main sand after one month were evaluated.
  • the main sand used in the green casting equipment for producing cast iron castings is often managed with approximately 20% auritics. .
  • Example 6 When the results of Example 6 and Comparative Example 10 are compared in Table 5, the ratio of Aulytics is slightly higher in Comparative Example 10, but the values are almost the same. The ratio of quartz is remarkably improved in Example 6 over Comparative Example 10. From this result, if regenerated to the properties of the reclaimed sand shown in Example 6, the main sand so that the ratio is sufficient to maintain water retention at approximately the same level as that with the addition of fresh sand. It has been clarified that defects such as seizure due to excessive au- ritics can be prevented by further increasing the quartz while maintaining the au- ritics.
  • the regeneration equipment R and the classification equipment C all having the same mechanism are arranged in series and in parallel. To determine how many of these units are required, it is necessary to test in advance to verify the required processing amount and processing capacity, and to prepare the maximum required number of units.
  • the reproduction equipment and the classification equipment all having the same mechanism are arranged in series, two in parallel and two in parallel, but the required processing amount, Depending on the quality of the reclaimed sand required and the required processing capacity, any number of units may be arranged in series and in parallel, or only in series or only in parallel.
  • regeneration equipment and classification equipment having the same mechanism are used, but regeneration equipment R and classification equipment C having different mechanisms may be used.
  • the classifier C in the first pass is the dust collector DC
  • the classifier C in the second and subsequent passes is the dust collector DO.
  • the dust after the second pass is separated and collected. For this reason, the reusable dust in the first pass can be effectively reused without being mixed with other dust.
  • Regeneration equipment 2 Compressed air injection means S Mold sand D Drying equipment M Magnetic separation equipment V1, V2, V3, V4 Switching equipment BP1, BP2 Bypass system R Dry type machine regeneration Equipment C Classification equipment PL1, PL2 Return system DC, DO Dust collection equipment PO Overflow sand recovery equipment IO Overflow sand foreign material removal equipment SSO Overflow sand storage tank PS Product adhesion sand collection equipment IS Product adhesion sand foreign material removal equipment SSS Product adhesion sand storage tank PL Main core sand mixed sand recovery equipment L Crushing equipment IL Main core mixed sand foreign substance removal equipment SSL Main core mixed sand storage tank PC Sand lump and sand recovery equipment IC Sand lump and sand foreign substance removal equipment SSC Sand Lump and sand storage tank F Sand cutting / mixing equipment TR Heating equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】生型鋳造設備から排出される鋳型砂の再生を、乾式の機械再生のみで行うこと。 【解決手段】生型鋳造設備から排出される鋳型砂の水分量及び磁着物量を測定する工程、測定された水分量を第1の管理値と比較し、前記水分量が第1の管理値を超えていた場合、前記鋳型砂を第1の管理値以下になるまで乾燥する工程、測定された磁着物量を第2の管理値と比較し、前記磁着物量が第2の管理値を超えていた場合、前記鋳型砂を第2の管理値以下になるまで磁選する工程、その後、前記鋳型砂を強熱減量が第3の管理値以下になるまで乾式の機械再生により再生する工程、及び、前記鋳型砂を全粘土分が第4の管理値以下になるまで分級する工程を含むこと、を特徴とする。

