WO2016194322A1 - レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム - Google Patents

レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム Download PDF

Info

Publication number
WO2016194322A1
WO2016194322A1 PCT/JP2016/002423 JP2016002423W WO2016194322A1 WO 2016194322 A1 WO2016194322 A1 WO 2016194322A1 JP 2016002423 W JP2016002423 W JP 2016002423W WO 2016194322 A1 WO2016194322 A1 WO 2016194322A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
laser
laser beam
width
bead
Prior art date
Application number
PCT/JP2016/002423
Other languages
English (en)
French (fr)
Inventor
中川 龍幸
康士 向井
篤寛 川本
潤司 藤原
範幸 松岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/564,207 priority Critical patent/US10807191B2/en
Priority to CN201680024556.1A priority patent/CN107530831B/zh
Priority to EP16802765.4A priority patent/EP3305459B1/en
Priority to JP2017521674A priority patent/JP6967700B2/ja
Publication of WO2016194322A1 publication Critical patent/WO2016194322A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots

Definitions

  • the present invention relates to a laser welding method, a laser welding condition determining method, and a laser welding system for performing welding by irradiating a welding object with laser light.
  • the laser is moved in a spiral orbit to increase the amount of molten metal and joining in order to increase the positional deviation and gap tolerance compared to welding in a linear orbit. This technique is used.
  • Patent Document 1 discloses a technique that promotes the release of gas contained in the melted portion by a stirring effect by a laser when passing through a place once welded in an aluminum material. ing.
  • the laser beam is irradiated to the welding object so as to form a beam spot that moves relative to the welding object along a trajectory having a spiral shape that goes around the rotation center that moves in the welding direction.
  • the welding object is welded by the irradiated laser beam.
  • a laser beam is irradiated to a welding object based on the space
  • This method suppresses the generation of bubbles and provides a good weld state with a uniform bead.
  • FIG. 1 is a schematic configuration diagram of a laser welding system according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of another laser welding system in the embodiment.
  • FIG. 3 is a cross-sectional view of a welding object of the laser welding system in the embodiment.
  • FIG. 4 is a cross-sectional view of a welding object of the laser welding system in the embodiment.
  • FIG. 5 is a top view of a welding object of the laser welding system in the embodiment.
  • FIG. 6 is a top view of a welding object of the laser welding system in the embodiment.
  • FIG. 7 is a top view of a welding object of the laser welding system in the embodiment.
  • FIG. 8 is a top view of the welding object of the laser welding system in the embodiment.
  • FIG. 1 is a schematic configuration diagram of a laser welding system according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of another laser welding system in the embodiment.
  • FIG. 3 is a cross-sectional view of a welding object of the laser welding system
  • FIG. 9A is an external view of a welding object of the laser welding system in the embodiment.
  • FIG. 9B is an external view of a welding object of the laser welding system in the embodiment.
  • FIG. 10A is an external view of a laser welding system in the embodiment.
  • FIG. 10B is an external view of a welding object of the laser welding system in the embodiment.
  • FIG. 11A is an external view of a welding object of the laser welding system in the embodiment.
  • FIG. 11B is an external view of a welding object of the laser welding system in the embodiment.
  • FIG. 12 is a schematic diagram showing the bead width, beam diameter, rotational radius, and welding speed V of the laser welding system in the embodiment.
  • FIG. 13 is a flowchart showing the operation of determining the laser welding conditions of the laser welding system in the embodiment.
  • FIG. 1 is a schematic configuration diagram of a laser welding system 1001 in the embodiment.
  • the laser welding system 1001 includes a laser oscillator 1 that outputs a laser beam 23, a laser head 2 that is a galvano scanner head that emits the laser beam 23 toward a welding object 501, and an operation control unit 5.
  • the laser head 2 has a galvano mirror 3, a galvano motor 4, and an F ⁇ lens 6, and scans the laser beam 23 therein.
  • the galvanometer mirror 3 changes the trajectory of the laser beam 23.
  • the galvano motor 4 rotates the galvanometer mirror 3.
  • the operation of the galvano motor 4 is controlled by the operation control unit 5.
  • the F ⁇ lens 6 forms an image of the laser beam 23 on the welding object 501.