Description

鋳型砂の再生方法及び再生設備
 本発明は、生型鋳造設備から排出される鋳型砂の再生方法及び再生設備に関する。
 鋳型砂に水、ベントナイト、石炭粉並びに澱粉などの生型添加剤を添加して混練した後、鋳型に混練砂を充填して造型する生型鋳造設備では、砂処理設備で古砂がオーバーフローしたオーバーフロー砂、ショットブラスト工程から排出された製品付着砂、解砕工程から排出された主型中子混合砂、及び、中子砂落とし工程から排出された砂塊及び砂等、様々な工程から様々な性状の廃砂が発生する。
 これらの廃砂はそのままでは主型や中子の砂として再利用する砂性状を有していないので、砂粒表面の不純物や付着物を除去し、適切な粒度に調整した上で再利用する必要がある。この工程を再生という。
 通常、生型砂の再生には、焙焼炉を用いた熱再生、乾式の機械再生装置を用いた機械再生、湿式の砂再生装置を用いた湿式再生、並びにそれらの方法の組み合わせが用いられる。
 例えば、特許文献1には熱再生を用いた鋳型砂の再生装置、特許文献2には熱再生と乾式の機械再生を組み合わせた鋳型砂の再生方法、特許文献3には乾式の機械再生を使用する鋳型砂の再生装置及びその再生方法、特許文献4には乾式の機械再生と湿式再生を組み合わせた生型廃砂の再生方法、特許文献5には複数の乾式の機械再生を組み合わせた自硬性鋳物砂の再生装置がそれぞれ開示されている。
 また、特許文献6には、複数の処理条件で熱再生と乾式再生を行った複数の再生砂(補給砂)を回収砂(生型砂)に所定の割合で添加して再利用する生型砂管理システムおよび管理方法が開示されている。
特開平5-15940号公報 特開2014-24097号公報 特開平6-170486号公報 特開2006-68815号公報 特開平5-318021号公報 特開2011-194451号公報
 しかしながら、生型鋳造設備から排出される、水分及び磁着物が含まれた鋳型砂を乾式の機械再生のみを使用して再生する有効適切な方法及び再生設備は、今まで存在しなかった。
 また、生型鋳造設備から排出される様々な種類の鋳型砂を乾式の機械再生のみを使用して再生する有効適切な方法及び再生設備は、今まで存在しなかった。
 本発明は、上記に鑑みてなされたものであって、乾式の機械再生のみを使用して生型鋳造設備から排出される鋳型砂を再生する方法及び再生設備を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明における鋳型砂の再生方法は、生型鋳造設備から排出される鋳型砂の水分量及び磁着物量を測定する工程、測定された水分量を第1の管理値と比較し、水分量が第1の管理値を超えていた場合、鋳型砂を第1の管理値以下になるまで乾燥する工程、測定された磁着物量を第2の管理値と比較し、磁着物量が第2の管理値を超えていた場合、鋳型砂を第2の管理値以下になるまで磁選する工程、その後、鋳型砂を強熱減量が第3の管理値以下になるまで乾式の機械再生により再生する工程、及び、鋳型砂を全粘土分が第4の管理値以下になるまで分級する工程を含むこと、を特徴とする。
 また、本発明における鋳型砂の再生方法は、生型鋳造設備から排出される鋳型砂を、オーバーフロー砂、製品付着砂、主型中子混合砂、及び、砂塊及び砂に分けて回収する工程、オーバーフロー砂を水分量が第1の管理値以下になるまで乾燥させ、異物を除去した後、貯蔵する工程、製品付着砂の異物を除去し、磁着物量が第2の管理値以下になるまで磁選した後、貯蔵する工程、主型中子混合砂を解砕し、異物を除去した後、貯蔵する工程、砂塊及び砂を解砕し、異物を除去した後、貯蔵する工程、貯蔵されたオーバーフロー砂、貯蔵された製品付着砂、貯蔵された主型中子混合砂、及び、貯蔵された砂塊及び砂を、それらの割合が常に一定となるように取り出して配合する工程、配合された砂を強熱減量が第3の管理値以下になるまで乾式の機械再生により再生する工程、及び、配合された砂を全粘土分が第4の管理値以下になるまで分級する工程を含むこと、を特徴とする。
 また、本発明における鋳型砂の再生設備は、生型鋳造設備から排出される鋳型砂の水分量を第1の管理値以下になるまで乾燥する乾燥設備、鋳型砂の磁着物量を第2の管理値以下になるまで磁選する磁選設備、鋳型砂の強熱減量を第3の管理値以下になるまで再生する乾式の機械再生設備、鋳型砂の全粘土分を第4の管理値以下になるまで分級する分級設備、鋳型砂に乾燥設備を通過させるか否かを選択する第1の切り替え設備、及び、鋳型砂に磁選設備を通過させるか否かを選択する第2の切り替え設備を備えたこと、を特徴とする。
 また、本発明における鋳型砂の再生設備は、砂処理工程から排出されたオーバーフロー砂を回収するオーバーフロー砂回収設備、オーバーフロー砂を水分が第1の管理値以下になるまで乾燥させる乾燥設備、オーバーフロー砂の異物を除去するオーバーフロー砂異物除去設備、オーバーフロー砂を貯蔵するオーバーフロー砂貯蔵槽、製品付着砂を回収する製品付着砂回収設備、製品付着砂の異物を除去する製品付着砂異物除去設備、製品付着砂の磁着物量が第2の管理値以下になるまで磁選する磁選設備、製品付着砂を貯蔵する製品付着砂貯蔵槽、主型中子砂混合砂を回収する主型中子砂混合砂回収設備、主型中子混合砂を解砕する解砕設備、主型中子混合砂の異物を除去する主型中子混合砂異物除去設備、主型中子混合砂を貯蔵する主型中子混合砂貯蔵槽、中子砂落とし工程から排出された砂塊及び砂を回収する砂塊及び砂回収設備、砂塊及び砂を解砕する解砕設備、砂塊及び砂の異物を除去する砂塊及び砂異物除去設備、砂塊及び砂を貯蔵する砂塊及び砂貯蔵槽、オーバーフロー砂貯蔵槽、製品付着砂貯蔵槽、主型中子混合砂貯蔵槽、及び、砂塊及び砂貯蔵槽から取り出される砂の割合が常に一定となるよう各貯蔵槽から砂を取り出して配合する砂切り出し/配合設備、配合された砂を第3の管理値以下の強熱減量になるまで再生する乾式の機械再生設備、及び、配合された砂を第4の管理値以下の全粘土分になるまで分級する分級設備を備えたこと、を特徴とする。
 本発明によれば、生型鋳造設備から排出される鋳型砂を乾式の機械再生のみで再生することができる。その結果、湿式再生を使用する場合に発生する廃水の中和処理・不純物の分離処理が不要となり、熱再生を使用する場合の多大なエネルギー消費量を削減することができ、再生設備を小型化かつ簡略化することができるので、砂再生に要する効率を上げ、砂再生にかかるコストを削減することができるという効果を奏する。
第1の実施の形態に係る鋳型砂の再生設備の概略構成図である。 乾燥設備の第1の例である流動層式の熱風乾燥設備の構造を示す、概略断面図である。 乾燥設備の第2の例である内燃式ロータリーキルン方式の乾燥設備の構造を示す、概略断面図である。 磁選設備の概略断面図である。 乾式の機械再生設備の第1の例である機械再生設備の概略断面図である。 図5におけるA-A矢視図である。 図5におけるB-B矢視図である。 図7におけるC-C矢視図である。 乾式の機械再生設備の第2の例である機械再生設備の概略断面図である。 乾式の機械再生設備の第2の例における、投入砂流量とモーターの目標電流値との相対関係を示すグラフである。 乾式の機械再生設備の第2の例における、フローチャートである。 圧縮空気噴射手段の概略構成図である。 分級設備の概略断面図である。 第1の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第2の実施の形態に係る鋳型砂の再生設備の概略構成図である。 第2の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第3の実施の形態に係る鋳型砂の再生設備の概略構成図である。 解砕設備の正面図である。 解砕設備の平面図である。 図19におけるA-A断面図である。 第3の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第4の実施の形態に係る鋳型砂の再生設備の概略構成図である。 第4の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第5の実施の形態に係る鋳型砂の再生設備の概略構成図である。 第5の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第6の実施の形態に係る鋳型砂の再生設備の概略構成図である。 第6の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第7の実施の形態に係る鋳型砂の再生設備の概略構成図である。 第7の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。 第8の実施の形態に係る鋳型砂の再生設備の概略構成図である。 第8の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。
 以下、添付図面を参照して、本発明による鋳型砂の再生方法及び再生設備を実施するための形態について、図面に基づいて説明する。
(第1の実施の形態)
 第1の実施の形態について、添付図面を参照して説明する。図1は、第1の実施の形態に係る鋳型砂の再生設備の概略構成図である。再生設備1は、乾燥設備D、磁選設備M、切り替え設備V1、切り替え設備V2、バイパス系BP1、バイパス系BP2、乾式の機械再生設備R、分級設備C、切り替え設備V3、送還系PL1、及び、集塵設備DCを備えている。
 乾燥設備Dは、生型鋳造設備から排出される鋳型砂Sを乾燥させる。乾燥設備Dは、切り替え設備V1を介して鋳型砂Sの注入口と接続される。乾燥設備Dは、鋳型砂Sに含まれる水分量を後述する管理値以下になるまで乾燥を行うことのできる能力を有していればどのような方式であるかは問わないが、例えば、電気若しくはガスなどの熱源により空気を加熱しながら送風機で熱風を鋳型砂に通気し、水分を乾燥させる方式のものが挙げられる。なお、管理値以下の水分量まで乾燥するためにどの程度の能力が必要とされるかは、事前に乾燥前の水分量を試験的に測定しておき、管理値以下の水分量に乾燥するために必要な熱量を求めた上で、決定しておく。乾燥設備Dは、鋳型砂Sを90℃以上に加熱する能力を有する乾燥設備であることが好ましい。
 磁選設備Mは、生型鋳造設備から排出される鋳型砂Sを磁選し、鋳型砂Sから磁着物を除去する。なお、磁着物とは、金属と砂粒が溶着した状態の砂粒のことである。磁選設備Mは、バイパス系BP1及び切り替え設備V2を介して乾燥設備Dと接続される。磁選設備Mは、鋳型砂S内の磁着物の量を後述する管理値以下になるまで磁選を行うことのできる能力を有していればどのような方式であるかは問わないが、例えば回転するドラムの内側半周部に永久磁石を配置し、ドラム上に鋳型砂を通過させ、永久磁石の磁力により非磁性体と磁着物を分離する方式のものが挙げられる。なお、管理値以下の磁着物量にまで下げるのにどの程度の能力が必要とされるかは、事前に磁選前の磁着物量を試験的に測定しておき、管理値以下の磁着物量に磁選するために必要な能力を求めた上で、決定しておく。また、磁選設備の磁束密度は、磁着物量の測定に用いた磁石の磁束密度と同じものを選定する必要がある。磁選設備Mは、磁束密度0.15T~0.5Tの能力を有する、半磁外輪式の磁選設備とすることが好ましい。
 乾燥設備Dの手前には切り替え設備V1が、磁選設備Mの手前には切り替え設備V2が備えられており、それぞれバイパス系BP1、及び、バイパス系BP2が接続している。生型鋳造設備から排出される鋳型砂Sに含まれる水分の測定値が管理値を超えていない場合は、切り替え設備V1で鋳型砂Sが乾燥設備Dを通過せずにバイパス系BP1を通過するように選択することが可能な構成となっている。
 また、生型鋳造設備から排出される鋳型砂Sに含まれる磁着物の測定値が管理値を超えていない場合は、切り替え設備V2で鋳型砂Sが磁選設備Mを通過せずにバイパス系BP2を通過するように選択することが可能な構成となっている。このような構成により、生型鋳造設備から排出される鋳型砂Sが、乾燥設備D、及び、磁選設備Mの両方を経由して乾式の機械再生設備Rに運ばれるか、それらの一方の設備を経由して乾式の機械再生設備Rに運ばれるか、又は、いずれの設備も経由せずに直接乾式の機械再生設備Rに運ばれるかをそれぞれ選択することが可能である。
 乾式の機械再生設備Rは、生型鋳造設備から排出される鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。乾式の機械再生設備Rは、磁選設備Mの後ろに接続されている。乾式の機械再生設備Rは、強熱減量を後述する管理値以下にできる能力を有していればどのような方式であるかは問わない。
 分級設備Cは、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉を分離する。分級設備Cは、乾式の機械再生設備Rの後ろに接続されている。分級設備Cは、再生された鋳型砂S内の全粘土分の量が後述する管理値以下になるまで微粉を除去できる能力を有していればどのような方式であるかは問わない。
 分級設備Cの後には、分級された再生砂(鋳型砂S)を再生設備1から排出するか、分級された再生砂を乾式の再生設備Rの投入口に戻して再度再生処理をするかを切り替えるための切り替え設備V3が備えられており、切り替え設備V3には、分級された再生砂を乾式の機械再生設備Rへ戻すための送還系PL1が接続している。分級された再生砂の強熱減量と全粘土分とが管理値以下になっていない場合には、分級された再生砂を乾式の機械再生設備Rへ戻すことが可能な構成となっている。
 集塵設備DCは、分級設備Cと接続されており、分級設備Cで発生したダスト(微粉)を集塵する。
 次に、本鋳型砂の再生設備1を構成する、上記の各設備の具体的な例について説明する。
(乾燥設備の第1の例)
 初めに、乾燥設備Dを説明する。図2は、乾燥設備Dの第1の例である流動層式の熱風乾燥設備の構造を示す、概略断面図である。流動層式の熱風乾燥設備である乾燥設備Dは、鋳型砂Sを90℃以上に加熱することにより、鋳型砂Sを乾燥させる。乾燥設備Dは、風箱D1、底板D2、沈降室D3、砂排出口D4、砂投入口D5、堰D6、熱風送風管D7、及び、集塵口D8を備えている。
 風箱D1は、乾燥設備Dの下部に設けられ、熱風送風管D7から送られてきた熱風が風箱D1を経由して沈降室D3に送風される。底板D2は、風箱D1の上部に置かれ、投入された鋳型砂Sが上面に留まる様になっている。底板D2には、風箱D1からの熱風を沈降室D3に送風する空気噴出口D2aが設けられている。沈降室D3は、乾燥設備Dの上部に設けられ、熱風を受けた鋳型砂Sを重力により底板D2側へ沈降させる。砂排出口D4は、底板D2の先端に設置され、機体下方に開口している。乾燥後の鋳型砂Sは砂排出口D4から排出される。砂投入口D5は、風箱D1の上部に設置され、機体上方に開口している。乾燥前の鋳型砂Sは砂投入口D5から投入される。なお、底板D2は、砂排出口D4側が低くなり、砂投入口D5側が高くなるように、わずかに傾斜させてある。
 堰D6は、底板D2上の砂排出口D4に隣接した位置に設けられている。堰D6は流動した鋳型砂Sを一時的に堰き止める。熱風送風管D7は、風箱D1の底部に設置され、図示されていない熱風発生装置に接続されている。熱風送風管D7は、熱風発生装置により発生された熱風を送風する。集塵口D8は、沈降室D3の上端に設置され、図示されていない集塵装置に接続されている。鋳型砂Sに付着していた塵が集塵口D8を経由して集塵装置に集められる。
 図2において、砂投入口D5から鋳型砂Sを投入すると同時に、熱風発生装置が発生させた熱風が熱風送風管D7に送風される。送風された熱風は、風箱D1に流れ込み、さらに、底板D2の空気噴出口D2aを通じて沈降室D3に送風される。すると、底板D2上に溜まっていた鋳型砂Sは、熱風を受けることにより水分が蒸発により減少する。次第に、鋳型砂Sは流動化し、底板D2上を滑動するとともに一部は沈降室D3内で浮遊を始める。この時、鋳型砂Sに付着していた塵は鋳型砂Sと分離する。滑動した鋳型砂Sは、底板D2の傾斜に沿って砂排出口側D4の方へ進んだ後、堰D6によって滑動を停止する。よって、鋳型砂Sは、この部分で層を形成し始める。さらに、連続して砂投入口D5から鋳型砂Sを投入すると、鋳型砂Sの層は堰D6を越え、砂排出口D4から排出される。
 この時、集塵口D8から集塵を行うことで、乾燥設備D(沈降室D3)内を浮遊している塵と鋳型砂Sは集塵口D8に向けて浮遊移動するが、鋳型砂Sは集塵口D8に到達する前に重力により落下する。その結果、塵と熱風(空気)が集塵口D8から排出され、鋳型砂Sは砂排出口D4から排出される。
 ここで、乾燥される鋳型砂Sが水分を蒸発させるのに十分な温度まで加熱されないと、水分の管理値以下にまで鋳型砂Sを乾燥させることができない。そのためには乾燥設備D内での鋳型砂Sの温度を90℃以上になるよう加熱することが必要であり、鋳型砂Sの供給量及び砂投入口D5と砂排出口D4との間で最大何%の水分を蒸発させねばならないのか事前に検討して、熱風発生装置から供給する熱量を決定しておく必要がある。
 さらに、効率よく乾燥を行うためには、熱風送風管D7から風箱D1,空気噴出口D2a、沈降室D3を通り集塵口D8に至る熱風の流れが常に存在し、かつ、機体外への熱風の漏出がないようにすることが必要である。そのためには、熱風送風管D7から送風される熱風の風量と集塵口D8での集塵風量が等しいか、若しくは集塵口D8での集塵風量の方が大きいことが必要である。
(乾燥設備の第2の例)
 図3は、乾燥設備Dの第2の例である内燃式ロータリーキルン方式の乾燥設備の構造を示す、概略断面図である。内燃式ロータリーキルン方式の熱風乾燥設備である乾燥設備Dは、鋳型砂Sを90℃以上に加熱することにより、鋳型砂Sを乾燥させる。乾燥設備Dは、円筒D101、砂投入口D102、バーナーD103、砂排出口D104、砂排出口D105、攪拌板D106、支持台D107、及び、駆動源D108を備えている。
 円筒D101は、乾燥設備Dの中心に配置され、回転可能に支持されている。円筒D101は、投入された鋳型砂Sが円筒内に留まる様になっている。砂投入口D102は、円筒D101の一端に設けられている。乾燥前の鋳型砂Sは砂投入口D102から投入される。バーナーD103は、円筒D101内の砂投入口D102の反対端側に、円筒D101の略中心部に挿入されて配置されている。バーナーD103に着火することにより、円筒D101の内部を昇温する。砂排出口D104は、バーナーD103の下方に配設され、円筒D101の下方へ開口している。乾燥後の鋳型砂Sは砂排出口D104から排出される。砂排出口D105は、バーナーD103の上方に配設され、円筒D101の上方へ開口している。
 攪拌板D106は、円筒D101内面に螺旋状に複数配設されている。円筒D101が回転することにより、攪拌板D106は円筒D101内の鋳型砂Sを攪拌する。支持台D107は、円筒D101下方に配設され、円筒D101を回転可能に支持する。駆動源D108は、円筒D101下方に配設され、円筒D101を回転させる。なお、円筒D101は、砂投入口D102側が高く、砂排出口D104側が低くなるよう、わずかに傾斜した状態で支持台D107に支持されている。
 図3において、あらかじめバーナーD103に着火し、円筒D101内部を昇温しておく。その状態で円筒D101を回転させ、砂投入口D102から鋳型砂Sを投入する。鋳型砂Sは昇温された円筒D101内で攪拌板D106によって攪拌されながら昇温し、乾燥する。その後、鋳型砂Sは砂排出口D104に達したところで、砂排出口D104より排出される。
 ここで、乾燥される鋳型砂Sが水分を蒸発させるのに十分な温度まで加熱されないと、水分の管理値以下にまで鋳型砂を乾燥させることができない。そのためには乾燥設備内Dでの鋳型砂Sの温度を90℃以上になるよう加熱することが必要であり、鋳型砂Sの供給量及び砂投入口D102と砂排出口D104との間で最大何%の水分を蒸発させねばならないのか事前に検討して、バーナーD103から供給する熱量を決定しておく必要がある。
 なお、乾燥設備Dの構成はこれら二つに限られるものではなく、鋳型砂Sを90℃以上に加熱できる構造のものであれば、どのようなものでも構わない。例えば振動搬送しながら熱風を送風して乾燥させる機構の乾燥設備でも構わないし、熱風を送風しながら連続的に鋳型砂Sを攪拌して乾燥させる方式の乾燥設備でも構わないし、加熱源を円筒外部に配設した外燃式ロータリーキルンのような乾燥設備を用いても、問題はない。
 乾燥設備Dは、鋳型砂Sを90℃以上に加熱する能力を有するので、砂粒に残留する水分を効率的に管理値以下にまで乾燥することが可能である。
(磁選設備)
 次に、磁選設備Mを説明する。図4は、磁選設備Mの概略断面図である。磁選設備Mは、鋳型砂Sを0.15T~0.5Tの範囲内である磁束密度によって磁選し、鋳型砂Sから磁着物を除去する。磁選設備Mは、半磁外輪式の磁選設備である。磁選設備Mは、永久磁石M1、回転ドラムM2、入口側ダンパーM3、出口側分離板M4、砂投入口M5、砂排出口M6、磁着物排出口M7、及び、筐体M8を備えている。
 永久磁石M1は、設備の中心に固定され、鋳型砂Sの搬送範囲内に磁力を付与するよう配置される。回転ドラムM2は、永久磁石M1の外周に密接配置され、図示しない動力源により回転する機構を有する。回転ドラムM2は、上端M2a、及び、下端M2cを有する。入口側ダンパーM3は、回転ドラムM2の直上に配置され、自在に開度を調整できる機構を有する。出口側分離板M4は、回転ドラムM2の直下に回転ドラムM2との間に空隙を有するように配置され、自在に開度を調整できる機構を有する。砂投入口M5は、回転ドラムM2の直上に入口側ダンパーM3と隣接して配置される。砂排出口M6は、回転ドラムM2の直下で出口側分離板M4と筐体M8との間の永久磁石M1側で下方に開口する。磁着物排出口M7は、回転ドラムM2の直下で出口側分離板M4と筐体M8との間の反砂排出口M6側で下方に開口する。筐体M8は、磁選設備Mの全体を覆っている。
 図4において、入口側ダンパーM3を定量切り出し(取り出し)が可能な状態になるよう調整した上で、回転ドラムM2を反時計回りに回転させた状態で砂投入口M5から鋳型砂Sを投入すると、回転ドラムM2の上端M2aの位置から、回転ドラムM2の上に層を成した状態で鋳型砂Sが搬送される。回転ドラムM2の回転が進み回転ドラムM2の中間点M2bを通過すると、鋳型砂Sは回転ドラムM2から落下し、砂排出口M6から排出される。磁着物Eは回転ドラムM2の下端M2cまで搬送され、そこで回転ドラムM2から落下する。この時、出口側分離板M4を鋳型砂排出口M6側に倒すと、回転ドラムM2の下端M2cで落下する磁着物Eのうち磁着物排出口M7から排出される割合が増加し、反対に出口側分離板M4を磁着物排出口M7側に倒すと、回転ドラムM2の下端M2cで落下する磁着物Eのうち砂排出口M6から排出される割合が増加する。したがって、出口側分離板M4の位置は、磁着物Eの歩留まりを勘案して、適切な位置に調整しておく必要がある。
 また、磁選の効率は、磁束密度以外に回転ドラムM2の上に層を成した鋳型砂Sの厚さによっても決まる。この厚さが過剰となると、たとえ適切な磁束密度の磁選を行ったとしても、磁着物Eは回転ドラムM2の中間点M2bから回転ドラムM2の下端M2cまでの間に落下してしまい、鋳型砂S内に引き続き滞留してしまう。そのため、回転ドラムM2の上に層を成した鋳型砂Sの厚さが5mm以下となるよう、鋳型砂Sの供給量を勘案して、永久磁石M1の直径及び横幅を選定する必要がある。
 磁選設備Mは、磁束密度0.15T~0.5Tの能力を有する、半磁外輪式であるので、鋳型砂Sに残留する磁着物を、効率的に除去することが可能である。
(乾式の機械再生設備の第1の例)
 次に、乾式の機械再生設備Rを説明する。図5は、乾式の機械再生設備Rの第1の例である機械再生設備の概略断面図である。図6は、図5におけるA-A矢視図であり、図7は、図5におけるB-B矢視図であり、図8は、図7におけるC-C矢視図である。乾式の機械再生設備Rは、鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。
 第1の例においては、乾式の機械再生設備Rは、連続式で下端に砂落し口を設けた砂供給シュートR2、砂供給シュートR2の下方において水平回転自在に配設された回転ドラムR4、及び、回転ドラムR4内に配設された1個以上のローラーR12を備えている。
 より具体的には、角筒部R1aの下部に角錐部R1bを連結した処理槽R1の上端部には漏斗状の砂供給シュートR2が吊設されており、砂供給シュートR2の下端は図示されないゲートを介して常に一定流量の砂が流下される砂供給口R3が設けられている。砂供給シュートR2の下方には、回転ドラムR4が配設されており、回転ドラムR4は、円形底板R4aの周端から斜め上外方に延びる傾斜周壁R4bと、傾斜周壁R4bの上端から内側に張り出す堰R4cと、をそれぞれ一体的に連結した構成にされている。
 回転ドラムR4とモーターR9との間の接続は特に制限されるものではないが、例えば、回転ドラムR4における円形底板R4aの下面中央部には回転軸R5が固着されており、回転軸R5は中空状の支持フレームR6上に取付けられた軸受R7を介して、回転自在に支持されている。回転軸R5の下端にはVプーリーR8aが取付けられていて、処理槽R1の外側において、支持フレームR6上に取付けられたモーターR9の回転軸R10にVベルトR11及びVプーリーR8bを介して、伝動可能に連結されている。回転ドラムR4内には傾斜周壁R4bに対して若干の隙間を設け、かつ、傾斜周壁R4bに対し直角にして2個のローラーR12、R12が配設されており、ローラーR12、R12の上面中央部には支持軸R13、R13が相対的に回転可能にして連結されている。
 支持軸R13、R13の上端は横方向(ローラーR12、R12に平行)に延びる支持アームR14、R14の一端に固着されており、支持アームR14、R14の他端部は軸受R15、R15を介して垂直回転可能に支持されて支持アームR14、R14に交差する方向に延びる水平軸R16、R16の一端に連結されている。水平軸R16、R16の他端は角筒部R1aを貫通して外部に突出されて回転アームR17、R17の上端に固着されている。さらに2本の回転アームR17、R17の下端間はシリンダーR18により連結されていて、全体としてローラー加圧機構Pを構成している。すなわち常時、回転アームR17、水平軸R16、アームR14、を介してローラーR12、R12に対し傾斜周壁R4b方向に一定圧力をかけた状態にしている。なおシリンダーR18に代えて圧縮コイルばねを介して回転アームR17、R17の下端間を連結しても同様の作用効果が得られる。
 このような構成にされたものは、モーターR9を駆動させて回転ドラムR4を図6の矢印方向に回転させた状態で砂供給シュートR2内に鋳型砂Sを供給する。これにより砂供給口R3から一定量の鋳型砂Sが回転ドラムR4の円形底板R4aの中央部へ連続的に供給される。供給された鋳型砂Sは回転ドラムR4の遠心力により外方向へ移動され、更に傾斜周壁R4bの内面に遠心力により押え付けられながら堆積してゆき、その厚さを増して砂層Lを形成する。この砂層Lは厚さが傾斜周壁R4bとローラーR12、R12との隙間よりも厚くなるとローラーR12、R12は鋳型砂Sとの摩擦力で回転を始める。さらに時間が経過すると砂層Lはさらに厚さを増して堰R4cをのり越える。その後は堰R4cの幅にほぼ等しい厚さに一定に保たれる。
 この状態で砂層Lは回転ドラムR4と共に回転し、ローラーR12、R12の位置に来るとローラーR12、R12と回転ドラムR4の傾斜周壁に挾まれて一定の加圧力を受けると共に砂内部に剪断作用を生じ、これにより鋳型砂Sの表面の付着物は剥離、除去され砂再生が成される。この砂再生は、ローラーR12により一定圧力で加圧された状態での剪断作用により行なわれるものであるため、効率よく付着物が剥離されると共に砂の破砕が少ない。再生された砂は堰R4cをのり越えて処理槽R1の下方へ落下してゆき、引き続き、図1に示される分級設備Cへと送られる。以上のように回転ドラムR4内への鋳型砂Sの供給、回転ドラムR4内での砂再生及び砂再生の排出が連続して行なわれ、鋳型砂Sが連続的に再生されてゆく。
 上記の構成において、回転ドラムR4の周壁R4bを上外方に延びる上広がりの傾斜面にした理由は、遠心力で砂層Lを形成する場合重力の影響で下方ほど堆積層の内径が小さくなるので砂層Lの厚さを上下方向にわたって一定にするためのものであり、これによりローラーR12、R12による均等な加圧がなされ、より効率の良い砂再生が成される。また上記の構成においてはローラーR12を2個配設しているが、1個でもよく、また、3つ以上でもよい。
 さらにローラーR12、R12の外周部の材質を砥石などの研磨材にすることにより、砂再生作用のほかに、回転ドラムR4の傾斜周壁R4bとローラーR12、R12に挾まれた砂は研磨材による研磨作用を同時に受け、再生効率を更に向上させることができる。またローラーR12、R12は傾斜周壁R4bの方向へ一定圧力をかけた状態にされているため若干の摩耗等があっても鋳型砂Sを一定圧力で加圧することができ、砂再生の安定化を測ることが可能となる。
 また、機械再生設備Rにおいて、再生の強さとはモーターR9の負荷電流によって表されるのだが、モーターR9の負荷電流は、砂層Lの厚さと、ローラー加圧機構Pの加圧力によって決定される。したがって、堰R4cの幅とローラー加圧機構Pの加圧力を最適なものに調整することで、最も効率的な再生を行うことが可能となる。
 なお、シリンダーR18の動力は空圧、水圧、油圧、電動など特に制限するものではないが、特に空圧油圧複合シリンダーを採用することで、加圧力を調整する際に迅速に反応させることが可能となる。
 このような構成を取ることにより、機械再生設備Rは、非常に効率よく再生を行うことが可能となる。
(乾式の機械再生設備の第2の例)
 図9は、乾式の機械再生設備Rの第2の例である機械再生設備の概略断面図であり、図10は、乾式の機械再生設備Rの第2の例における、投入砂流量とモーターの目標電流値との相対関係を示すグラフであり、図11は、乾式の機械再生設備Rの第2の例における、フローチャートである。乾式の機械再生設備Rは、鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。
 第2の例においては、乾式の機械再生設備Rは、砂(鋳型砂S)を投入するため下端に砂落し口を有する砂投入部R101と、砂投入部R101の下方において水平方向に回転自在に配設される回転ドラムR102と、回転ドラムR102をモーターR103により回転させるモーター駆動手段R104と、回転ドラムR102内において隙間を設けて配置されたローラーR105、R105と、ローラーR105、R105にシリンダーR106、R106が連結されて、ローラーR105、R105を回転ドラムR102に向けて押しつけるローラー加圧機構R107、R107とを備える鋳型砂再生設備に、砂投入部の砂落し口に設置され、投入される砂流量を検出する砂流量検出器R108と、モーター駆動手段R104の電流値を検出する電流検出器R109と、シリンダーR106、R106の圧力制御手段R110と、制御手段R111とが備えられている。
 回転ドラムR102は、円形底板R102aの周端から斜め上外方に延びる傾斜周壁R102bおよび傾斜周壁R102bの上端から内側に張り出す堰R102cを連結した構成にされている。ローラーR105、R105は、傾斜周壁R102bに対して若干の隙間を設けて配置されている。また、回転ドラムR102を囲むようにシュートR112が設けられている。これにより、ローラーR105、R105により一定圧力で加圧された状態で剪断作用が行われ再生された砂(鋳型砂S)は、堰R102cを乗り越えてシュートR112に集められたのち分級設備Cへと送られる。
 モーター駆動手段R104は特に限定されるものではないが、回転ドラムR102をモーターR103とベルトで駆動させる機構を用いることができる。この構成においては、回転ドラムR102における円形底板R102aの下面中央部には門形フレームR113に取り付けられた軸受部R114に軸支される回転軸R115aが固着されている。回転軸R115aの下端にはプーリーR116aが取付けられている。また、機体の外側には、フレームR117にモーターR103が取付けられている。これにより、回転ドラムR102は、このモーターR103の回転軸R115bに取り付けられるプーリーR116bとプーリーR116aに巻きつけられるベルトR118により、モーターR103の駆動力が伝動可能にされている。
 ローラー加圧機構R107は、ローラーR105をシリンダーR106で加圧させる機構を用いることができれば、とくに限定されるものではない。本構成では、ローラーR105の上端面に固着される連結具R119と、連結具R119に挿通して支持される軸R120と、軸R120に連結されるアームR121と、アームR121に連結されるシリンダーR106とからなる機構にされている。また、このシリンダーR106は、そのロッドがアームR121の上端部に回動自在に連結されている。なお、本構成では、2個のローラーR105が配設されているが、ローラーR105の個数は適宜選定することができる。
 砂流量検出器R108は、砂投入部R101の砂落し口に設置され、投入される砂流量を検出することができる検出器であれば、とくに限定されるものではないが、たとえばロードセルなどで一定の高さから落下する砂の荷重を測定する装置を用いることができる。また、電流検出器R109は、モーター駆動手段R104の電流値を検出することができる検出器であれば、とくに限定されるものではないが、たとえば電流表示に用いられる変流器の信号を数値データに変換する装置を用いることができる。
 さらに、圧力制御手段R110は、シリンダーR106の加圧力を調整できる機構であれば、とくに限定されるものではないが、本構成では、油圧配管R122に接続される電磁切替弁R123、圧力制御弁R124、油圧ポンプR125及び油圧タンクR126からなる機構とされている。この圧力制御弁R124は、送られてくるオイルを制御手段R111の出力信号の大きさに比例した圧力に制御してシリンダーR106側に送り出すようにされている。なお、本構成では、シリンダーR106が油圧シリンダーとされているが、空圧シリンダー、空圧油圧複合シリンダーまたは電動シリンダーとすることができる。この場合、シリンダーの種類に応じて適宜シリンダーの加圧力を調整できる機構を採用することができる。
 制御手段R111は、砂流量検出器R108により検出される砂流量に応じてシリンダーR106によるローラーR105の加圧力を調整する構成にされている。本構成では、あらかじめ設定された、回転ドラムR102に投入されるべき砂流量と、砂流量に応じたモーターR103の電流値との相対関係を維持するように、砂流量検出器R108により検出された砂流量に対応するモーターR103の電流値を算出する目標電流演算部と、算出された砂流量に対応するモーターR103の目標電流値と運転中の実測したモーターR103の電流値とを比較する比較部と、比較部の結果に基づいて運転中のモーターR103の電流値を目標電流値になるようにシリンダーR106によるローラーR105の加圧力を調整する制御部とからなる構成にされている。具体的には、演算内容は負の帰還量を算出している。つまり、目標の電流値に近づくためには、現在の設定圧力を、どれだけ上げるべきか、下げるべきか、またはそのままでよいかを算出している。
 相対関係は、仕様により決定される砂流量と再生砂に要求される研磨の程度の違いにより決定される電流値、たとえば研磨し易い砂は80~100A程度、研磨し難い砂は100~120A程度とに基づいて、回転ドラムR102に投入される砂流量を再生するのに必要なモーターR103の電流値を目標電流値として求めることができる。たとえば、砂流量が2~5t/h程度を対象とした設備を考えると、図10に示されるように、砂流量5t/hを再生するときに必要なモーターR103の電流値を100Aとすると、回転ドラムR102に投入される砂流量が4t/hである場合、砂流量に応じたモーターR103の目標電流値は88Aとなる。本構成では、砂流量が5t/hから4t/hに減少したとき、運転中のモーターR103の電流値を目標電流値88AになるようにシリンダーR106によるローラーR105の加圧力を調整する。
 なお、本構成における相対関係は、投入砂流量に応じた電流値の調整を直線で表しているが、曲線で表される場合についても同様の制御を行うことができる。
 また、比較部は、投入された砂流量に対応するモーターR103の目標電流値と運転中の実測したモーターR103の電流値とを比較したのち、シリンダーR106によるローラーR105の加圧力に対する増加減率を算出する演算部を具備しているのが好ましい。たとえば、つぎの式(1)から得られる増加減率(増圧率または減圧率)を1秒周期で演算してシリンダーR106の加圧力を調整する。ここで、感度とは増加減率が急激に変化することを調整するためのものであり、たとえば0.2とすることができる。
(数1)
 増加減率=(目標電流値/実測の電流値-1)×感度+1・・・(1)
 具体的な加圧力の演算例としては、目標電流値=88A、実測の電流値=80Aにて、感度=0.2とした場合、増加減率=(88/80-1)×0.2+1=1.02となり、現在の圧力設定値が100kPaなら、1秒後の圧力設定値を100×1.02=102kPaとする。
 また、本構成では、制御手段R111に付加される機能として、処理砂の累計重量値を算出する演算手段を備えている。この演算手段は、砂流量検出器R108により測定した砂流量を処理時間について積分演算を行い、処理砂の累計重量値を算出する。たとえば、測定した砂流量を処理時間について積分演算を行う方法としては、サンプリング時間を1秒に設定するとともに、処理開始時点の砂量小計をゼロとして、砂処理中の砂量をつぎの式(2)により1秒毎に演算を行う。
(数2)
 砂量小計=砂量小計+毎時砂流量×1/3600・・・(2)
 ついで、この砂処理中の砂量を積分演算したのち、処理完了時点の処理砂の累計重量値(砂累計値)は、つぎの式(3)により算出することができる。
(数3)
 砂量累計=砂量累計+砂量小計・・・(3)
 なお、ここで、累計を求める手順を小計と累計の二段階に分けたのは演算精度を確保するためである。たとえば2~5t/hを処理する場合、1秒当り0.6~1.4kgの砂が流れるので、1年のうち2000時間の稼動では、処理砂の量は(0.6~1.4)×3600×2000=4320000~10080000kgとなる。演算処理では、有効数字7桁で浮動小数点まで演算をさせているので、累計が小さい間はそのまま積算しても高精度の演算ができる。ところが、長い間累計をリセットしないと前述の様に、演算結果が7桁を越えることもあり得る。この場合は、小さい方の有効数字が失われ、全く加算されなくなるという不具合が発生する。そこで、再生処理毎に一旦、小計を取り、小さい方の数字を3程度桁移動させた後、累計に加算することにより高精度の演算を行っている。
 そして、算出される処理砂の累計重量値は、表示装置、たとえばパーソナルコンピュータや、グラフィックタッチパネルなどに表示し、メモリーカードなどに記録する。本構成では、この記録される処理砂の累計重量値の情報(データ)を、鋳型造型工程における砂量の管理や、設備の消耗部品、たとえばローラーR105や回転ドラムR102の交換時期の管理に役立てることができる。
 このようにして構成された設備は、図11のフローチャートにしたがって動作する。本構成では、再生する砂流量が5t/hである設備を対象とし、使用されるモーターの目標電流値を100Aとする。このときの相対関係は図10に示される。そこで、回転ドラムに投入される砂流量と砂流量に応じたモーターの目標電流値との相対関係を設定し、記憶させる(ステップS1)。次に、砂再生設備を起動する。そして、回転ドラムに砂の投入を開始する(ステップS2)。次に、砂投入部に設置した砂流量検出器にて、現在の投入砂流量を算出する(ステップS3)。次に、相対関係から投入砂流量に応じたモーターの目標電流値を算出する(ステップS4)。
 次に、現在(運転中)のモーターの電流値(実測電流値)を算出し、投入された砂流量に対応するモーターの目標電流値と比較する(ステップS5、S6)。次に、シリンダーによるローラーの加圧力に対する増加減率を算出する(ステップS7)。次に、式(1)から得られる増加減率をサンプリング時間、たとえば1秒ごとに算出し、シリンダーの加圧力設定値を増減し、モーターの電流値を増減させる。なお、このときの感度は0.2とした(ステップS8)。
 本構成では、投入される砂流量に対応するモーターの目標電流値に合わせてシリンダーの加圧力を制御することで再生砂の品質を向上させることができる。
 また、本構成では、再生設備における主要データを運転している最中に記録し、採取記録を分析することで設備の稼動状態や砂性状の変化を監視して、適正範囲を超える場合は対処を促すための警報を発することで、大きな問題発生を防止することにより再生砂の品質管理ができる。監視としては、ディスプレイ画面に表示して適正範囲を超える場合はその理由と対処方法を表示する。主要データとしては、投入された砂流量、モーターの電流値、シリンダーの伸びおよび加圧力の設定値を挙げることができる。たとえば投入砂流量の極端な減少は、ローラーを急加熱し、割れを引き起こすこともあるため、砂流量を監視する。
 目標電流値とモーターの電流値が異なることから電流値の変動を管理するため、モーターの電流値を記録し、監視する。シリンダーの伸びが適正範囲(たとえば70~110mm)を超えた時だけ異常表示をするのでは、それまでの過程が不明となるので記録を行う。また、砂性状やローラーの加圧力などの値が変化していないのにも関わらず、シリンダーの伸びが大きくなる場合はローラーや回転ドラムの摩耗が考えられるため、シリンダーの伸びを監視する。このシリンダーの伸びは、シリンダーR106のロッドに位置センサー、たとえばリニアゲージR127、R127を連結して測定することができる。また、ローラーの加圧力にも制御可能な範囲があるため、ローラーの加圧力も監視する。
 そこで、本構成では、主要データを運転中記録する記録部と、記録される主要データをそれぞれ適正な範囲にあるか否かを判定する判定部と、判定部の結果、主要データが適正な範囲外となった場合は対処を促す警報を発する警報指令部とを具備するのが好ましい。
 このような構成を取ることにより、機械再生設備Rは、供給される砂(鋳型砂S)の性状の変動に合わせて常に最適の条件にローラーの加圧力が最適な状態に制御され、再生砂の性状を常に一定に保つことが可能となる。
(圧縮空気噴射手段)
 次に、乾式の機械再生設備Rに用いられる圧縮空気噴射手段を説明する。図12は、圧縮空気噴射手段2の概略構成図である。圧縮空気噴射手段2は、乾式の機械再生設備Rの傾斜周壁に付着堆積している堆積微粉に圧縮空気を噴射してこれを除去する。これは、再生によって鋳型砂Sから剥離した微粉が傾斜周壁に付着堆積して層を形成して固着することで、加圧が不十分になり再生効率が著しく低下することがあるので、微粉堆積層が固着する前に、圧縮空気を噴射してこれを除去するためである。
 圧縮空気噴射手段2は、図示しない圧縮空気源からの圧縮空気の圧力を調整する圧力調整弁R201、圧力調整弁R201からの圧縮空気の流量を調整する流量調整弁R202、圧力調整弁R201および流量調整弁R202を貫流した圧縮空気を噴射するノズルR203、及び、圧力調整弁R201及び流量調整弁R202を制御する制御手段R204で構成される。また、本図では、処理槽が、水平面内で回転可能に配設された円形底板R205a、円形底板205aの周端から斜め上外方に延びる傾斜周壁R205b、及び、傾斜周壁R205bの上端から内側に張り出す堰R205cをそれぞれ一体的に連結した回転ドラムR205と、傾斜周壁R205b上を転がり自在に軸支されて配設されたローラーR206とで構成され、ノズルR203が処理槽内に配設され、ノズルR203の先端は傾斜周壁R205bに対向している。
 ここで、回転ドラムR205は、上述した乾式の機械再生設備の回転ドラムR4及びR102に相当し、円形底板R205aは、上述した乾式の機械再生設備のR4a及びR102aに相当し、傾斜周壁R205bは、上述した乾式の機械再生設備の傾斜周壁R4b及びR102bに相当し、堰R205cは、上述した乾式の機械再生設備の堰R4c及びR102cに相当し、ローラーR206は、上述した乾式の機械再生設備のローラーR12及びR105に相当する。
 そしてローラーR206はシリンダーR207とローラー加圧機構R208を介して連結されており、さらにシリンダーロッドには位置センサーR209が接続され、シリンダーロッドの伸びの情報を、制御手段R204へ送る。制御手段R204には、噴射条件選定手段として、堆積微粉の成長速度によって決まる、固有の圧縮空気の圧力と流量、そして噴射時間の条件が記憶されている。
 ここで、シリンダーR207は、上述した乾式の機械再生設備のシリンダーR18及びR106に相当し、ローラー加圧機構R208は、上述した乾式の機械再生設備のローラー加圧機構P及びR107に相当する。
 このように構成したものは、加圧開始時の位置センサーR209の情報を制御手段R204で記憶し、その後引き続き位置センサーR209の情報を連続的に制御手段R204で収集することにより、シリンダーR207のロッドの伸びの変化を制御手段R204の情報として取得する。ここで例えば、加圧開始時と比較してシリンダーロッドの伸びが10mm減少したとすると、シリンダーロッドの総長さと加圧制御機構の長さの比率から決定されるローラーR206と傾斜周壁R205bとの距離の関係から、制御手段R204で微粉堆積層の厚さを演算する。そして、あらかじめ設定した噴射条件となる微粉堆積層の厚さに達したら、微粉堆積層に圧縮空気を噴射してこの微粉堆積層を除去する。
 設定した噴射条件となる微粉堆積層に達する時間が短い(例えば略5分)場合は、微粉は付着性が高いことが推定されるので、制御手段R204に記憶された噴射条件選定手段のうち、例えば圧縮空気の圧力が高く、風量が多く、そして噴射時間が長いものを選択することになる。反対に、設定した噴射条件となる微粉堆積層に達する時間が長い(例えば略15分)場合は、微粉は付着性が低いことが推定されるので、制御手段R204に記憶された噴射条件選定手段のうち、例えば圧縮空気の圧力が低く、風量が少なく、そして噴射時間が短いものを選択することになる。またこれらとは別に、噴射条件選定手段として一定の時間間隔(例えば3分に1回)を選択できるようにし、一定の時間間隔で微粉堆積層の厚さと関係なく圧縮空気を噴射することで、微粉堆積層の成長を未然に防止するようにしてもよい。
 圧縮空気噴射手段2を用いることにより、堆積微粉がローラーで加圧されて固着し、加圧力を最適な状態に制御出来なくなることを防止することが可能となる。
(分級設備C)
 次に、分級設備Cを説明する。図13は、分級設備Cの概略断面図である。分級設備Cは、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉とを分離する。分級設備Cは、風箱C1、底板C2、沈降室C3、砂排出口C4、砂投入口C5、堰C6、送風管C7、及び、集塵口C8を備えている。
 風箱C1は、分級設備Cの下部に設けられ、送風管C7から送られてきた空気が風箱C1を経由して沈降室C3に送風される。底板C2は、風箱C1の上部に置かれ、投入された鋳型砂Sが上面に留まる様になっている。底板C2には、風箱C1からの風(空気)を沈降室C3に送風する空気噴出口C2aが設けられている。沈降室C3は、分級設備Cの上部に設けられ、風を受けた鋳型砂Sがその中で流動(浮遊)する。砂排出口C4は、沈降室C3の先端に設置され、機体下方に開口している。鋳型砂Sは砂排出口C4から排出される。砂投入口C5は、風箱C1の上部に設置され、機体上方に開口している。再生された鋳型砂Sは砂投入口C5から投入される。なお、底板C2は、砂排出口C4側が低くなり、砂投入口C5側が高くなるように、わずかに傾斜させてある。
 堰C6は、底板C2上の砂排出口C4に隣接した位置に設けられている。堰C6は流動(浮遊)した鋳型砂Sを一時的に堰き止める。送風管C7は、風箱C1の底部に設置され、図示されていない送風機に接続されている。送風管C7は、送風機が発生させた風を送風する。集塵口C8は、沈降室C3の上端に設置され、図示されていない集塵装置に接続されている。鋳型砂Sから分離した炭化物、焼結物、金属化合物などの微粉が集塵口C8を経由して集塵装置に集められる。
 図13において、砂投入口C5から鋳型砂Sを投入すると同時に、送風機により発生された風(空気)が送風管C7に送風される。送風された風は、風箱C1に流れ込み、さらに、底板C2の空気噴出口C2aを通じて沈降室C3に送風される。すると、底板C2上に溜まっていた鋳型砂Sは、風を受けることにより流動化し、底板C2上を滑動するとともに一部は分級設備C(沈降室C3)内で浮遊を始める。この時、鋳型砂Sに付着していた炭化物、焼結物、金属化合物などは鋳型砂Sと分離する。浮遊した鋳型砂Sは、底板C2の傾斜に沿って砂排出口側C4の方へ進んだ後、堰C6によって滑動を停止する。よって、鋳型砂Sは、この部分で層を形成し始める。さらに、連続して砂投入口C5から鋳型砂Sを投入すると、鋳型砂Sの層は堰C6を越え、砂排出口C4から排出される。
 この時、集塵口C8から集塵を行うことで、分級設備C(沈降室C3)内を浮遊している炭化物、焼結物、金属化合物などと鋳型砂Sは集塵口C8に向けて浮遊移動するが、再利用可能な鋳型砂Sは集塵口C8に到達する前に重力により落下し、砂排出口C4から排出される。一方、鋳型砂Sから離した炭化物、焼結物、金属化合物などは、鋳型砂Sと比較して質量が軽いため重力による落下は起こらず、空気とともに集塵口C8から排出される。このようにして、鋳型砂Sから分離される。
 分級設備Cは比重分級法を用いているので、複雑な構造を持たずに砂粒と微粉とを効率的に分級することが可能となる。
 なお、前述した乾燥設備Dの第1の例である流動層式の熱風乾燥設備と、分級設備Cとは構造的に類似している。例えば、熱風送風管D7に接続されている熱風発生装置を送風機に切り替えることにより、乾燥設備Dを分級設備Cとして使用することができる。また、送風管C7に接続されている送風機を熱風発生装置に切り替えることにより、分級設備Cを乾燥設備Dとして使用することができる。よって、乾燥設備Dを分級設備Cに、又は、分級設備Cを乾燥設備Dに流用することが可能である。
(再生方法)
 次に、第1の実施の形態に係る再生設備1を用いた鋳型砂の再生方法について説明する。本再生方法で用いられる生型鋳造設備から排出される鋳型砂Sは、水分が含まれている可能性、及び/又は、磁着物が付着している可能性がある砂である。例えば、水分が含まれている可能性がある砂とは、砂処理設備で古砂がオーバーフローしたオーバーフロー砂が挙げられる。また、磁着物が付着している可能性がある砂とは、ショットブラスト工程から排出された製品付着砂が挙げられる。
 オーバーフロー砂は、砂粒表面に、ベントナイトと生型添加剤が付着し、さらに、砂粒表面に、ベントナイトが焼結してできるオーリティクスと呼ばれる多孔質の焼結層が形成されている。ベントナイトと生型添加剤が砂粒表面に残留したままでは、生型砂の通気度と充填性を低下させる。また、生型添加剤がガス化すると、鋳物のガス欠陥の原因ともなる。さらに、オーリティクスが過剰に残留すると、鋳型の充填性を低下させると同時に耐火度を下げる原因ともなる。従って、オーバーフロー砂では、砂粒表面のベントナイトと生型添加剤を除去し、さらに砂粒表面のオーリティクスを剥離し、除去することが必要である。
 製品付着砂は、非常に苛烈な熱履歴を受けているためにベントナイトが焼結してオーリティクスに変化している。それ以外の生型添加剤や中子粘結剤も多くの部分がガス化して揮発しているが、一部は炭化した状態で砂粒表面に残留している。それ以上に重要なのは、この砂には磁着物(金属と砂粒が溶着した状態の砂粒)が多く存在することである。磁着物が過剰な砂が鋳型に混入すると鋳物の焼き付き欠陥の原因となるとともに、中子に使用した場合に中子用粘結剤の強度発現不良の原因ともなる。従って、製品付着砂では、磁着物を磁選により除去した上で、表面の炭化物を除去することが必要である。
 図14は、第1の実施の形態に係る再生設備1を用いた鋳型砂の再生方法を示すフローチャートである。本再生方法に用いられる鋳型砂Sは、前述した様に、水分が含まれている可能性、及び/又は、磁着物が付着している可能性がある。
 初めに、鋳型砂Sに含まれる水分量、及び、磁着物量を測定する(第一工程)。砂の水分量を測定するために、公知の測定方法を用いることができる。例えば、水分量の測定方法として、JIS Z 2601 附属書5「鋳物砂の水分試験方法」が挙げられる。
 また、砂の磁着物量を測定するために、公知の測定方法を用いることができる。例えば、磁着物量の測定方法として、AFS(American Foundry Society)発行のMold & Core Test Handbook 3rd Editionで規定されている、Testing Procedure AFS 5101-00-S “MAGNETIC MATERIAL, REMOVAL AND DETERMINATION”が挙げられる。この手順書では磁着物を分離するために用いる磁石の磁束密度に関する規定がないが、本発明で規定される磁着物の測定を行うには、磁束密度0.15T~0.5Tの磁石を用いることが必要である。
 鋳型砂Sに含まれる水分量の測定値が管理値を越えていた場合、乾燥設備Dで鋳型砂Sを乾燥させる(第二工程)。ここで、水分量の管理値は、0.5%であることが好ましい。水分量が0.5%以下であれば、再生設備1の中で棚吊りを起こすことがなく、また、水分量が多いことに起因する中子強度発現不良などの問題を発生させることがないためである。
 鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていた場合、磁選設備Mで、鋳型砂Sを磁選する(第二工程)。ここで、磁着物量の管理値は、5.0%であることが好ましい。磁着物量が5.0%以下であれば、再生砂を使用することによる鋳物の焼き付き欠陥や、残留金属分が原因である中子強度発現不良などの問題を発生させることがないためである。
 鋳型砂Sに含まれる水分量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定する(第二工程)。
 鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは磁選設備Mで磁選する必要がないため、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。
 鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要、及び、磁選設備Mで磁選する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定し、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。なお、このように、バイパス系BP1とバイパス系BP2の両方を通過する経路を、バイパス系BP3と呼ぶ。
 次に、乾式の機械再生設備Rで鋳型砂Sの再生を行う(第三工程)。再生処理により、鋳型砂Sの強熱減量は減少する。
 次に、再生された鋳型砂Sを比重分級法の分級設備Cで分級する(第四工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 第三工程(再生処理)、及び、第四工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第三工程(再生処理)、及び、第四工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備Rへ戻るように設定する。そして、鋳型砂Sは、乾式の機械再生設備R、及び、分級設備Cを再び通過する。本工程は、鋳型砂Sの強熱減量、及び、全粘土分の測定値が管理値以下になるまで繰り返される。
 一方、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定し、鋳型砂Sは再生設備1から排出される。これにより再生処理は終了する。