  • the laser welding system 1001 may further include a robot 8 to which the laser head 2 is attached and moves the laser head 2.
  • the robot 8 moves the laser head 2 to a target position, and relatively scans the laser beam 23 with the laser head 2.
  • the laser welding system 1001 shown in FIG. 1 irradiates a laser beam 23 to a designated position with the above configuration.
  • the welding object 501 has metal plates 30 and 31 overlapped with each other.
  • the laser welding system 1001 welds the metal plate 30 and the metal plate 31 by irradiating the metal plate 30 with the laser beam 23.
  • FIG. 2 is a schematic configuration diagram of a laser welding system 1002 in the embodiment.
  • the laser welding system 1002 includes a laser oscillator 1, a laser head 7 that is a welding head that emits a laser beam 23 output from the laser oscillator 1 toward a welding object 501, a robot 8, and an operation control unit 9. have.
  • the laser head 7 forms an image of the laser beam 23 on the welding object 501.
  • a laser head 7 is attached to the tip portion of the robot 8.
  • the laser head 7 is moved to a target position, and the laser head 7 itself is moved to scan the laser beam 23.
  • the operation control unit 9 controls the operation of the robot 8 and the operation of the laser head 7.
  • the laser welding system 1002 shown in FIG. 2 irradiates the designated position with the laser beam 23 by the above configuration.
  • the laser welding system 1002 welds the metal plate 30 and the metal plate 31 by irradiating the metal plate 30 with the laser beam 23.
  • a laser welding system 1001 (1002) is provided with a laser head 2 (7) that emits laser light 23 output from the laser oscillator 1 toward a welding object 501, and a laser head 2 (7).
  • a robot 8 for moving the welding head 2 (7), and a controller 17 for controlling the operation of the laser head 2 (7) and the robot 8 and laser welding, and a laser beam spirally with respect to the welding object 501.
  • Light 23 is irradiated.
  • the control unit 17 includes a welding object information input unit 13 that inputs welding object information that is information related to the welding object 501, and a laser light information input unit 14 that inputs laser light information that is information related to laser light. .
  • the welding object information is, for example, the material of the welding object 501, the shape of the joint, or the thickness.
  • the laser beam information is, for example, the beam diameter of the laser beam 23 or the interval coefficient.
  • the control unit 17 determines at least one or more of the welding speed, the bead width, and the penetration depth of the welded portion as the recommended value Ha, and the laser.
  • the welding condition determination unit 11 that determines at least one of the rotation frequency and the laser output as the recommended value Hb and determines a recommended value of the welding condition is provided.
  • the control unit 17 further includes a parameter change input unit 15 for changing the recommended value determined by the welding condition determining unit 11 and a display unit 16 for displaying the recommended value determined by the welding condition determining unit 11. Yes.
  • the laser beam information includes an interval coefficient L indicating the overlapping degree of the laser beam spiral trajectory in the welding direction.
  • the controller 17 that controls the operation of the laser welding systems 1001 and 1002 and the laser welding may not be an integrated controller, and controls the operation of the laser head 2 (7) and the robot 8 and performs welding. Even including a functional block that is a separate device such as an operation control unit including a welding condition determination unit 11 that determines recommended values of conditions and a condition setting unit 12 that inputs and displays welding conditions and the like. Good.
  • control unit 17 further includes a storage device 10 that stores in advance, as fixed values, an interval coefficient L within an appropriate range and a beam diameter ⁇ determined by the device specifications.
  • Information relating to beam quality may be input from the laser beam information input unit 14 as laser beam information, or may be stored in the storage device 10 as information determined by device specifications.
  • the laser beam 23 is scanned to a specified position as a configuration in which a plurality of rotating prisms are arranged in the welding head. May be irradiated.
  • the penetration state that changes according to the laser output and the welding speed V is described below.
  • the laser welding of the welding target object 501 shown below can be performed by the laser welding systems 1001 and 1002 shown in FIG. 1 and FIG. 2, for example.
  • the spin trajectory is a laser beam trajectory that moves in the welding direction while moving the spot of the irradiated laser beam along a circular trajectory, in other words, a relatively straight line while the laser beam trajectory rotates in the welding direction. It is a trajectory that is being moved.