 ここで、強熱減量の管理値は、0.6%であることが好ましい。強熱減量が0.6%以下であれば、砂粒表面に付着した揮発分が注湯時にガス化して鋳物欠陥の原因となったり、中子に使用した際に硬化反応を阻害したりするなどの問題を発生させることがないためである。砂の強熱減量を測定するために、公知の測定方法を用いることができる。例えば、強熱減量の測定方法として、JIS Z 2601 附属書6「鋳物砂の強熱減量試験方法」が挙げられる。
 また、全粘土分の管理値は、0.6%であることが好ましい。全粘土分が0.6%以下であれば、砂粒表面に付着した揮発分が注湯時にガス化して鋳物欠陥の原因となったり、中子に使用した際に硬化反応を阻害したりするなどの問題を発生させることがないためである。また、鋳型砂S全体の微粉が増加することによる鋳型砂Sの通気度低下や充填性低下などの鋳型砂Sの品質を低下させる問題も発生させることがないためである。砂の全粘土分を測定するために、公知の測定方法を用いることができる。例えば、全粘土分の測定方法として、JIS Z 2601 附属書1「鋳物砂の粘土分試験方法」が挙げられる。
 乾式の機械再生設備R、及び、分級設備C(再生処理、及び、分級処理)を通過させる回数のことをパスと称する。最初のパスを1パスと称し、通過させる回数が増すに従い、以降2パス、3パスなどと称する。
 管理値以下の強熱減量、及び、管理値以下の全粘土分とするのに何パス必要とするかは、あらかじめ試験的に砂を再生し、何パスで管理値以下の強熱減量、及び、管理値以下の全粘土分に達するのか確認することにより決定される。
 上述したように、集塵設備DCは、分級設備Cと接続されており、分級設備Cで発生したダスト(微粉)を集塵することが可能となっている。ここで、1パス目で発生するダストは主に砂粒表面に付着していたベントナイト及び生型添加剤である。そのため、これらのダストはベントナイト及び生型添加剤の代替物として混練工程で再利用することが可能である。したがって、この工程で発生するダストはそれ以降のパスで集塵されるダストとは独立に回収してもよい。例えば、1パス目に集塵設備DCで集塵されたダストを、2パス目開始前に排出するなどして2パス以降のダストと独立して回収するようにすることで、再利用可能な1パス目のダストを他のダストと混合させることなく、有効に再利用することが可能となる。
 また、一般に焙焼炉を用いた熱再生では、鋳型砂Sを800℃程度まで加熱する必要があるが、本実施の形態の乾燥設備Dでは、鋳型砂Sを90℃以上105℃以下で加熱すればよいため、エネルギー消費量を抑えることができ、再生に必要なコストを削減することが可能となる。
 このように、第1の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備から排出される水分及び磁着物が含まれた鋳型砂を乾式の機械再生のみで再生することができる。その結果、湿式再生を使用する場合に発生する廃水の中和処理・不純物の分離処理が不要となり、熱再生を使用する場合の多大なエネルギー消費量を削減することができ、再生設備を小型化かつ簡略化することができるので、砂再生に要する効率を上げ、砂再生にかかるコストを削減することが可能となる。
(第2の実施の形態)
 第2の実施の形態では、乾燥設備での乾燥工程、及び/又は、磁選設備での磁選工程を経た鋳型砂に対して、再度、鋳型砂に含まれる水分量、及び、磁着物量を測定し、それぞれの数値が管理値以下になるまで、乾燥設備での乾燥工程、及び/又は、磁選設備での磁選工程を繰り返す。第2の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第1の実施の形態と異なる部分を説明する。他の部分については第1の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図15は、第2の実施の形態に係る鋳型砂の再生設備の概略構成図である。再生設備11は、乾燥設備D、磁選設備M、切り替え設備V1、切り替え設備V2、バイパス系BP1、バイパス系BP2、乾式の機械再生設備R、分級設備C、切り替え設備V3、送還系PL1、集塵設備DC、切り替え設備V4、及び、送還系PL2を備えている。
 磁選設備Mと乾式の機械再生設備Rとの間には、乾燥設備Dでの乾燥工程、及び/又は、磁選設備Mでの磁選工程を経た鋳型砂Sを機械再生設備Rへそのまま送るか、鋳型砂Sを切り替え設備V1の手前に戻して再度、乾燥処理、及び/又は、磁選処理をするかを切り替えるための切り替え設備V4が備えられており、切り替え設備V4には、鋳型砂Sを乾燥設備D、及び/又は、磁選設備Mへ戻すための送還系PL2が接続している。鋳型砂Sに含まれる水分量、及び、磁着物量を測定し、それぞれの数値が管理値以下になっていない場合には、鋳型砂Sを乾燥設備D、及び/又は、磁選設備Mへ戻すことが可能な構成となっている。
(再生方法)
 次に、第2の実施の形態に係る再生設備11を用いた鋳型砂の再生方法について説明する。図16は、第2の実施の形態に係る再生設備11を用いた鋳型砂の再生方法を示すフローチャートである。本再生方法に用いられる鋳型砂Sは、前述した様に、水分が含まれている可能性、及び/又は、磁着物が付着している可能性がある。
 初めに、鋳型砂Sに含まれる水分量、及び、磁着物量を測定する(第一工程)。鋳型砂Sに含まれる水分量の測定値が管理値を越えていた場合、乾燥設備Dで鋳型砂Sを乾燥させる(第二工程)。ここで、水分量の管理値は、0.5%であることが好ましい。鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていた場合、磁選設備Mで鋳型砂Sを磁選する(第二工程)。ここで、磁着物量の管理値は、5.0%であることが好ましい。鋳型砂Sに含まれる水分量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定する(第二工程)。鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは磁選設備Mで磁選する必要がないため、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。
 鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要、及び、磁選設備Mで磁選する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定し、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。なお、このように、バイパス系BP1とバイパス系BP2の両方を通過する経路を、バイパス系BP3と呼ぶ。
 次に、鋳型砂Sに含まれる水分量、及び、磁着物量を再度測定する(第三工程)。鋳型砂Sに含まれる水分量の測定値が管理値を越えていた場合、及び/又は、鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていた場合、再度、第二工程(乾燥工程、及び/又は、磁選工程)に鋳型砂Sを通過させるため、切り替え設備V4を用いて鋳型砂Sが送還系PL2を経由して切り替え設備V1の手前へ戻るように設定する(第三工程)。そして、鋳型砂Sは、乾燥設備D、及び/又は、磁選設備Mを再び通過する。本工程は、鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値以下になるまで繰り返される。鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値以下の場合、切り替え設備V4を用いて鋳型砂Sが機械再生設備Rへ送られるように設定し、鋳型砂Sは乾式の機械再生設備Rへ送られる(第三工程)。
 次に、乾式の機械再生設備Rで鋳型砂Sの再生を行う(第四工程)。再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備Cで分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 第四工程(再生処理)、及び、第五工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第四工程(再生処理)、及び、第五工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備Rへ戻るように設定する。
 一方、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定する。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 このように、第2の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、鋳型砂に含まれる水分量、及び、磁着物量が管理値以下になるまで、乾燥設備での乾燥工程、及び/又は、磁選設備Mでの磁選工程を繰り返すことができるので、鋳型砂に含まれる水分量、及び、磁着物量を確実に管理値以下にすることが可能となる。
(第3の実施の形態)
 第1の実施の形態では、生型鋳造設備から排出される鋳型砂は、水分が含まれている可能性、及び/又は、磁着物が付着している可能性がある砂に対する再生方法及び再生設備について説明したが、第3の実施の形態では、生型鋳造設備から排出される様々な種類の鋳型砂Sを一度に再生する方法及び再生設備について説明する。第3の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第1の実施の形態と異なる部分を説明する。他の部分については第1の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図17は、第3の実施の形態に係る鋳型砂の再生設備の概略構成図である。再生設備21は、オーバーフロー砂回収設備PO、乾燥設備D、オーバーフロー砂異物除去設備IO、オーバーフロー砂貯蔵槽SSO、製品付着砂回収設備PS、製品付着砂異物除去設備IS、磁選設備M、製品付着砂貯蔵槽SSS、主型中子砂混合砂回収設備PL、解砕設備L、主型中子混合砂異物除去設備IL、主型中子混合砂貯蔵槽SSL、砂塊及び砂回収設備PC、解砕設備L、砂塊及び砂異物除去設備IC、砂塊及び砂貯蔵槽SSC、砂切り出し/配合設備F、乾式の機械再生設備R、分級設備C、切り替え設備V3、送還系PL1、及び、集塵設備DCを備えている。
 オーバーフロー砂回収設備POは、生型鋳造設備の砂処理設備(図示せず)から排出されたオーバーフロー砂(鋳型砂S)を回収する。オーバーフロー砂回収設備POの構造としては、例えば、生型鋳造設備の砂搬送系を流れる一定流量以上の回収砂をスクレーパーでかき取り、砂搬送系から分離回収するものが挙げられる。乾燥設備Dは、オーバーフロー砂回収設備POに回収されているオーバーフロー砂を乾燥させる。オーバーフロー砂異物除去設備IOは、乾燥後のオーバーフロー砂の異物を除去する。オーバーフロー砂異物除去設備IOは、回転式篩や振動式篩など、公知の構造の設備を使用することができる。オーバーフロー砂貯蔵槽SSOは、異物除去後のオーバーフロー砂を貯蔵する。オーバーフロー砂貯蔵槽SSOは、公知の構造を有するサンドホッパーを使用することができる。
 製品付着砂回収設備PSは、製品付着砂(鋳型砂S)を回収する。製品付着砂回収設備PSの構造としては、例えば、ショットブラストから排出されたショット玉及び製品付着砂を、比重分級して製品付着砂を取り出す構造のものが挙げられる。製品付着砂異物除去設備ISは、製品付着砂の異物を除去する。製品付着砂異物除去設備ISの構造としては、回転式篩や振動式篩など、公知の構造の設備を使用することができる。磁選設備Mは、異物除去後の製品付着砂を磁選し、製品付着砂から磁着物を除去する。製品付着砂貯蔵槽SSSは、磁着物除去後の製品付着砂を貯蔵する。製品付着砂貯蔵槽SSSは、公知の構造を有するサンドホッパーを使用することができる。
 主型中子砂混合砂回収設備PLは、主型中子砂混合砂(鋳型砂S)を回収する。主型中子砂混合砂回収設備PLの構造としては、例えば、鋳型から取り出した鋳物製品に打撃若しくは振動を加えて鋳物製品に付着した主型中子混合砂を剥落させ回収する方式のものが挙げられる。解砕設備Lは、主型中子混合砂を解砕する。解砕設備Lの構造としては、例えば、主型中子混合砂に振動を加えて砂粒を摩擦させることで解砕するものが挙げられる。主型中子混合砂異物除去設備ILは、主型中子混合砂の異物を除去する。主型中子混合砂異物除去設備ILは、回転式篩や振動式篩など、公知の構造の設備を使用することができる。主型中子混合砂貯蔵槽SSLは、異物除去後の主型中子混合砂を貯蔵する。主型中子混合砂貯蔵槽SSLは、公知の構造を有するサンドホッパーを使用することができる。
 砂塊及び砂回収設備PCは、中子砂落とし工程から排出された砂塊及び砂(鋳型砂S)を回収する。砂塊及び砂回収設備PCは、例えば、鋳物製品内に残留した中子に打撃若しくは振動を加えて鋳物製品内に残った中子を剥落させ回収する方式のものが挙げられる。解砕設備Lは、砂塊及び砂を解砕する。解砕設備Lの構造としては、例えば、砂塊及び砂に振動を加えて砂粒を摩擦させることで解砕するものが挙げられる。砂塊及び砂異物除去設備ICは、砂塊及び砂の異物を除去する。砂塊及び砂異物除去設備ICは、回転式篩や振動式篩など、公知の構造の設備を使用することができる。砂塊及び砂貯蔵槽SSCは、異物除去後の砂塊及び砂を貯蔵する。砂塊及び砂貯蔵槽SSCは、公知の構造を有するサンドホッパーを使用することができる。
 砂切り出し/配合設備Fは、オーバーフロー砂貯蔵槽SSO、製品付着砂貯蔵槽SSS、主型中子混合砂貯蔵槽SSL、及び、砂塊及び砂貯蔵槽SSCに貯蔵された砂(鋳型砂S)を、その割合が常に一定となるように切り出して(取り出して)、これらの砂を配合する。砂切り出し/配合設備Fの構造としては、例えば、貯蔵工程の後に定量切り出し用スライドゲートを設け、スライドゲートから排出された砂を振動フィーダー若しくはスクリューコンベアで配合するものが挙げられる。
 乾式の機械再生設備Rは、配合された鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。分級設備Cは、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉を分離する。分級設備Cの後には、分級された再生砂(鋳型砂S)を再生設備21から排出するか、分級された再生砂を乾式の再生設備Rの投入口に戻して再度再生処理をするかを切り替えるための切り替え設備V3が備えられており、切り替え設備V3には、分級された再生砂を乾式の機械再生設備Rへ戻すための送還系PL1が接続している。集塵設備DCは、分級設備Cと接続されており、分級設備Cで発生したダスト(微粉)を集塵する。
(解砕設備L)
 次に、本鋳型砂の再生設備21を構成する、解砕設備Lについて説明する。図18は、解砕設備Lの正面図であり、図19は、解砕設備Lの平面図であり、図20は、図19におけるA-A断面図である。解砕設備Lは、上面が解放された円筒形の容器L1が、支柱L2に、例えばコイルバネなどの弾性体L3を介して支持されている。容器L1の上部は漏斗状に開口したシュートL4を有しており、さらに、容器L1及びシュートL4の外縁には、弾性体L3を支持する台座L5が複数配設されている。容器L1の下面には取付板L6を介して振動機L7が取り付けられている。容器L1の内面には、スリットL8が穿設されたライナーL9が全周にわたって、容器L1の内面に取り付けられた取付座L10a、L10bに、螺子L11a、L11bにより螺接されている。容器L1の側面には排出口L12が取り付けられており、さらにライナーL9上に滞留した異物を取り出すための扉L13がハンドルL14により固定されている。
 解砕設備Lを用いる解砕方法を以下に説明する。まず、容器L1に主型中子混合砂、または、砂塊及び砂を投入する。次に振動機L7を作動させ、ライナーL9上の主型中子混合砂、または、砂塊及び砂同士による衝突及び摩擦、乃至主型中子混合砂、または、砂塊及び砂とライナーL9との衝突及び摩擦により、解砕を行う。解砕されスリットL8の幅よりも細かくなった砂粒は、スリットL8を通過してライナーL9と容器L1との間の空間を移動し、排出口L12を通じて解砕設備L外に排出される。
 なお、スリットL8の幅は、広すぎると解砕が不十分な主型中子混合砂、または、砂塊及び砂が排出されたり、更には異物が排出されたりする恐れがある。一方で、狭すぎると解砕された砂粒の排出が進まず、容器L1内に滞留したままとなる恐れがある。そのため、スリットL8の幅は、2mm~5mmの間であることが望ましい。加えて、ライナーL9上の主型中子混合砂、または、砂塊及び砂を効率よく解砕しかつ排出するためには、容器L1の円周に沿ってこれらを移動させるような振動を発生させることが望ましい。そのためには、振動機L7をその中心線が設置床面に対して略45°の角度となるように設置することが望ましい。さらには、図18では1台の振動機L7を使用しているが、代わりに2台の振動機L7を、取付板L6の左右にそれぞれの中心線がX字を描くように取り付ければ、2台の振動機が発生させる垂直方向の振動の位相が逆になることで垂直方向の振動が打ち消され、容器L1の円周方向の振動のみとなるため、このような取り付け方法を採用しても良い。_
(再生方法)
 次に、第3の実施の形態に係る再生設備21を用いた鋳型砂の再生方法について説明する。図22は、第3の実施の形態に係る再生設備21を用いた鋳型砂の再生方法を示すフローチャートである。
 生型鋳造設備から排出される鋳型砂Sの内、砂処理設備から排出されたオーバーフロー砂は、オーバーフロー砂回収設備POに回収される(第一工程の1)。
 第1の実施の形態で説明したように、オーバーフロー砂は、砂粒表面に、ベントナイトと生型添加剤が付着し、さらに、砂粒表面に、ベントナイトが焼結してできるオーリティクスと呼ばれる多孔質の焼結層が形成されている。ベントナイトと生型添加剤が砂粒表面に残留したままでは、生型砂の通気度と充填性を低下させる。また、生型添加剤がガス化すると、鋳物のガス欠陥の原因ともなる。さらに、オーリティクスが過剰に残留すると、鋳型の充填性を低下させると同時に耐火度を下げる原因ともなる。従って、オーバーフロー砂では、砂粒表面のベントナイトと生型添加剤を除去し、さらに砂粒表面のオーリティクスを剥離し、除去することが必要である。
 次に、オーバーフロー砂を乾燥設備Dで水分量が管理値以下になるまで乾燥させる(第二工程の1)。ここで、水分量の管理値は、0.5%であることが好ましい。乾燥は、第1の実施の形態で説明した方法を用いて行うことが可能である。次に、オーバーフロー砂異物除去設備IOで、乾燥後のオーバーフロー砂の異物を除去する(第二工程の1)。最後に、異物除去後のオーバーフロー砂を、オーバーフロー砂貯蔵槽SSOに貯蔵する(第二工程の1)。
 生型鋳造設備から排出される鋳型砂Sの内、製品付着砂は、製品付着砂回収設備PSに回収される(第一工程の2)。
 第1の実施の形態で説明したように、製品付着砂は、非常に苛烈な熱履歴を受けているためにベントナイトが焼結してオーリティクスに変化している。それ以外の生型添加剤や中子粘結剤も多くの部分がガス化して揮発しているが、一部は炭化した状態で砂粒表面に残留している。それ以上に重要なのは、この砂には磁着物(金属と砂粒が溶着した状態の砂粒)が多く存在することである。磁着物が過剰な砂が鋳型に混入すると鋳物の焼き付き欠陥の原因となるとともに、中子に使用した場合に中子用粘結剤の強度発現不良の原因ともなる。従って、製品付着砂では、磁着物を磁選により除去した上で、表面の炭化物を除去することが必要である。
 次に、製品付着砂異物除去設備ISで、製品付着砂の異物を除去する(第二工程の2)。次に、異物除去後の製品付着砂を磁選設備Mで製品付着砂の磁着物量が管理値以下になるまで磁選する(第二工程の2)。ここで、磁着物量の管理値は、5.0%であることが好ましい。磁選は、第1の実施の形態で説明した方法を用いて行うことが可能である。最後に、磁選後の製品付着砂を、製品付着砂貯蔵槽SSSに貯蔵する(第二工程の2)。
 生型鋳造設備から排出される鋳型砂Sの内、主型中子混合砂は、主型中子砂混合砂回収設備PLに回収される(第一工程の3)。
 主型中子混合砂は、溶湯の熱により高温にさらされた状態となるので、水分は非常に少ない。また、ベントナイトはほぼ焼結してオーリティクス化している。さらに、炭素質の生型添加剤や中子の有機系粘結剤は揮発しているか、あるいは炭化して砂粒表面に付着している。オーリティクスが過剰となった場合の問題点は上述のとおりであるが、砂粒表面に付着した炭化物も注湯の際ガス欠陥の原因となったり、中子砂に使用した際に強度発現不良が発生したりするなどの問題がある。従って、主型中子混合砂も、これらの残留物を再生処理で除去することが必要である。
 次に、解砕設備Lで、主型中子混合砂を解砕する(第二工程の3)。次に、主型中子混合砂異物除去設備ILで、解砕後の主型中子混合砂の異物を除去する(第二工程の3)。最後に、異物除去後の主型中子混合砂を、主型中子混合砂貯蔵槽SSLに貯蔵する(第二工程の3)。
 生型鋳造設備から排出される鋳型砂Sの内、中子砂落とし工程から排出された砂塊及び砂は、砂塊及び砂回収設備PCに回収される(第一工程の4)。
 中子砂落とし工程から排出された砂塊及び砂は、生型砂の成分はほとんど含有していないが、中子粘結剤の残留物の一部が砂粒表面に付着している。これらの残留物も上述のとおり注湯の際ガス欠陥の原因となったり、中子砂に使用した際に強度発現不良が発生したりするなどの問題がある。従って、中子砂落とし工程から排出された砂塊及び砂も、これらの残留物を再生処理で除去することが必要である。
 次に、解砕設備Lで、中子砂落とし工程から排出された砂塊及び砂を解砕する(第二工程の4)。次に、砂塊及び砂異物除去設備IC、解砕後の砂塊及び砂の異物を除去する(第二工程の4)。最後に、異物除去後の砂塊及び砂を、砂塊及び砂貯蔵槽SSCに貯蔵する(第二工程の4)。
 オーバーフロー砂貯蔵槽SSO、製品付着砂貯蔵槽SSS、主型中子混合砂貯蔵槽SSL、及び、砂塊及び砂貯蔵槽SSCに貯蔵された砂(鋳型砂S)は、砂切り出し/配合設備Fによりこれらの貯蔵槽から切り出される(取り出される)砂(鋳型砂S)の割合が常に一定となるよう砂を切り出して(取り出して)配合される(第三工程)。
 次に、乾式の機械再生設備Rで配合された鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う(第四工程)。再生は、第1の実施の形態で説明した方法を用いて行うことが可能である。再生処理により、鋳型砂Sの強熱減量は減少する。
 次に、再生された鋳型砂Sを比重分級法の分級設備Cで分級する(第五工程)。分級は、第1の実施の形態で説明した方法を用いて行うことが可能である。分級処理により、鋳型砂Sの全粘土分は減少する。
 第四工程(再生処理)、及び、第五工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第四工程(再生処理)、及び、第五工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備Rへ戻るように設定する。そして、鋳型砂Sは、乾式の機械再生設備R、及び、分級設備Cを再び通過する。本工程は、鋳型砂Sの強熱減量、及び、全粘土分の測定値が管理値以下になるまで繰り返される。
 一方、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定し、鋳型砂Sは再生設備1から排出される。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 集塵設備DCは、分級設備Cと接続されており、分級設備Cで発生したダスト(微粉)を集塵することが可能となっている。ここで、1パス目で発生するダストは主に砂粒表面に付着していたベントナイト及び生型添加剤である。そのため、これらのダストはベントナイト及び生型添加剤の代替物として混練工程で再利用することが可能である。したがって、この工程で発生するダストはそれ以降のパスで集塵されるダストとは独立に回収してもよい。例えば、1パス目に集塵設備DCで集塵されたダストを、2パス目開始前に排出するなどして2パス以降のダストと独立して回収するようにすることで、再利用可能な1パス目のダストを他のダストと混合させることなく、有効に再利用することが可能となる。
 本実施の形態に用いられる、中子に使用される造型法とは、例えば、フラン樹脂酸硬化自硬性プロセス、フラン樹脂SOガス硬化型プロセス、フラン樹脂熱硬化型プロセス、フェノール樹脂熱硬化型プロセス、フェノール樹脂過熱水蒸気硬化型プロセス、フェノール樹脂エステル硬化型自硬性プロセス、フェノール樹脂酸硬化型自硬性プロセス、フェノール樹脂蟻酸メチルガス硬化型プロセス、フェノール樹脂COガス硬化型プロセス、フェノール樹脂ウレタン化反応自硬性プロセス、フェノール樹脂ウレタン化反応アミンガス硬化プロセス、油変成アルキド樹脂ウレタン化反応自硬性プロセス、ポリオール樹脂ウレタン化反応自硬性プロセス、水ガラスフェロシリコン自硬性プロセス、水ガラスダイカルシウムシリケート自硬性プロセス、水ガラスエステル自硬性プロセス、水ガラスCOガス硬化プロセスが挙げられる。なお、上述した水ガラス各プロセスは、加熱を行わず機械再生のみで、非晶質ケイ酸塩水和物及び金属酸化物を、許容される残留量まで減少させられることが経験上明らかであるので、加熱は必要としない。
 このように、第3の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備から排出される様々な種類の鋳型砂を乾式の機械再生のみで再生することができる。その結果、湿式再生を使用する場合に発生する廃水の中和処理・不純物の分離処理が不要となり、熱再生を使用する場合の多大なエネルギー消費量を削減することができ、再生設備を小型化かつ簡略化することができるので、砂再生に要する効率を上げ、砂再生に係るコストを削減することが可能となる。
 また、第3の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備各所から排出されるそれぞれ性状の異なる鋳型砂を分離した状態で前処理を行い、常に一定の比率となるよう切り出しと配合を行った上で乾式の機械再生を行い、さらに微粉を除去するので、常に再生砂の性状を一定に保つことが可能となる。従って、再生砂をそのまま再利用することが可能となる。
(第4の実施の形態)
 第4の実施の形態では、生型鋳造設備で使用される中子が加熱脱水硬化型水ガラスプロセスの場合について説明する。第4の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第3の実施の形態と異なる部分を説明する。他の部分については第3の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図22は、第4の実施の形態に係る鋳型砂の再生設備31の概略構成図である。再生設備31は、オーバーフロー砂回収設備PO、乾燥設備D、オーバーフロー砂異物除去設備IO、オーバーフロー砂貯蔵槽SSO、製品付着砂回収設備PS、製品付着砂異物除去設備IS、磁選設備M、製品付着砂貯蔵槽SSS、主型中子砂混合砂回収設備PL、解砕設備L、主型中子混合砂異物除去設備IL、加熱設備TR、主型中子混合砂貯蔵槽SSL、砂塊及び砂回収設備PC、解砕設備L、砂塊及び砂異物除去設備IC、加熱設備TR、砂塊及び砂貯蔵槽SSC、砂切り出し/配合設備F、乾式の機械再生設備R、分級設備C、切り替え設備V3、送還系PL1、及び、集塵設備DCを備えている。
 加熱設備TRは、鋳型砂Sを400℃以上に加熱する。本実施の形態では、加熱設備TRは2つ設けられている。その1つは、主型中子混合砂異物除去設備ILと主型中子混合砂貯蔵槽SSLの間に設けられ、異物除去後の主型中子混合砂を加熱する。もう1つは、砂塊及び砂異物除去設備ICと砂塊及び砂貯蔵槽SSCの間に設けられ、異物除去後の砂塊及び砂を加熱する。
 生型鋳造設備で使用される中子が加熱脱水硬化型水ガラスプロセスの場合、水ガラスの主成分である非晶質ケイ酸塩水和物及び金属酸化物がわずかでも残留していると、中子砂に使用した際に著しい強度発現不良が発生したりするなどの問題を発生させる。したがって、この場合には、主型中子混合砂、及び中子砂落とし工程から排出された砂塊及び砂を加熱することにより、それらに残留している非晶質ケイ酸塩水和物を加熱してガラス化させると同時に、金属酸化物をその内部に封止する。その後に、乾式の機械再生を行うので、鋳型の強度発現に対して有害となる非晶質ケイ酸塩水和物及び金属酸化物を、無害化させることが可能となる。
(再生方法)
 次に、第4の実施の形態に係る再生設備31を用いた鋳型砂の再生方法について説明する。図23は、第4の実施の形態に係る再生設備を用いた鋳型砂の再生方法を示すフローチャートである。
 生型鋳造設備から排出される鋳型砂Sの内、砂処理設備から排出されたオーバーフロー砂は、オーバーフロー砂回収設備POに回収される(第一工程の1)。次に、オーバーフロー砂を乾燥設備Dで水分量が管理値以下になるまで乾燥させる(第二工程の1)。ここで、水分量の管理値は、0.5%であることが好ましい。次に、オーバーフロー砂異物除去設備IOで、乾燥後のオーバーフロー砂の異物を除去する(第二工程の1)。最後に、異物除去後のオーバーフロー砂を、オーバーフロー砂貯蔵槽SSOに貯蔵する(第二工程の1)。
 生型鋳造設備から排出される鋳型砂Sの内、製品付着砂は、製品付着砂回収設備PSに回収される(第一工程の2)。次に、製品付着砂異物除去設備ISで、製品付着砂の異物を除去する(第二工程の2)。次に、異物除去後の製品付着砂を磁選設備Mで製品付着砂の磁着物量が管理値以下になるまで磁選する(第二工程の2)。ここで、磁着物量の管理値は、5.0%であることが好ましい。最後に、磁選後の製品付着砂を、製品付着砂貯蔵槽SSSに貯蔵する(第二工程の2)。
 生型鋳造設備から排出される鋳型砂Sの内、主型中子混合砂は、主型中子砂混合砂回収設備PLに回収される(第一工程の3)。次に、解砕設備Lで、主型中子混合砂を解砕する(第二工程の3)。次に、主型中子混合砂異物除去設備ILで、解砕後の主型中子混合砂の異物を除去する(第二工程の3)。次に、異物除去後の主型中子混合砂を400℃以上に加熱する(第二工程の3)。最後に、加熱後の主型中子混合砂を、主型中子混合砂貯蔵槽SSLに貯蔵する(第二工程の3)。
 生型鋳造設備から排出される鋳型砂Sの内、中子砂落とし工程から排出された砂塊及び砂は、砂塊及び砂回収設備PCに回収される(第一工程の4)。次に、解砕設備Lで、中子砂落とし工程から排出された砂塊及び砂を解砕する(第二工程の4)。次に、砂塊及び砂異物除去設備ICで、解砕後の砂塊及び砂の異物を除去する(第二工程の4)。次に、異物除去後の砂塊及び砂を400℃以上に加熱する(第二工程の4)。最後に、加熱後の砂塊及び砂を、砂塊及び砂貯蔵槽SSCに貯蔵する(第二工程の4)。
 オーバーフロー砂貯蔵槽SSO、製品付着砂貯蔵槽SSS、主型中子混合砂貯蔵槽SSL、及び、砂塊及び砂貯蔵槽SSCに貯蔵された砂は、砂切り出し/配合設備Fによりこれらの貯蔵槽から切り出される砂の割が常に一定となるよう砂を切り出して配合される(第三工程)。
 次に、乾式の機械再生設備Rで配合された鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う(第四工程)。次に、再生された鋳型砂Sを比重分級法の分級設備Cで分級する(第五工程)。鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第四工程(再生処理)、及び、第五工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備Rへ戻るように設定する。
 一方、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定し、鋳型砂Sは再生設備1から排出される。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 このように、第4の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備で使用される中子が加熱脱水硬化型水ガラスプロセスの場合でも、生型鋳造設備各所から排出される主型中子混合砂、及び、中子砂落とし工程から排出された砂塊及び砂を加熱し、それらに残留している非晶質ケイ酸塩水和物をガラス化させると同時に、金属酸化物をその内部に封止する。その後に、乾式の機械再生を行うので、鋳型の強度発現に対して有害となる非晶質ケイ酸塩水和物及び金属酸化物を、無害化させることが可能となる。
(第5の実施の形態)
 第5の実施の形態は、第1の実施の形態における再生設備R及び分級設備Cを、直列及び並列に複数配置する構成としたものである。第5の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第1の実施の形態と異なる部分を説明する。他の部分については第1の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図24は、第5の実施の形態に係る鋳型砂の再生設備の概略構成図である。再生設備41は、乾燥設備D、磁選設備M、切り替え設備V1、切り替え設備V2、バイパス系BP1、バイパス系BP2、4つの乾式の機械再生設備R411、R412、R421、及び、R422、4つの分級設備C411、C412、C421、及び、C422、切り替え設備V3、送還系PL1、及び、2つの集塵設備DC、及び、DOを備えている。
 乾式の機械再生設備R411、R412、R421、及び、R422は、生型鋳造設備から排出される鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。乾式の機械再生設備R411、R412、R421、及び、R422は、全て同一の機構を有するが、強熱減量を管理値以下にできる能力を有していればどのような方式であるかは問わない。
 分級設備C411、C412、C421、及び、C422は、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉を分離する。分級設備C411、C412、C421及びC422は、全て同一の機構を有するが、再生された鋳型砂S内の全粘土分の量が管理値以下になるまで微粉を除去できる能力を有していればどのような方式であるかは問わない。
 バイパス系BP2の後ろに接続された乾式の機械再生設備R411は、分級設備C411、乾式の機械再生設備R412、及び分級設備C412と直列に接続され、その後ろで切り替え設備V3と接続している。同様に、バイパス系BP2の後ろに接続された乾式の機械再生設備R421は、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422と直列に接続され、その後ろで切り替え設備V3と接続している。別の見方をすれば、乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の構成と、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の構成は、バイパス系BP2と切り替え設備V3の間で並列に配置されている。
 分級設備C412、及び、C422の後には、分級された再生砂(鋳型砂S)を再生設備41から排出するか、分級された再生砂を乾式の再生設備R411、及び、R421の投入口に戻して再度再生処理をするかを切り替えるための切り替え設備V3が備えられており、切り替え設備V3には、分級された再生砂を乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すための送還系PL1が接続している。分級された再生砂の強熱減量と全粘土分とが管理値以下になっていない場合には、分級された再生砂を、乾式の機械再生設備R411、分級設備C411、乾式の再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すことが可能な構成となっている。
 集塵設備DCは、分級設備C411、及び、C421と接続されており、分級設備C411、及び、C421で発生したダスト(微粉)を集塵する。集塵設備DOは、分級設備C412、及び、C422と接続されており、分級設備C412、及び、C422で発生したダスト(微粉)を集塵する。
(再生方法)
 次に、第5の実施の形態に係る再生設備41を用いた鋳型砂の再生方法について説明する。図25は、第5の実施の形態に係る再生設備41を用いた鋳型砂の再生方法を示すフローチャートである。本再生方法に用いられる鋳型砂Sは、第1の実施の形態で説明した様に、水分が含まれている可能性、及び/又は、磁着物が付着している可能性がある。
 初めに、鋳型砂Sに含まれる水分量、及び、磁着物量を測定する(第一工程)。鋳型砂Sに含まれる水分量の測定値が管理値を越えていた場合、乾燥設備Dで鋳型砂Sを乾燥させる(第二工程)。ここで、水分量の管理値は、0.5%であることが好ましい。鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていた場合、磁選設備Mで鋳型砂Sを磁選する(第二工程)。ここで、磁着物量の管理値は、5.0%であることが好ましい。鋳型砂Sに含まれる水分量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定する(第二工程)。鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは磁選設備Mで磁選する必要がないため、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。
 鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要、及び、磁選設備Mで磁選する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定し、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。なお、このように、バイパス系BP1とバイパス系BP2の両方を通過する経路を、バイパス系BP3と呼ぶ。
 次に、乾式の機械再生設備R411、及び、R421で鋳型砂Sの再生をそれぞれ行う(第三工程)。再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C411、及び、C421で分級する(第四工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 次に、分級設備C411、及び、C421から集塵されるダストを集塵設備DCで単独に回収する。前述したように、最初(1パス目)で発生するダストは主に砂粒表面に付着していたベントナイト及び生型添加剤である。したがって、この工程で発生するダストを独立に回収することにより、これらのダストをベントナイト及び生型添加剤の代替物として鋳型砂の混練を行う際に再利用することが可能となる。
 次に、一度、再生処理を行ったそれぞれの鋳型砂Sを、乾式の機械再生設備R412、及び、R422で、再度、再生を行う(第三工程)。再度の再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C412、及び、C422で再度分級する(第四工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 2回の第三工程(再生処理)、及び、2回の第四工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第三工程(再生処理)、及び、第四工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備R411、及び、R421へ戻るように設定する。
 一方、2回の第三工程(再生処理)、及び、2回の第四工程(分級処理)によって、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定する。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 なお、集塵設備DOは、分級設備C412、及び、C422で発生したダスト、及び、分級設備C411、及び、C421で2回目以降に発生したダストを集塵する。
 このように、第5の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、異なる機構を持った再生設備を組み合わせて構成する必要がなくなり、処理量と強熱減量及び全粘土分の管理値に合わせて容易に再生設備の構成を決定することが可能となる。
 また、第5の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、処理量及び必要とされる処理能力など工程に対する負荷の変動に応じて適宜不要な工程を停止できるので、第1の実施の形態よりも柔軟に負荷変動に対応することが可能となる。
 また、第5の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、2回の再生処理、及び、2回の分級処理を一度に行うことができるので、切り替え設備を用いて鋳型砂を、再生処理、及び、分級処理に戻す回数を減らすことが可能となる。
 また、第5の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備から排出される水分及び磁着物が含まれた鋳型砂を乾式の機械再生のみで再生することができる。その結果、湿式再生を使用する場合に発生する廃水の中和処理・不純物の分離処理が不要となり、熱再生を使用する場合の多大なエネルギー消費量を削減することができ、再生設備を小型化かつ簡略化することができるので、砂再生に要する効率を上げ、砂再生にかかるコストを削減することが可能となる。
(第6の実施の形態)
 第6の実施の形態は、第2の実施の形態における再生設備R及び分級設備Cを、直列及び並列に複数配置する構成としたものである。第6の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第2の実施の形態と異なる部分を説明する。他の部分については第2の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図26は、第6の実施の形態に係る鋳型砂の再生設備の概略構成図である。再生設備51は、乾燥設備D、磁選設備M、切り替え設備V1、切り替え設備V2、バイパス系BP1、バイパス系BP2、4つの乾式の機械再生設備R411、R412、R421、及び、R422、4つの分級設備C411、C412、C421、及び、C422、切り替え設備V3、送還系PL1、及び、2つの集塵設備DC、DO切り替え設備V4、及び、送還系PL2を備えている。
 乾式の機械再生設備R411、R412、R421、及び、R422は、生型鋳造設備から排出される鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。乾式の機械再生設備R411、R412、R421、及び、R422は、全て同一の機構を有するが、強熱減量を管理値以下にできる能力を有していればどのような方式であるかは問わない。
 分級設備C411、C412、C421、及び、C422は、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉を分離する。分級設備C411、C412、C421、及び、C422は、全て同一の機構を有するが、分級設備Cは、再生された鋳型砂S内の全粘土分の量が管理値以下になるまで微粉を除去できる能力を有していればどのような方式であるかは問わない。
 切り替え設備V4の後ろに接続された乾式の機械再生設備R411は、分級設備C411、乾式の機械再生設備R412、及び分級設備C412と直列に接続され、その後ろで切り替え設備V3と接続している。同様に、切り替え設備V4の後ろに接続された乾式の機械再生設備R421は、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422と直列に接続され、その後ろで切り替え設備V3と接続している。別の見方をすれば、乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の構成と、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の構成は、切り替え設備V4と切り替え設備V3の間で並列に配置されている。
 分級設備C412、及び、C422の後には、分級された再生砂(鋳型砂S)を再生設備41から排出するか、分級された再生砂を乾式の再生設備R411、及び、R421の投入口に戻して再度再生処理をするかを切り替えるための切り替え設備V3が備えられており、切り替え設備V3には、分級された再生砂を乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すための送還系PL1が接続している。分級された再生砂の強熱減量と全粘土分とが管理値以下になっていない場合には、分級された再生砂を、乾式の機械再生設備R411、分級設備C411、再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すことが可能な構成となっている。
 集塵設備DCは、分級設備C411、及び、C421と接続されており、分級設備C411、及び、C421で発生したダスト(微粉)を集塵する。集塵設備DOは、分級設備C412、及び、C422と接続されており、分級設備C412、及び、C422で発生したダスト(微粉)を集塵する。
(再生方法)
 次に、第6の実施の形態に係る再生設備51を用いた鋳型砂の再生方法について説明する。図27は、第6の実施の形態に係る再生設備51を用いた鋳型砂の再生方法を示すフローチャートである。本再生方法に用いられる鋳型砂Sは、第2の実施の形態で説明した様に、水分が含まれている可能性、及び/又は、磁着物が付着している可能性がある。
 初めに、鋳型砂Sに含まれる水分量、及び、磁着物量を測定する(第一工程)。鋳型砂Sに含まれる水分量の測定値が管理値を越えていた場合、乾燥設備Dで鋳型砂Sを乾燥させる(第二工程)。ここで、水分量の管理値は、0.5%であることが好ましい。鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていた場合、磁選設備Mで鋳型砂Sを磁選する(第二工程)。ここで、磁着物量の管理値は、5.0%であることが好ましい。鋳型砂Sに含まれる水分量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定する(第二工程)。鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは磁選設備Mで磁選する必要がないため、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。
 鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値を越えていなかった場合、鋳型砂Sは乾燥設備Dで乾燥する必要、及び、磁選設備Mで磁選する必要がないため、切り替え設備V1を用いて鋳型砂Sがバイパス系BP1を通過するように設定し、切り替え設備V2を用いて鋳型砂Sがバイパス系BP2を通過するように設定する(第二工程)。なお、このように、バイパス系BP1とバイパス系BP2の両方を通過する経路を、バイパス系BP3と呼ぶ。
 次に、鋳型砂Sに含まれる水分量、及び、磁着物量を再度測定する(第三工程)。鋳型砂Sに含まれる水分量の測定値が管理値を越えていた場合、及び/又は、鋳型砂Sに含まれる磁着物量の測定値が管理値を越えていた場合、再度、第二工程(乾燥工程、及び/又は、磁選工程)に鋳型砂Sを通過させるため、切り替え設備V4を用いて鋳型砂Sが送還系PL2を経由して切り替え設備V1の手前へ戻るように設定する(第三工程)。そして、鋳型砂Sは、乾燥設備D、及び/又は、磁選設備Mを再び通過する。本工程は、鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値以下になるまで繰り返される。鋳型砂Sに含まれる水分量、及び、磁着物量の測定値が管理値以下の場合、切り替え設備V4を用いて鋳型砂Sが機械再生設備Rへ送られるように設定し、鋳型砂Sは乾式の機械再生設備Rへ送られる(第三工程)。
 次に、乾式の機械再生設備R411、及び、R421で鋳型砂Sの再生をそれぞれ行う(第四工程)。再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C411、及び、C421で分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 次に、分級設備C411、及び、C421から集塵されるダストを集塵設備DCで単独に回収する。前述したように、最初(1パス目)で発生するダストは主に砂粒表面に付着していたベントナイト及び生型添加剤である。したがって、この工程で発生するダストを独立に回収することにより、これらのダストをベントナイト及び生型添加剤の代替物として鋳型砂の混練を行う際に再利用することが可能となる。
 次に、一度、再生処理を行ったそれぞれの鋳型砂Sを、乾式の機械再生設備R412、及び、R422で、再度、再生を行う(第四工程)。再度の再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C412、及び、C422で再度分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 2回の第四工程(再生処理)、及び、2回の第五工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第四工程(再生処理)、及び、第五工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備R411、及び、R421へ戻るように設定する。
 一方、2回の第四工程(再生処理)、及び、2回の第五工程(分級処理)によって、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定する。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 なお、集塵設備DOは、分級設備C412、及び、C422で発生したダスト、及び、分級設備C411、及び、C421で2回目以降に発生したダストを集塵する。
 このように、第6の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、異なる機構を持った再生設備を組み合わせて構成する必要がなくなり、処理量と強熱減量及び全粘土分の管理値に合わせて容易に再生設備の構成を決定することが可能となる。
 また、第6の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、処理量及び必要とされる処理能力など工程に対する負荷の変動に応じて適宜不要な工程を停止できるので、第2の実施の形態よりも柔軟に負荷変動に対応することが可能となる。
 また、第6の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、2回の再生処理、及び、2回の分級処理を一度に行うことができるので、切り替え設備を用いて鋳型砂を、再生処理、及び、分級処理に戻す回数を減らすことが可能となる。
 また、第6の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、鋳型砂に含まれる水分量、及び、磁着物量が管理値以下になるまで、乾燥設備での乾燥工程、及び/又は、磁選設備Mでの磁選工程を繰り返すことができるので、鋳型砂に含まれる水分量、及び、磁着物量を確実に管理値以下にすることが可能となる。
(第7の実施の形態)
 第7の実施の形態は、第3の実施の形態における再生設備R及び分級設備Cを、直列及び並列に複数配置する構成としたものである。第6の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第3の実施の形態と異なる部分を説明する。他の部分については第2の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図28は、第7の実施の形態に係る鋳型砂の再生設備の概略構成図である。再生設備61は、オーバーフロー砂回収設備PO、乾燥設備D、オーバーフロー砂異物除去設備IO、オーバーフロー砂貯蔵槽SSO、製品付着砂回収設備PS、製品付着砂異物除去設備IS、磁選設備M、製品付着砂貯蔵槽SSS、主型中子砂混合砂回収設備PL、解砕設備L、主型中子混合砂異物除去設備IL、主型中子混合砂貯蔵槽SSL、砂塊及び砂回収設備PC、解砕設備L、砂塊及び砂異物除去設備IC、砂塊及び砂貯蔵槽SSC、砂切り出し/配合設備F、4つの乾式の機械再生設備R411、R412、R421、及び、R422、4つの分級設備C411、C412、C421、及び、C422、分級設備C、切り替え設備V3、送還系PL1、及び、2つの集塵設備DC、及び、DOを備えている。
 4つの乾式の機械再生設備R411、R412、R421、及び、R422は、配合された鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。乾式の機械再生設備R411、R412、R421、及び、R422は、全て同一の機構を有するが、強熱減量を管理値以下にできる能力を有していればどのような方式であるかは問わない。
 分級設備C411、C412、C421、及び、C422は、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉を分離する。分級設備C411、C412、C421、及び、C422は、全て同一の機構を有するが、再生された鋳型砂S内の全粘土分の量が管理値以下になるまで微粉を除去できる能力を有していればどのような方式であるかは問わない。
 砂切り出し/配合設備Fの後段に配置された乾式の機械再生設備R411は、分級設備C411、乾式の機械再生設備R412、及び分級設備C412と直列に接続され、その後ろで切り替え設備V3と接続している。同様に、バイパス系BP2の後ろに接続された乾式の機械再生設備R421は、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422と直列に接続され、その後ろで切り替え設備V3と接続している。別の見方をすれば、乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の構成と、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の構成は、バイパス系BP2と切り替え設備V3の間で並列に配置されている。
 分級設備C412、及び、C422の後には、分級された再生砂(鋳型砂S)を再生設備41から排出するか、分級された再生砂を乾式の再生設備R411、及び、R421の投入口に戻して再度再生処理をするかを切り替えるための切り替え設備V3が備えられており、切り替え設備V3には、分級された再生砂を乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すための送還系PL1が接続している。分級された再生砂の強熱減量と全粘土分とが管理値以下になっていない場合には、分級された再生砂を、乾式の機械再生設備R411、分級設備C411、再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すことが可能な構成となっている。
 集塵設備DCは、分級設備C411、及び、C421と接続されており、分級設備C411、及び、C421で発生したダスト(微粉)を集塵する。集塵設備DOは、分級設備C412、及び、C422と接続されており、分級設備C412、及び、C422で発生したダスト(微粉)を集塵する。
(再生方法)
 次に、第7の実施の形態に係る再生設備61を用いた鋳型砂の再生方法について説明する。図29は、第7の実施の形態に係る再生設備61を用いた鋳型砂の再生方法を示すフローチャートである。