  • the welding on the straight track was observed under the first welding condition and the second welding condition of the comparative example.
  • FIG. 3 is a cross-sectional view in the welding direction 24 of the welded portion of the welding object 501 under the first welding condition.
  • a laser beam 23 is irradiated into the molten pool 22 to move a part of the molten pool 22. Therefore, this welding corresponds to the stirring of the molten pool disclosed in Patent Document 1.
  • the metal vapor 26 is generated from the melted portion of the welding object 501 by the laser beam 23, and the keyhole 21 that is a hole surrounded by the molten metal is formed in the molten pool 22 by the reaction force of the generation of the metal vapor. appear.
  • the laser beam 23 is multiple-reflected in the keyhole 21, and the laser beam 23 is confined in the keyhole 21, thereby increasing the energy absorption rate of the metal of the welding object 501, and sufficient metal of the welding object 501.
  • the amount of penetration is obtained.
  • the laser beam 23 is irradiated into the molten pool 22 that is a liquid phase, and the laser beam 23 moves in the welding direction 24 that travels along the welding line of the object 501 to be welded.
  • a large amount of metal vapor 26 is generated from the keyhole front wall 25 which is the liquid phase indicated by the thick solid line of the hole 21.
  • the second welding condition is keyhole type welding in which the laser beam 23 is irradiated to the unmelted portion 34 (solid phase) in front of the molten pool 22 in the welding direction 24 at the outer edge portion of the molten pool 22.
  • FIG. 4 is a cross-sectional view in the welding direction 24 of the welded portion of the welding object 501 under the second welding condition. Note that, in the first welding condition, there is a molten layer (liquid phase) of the molten pool 22 on the front side of the laser beam 23 in the welding direction 24, which is the direction in which the laser beam travels. There is no molten layer (liquid phase) of the molten pool 22 on the front side of the laser beam 23.
  • the laser beam 23 is irradiated to the unmelted portion 34 of the welding object 501 that is the outer edge portion of the molten pool 22 and in front of the molten pool 22 in the welding direction 24. Therefore, the generation of the metal vapor 26 from the keyhole front wall 25 indicated by the thick solid line of the keyhole 21 is suppressed, the collapse of the keyhole rear wall 27 of the keyhole 21 indicated by the dotted line is suppressed, and the generation of bubbles 28 is reduced. Is done.
  • the laser beam 23 is irradiated into the weld pool 22 at a low welding speed V of less than 3 m / min, and the laser output is adjusted to perform keyhole type welding.
  • the laser beam 23 is irradiated to the outside of the molten pool 22 and in front of the molten pool 22 at a high welding speed V of 3 m / min or more, and the laser output is adjusted to perform keyhole type welding.
  • the second welding condition (see FIG. 4) is preferable in the welding of the linear track as the welding condition for obtaining a good welding state.
  • the laser beam 23 is irradiated not at the liquid phase of the molten pool 22 but at a position toward the unmelted portion 34 at the outer edge of the molten pool 22 in the welding direction 24.
  • the laser power density of the laser beam 23 is a keyhole-type welding that forms the keyhole 21 in the molten pool 22, for example, 10 5 to 10 6 ( Laser welding is performed by irradiating the laser beam 23 at w / cm 2 ).
  • Laser welding in the embodiment utilizes such a relationship between the laser output and the position where the laser beam is irradiated.
  • the power density is determined by a combination of laser output and beam diameter.
  • FIG. 5 is a top view of a welding object 501 in laser welding of a spin orbit.
  • the laser beam 23 may be irradiated in the molten pool 22 (in the liquid phase). Therefore, depending on the welding conditions, as shown in FIG. 5, pits 33 in which minute holes are formed in the appearance of the melted portion are likely to be generated near the center line LC of the welding bead.
  • 6 to 8 are top views of the welding object 501 when the spin orbit welding is performed under the third welding condition to the fifth welding condition, respectively.
  • the moving speed in the welding direction 24 is the same in the third to fifth welding conditions shown in FIGS. 6 to 8 respectively. In other words, the moving speeds forming the spiral are different.
  • 5 to 8 show the state of the welding object 501 as seen from the side from which the laser beam 23 is emitted with respect to the spin trajectory (spiral trajectory) of the laser beam 23 (beam) and the bead shape.