 生型鋳造設備から排出される鋳型砂Sの内、砂処理設備から排出されたオーバーフロー砂は、オーバーフロー砂回収設備POに回収される(第一工程の1)。次に、オーバーフロー砂を乾燥設備Dで水分量が管理値以下になるまで乾燥させる(第二工程の1)。ここで、水分量の管理値は、0.5%であることが好ましい。次に、オーバーフロー砂異物除去設備IOで、乾燥後のオーバーフロー砂の異物を除去する(第二工程の1)。最後に、異物除去後のオーバーフロー砂を、オーバーフロー砂貯蔵槽SSOに貯蔵する(第二工程の1)。
 生型鋳造設備から排出される鋳型砂Sの内、製品付着砂は、製品付着砂回収設備PSに回収される(第一工程の2)。次に、製品付着砂異物除去設備ISで、製品付着砂の異物を除去する(第二工程の2)。次に、異物除去後の製品付着砂を磁選設備Mで製品付着砂の磁着物量が管理値以下になるまで磁選する(第二工程の2)。ここで、磁着物量の管理値は、5.0%であることが好ましい。最後に、磁選後の製品付着砂を、製品付着砂貯蔵槽SSSに貯蔵する(第二工程の2)。
 生型鋳造設備から排出される鋳型砂Sの内、主型中子混合砂は、主型中子砂混合砂回収設備PLに回収される(第一工程の3)。次に、解砕設備Lで、主型中子混合砂を解砕する(第二工程の3)。次に、主型中子混合砂異物除去設備ILで、解砕後の主型中子混合砂の異物を除去する(第二工程の3)。最後に、主型中子混合砂を、主型中子混合砂貯蔵槽SSLに貯蔵する(第二工程の3)。
 生型鋳造設備から排出される鋳型砂Sの内、中子砂落とし工程から排出された砂塊及び砂は、砂塊及び砂回収設備PCに回収される(第一工程の4)。次に、解砕設備Lで、中子砂落とし工程から排出された砂塊及び砂を解砕する(第二工程の4)。次に、砂塊及び砂異物除去設備IC、解砕後の砂塊及び砂の異物を除去する(第二工程の4)。最後に、砂塊及び砂を、砂塊及び砂貯蔵槽SSCに貯蔵する(第二工程の4)。
 オーバーフロー砂貯蔵槽SSO、製品付着砂貯蔵槽SSS、主型中子混合砂貯蔵槽SSL、及び、砂塊及び砂貯蔵槽SSCに貯蔵された砂は、砂切り出し/配合設備Fによりこれらの貯蔵槽から切り出される砂の割合が常に一定となるよう砂を切り出して配合される(第三工程)。
 次に、乾式の機械再生設備R411、及び、R421で鋳型砂Sの再生をそれぞれ行う(第四工程)。再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C411、及び、C421で分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 次に、分級設備C411、及び、C421から集塵されるダストを集塵設備DCで単独に回収する。前述したように、最初(1パス目)で発生するダストは主に砂粒表面に付着していたベントナイト及び生型添加剤である。したがって、この工程で発生するダストを独立に回収することにより、これらのダストをベントナイト及び生型添加剤の代替物として鋳型砂の混練を行う際に再利用することが可能となる。
 次に、一度、再生処理を行ったそれぞれの鋳型砂Sを、乾式の機械再生設備R412、及び、R422で、再度、再生を行う(第四工程)。再度の再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C412、及び、C422で再度分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 2回の第四工程(再生処理)、及び、2回の第五工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第四工程(再生処理)、及び、第五工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備R411、及び、R421へ戻るように設定する。
 一方、2回の第四工程(再生処理)、及び、2回の第五工程(分級処理)によって、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定する。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 なお、集塵設備DOは、分級設備C412、及び、C422で発生したダスト、及び、分級設備C411、及び、C421で2回目以降に発生したダストを集塵する。
 このように、第7の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、異なる機構を持った再生設備を組み合わせて構成する必要がなくなり、処理量と強熱減量及び全粘土分の管理値に合わせて容易に再生設備の構成を決定することが可能となる。
 また、第7の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、処理量及び必要とされる処理能力など工程に対する負荷の変動に応じて適宜不要な工程を停止できるので、第3の実施の形態よりも柔軟に負荷変動に対応することが可能となる。
 また、第7の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、2回の再生処理、及び、2回の分級処理を一度に行うことができるので、切り替え設備を用いて鋳型砂を、再生処理、及び、分級処理に戻す回数を減らすことが可能となる。
 また、第7の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備から排出される様々な種類の鋳型砂を乾式の機械再生のみで再生することができる。その結果、湿式再生を使用する場合に発生する廃水の中和処理・不純物の分離処理が不要となり、熱再生を使用する場合の多大なエネルギー消費量を削減することができ、再生設備を小型化かつ簡略化することができるので、砂再生に要する効率を上げ、砂再生にかかるコストを削減することが可能となる。
 また、第7の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備各所から排出されるそれぞれ性状の異なる鋳型砂を分離した状態で前処理を行い、常に一定の比率となるよう切り出しと配合を行った上で乾式の機械再生を行い、さらに微粉を除去するので、常に再生砂の性状を一定に保つことが可能となる。従って、再生砂をそのまま生型鋳造設備で再利用することが可能となる。
(第8の実施の形態)
 第8の実施の形態は、第4の実施の形態における再生設備R及び分級設備Cを、直列及び並列に複数配置する構成としたものである。第8の実施の形態について、添付図面を参照して説明する。本実施の形態に係る鋳型砂の再生方法及び再生設備のうち、第4の実施の形態と異なる部分を説明する。他の部分については第4の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
 図30は、第8の実施の形態に係る鋳型砂の再生設備71の概略構成図である。再生設備71は、オーバーフロー砂回収設備PO、乾燥設備D、オーバーフロー砂異物除去設備IO、オーバーフロー砂貯蔵槽SSO、製品付着砂回収設備PS、製品付着砂異物除去設備IS、磁選設備M、製品付着砂貯蔵槽SSS、主型中子砂混合砂回収設備PL、解砕設備L、主型中子混合砂異物除去設備IL、加熱設備TR、主型中子混合砂貯蔵槽SSL、砂塊及び砂回収設備PC、解砕設備L、砂塊及び砂異物除去設備IC、加熱設備TR、砂塊及び砂貯蔵槽SSC、砂切り出し/配合設備F、4つの乾式の機械再生設備R411、R412、R421、及び、R422、4つの分級設備C411、C412、C421、及び、C422、切り替え設備V3、送還系PL1、及び、2つの集塵設備DC、及び、DOを備えている。
 4つの乾式の機械再生設備R411、R412、R421、及び、R422は、配合された鋳型砂Sの表面に付着した炭化物、焼結物、金属化合物などを剥離し、鋳型砂Sの再生を行う。乾式の機械再生設備R411、R412、R421、及び、R422は、全て同一の機構を有するが、強熱減量を管理値以下にできる能力を有していればどのような方式であるかは問わない。
 分級設備C411、C412、C421、及び、C422は、再生された鋳型砂Sを比重分級方式により分級し、回収すべき砂粒と集塵すべき炭化物、焼結物、金属化合物などの微粉を分離する。分級設備C411、C412、C421、及び、C422は、全て同一の機構を有するが、再生された鋳型砂S内の全粘土分の量が管理値以下になるまで微粉を除去できる能力を有していればどのような方式であるかは問わない。
 砂切り出し/配合設備Fの後段に配置された乾式の機械再生設備R411は、分級設備C411、乾式の機械再生設備R412、及び分級設備C412と直列に接続され、その後ろで切り替え設備V3と接続している。同様に、バイパス系BP2の後ろに接続された乾式の機械再生設備R421は、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422と直列に接続され、その後ろで切り替え設備V3と接続している。別の見方をすれば、乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の構成と、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の構成は、バイパス系BP2と切り替え設備V3の間で並列に配置されている。
 分級設備C412、及び、C422の後には、分級された再生砂(鋳型砂S)を再生設備41から排出するか、分級された再生砂を乾式の再生設備R411、及び、R421の投入口に戻して再度再生処理をするかを切り替えるための切り替え設備V3が備えられており、切り替え設備V3には、分級された再生砂を乾式の機械再生設備R411、分級設備C411、乾式の機械再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すための送還系PL1が接続している。分級された再生砂の強熱減量と全粘土分とが管理値以下になっていない場合には、分級された再生砂を、乾式の機械再生設備R411、分級設備C411、再生設備R412、及び、分級設備C412の経路、及び、乾式の機械再生設備R421、分級設備C421、乾式の機械再生設備R422、及び、分級設備C422の経路へ戻すことが可能な構成となっている。
 集塵設備DCは、分級設備C411、及び、C421と接続されており、分級設備C411、及び、C421で発生したダスト(微粉)を集塵する。集塵設備DOは、分級設備C412、及び、C422と接続されており、分級設備C412、及び、C422で発生したダスト(微粉)を集塵する。
(再生方法)
 次に、第8の実施の形態に係る再生設備71を用いた鋳型砂の再生方法について説明する。図31は、第8の実施の形態に係る再生設備71を用いた鋳型砂の再生方法を示すフローチャートである。
 生型鋳造設備から排出される鋳型砂Sの内、砂処理設備から排出されたオーバーフロー砂は、オーバーフロー砂回収設備POに回収される(第一工程の1)。次に、オーバーフロー砂を乾燥設備Dで水分量が管理値以下になるまで乾燥させる(第二工程の1)。ここで、水分量の管理値は、0.5%であることが好ましい。次に、オーバーフロー砂異物除去設備IOで、乾燥後のオーバーフロー砂の異物を除去する(第二工程の1)。最後に、異物除去後のオーバーフロー砂を、オーバーフロー砂貯蔵槽SSOに貯蔵する(第二工程の1)。
 生型鋳造設備から排出される鋳型砂Sの内、製品付着砂は、製品付着砂回収設備PSに回収される(第一工程の2)。次に、製品付着砂異物除去設備ISで、製品付着砂の異物を除去する(第二工程の2)。次に、異物除去後の製品付着砂を磁選設備Mで製品付着砂の磁着物量が管理値以下になるまで磁選する(第二工程の2)。ここで、磁着物量の管理値は、5.0%であることが好ましい。最後に、磁選後の製品付着砂を、製品付着砂貯蔵槽SSSに貯蔵する(第二工程の2)。
 生型鋳造設備から排出される鋳型砂Sの内、主型中子混合砂は、主型中子砂混合砂回収設備PLに回収される(第一工程の3)。次に、解砕設備Lで、主型中子混合砂を解砕する(第二工程の3)。次に、主型中子混合砂異物除去設備ILで、解砕後の主型中子混合砂の異物を除去する(第二工程の3)。次に、異物除去後の主型中子混合砂を400℃以上に加熱する(第二工程の3)。最後に、加熱後の主型中子混合砂を主型中子混合砂貯蔵槽SSLに貯蔵する(第二工程の3)。
 生型鋳造設備から排出される鋳型砂Sの内、中子砂落とし工程から排出された砂塊及び砂は、砂塊及び砂回収設備PCに回収される(第一工程の4)。次に、解砕設備Lで、中子砂落とし工程から排出された砂塊及び砂を解砕する(第二工程の4)。次に、砂塊及び砂異物除去設備IC、解砕後の砂塊及び砂の異物を除去する(第二工程の4)。次に、異物除去後の砂塊及び砂を400℃以上に加熱する(第二工程の4)。最後に、加熱後の砂塊及び砂を、砂塊及び砂貯蔵槽SSCに貯蔵する(第二工程の4)。
 オーバーフロー砂貯蔵槽SSO、製品付着砂貯蔵槽SSS、主型中子混合砂貯蔵槽SSL、及び、砂塊及び砂貯蔵槽SSCに貯蔵された砂は、砂切り出し/配合設備Fによりこれらの貯蔵槽から切り出される砂の割が常に一定となるよう砂を切り出して配合される(第三工程)。
 次に、乾式の機械再生設備R411、及び、R421で鋳型砂Sの再生をそれぞれ行う(第四工程)。再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C411、及び、C421で分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 次に、分級設備C411、及び、C421から集塵されるダストを集塵設備DCで単独に回収する。前述したように、最初(1パス目)で発生するダストは主に砂粒表面に付着していたベントナイト及び生型添加剤である。したがって、この工程で発生するダストを独立に回収することにより、これらのダストをベントナイト及び生型添加剤の代替物として鋳型砂の混練を行う際に再利用することが可能となる。
 次に、一度、再生処理を行ったそれぞれの鋳型砂Sを、乾式の機械再生設備R412、及び、R422で、再度、再生を行う(第四工程)。再度の再生処理により、鋳型砂Sの強熱減量は減少する。次に、再生された鋳型砂Sを比重分級法の分級設備C412、及び、C422で再度分級する(第五工程)。分級処理により、鋳型砂Sの全粘土分は減少する。
 2回の第四工程(再生処理)、及び、2回の第五工程(分級処理)を経た鋳型砂S(再生砂)は、強熱減量、及び、全粘土分がともに減少しているが、最終的には、それぞれの数値を管理値以下にする必要がある。従って、鋳型砂Sの強熱減量、及び、全粘土分が管理値を越えている場合、再度、第四工程(再生処理)、及び、第五工程(分級処理)に鋳型砂Sを通過させるため、切り替え設備V3を用いて鋳型砂Sが送還系PL1を経由して乾式の機械再生設備R411、及び、R421へ戻るように設定する。
 一方、2回の第四工程(再生処理)、及び、2回の第五工程(分級処理)によって、鋳型砂Sの強熱減量、及び、全粘土分が管理値以下になっている場合、切り替え設備V3を用いて鋳型砂Sが再生設備1から排出されるように設定する。これにより再生処理は終了する。ここで、強熱減量の管理値は、0.6%であることが好ましい。また、全粘土分の管理値は、0.6%であることが好ましい。
 なお、集塵設備DOは、分級設備C412、及び、C422で発生したダスト、及び、分級設備C411、及び、C421で2回目以降に発生したダストを集塵する。
 このように、第8の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、異なる機構を持った再生設備を組み合わせて構成する必要がなくなり、処理量と強熱減量及び全粘土分の管理値に合わせて容易に再生設備の構成を決定することが可能となる。
 また、第8の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、処理量及び必要とされる処理能力など工程に対する負荷の変動に応じて適宜不要な工程を停止できるので、第4の実施の形態よりも柔軟に負荷変動に対応することが可能となる。
 また、第8の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、2回の再生処理、及び、2回の分級処理を一度に行うことができるので、切り替え設備を用いて鋳型砂を、再生処理、及び、分級処理に戻す回数を減らすことが可能となる。
 また、第8の実施の形態に係る鋳型砂の再生方法及び再生設備によれば、生型鋳造設備で使用される中子が加熱脱水硬化型水ガラスプロセスの場合でも、生型鋳造設備各所から排出される主型中子混合砂、及び、中子砂落とし工程から排出された砂塊及び砂を加熱し、それらに残留している非晶質ケイ酸塩水和物をガラス化させると同時に、金属酸化物をその内部に封止する。その後に、乾式の機械再生を行うので、鋳型の強度発現に対して有害となる非晶質ケイ酸塩水和物及び金属酸化物を、無害化させることが可能となる。
 第1の実施の形態の再生設備1を用い、生型砂をシェル中子に再生する目的で、5パス再生を行い、再生砂の性状及び中子の物性を評価した。中子の物性を評価するにあたっては、フェノール樹脂2.0%(対砂)、ヘキサメチレンテトラミン15%(対樹脂)、ステアリン酸カルシウム0.1%(対砂)の配合でレジンコーテッドサンド(以下RCSと略す)を調製し、このRCSを評価した。また、評価方法は、日本鋳造技術普及協会(JACT)の定めるJACT試験法SM-1「曲げ強さ試験法」に準拠した、幅10mm×高さ10mm×長さ60mmの寸法を有し、250℃で60秒間焼成して成形した試験片を用いて評価を行った。
 第1の実施の形態の再生設備1を用い、生型砂をシェル中子に再生する目的で、10パス再生を行い、再生砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
比較例1
 比較例1として、生型砂をシェル中子に再生する目的で、焙焼後遠心摩擦型鋳物砂再生装置を使用して6パス再生を行い、再生砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
比較例2
 比較例2として、生型砂をシェル中子に再生する目的で、バッチ式の砥石研磨型鋳物砂再生装置を使用して30分再生を行い、再生砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
比較例3
 比較例3として、生型砂をシェル中子に再生する目的で、バッチ式の砥石研磨型鋳物砂再生装置を使用して45分再生を行い、再生砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
比較例4
 比較例4として、生型砂をシェル中子に再生する目的で、バッチ式の砥石研磨型鋳物砂再生装置を使用して60分再生を行い、再生砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
比較例5
 比較例5として、再生前の状態の鋳型砂で、砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
比較例6
 比較例6として、実施例1及び2、及び、比較例1~5に使用しているものと同じ銘柄の砂(スプレードライヤー法によるムライト系人工砂)の未使用状態、所謂新砂で、砂の性状及び中子の物性を評価した。RCSの調製方法及び物性の評価方法は実施例1と同様である。
Figure JPOXMLDOC01-appb-T000001
 表1に実施例1及び2、及び、比較例1~6の砂性状及び中子の物性の結果の一覧を示す。実施例1及び2での結果は、比較例1~6全ての結果より良好なものであった。特に、スプレードライヤー法によるムライト系人工砂は機械再生の困難な砂であり、従来方式である比較例1~4での評価結果は、新砂の評価結果である比較量6より劣るものであった。これに対して、実施例1及び2での結果は新砂の評価結果である比較例6をも上回っていた。このことは、第1の実施の形態の再生設備1を用いて鋳型砂を再生した場合、新砂よりも品質の良い再生砂を作り出すことが可能であることを意味する。実際、新砂よりも再生砂の評価結果が劣っている場合は再生砂のみで生産した中子を使用できないため、新砂の一部を再生砂に置き換えることしかできない。このため、全ての再生砂を中子として消費できない。一方、新砂よりも再生砂の評価結果が優れていれば、再生砂のみで生産した中子を使用できることになり、全ての再生砂を中子として消費することが可能となる。
 第1の実施の形態の実施例1の構成の設備を用い、硅砂を主成分とする生型砂をフェノールウレタン自硬性中子に再生する目的で、3パス再生を行い、再生砂の性状及び中子の物性を評価した。中子砂はフェノール樹脂0.85%(対砂)、ポリイソシアネート0.85%(対砂)、硬化触媒0.1%(対砂)の配合で調製を行い、評価方法はJACT試験法HM-1「圧縮強さ試験法」に準拠して行った。
比較例7
 比較例7として、硅砂を主成分とする生型砂をフェノールウレタン自硬性中子に再生する目的で、連続式の遠心摩擦型鋳物砂再生装置を使用して実施例7と同じ処理量ならびに所要動力で10パス再生を行い、再生砂の性状及び中子の物性を評価した。中子砂の調製方法及び物性の評価方法は実施例3と同様である。
Figure JPOXMLDOC01-appb-T000002
 表2に実施例3と比較例7の再生砂の性状及び中子の物性の結果を示す。実施例3と比較例7との比較では、ほぼ同程度の砂性状であるが、実施例3は比較例7よりも強度が優れている。また、同程度の砂性状にまで再生するのに同じ処理量、所要動力で比較例7では10パスを要するが、実施例3では3パスで十分である。この結果から、実施例3は比較例7と比較して、エネルギー消費量の点で優れているといえる。
 第1の実施の形態の再生設備1を用い、硅砂を主成分とする生型砂をフェノールウレタンコールドボックス中子に再生する目的で、あらかじめ0.3Tの磁束密度の磁選機で磁選を行った後3パス再生を行い、再生砂の性状及び中子の物性を評価した。中子砂はフェノール樹脂1.0%(対砂)、ポリイソシアネート1.0%(対砂)の配合で調整を行い、評価方法はJACT試験法SM-1「曲げ強さ試験法」に準じた、幅10mm×高さ10mm×長さ60mmの寸法を有し、ブロー条件0.4MPa×3秒、ガッシング・パージ条件各々0.2MPa×10秒で成形した試験片を用いて評価を行った。
比較例8
 比較例8として、第1の実施の形態の再生設備1を用い、硅砂を主成分とする生型砂をフェノールウレタンコールドボックス中子に再生する目的で、3パス再生を行い、再生砂の性状及び中子の物性を評価した。中子砂の調製方法及び物性の評価方法は実施例4と同様である。
Figure JPOXMLDOC01-appb-T000003
 表3に実施例4と比較例8の再生砂の性状及び中子の物性の結果を示す。実施例4と比較例8との比較では、あらかじめ磁選を行い、磁着物量の少ない実施例4の方が、強度が優れている。同じ再生方式であっても、磁着物量が多い砂では強度が下がる傾向であることが明らかである。
 第1の実施の形態の再生設備1を用い、硅砂を主成分とする生型砂を再生した際に発生した1パス目のダストの活性粘土分、全粘土分及び強熱減量を測定した。活性粘土分の測定方法はAFS発行のMold & Core Test Handbook 3rd Editionで規定されている、Testing Procedure AFS 2210-00-S “METHYLENE BLUE CLAY TEST, ULTRASONIC METHOD, MOLDING SAND”に準拠し、ベントナイト係数は4.5を採用した。また、全粘土分の測定方法は、前述した、JIS Z 2601 附属書1「鋳物砂の粘土分試験方法」に準拠して行った。強熱減量の試験方法は、前述した、JIS Z 2601 附属書6「鋳物砂の強熱減量試験方法」に準拠して行った。
比較例9
 比較例9として、第1の実施の形態の再生設備1を用い、硅砂を主成分とする生型砂を再生した際に発生した2パス目のダストの活性粘土分、全粘土分及び強熱減量を測定した。活性粘土分、全粘土分及び強熱減量の測定方法は、実施例5と同様である。
Figure JPOXMLDOC01-appb-T000004
 表4に実施例5と比較例9のダストの活性粘土分、全粘土分及び強熱減量の結果を示す。実施例5と比較例9との比較では、1パス目のダストでは活性粘土分、全粘土分、及び、強熱減量のいずれもが比較例9よりも高い値を示している。このことは、実施例5の方がより多くの有効なベントナイト及び石炭粉など揮発性の添加物を含有していることと、比較例9の方が不揮発性かつ有効なベントナイトではない成分、すなわち再生によって研摩された砂粒の微粉などを多く含有していることを示している。
 第1の実施の形態の再生設備1を用い、硅砂を主成分とする生型砂を主型添加用硅砂代替砂に再生する目的で、6パス再生を行い、再生砂の性状を評価した。その上、再生砂を1t/日の割合で主型へ添加し、1ヶ月経過した後の主型砂の性状を評価した。
比較例10
 比較例10として、実施例6の再生砂で代替される前の主型添加用硅砂の性状を評価した。その上、新砂を1t/日の割合で主型へ添加した際の主型砂の性状を評価した。
Figure JPOXMLDOC01-appb-T000005
 オーリティクスが不足すると、鋳型砂の保水機能が失われるため、鋳型砂に添加した水分が蒸発し、鋳型砂に起因する鋳物不良を引き起こすことになる。一方で、オーリティクスが過剰な場合は、鋳型砂の充填密度低下や鋳物の焼き付き不良などの原因ともなる。そのため、鋳物の材質や対象となる製品の要求仕様によっても異なるが、一般的に鋳鉄鋳物を生産する生型鋳造設備で使用される主型砂では、オーリティクスを略20%で管理することが多い。
 表5において実施例6と比較例10の結果を比較してみると、オーリティクスの割合は若干比較例10の方が高いものの、いずれもほぼ同等の値であった。クォーツの割合は実施例6の方が比較例10に対して著しく改善されている。この結果より、実施例6に示される再生砂の性状まで再生を行ったものであれば、新砂を添加したものとほぼ同じ水準で、保水性を維持するのに十分な割合となるよう主型砂のオーリティクスを維持しながら、さらにクォーツが増加することで過剰なオーリティクスに起因する焼き付きなどの欠陥を防止することができることが明らかとなった。
 なお、第5~第8の実施の形態では、全て同一の機構を有する再生設備R及び分級設備Cを直列及び並列に配置している。これらの台数が何台必要であるかは、あらかじめ試験を行って必要な処理量及び処理能力を検証し、最大限必要な台数を用意しておく必要がある。
 また、第5~第8の実施の形態では、全て同一の機構を有する再生設備、及び、分級設備を直列に2台、及び並列に2台、配置しているが、要求される処理量、要求される再生砂の品質、及び、要求される処理能力によっては、直列、及び、並列に何台配置してもよく、直列のみの配置や並列のみの配置としてもよい。
 さらに、第5~第8の実施の形態では、全て同一の機構を有する再生設備及び分級設備を用いているが、異なる機構を有する再生設備R及び分級設備Cを用いてもよい。
 また、第5~第8の実施の形態では、1パス目の分級装置Cは集塵装置DCで、2パス目以降の分級装置Cは集塵装置DOですることで、1パス目のダストと2パス目以降のダストを分離して回収するようにしている。このため、再利用可能な1パス目のダストを他のダストと混合させることなく、有効に再利用することが可能となる。
1、11、21、31、41、51、61、71 再生設備
2 圧縮空気噴射手段
S 鋳型砂
D 乾燥設備
M 磁選設備
V1、V2、V3、V4 切り替え設備
BP1、BP2 バイパス系
R 乾式の機械再生設備
C 分級設備
PL1、PL2 送還系
DC、DO 集塵設備
PO オーバーフロー砂回収設備
IO オーバーフロー砂異物除去設備
SSO オーバーフロー砂貯蔵槽
PS 製品付着砂回収設備
IS 製品付着砂異物除去設備
SSS 製品付着砂貯蔵槽
PL 主型中子砂混合砂回収設備
L 解砕設備
IL 主型中子混合砂異物除去設備
SSL 主型中子混合砂貯蔵槽
PC 砂塊及び砂回収設備
IC 砂塊及び砂異物除去設備
SSC 砂塊及び砂貯蔵槽
F 砂切り出し/配合設備
TR 加熱設備

Claims (31)

  1.  生型鋳造設備から排出される鋳型砂の水分量及び磁着物量を測定する工程、
     測定された水分量を第1の管理値と比較し、前記水分量が第1の管理値を超えていた場合、前記鋳型砂を第1の管理値以下になるまで乾燥する工程、
     測定された磁着物量を第2の管理値と比較し、前記磁着物量が第2の管理値を超えていた場合、前記鋳型砂を第2の管理値以下になるまで磁選する工程、
     その後、前記鋳型砂を強熱減量が第3の管理値以下になるまで乾式の機械再生により再生する工程、及び、
     前記鋳型砂を全粘土分が第4の管理値以下になるまで分級する工程
    を含むこと、を特徴とする鋳型砂の再生方法。
  2. (第5~第8の実施の形態、直列に複数)
     前記再生する工程、及び、前記分級する工程を複数回行うこと、を特徴とする請求項1に記載の鋳型砂の再生方法。
  3. 前記再生する工程の前に前記鋳型砂を複数に分ける工程をさらに含み、複数に分けられた前記鋳型砂に対して、前記再生する工程、及び、前記分級する工程をそれぞれ行うこと、を特徴とする請求項1に記載の鋳型砂の再生方法。
  4.  前記再生する工程、及び、前記分級する工程を複数回行うこと、を特徴とする請求項3に記載の鋳型砂の再生方法。
  5.  生型鋳造設備から排出される鋳型砂を、オーバーフロー砂、製品付着砂、主型中子混合砂、及び、砂塊及び砂に分けて回収する工程、
     前記オーバーフロー砂を水分量が第1の管理値以下になるまで乾燥させ、異物を除去した後、貯蔵する工程、
     前記製品付着砂の異物を除去し、磁着物量が第2の管理値以下になるまで磁選した後、貯蔵する工程、
     前記主型中子混合砂を解砕し、異物を除去した後、貯蔵する工程、
     前記砂塊及び砂を解砕し、異物を除去した後、貯蔵する工程、
     貯蔵された前記オーバーフロー砂、貯蔵された前記製品付着砂、貯蔵された前記主型中子混合砂、及び、貯蔵された前記砂塊及び砂を、それらの割合が常に一定となるように取り出して配合する工程、
     配合された砂を強熱減量が第3の管理値以下になるまで乾式の機械再生により再生する工程、及び、
     配合された前記砂を全粘土分が第4の管理値以下になるまで分級する工程
    を含むこと、を特徴とする鋳型砂の再生方法。
  6.  前記再生する工程、及び、前記分級する工程を複数回行うこと、を特徴とする請求項5に記載の鋳型砂の再生方法。
  7.  前記配合する工程で配合された砂を複数に分ける工程をさらに含み、複数に分けられた前記配合された砂に対して、前記再生する工程、及び、前記分級する工程をそれぞれ行うこと、を特徴とする請求項5に記載の鋳型砂の再生方法。
  8.  前記再生する工程、及び、前記分級する工程を複数回行うこと、を特徴とする請求項7に記載の鋳型砂の再生方法。
  9.  生型鋳造設備で使用される中子が加熱脱水硬化型水ガラスプロセスの場合、前記主型中子混合砂の異物を除去した後に前記主型中子混合砂を400℃以上に加熱する工程、及び、前記砂塊及び砂の異物を除去した後に前砂塊及び砂を400℃以上に加熱する工程をさらに含むこと、を特徴とする請求項5から8のいずれか一項に記載の鋳型砂の再生方法。
  10.  最初の前記分級する工程において発生した微粉を集塵する工程をさらに含むこと、を特徴とする請求項1から9のいずれか一項に記載の鋳型砂の再生方法。
  11.  前記分級する工程は、比重分級法を用いること、を特徴とする、請求項1から10のいずれか一項に記載の鋳型砂の再生方法。
  12.  前記第1の管理値は、0.5%であること、を特徴とする、請求項1から11のいずれか一項に記載の鋳型砂の再生方法。
  13.  前記第2の管理値は、5.0%であることを特徴とする、請求項1から12のいずれか一項に記載の鋳型砂の再生方法。
  14.  前記第3の管理値は、0.6%であること、を特徴とする、請求項1から13のいずれか一項に記載の鋳型砂の再生方法。
  15.  前記第4の管理値は、0.6%であること、を特徴とする、請求項1から14のいずれか一項に記載の鋳型砂の再生方法。
  16.  生型鋳造設備から排出される鋳型砂の水分量を第1の管理値以下になるまで乾燥する乾燥設備、
     前記鋳型砂の磁着物量を第2の管理値以下になるまで磁選する磁選設備、
     前記鋳型砂の強熱減量を第3の管理値以下になるまで再生する乾式の機械再生設備、
     前記鋳型砂の全粘土分を第4の管理値以下になるまで分級する分級設備、
     前記鋳型砂を前記乾燥設備に通過させるか否かを選択する第1の切り替え設備、及び、
     前記鋳型砂を前記磁選設備に通過させるか否かを選択する第2の切り替え設備
    を備えたこと、を特徴とする鋳型砂の再生設備。
  17.  前記乾式の機械再生設備の前に、前記鋳型砂に前記乾式の機械再生設備を通過させるか、又は、前記鋳型砂を前記再生設備の入口に戻すかを選択する第3の切り替え設備をさらに備えたこと、を特徴とする請求項16に記載の鋳型砂の再生設備。
  18.  前記乾式の機械再生設備、及び、前記分級設備を複数備えたこと、を特徴とする請求項16又は17に記載の鋳型砂の再生設備。
  19.  前記鋳型砂を複数の通路に振り分ける設備をさらに備え、
     前記複数通路の後ろのそれぞれに、前記乾式の機械再生設備、及び、前記分級設備を備えたこと、を特徴とする請求項16又は17に記載の鋳型砂の再生設備。
  20.  前記乾式の機械再生設備、及び、前記分級設備を複数備えたこと、を特徴とする請求項19に記載の鋳型砂の再生設備。
  21.  砂処理工程から排出されたオーバーフロー砂を回収するオーバーフロー砂回収設備、
     前記オーバーフロー砂を水分が第1の管理値以下になるまで乾燥させる乾燥設備、
     前記オーバーフロー砂の異物を除去するオーバーフロー砂異物除去設備、
     前記オーバーフロー砂を貯蔵するオーバーフロー砂貯蔵槽、
     製品付着砂を回収する製品付着砂回収設備、
     前記製品付着砂の異物を除去する製品付着砂異物除去設備、
     前記製品付着砂の磁着物量が第2の管理値以下になるまで磁選する磁選設備、
     前記製品付着砂を貯蔵する製品付着砂貯蔵槽、
     主型中子砂混合砂を回収する主型中子砂混合砂回収設備、
     前記主型中子混合砂を解砕する解砕設備、
     前記主型中子混合砂の異物を除去する主型中子混合砂異物除去設備、
     前記主型中子混合砂を貯蔵する主型中子混合砂貯蔵槽、
     中子砂落とし工程から排出された砂塊及び砂を回収する砂塊及び砂回収設備、
     前記砂塊及び砂を解砕する解砕設備、
     前記砂塊及び砂の異物を除去する砂塊及び砂異物除去設備、
     前記砂塊及び砂を貯蔵する砂塊及び砂貯蔵槽、
     前記オーバーフロー砂貯蔵槽、製品付着砂貯蔵槽、前記主型中子混合砂貯蔵槽、及び、前記砂塊及び砂貯蔵槽から取り出される砂の割合が常に一定となるよう各貯蔵槽から砂を取り出して配合する砂切り出し/配合設備、
     配合された砂を第3の管理値以下の強熱減量になるまで再生する乾式の機械再生設備、及び、
     前記配合された砂を第4の管理値以下の全粘土分になるまで分級する分級設備
    を備えたこと、を特徴とする、鋳型砂の再生設備。
  22.  前記乾式の機械再生設備、及び、前記分級設備を複数備えたこと、を特徴とする請求項21に記載の鋳型砂の再生設備。
  23.  前記鋳型砂を複数の通路に振り分ける設備をさらに備え、
     前記複数通路の後ろのそれぞれに、前記乾式の機械再生設備、及び、前記分級設備を備えたこと、を特徴とする請求項21に記載の鋳型砂の再生設備。
  24.  前記乾式の機械再生設備、及び、前記分級設備を複数備えたこと、を特徴とする請求項23に記載の鋳型砂の再生設備。
  25.  前記主型中子混合砂異物除去設備の後ろに前記主型中子混合砂を400℃以上に加熱する加熱設備、及び、前記砂塊及び砂異物除去設備の後ろに、前砂塊及び砂を400℃以上に加熱する加熱設備をさらに備えたこと、を特徴とする請求項21から24のいずれか一項に記載の鋳型砂の再生設備。
  26.  前記分級設備において発生した微粉を集塵する集塵設備をさらに備えたこと、を特徴とする請求項16から25のいずれか一項に記載の鋳型砂の再生設備。
  27.  前記磁選設備は、磁束密度0.15T~0.5Tの能力を有する、半磁外輪式の磁選設備であること、を特徴とする請求項16から26のいずれか一項に記載の鋳型砂の再生設備。
  28.  前記乾式の機械再生設備は、
     下端に砂落し口を設けた砂供給シュ-ト、
     前記砂供給シュ-トの下方において水平回転自在に配設されて、円形底板の周端から斜め上外方に延びる傾斜周壁及び前記傾斜周壁の上端から内側に張り出す堰を連結した回転ドラム、
     前記回転ドラム内において前記傾斜周壁に対して若干の隙間を設けて直角に配置された少なくとも1つのローラー、及び、
     前記ローラーに連結されて、前記ローラーを前記傾斜周壁の方向に一定圧力により押しつけるローラー加圧機構
    を備えたこと、を特徴とする請求項16から27のいずれか一項に記載の鋳型砂の再生設備。
  29.  前記ローラー加圧機構に使用されるシリンダーは、空圧油圧複合シリンダーであること、を特徴とする請求項28に記載の鋳型砂の再生設備。
  30.  前記乾式の機械再生設備は、
     下端に砂落し口を設けた砂投入部、
     前記砂投入部の下方において水平回転自在に配設されて、円形底板の周端から斜め上外方に延びる傾斜周壁及び前記傾斜周壁の上端から内側に張り出す堰を連結した回転ドラム、
     前記回転ドラム内において前記傾斜周壁に対して若干の隙間を設けて直角に配置された少なくとも1つのローラー、
     前記ローラーに連結されて、前記ローラーを前記傾斜周壁の方向に一定圧力により押しつけるローラー加圧機構、
     前記回転ドラムをモーターにより回転させるモーター駆動手段、
     前記砂投入部の砂落し口に設置され投入される砂流量を検出する砂流量検出器、
     前記モーター駆動手段の電流値を検出する電流検出器、
     前記ローラー加圧機構であるシリンダーの圧力制御手段、及び、
     前記砂量検出器により検出される砂量に応じて前記シリンダーによるローラーの加圧力を調整する制御手段を備え、
     前記制御手段は、
     前記砂流量と再生砂に要求される研磨の程度の違いにより決定される前記モーターの電流値との相対関係をあらかじめ設定し、前記相対関係を維持するように、前記砂流量検出器により検出された砂流量に対応する前記モーターの目標電流値を算出する目標電流演算部、
     投入された砂流量に対応する前記モーターの目標電流値と運転中の実測したモーターの電流値とを比較する比較部、及び、
     前記比較部の結果に基づいて運転中の前記モーターの電流値を前記モーターの目標電流値になるように前記シリンダーによるローラーの加圧力を調整する制御部
    を備えたこと、を特徴とする請求項16から27のいずれか一項に記載の鋳型砂の再生設備。
  31.  前記乾式の機械再生設備は、前記傾斜周壁に付着堆積して成る堆積微粉に圧縮空気を噴射する圧縮空気噴射手段をさらに備え、前記圧縮空気噴射手段は、
     圧縮空気源からの圧縮空気の圧力を調整する圧力調整弁、
     前記圧力調整弁からの圧縮空気の流量を調整する流量調整弁、
     前記圧力調整弁、及び、前記流量調整弁を貫流した圧縮空気を噴射するノズル、
     圧縮空気の噴射条件を選定する噴射条件選定手段、及び、
     前記噴射条件選定手段からの指令に基づき前記圧力調整弁、及び、前記流量調整弁を制御する制御手段
    を備えたこと、を特徴とする請求項28から30のいずれか一項に記載の鋳型砂の再生設備。
PCT/JP2016/062274 2015-06-11 2016-04-18 鋳型砂の再生方法及び再生設備 WO2016199498A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017523143A JP6519654B2 (ja) 2015-06-11 2016-04-18 鋳型砂の再生方法及び再生設備
KR1020177036156A KR20180018569A (ko) 2015-06-11 2016-04-18 주형사의 재생 방법 및 재생 설비
US15/577,508 US20180133719A1 (en) 2015-06-11 2016-04-18 Molding sand reclamation method and reclamation equipment
EP16807205.6A EP3308875A4 (en) 2015-06-11 2016-04-18 Molding sand regeneration method and regenerating device
CN201680033705.0A CN107635693A (zh) 2015-06-11 2016-04-18 型砂的再生方法和再生设备
MX2017014625A MX2017014625A (es) 2015-06-11 2016-04-18 Metodo de reciclaje de arena de moldeo y equipo de reciclaje.
RU2017142806A RU2017142806A (ru) 2015-06-11 2016-04-18 Способ регенерации формовочного песка и оборудование регенерации
BR112017026569-9A BR112017026569A2 (ja) 2015-06-11 2016-04-18 A regeneration method of molding sand, and reproduction equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118537 2015-06-11
JP2015118537 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016199498A1 true WO2016199498A1 (ja) 2016-12-15