  • the frequency of occurrence of the pits 33 changes depending on the difference in density of the spiral trajectory, in other words, the difference in spin spacing, which is the interval between the spiral trajectories.
  • the spin interval is coarse, that is, when the spin interval is wide, pits 33 are difficult to be generated, and when the spin interval is narrow, that is, when the spin interval is narrow, pits 33 are likely to be generated, that is, the spin interval becomes denser.
  • the pit 33 is likely to occur.
  • FIG. 5 it confirmed that it was easy to generate
  • the beam spot 23a of the laser beam 23 passes again so as to almost overlap.
  • the beam spot 23a of the laser beam 23 passes so as to be in contact with the region once passed.
  • the beam spot 23a of the laser beam 23 passes through a region separated from the region once passed.
  • the distance between the spirals of the spin trajectories 36 that are adjacent to each other in the welding direction 24 was performed so that the spin interval, which is the interval between the third and fifth welding conditions shown in FIGS. 6 to 8, was observed, and the welding results were observed.
  • the beam spot 23 a of the laser beam 23 moves on the spin orbit 36, the beam spot 23 a is viewed from the direction 124 a along the width direction 24 a of the bead 29, and the beam spot 23 a is first (solid line) in the width direction of the bead 29. It passes through the center line LC in the direction 124a along 24a, and passes through the center line LC a second time (broken line) in the direction 224a along the width direction 24a of the bead 29 and opposite to the direction 124a. That is, the beam spot 23 a passes through the center line LC of the bead 29 twice.
  • FIG. 6 shows a region (broken line) that passes through the center line LC of the bead 29 in the welding direction 24 for the second time such that the beam spot 23a of the laser beam 23 passes almost once (substantially). ) Shows the shape of the spin trajectory 36 and the beads 29 of the beam spot 23a of the laser beam 23 when the welding is performed under the third welding condition that passes again, as seen from the laser beam 23 emitting side.
  • the center line LC of the bead 29 On the center line LC of the bead 29, the case where the beam spot 23a of the laser beam 23 has passed from the same direction as the welding direction 24 is indicated by a solid line, and the case where the beam spot 23a has passed from the opposite direction to the welding direction 24 is indicated by a dotted line. Since the spin interval of the spiral of the spin orbit 36 is narrow (the spiral trajectory is dense), the bead width W is small and the shape of the bead end 29b in the width direction 24a of the bead 29 is smooth.
  • the beam spot 23a of the laser beam 23 passes through the center line LC of the bead 29 in the bead width direction, and the beam spot 23a of the laser beam 23 enters the molten pool 22 (in the liquid phase). By passing it again, a wide molten pool 22 is formed.
  • a large amount of metal vapor 26 is generated from the keyhole front wall 25 where the laser beam 23 is the liquid phase of the keyhole 21 in the traveling direction of the spin orbit 36.
  • the Bubbles 28 are generated by the metal vapor 26, and as a result, pits 33 are likely to be generated.
  • the beam spot 23a of the laser beam 23 passes again in a second pass region (broken line) where it slightly touches the first pass (solid line).
  • the appearance of the spin trajectory 36 and the bead 29 of the beam spot 23a when welding is performed under the fourth welding condition is seen from the laser beam 23 emitting side.
  • the shape of the bead end 29b in the width direction 24a of the bead 29 is slightly waved. ing.
  • the beam of the laser beam 23 is in contact with the outer edge of the narrow molten pool 22 through which the beam spot 23a of the laser beam 23 passes and melts. Since the spot 23a is allowed to pass and only the narrow molten pool 22 is allowed to pass again, similar to the second welding condition (see FIG. 4), the welding object that is in front of the outer edge of the molten pool 22 in the traveling direction of the spin orbit 36 The laser beam 23 is irradiated to the unmelted portion 34 of the object 501.
  • the generation of the bubbles 28 due to the metal vapor 26 is suppressed, and the generation of the pits 33 in which the minute holes are opened in the molten part appearance is small.
  • the spin interval of the spiral of the spin orbit 36 is wider (the spiral trajectory is coarser), so the bead width W varies greatly and the width direction
  • the shape of the bead end 29b of 24a is wavy.
  • the width in the welding direction 24 in which the spiral rotates in the welding direction 24 is higher than that in the third and fourth welding conditions (see FIGS. 6 and 7).
  • the spin interval of the spiral of the orbit 36 is wide.
  • the width of the welding direction 24 in which the helix rotates is compared to the third and fourth welding conditions (see FIGS. 6 and 7). Small.
  • the amount of heat input is concentrated because the speed of the laser beam 23 irradiating spirally, which is the speed of movement to form a spiral, is relatively slow. Therefore, the beam spot 23a of the laser beam 23 is again passed through the liquid phase in the molten pool 22 where the beam spot 23a of the laser beam 23 has passed and melted, so that a wide molten pool 22 is formed.
  • the portion of the molten pool 22 in the liquid phase where the beam spot 23a of the laser beam 23 passes again through the liquid phase in the molten pool 22 is the same as in the first welding condition (see FIG. 3).
  • a large amount of metal vapor 26 is generated from the keyhole front wall 25 of the keyhole 21 of the welding object 501. Therefore, in the fifth condition, when the beam spot 23a crosses the center line LC of the bead 29 in the width direction 24a, bubbles 28 are generated by the metal vapor 26.
  • the fourth welding condition see FIG. 7 and In comparison, the pit 33 is likely to be generated.
  • the number of pits 33 is relatively small compared to the third welding condition (see FIG. 6), but the width of the welding direction 24 in which the spiral rotates in the direction 24b, in other words, the above-described wide area.
  • the pits 33 are concentrated on the portion where the molten pool 22 is formed.
  • FIGS. 9A to 11B show the appearance (front surface and back surface) of the bead 29 when actually welded under the third to fifth welding conditions (see FIGS. 6 to 8).
  • 9A, 10A, and 11A show the surface of the bead 29 under the third, fourth, and fifth welding conditions, respectively
  • FIGS. 9B, 10B, and 11B show the third, fourth, and fifth welding conditions, respectively.
  • the back side of the bead 29 is shown respectively.
  • the surface shown to FIG. 9A to FIG. 11A is a surface which receives the laser beam 23 of the welding target object 501
  • a back surface is a surface on the opposite side.
  • the welding speed V which is the speed of movement in the welding direction 24, is 1 m / min.
  • the rotation radius r by which the laser beam 23 is rotated is 1.0 mm so that the laser beam 23 is irradiated spirally while moving the laser beam 23 of 2.5 kW in the welding direction 24 at the welding speed V.
  • the rotation frequency for forming the spiral of the laser beam 23 is adjusted so as to meet each of the third to fifth welding conditions. Since the welding speed V is the same under the third to fifth welding conditions, the amount of heat output by the laser beam 23 to the welding object 501 is the same.
  • the turning radius r is equal to half the width of the spin orbit 36 in the width direction 24 a on the bead 29.
  • FIG. 9A showing the appearance (surface) of the bead 29 welded under the third welding condition (see FIG. 6), a large pit 33 can be confirmed continuously to the center line LC of the bead 29.
  • FIG. 10A showing the appearance (surface) of the bead 29 welded under the fourth welding condition (see FIG. 7), the pit 33 cannot be confirmed near the center line LC of the bead 29.
  • FIG. 11A showing the appearance (surface) of the bead 29 welded under the fifth welding condition (see FIG. 8), welding in which a spiral rotates in the direction 24b near the center line LC crossed by the beam spot 23a on the spin orbit 36.
  • a small pit 33 can be confirmed in a portion where the width in the direction 24 is small, that is, in the vicinity of the solidification point in the vicinity of the center line LC that is finally solidified.
  • the laser welding method of the present embodiment can be performed by, for example, the laser welding system shown in FIGS.
  • the welding object 501 in which the metal plate 30 and the metal plate 31 are stacked is relatively irradiated in the welding direction 24 while irradiating the laser beam 23 spirally from the metal plate 30.
  • the welding object 501 is welded by irradiating the laser beam 23 with the spin orbit 36 that moves the beam spot 23a.
  • the laser beam 23 is welded so that the liquid phase portion that is the molten pool 22 is avoided as much as possible and the solid phase that is the unmelted portion 34 is passed. It is preferable to weld the object 501.