Family

ID=57503206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062274 WO2016199498A1 (ja) 2015-06-11 2016-04-18 鋳型砂の再生方法及び再生設備

Country Status (10)

Country Link
US (1) US20180133719A1 (ja)
EP (1) EP3308875A4 (ja)
JP (1) JP6519654B2 (ja)
KR (1) KR20180018569A (ja)
CN (1) CN107635693A (ja)
BR (1) BR112017026569A2 (ja)
MX (1) MX2017014625A (ja)
RU (1) RU2017142806A (ja)
TW (1) TWI689361B (ja)
WO (1) WO2016199498A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188344A (zh) * 2018-01-30 2018-06-22 宁夏共享模具有限公司 一种3d打印机用的集成砂供应系统
WO2020235391A1 (ja) * 2019-05-17 2020-11-26 伊藤忠セラテック株式会社 鋳物砂の再生方法
CN112077269A (zh) * 2020-09-26 2020-12-15 山西东鑫衡隆机械制造股份有限公司 用于铁型覆砂工艺中给进型铁箱落砂装置
US10881122B2 (en) * 2017-05-24 2021-01-05 Karthikeyan Jagadevan Grinding device with self-cleaning and fermentation assist and methods of using the same
CN113290202A (zh) * 2021-05-24 2021-08-24 重庆方汀机械制造有限责任公司 一种覆膜砂生产设备

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074604A (ja) * 2015-10-15 2017-04-20 新東工業株式会社 鋳型砂の再生方法及び再生システム
CA2912761A1 (en) * 2015-11-23 2017-05-23 Ati Agritronics Inc. Sampling system
CN108917359A (zh) * 2018-04-25 2018-11-30 山东齐鲁化纺有限公司 一种聚酯瓶片连续干燥系统及其干燥工艺
JPWO2019239733A1 (ja) 2018-06-15 2021-07-08 新東工業株式会社 鋳型造型装置及び鋳型造型装置の制御方法
KR20210035837A (ko) * 2018-07-20 2021-04-01 이메리스 유에스에이, 인크. 파운드리 샌드 폐기물로부터 샌드, 벤토나이트 및 유기물 회수
JP7273535B2 (ja) * 2019-02-21 2023-05-15 株式会社ディスコ スラッジ乾燥装置
KR102192075B1 (ko) * 2019-03-14 2020-12-16 박서영 주물사의 철분제거 방법
CN110125320A (zh) * 2019-06-03 2019-08-16 南阳仁创砂业科技有限公司 一种水玻璃无机除尘灰回收方法及其应用
JP7238840B2 (ja) * 2020-03-31 2023-03-14 新東工業株式会社 強熱減量推定装置、強熱減量推定方法、機械学習装置、及び機械学習方法
CN111983967B (zh) * 2020-08-17 2022-03-29 于彦奇 一种用于铸造厂型砂质量控制的智能系统及控制方法
CN112588582B (zh) * 2020-11-03 2023-05-09 东北农业大学 一种仿蚯蚓体表结构及运动的复合波浪筛
CN112221710A (zh) * 2020-11-04 2021-01-15 安徽青花坊瓷业股份有限公司 一种陶瓷生产用胚料除铁装置
CN112892814A (zh) * 2020-12-24 2021-06-04 中国水利水电第九工程局有限公司 人工制砂过程气力脱粉工艺
CN113019648B (zh) * 2021-03-02 2024-04-30 合肥水泥研究设计院有限公司 一种废弃混凝土再生砂粉高效制备系统
CN113426548B (zh) * 2021-06-28 2022-06-17 中国水利水电第九工程局有限公司 一种机制砂石中细碎车间湿筛干破制砂工艺的控制方法
CN113413996B (zh) * 2021-06-28 2022-06-21 中国水利水电第九工程局有限公司 一种砂石加工厂立轴破机制砂湿法量化脱粉调控方法
CN114308267A (zh) * 2021-12-13 2022-04-12 安徽华塑股份有限公司 一种用于电石渣植被高效脱硫剂的处理装置
CN114665685B (zh) * 2022-03-14 2023-11-14 东北电力大学 平面二维随机振动能量回收装置
CN115569723B (zh) * 2022-12-07 2023-03-14 石家庄中栋碳素有限公司 新能源锂电负极材料自动化收集系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154207A (ja) * 2007-12-07 2009-07-16 Sintokogio Ltd 鋳物砂再生装置
JP2009241149A (ja) * 2008-02-26 2009-10-22 Sintokogio Ltd 鋳型砂の処理方法及び処理システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550949A (en) * 1978-10-05 1980-04-14 Daido Steel Co Ltd Regenerating method of casting sand
DE3400648A1 (de) * 1984-01-11 1985-07-18 Delta Engineering Beratung und Vermittlung Gesellschaft mbH, Irdning Vorrichtung und verfahren zur regeneration von giesserei-schuttsand
JP3162218B2 (ja) * 1992-12-04 2001-04-25 旭テック株式会社 鋳物砂の再生方法
TW278053B (ja) * 1993-09-24 1996-06-11 Sintokogio Ltd
JP3125275B2 (ja) * 1994-02-10 2001-01-15 新東工業株式会社 鋳物砂再生装置
JPH0957393A (ja) * 1995-08-28 1997-03-04 Toyota Motor Corp 生砂の組成調製方法
JP3503804B2 (ja) * 1997-10-17 2004-03-08 新東工業株式会社 使用済み鋳物砂の再生方法
JP4098413B2 (ja) * 1998-08-12 2008-06-11 株式会社清田鋳機 砂・粒塊状物の粉砕研磨装置及び鋳物砂の回収再生設備
TW462901B (en) * 1999-02-08 2001-11-11 Shinto Kogyo Ltd Method and apparatus for reclaiming casting sand
JP4108021B2 (ja) * 2003-08-21 2008-06-25 ダイセル化学工業株式会社 プラスチック混合物の分別処理システム
MY146740A (en) * 2004-08-20 2012-09-14 Asahi Organic Chem Ind Method and apparatus for manufacturing reprocessed casting sand
CN201385103Y (zh) * 2009-04-22 2010-01-20 淄博贝尼托金属制品有限公司 粘土砂旧砂烘干再生成套设备
CN101773981B (zh) * 2010-03-05 2012-05-23 昆明理工大学 铸造粘土-树脂混合旧砂机械联合再生的方法
CN103128228B (zh) * 2011-11-30 2015-10-28 山东省源通机械股份有限公司 湿型铸造中废砂的再生综合利用方法
JP2014024097A (ja) * 2012-07-27 2014-02-06 Asahi Tec Corp 鋳物砂の再生方法
CN104379275B (zh) * 2012-08-23 2016-05-25 新东工业株式会社 型砂的再生装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154207A (ja) * 2007-12-07 2009-07-16 Sintokogio Ltd 鋳物砂再生装置
JP2009241149A (ja) * 2008-02-26 2009-10-22 Sintokogio Ltd 鋳型砂の処理方法及び処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3308875A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10881122B2 (en) * 2017-05-24 2021-01-05 Karthikeyan Jagadevan Grinding device with self-cleaning and fermentation assist and methods of using the same
CN108188344A (zh) * 2018-01-30 2018-06-22 宁夏共享模具有限公司 一种3d打印机用的集成砂供应系统
WO2020235391A1 (ja) * 2019-05-17 2020-11-26 伊藤忠セラテック株式会社 鋳物砂の再生方法
JP7487037B2 (ja) 2019-05-17 2024-05-20 伊藤忠セラテック株式会社 鋳物砂の再生方法
CN112077269A (zh) * 2020-09-26 2020-12-15 山西东鑫衡隆机械制造股份有限公司 用于铁型覆砂工艺中给进型铁箱落砂装置
CN113290202A (zh) * 2021-05-24 2021-08-24 重庆方汀机械制造有限责任公司 一种覆膜砂生产设备

Also Published As

Publication number Publication date
RU2017142806A (ru) 2019-07-15
KR20180018569A (ko) 2018-02-21
CN107635693A (zh) 2018-01-26
JP6519654B2 (ja) 2019-05-29
MX2017014625A (es) 2018-03-01
US20180133719A1 (en) 2018-05-17
EP3308875A1 (en) 2018-04-18
JPWO2016199498A1 (ja) 2018-03-29
BR112017026569A2 (ja) 2018-08-14
TW201706052A (zh) 2017-02-16
TWI689361B (zh) 2020-04-01
EP3308875A4 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
WO2016199498A1 (ja) 鋳型砂の再生方法及び再生設備
WO2017064905A1 (ja) 鋳型砂の再生方法及び再生システム
US4700766A (en) Process and apparatus for reclaiming foundry scrap sands
KR100236583B1 (ko) 로에 대한 합성수지의 장입방법,취입방법 및 그 장치
JP5718509B1 (ja) 鋳物砂の再生装置
KR20120085730A (ko) 회전 텀블러 및 금속 리클레이머
EP0414388B1 (en) Method for reconditioning green foundry sand
US5515907A (en) Method of and apparatus for regenerating foundry sand
CN111316056A (zh) 砂的热回收或净化
Rayjadhav et al. Assessment of sand reclamation techniques and sand quality in thermal reclamation
JP2006068815A (ja) 生型廃砂の再生方法及び鋳型用骨材
TW388727B (en) Method and apparatus for cold reclamation of foundry sand
CA1256266A (en) Method of reclaiming green sand
JP3681158B2 (ja) 廃ガラス粒入り再生加熱アスファルト混合物の製造方法
JP6948090B2 (ja) 鋳物砂の再生システムと鋳物砂の再生方法
US2326218A (en) Process of reclaiming foundry sand
JP4002588B1 (ja) アスファルト合材の製造方法
CN208512632U (zh) 一种高效对辊机
DK157740B (da) Fremgangsmaade og apparat til regenerering af stoebesand
KR20200106271A (ko) 세라믹샌드를 기반으로 한 플랜지의 제조방법 및 자동화시스템
JP4334241B2 (ja) 摩砕プラント
CN109174330A (zh) 设置有烟尘过滤组件的球磨机
Holtzer et al. Reclamation of used molding sands
JP2000042515A (ja) 古砂ダストの再生処理方法およびそれに用いる流動焙焼炉
CN114835420A (zh) 陶粒废砂再生陶粒砂设备及陶粒砂制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523143

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/014625

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15577508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017142806

Country of ref document: RU

Ref document number: 2016807205

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026569

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026569

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171208