  • the beam spot 23a of the laser beam 23 passes so as to be in contact with the region once passed.
  • the beam spot 23a of the laser beam 23 passes through a region separated from the region once passed.
  • the laser beam 23 passes through the melted portion again. Based on the degree of overlap of the spiral trajectories of the laser beam 23 irradiated in the welding direction 24, the welding state changes.
  • the degree of trajectory overlap is expressed as an interval coefficient L.
  • the pit 33 is likely to be generated when the interval coefficient L for the welding speed V and the turning radius r is smaller or larger than the specified range.
  • a uniform bead 29 is obtained in a certain range.
  • a spin orbit 36 suitable for the welding material is set.
  • a method for calculating and determining an appropriate rotation frequency F from an arbitrary welding speed V and bead width W is provided.
  • a spin interval (expressed as an interval coefficient L) that is an interval between spirals on the spin orbit 36. ) And the generation of the pit 33.
  • the interval coefficient L indicating the overlapping degree of the spiral trajectory is set in advance, and welding is performed based on the interval coefficient L.
  • FIG. 12 shows a spiral spin orbit 36 of the beam spot 23 a of the laser beam 23.
  • interval coefficient L which shows the overlap degree of the locus
  • the beam spot 23a moves relative to the welding object 501 along a locus (spin trajectory 36) having a spiral shape that circulates around the rotation center RC moving in the welding direction 24.
  • the beam spot 23a circulates around the rotation center RC at a rotation frequency F, that is, a rotation period (1 / F), away from the rotation center RC by a rotation radius r.
  • the turning radius r is a predetermined constant value.
  • the interval coefficient L is a value indicating the degree of overlap of the movement trajectory of the laser beam 23 irradiated spirally on the spin orbit 36, that is, the degree of overlap of the portions 36 a and 36 b of the spin orbit 36.
  • the interval coefficient L includes a width A in the welding direction 24 in which the beam spot 23 a of the laser beam 23 travels around the rotation center RC at a moving speed 23 b having a component in the welding direction 24, and a direction 24 b in which the beam spot 23 a is opposite to the welding direction 24.
  • the spacing coefficient L is the ratio of the width A to the width B, the beam diameter ⁇ of the beam spot 23a, the welding speed V at which the beam spot 23a moves in the welding direction 24, and the rotational component of the spiral trajectory. It is represented by the following mathematical formula by the rotation frequency F.
  • B W- ⁇ -V / (2 ⁇ F)
  • the width A is obtained by adding a distance advanced by a half cycle time (1/2 F) at the welding speed V to a distance twice the rotation radius r.
  • the width B is obtained by subtracting the distance that has traveled in half the period of time (1 / (2 ⁇ F)) at the welding speed V and twice the distance of the radius of rotation r. Therefore, the widths A and B are expressed by the following formulas.
  • A 2 ⁇ r + V / (2 ⁇ F)
  • B 2 ⁇ r ⁇ V / (2 ⁇ F)
  • the rotation radius r is a rotation radius in the width direction 24a of the bead 29 as a rotation component of the spiral locus. Since the linear component of the spiral trajectory is synthesized in the welding direction 24, rotation of the spiral in the welding direction 24 increases the relative speed of movement of the beam spot 23a, and conversely, in the return rotation in the spiral direction 24b.
  • the relative speed of movement of the beam spot 23a decreases.
  • A W- ⁇ + V / (2 ⁇ F)
  • B W- ⁇ -V / (2 ⁇ F)
  • the interval coefficient L obtained by the above formula and set in advance is preferably 1.5 to 3, more preferably 2 to 2, so that the spin orbit shown in the fourth welding condition (see FIG. 7) is obtained. .5, it is possible to create a bead 29 in which fluctuations in the width direction 24a of the bead 29 and generation of bubbles such as pits 33 are suppressed.
  • the welding speed V and the bead width W are changed, and then the rotation radius r and the rotation frequency F are calculated and determined using the interval coefficient L. Even if the V or bead width W is changed, the spin orbit 36 can be welded with a certain degree of overlap corresponding to the spiral spacing coefficient L of the intended laser beam 23, and the heat input at the welding point can be achieved. Can be easily adjusted.
  • gap welding is performed when there is a gap in the welding object 501 by adjusting the interval between the spirals of the spin trajectory 36 of the laser beam 23 so as to satisfy the above range of the optimum value of the interval coefficient L. I do. Specifically, when there is a gap 32 between the metal plate 30 (upper plate) and the metal plate 31 (lower plate), the gap 32 is filled with the molten pool 22 (melt), so The welding conditions are selected so that the degree of welding is increased and the welding defects such as the pits 33 are less likely to occur.
  • the bonding failure can be avoided.
  • the end of the welding object 501 in the width direction 24a of the bead 29 is asymmetric with respect to the center line LC and is divided by the center line LC.
  • An asymmetric bead 29 having large concavities and convexities on one side of both sides existing in 124a and 224a is formed (see FIG. 7).
  • this asymmetry is alleviated by increasing the helical rotation frequency F with respect to the welding speed V, the number of times that the beam spot 23a passes through the molten pool 22 increases, so that pits 33 are likely to be generated (FIG. 6).
  • the beam diameter ⁇ of the beam spot 23a is in the range of 0.3 to 1.0 mm. If the turning radius r is too small, the amount of metal to be melted is insufficient and the gap 32 cannot be filled. Conversely, if the turning radius r is too large, a wide range of metals will be melted, resulting in insufficient laser output and welding. The object 501 cannot be melted. Since the rotation radius r can be calculated from the relationship between the thickness of the metal plate and the width of the gap 32, it can be determined in advance by experiments or the like.
  • the moving speed 23b is 3 m / min or more, it is easy to suppress poor welding of the pits 33 and the like. Therefore, even when welding is performed with the spin orbit 36, it is preferable to move the beam spot 32a at a higher moving speed 23b. In addition, in the case of the spin orbit 36, the beam spot 32a passes again through the place where the welding object 501 is once melted. Therefore, it is preferable to move the beam spot 23a at a spin interval with an appropriate interval coefficient L. When the spin interval is narrow, the beam spot 23a passes through the molten pool 22 a plurality of times, so that the pit 33 is likely to be generated.
  • the spin interval When the spin interval is wide, the bead 29 becomes more non-uniform (asymmetric with respect to the center line LC).
  • the frequency of occurrence of the pits 33 varies depending on the type of metal.
  • the pit 33 is likely to be generated when the welding object 501 is made of mild steel, and is not easily generated when the welding object 501 is made of stainless steel. Therefore, the spin interval is adjusted according to the material of the welding object 501.
  • FIG. 13 is a flowchart of determination of laser welding conditions in the laser welding method according to the embodiment.
  • welding object information that is information related to the welding object 501 is input (step S101).
  • the welding object information includes at least one of the material of the welding object 501, the joint shape, and the thickness of the welding object 501.
  • Laser light information which is information relating to the laser light 23, is input (step S103).
  • the laser beam information includes a beam diameter ⁇ and an interval coefficient L.
  • a recommended value Ha related to the tact time and joint strength is calculated and determined from the welding object information (step S102).
  • the recommended value Ha is at least one of the welding speed V, the bead width W, and the penetration depth of the welded portion.
  • a recommended value Hb related to the laser behavior is calculated and determined from the laser beam information and the recommended value Ha.
  • the recommended value Hb is at least one of the rotation frequency F and the laser output.
  • the control unit 17 displays the recommended value Ha and the recommended value Hb on the display unit 16 (see FIGS. 1 and 2) (step S105).
  • the operator selects whether or not to change the recommended value Ha according to the requirements required for the welding object 501 (step S106).
  • the control unit 17 recalculates and re-determines the recommended value Ha (step S107), and the laser light information and the recommended value Ha re-determined in step S107.
  • the recommended value Hb is recalculated and re-determined, and is displayed again in step S105.
  • the laser beam information is a numerical value determined by the apparatus, the value previously input and stored may be stored.
  • the recommended value Ha can be changed in the embodiment.
  • the interval coefficient L having an appropriate range and the beam diameter ⁇ determined by the device specifications may be stored in advance in the storage device 10 as fixed values, and may be called up when used for calculation.
  • a recommended value in a range suitable for the laser oscillator to be used is presented.
  • the operator corrects the welding speed V and the bead width W in step S107 so that the intended tact time and joint strength are obtained based on the recommended value, thereby obtaining the recommended value Hb recalculated in step S104.
  • the laser output required for laser welding of the spin orbit 36 is calculated by multiplying the relationship between the welding speed V and the laser output in the case of welding on a linear orbit by a correction coefficient.
  • the correction coefficient represents an effect of heat dispersion caused by the laser beam drawing the spin orbit 36 and is larger than 1.
  • control unit 17 may not display the laser output or display an error message in step S105.
  • the beam diameter ⁇ is set in step S103 from the specifications of the laser oscillator, the welding speed V is determined from the required tact time, etc., as the recommended value Ha in step S102 or step S107, and the required joint strength is obtained.
  • the bead width W is determined accordingly.
  • the rotation frequency F of the recommended value Hb is obtained in step S104. I can do it.
  • the construction conditions can be determined without performing the experiment for determining the construction conditions for each plate thickness and material, and the experiment time and material cost can be reduced.
  • the laser welding method of the embodiment avoids the passage of the beam spot 23a in the liquid phase portion that is a melted portion by irradiation of the laser beam 23 as much as possible, and the solid phase portion that is the portion where the beam spot 23a is not melted.
  • the spin trajectory is determined so as to pass, and the laser light 23 is spirally formed based on the degree of overlap of the spiral trajectory of the laser light 23 corresponding to the spin trajectory, in other words, the interval coefficient L indicating the density of the spiral trajectory.
  • the welding object 501 is welded by relatively moving in the welding direction 24 while irradiating the welding object.
  • the laser beam 23 is passed through the solid phase as the welding target 501 so that the beam spot 23a passes through the solid phase as the unmelted portion 34 as much as possible.
  • the welding object 501 is welded by irradiating the unmelted portion 34. Therefore, for example, in lap welding, even when there is a gap 32 between the metal plates 30 and 31 of the welding object 501, the tolerance to the gap 32 is increased, and the occurrence of bubbles and pits is suppressed, so that a uniform beat can be obtained. A good welding state can be obtained.
  • interval coefficient L as the trajectory of the spin trajectory for irradiating the laser beam 23 to the unmelted portion 34 of the welding object 501 is, for example, an experiment or the above-described mathematical formula so as to be within a preferable value or a preferable range. It is preferable to obtain and set in advance by using a data table or the like.
  • the welding target object 501 is irradiated with the laser beam 23 so that the laser beam 23 passes through the solid phase portions of the metal plates 30 and 31 as much as possible.
  • the laser output at the time of welding is selected to be equal to or higher than the value at which keyhole welding is performed.
  • the welding speed V moving in the welding direction 24 is preferably 1 m / min or higher. Further, it is preferable that the welding speed V at the time of welding is selected as high as possible so that the beam spot 23a does not reach the large molten pool 22 as much as possible.
  • a good welding state can be obtained regardless of the thickness of the metal plates 30 and 31.
  • laser welding is performed by stacking two metal plates 30 and 31, but the above laser welding method is also applicable when performing laser welding by stacking three or more metal plates. Can do.
  • the spiral trajectory of the spin orbit 36 is not only a simple spiral shape, but also a circular shape, a polygonal shape such as a square or a triangle, or a discontinuous arc shape that is partially interrupted.
  • Various shapes can be used as long as the locus is a continuous locus formed by scanning and irradiating the laser beam 23.
  • the interval coefficient L indicates the coarse density degree (overlap degree) of the spiral locus.
  • the rotation direction of irradiation of the beam spot 23a of the laser beam 23 on the spin orbit 36 with respect to the welding direction 24 may be clockwise or counterclockwise.
  • the welding speed V of the laser beam 23, the interval coefficient L of the laser beam 23, the laser output of the laser beam 23, and the like are made appropriate.
  • These parameters may be implemented in combination as appropriate, such as selecting all of these parameters or selecting a plurality of parameters from all of them.
  • the welding object 501 has been described as an example of application to a lap joint, but this laser welding method, laser welding condition determination method, and laser welding system are used as the welding object 501 as a lap fillet joint, a butt joint, It can also be applied to welding of T-shaped joints, corner joints, edge joints, and flare joints.
  • the operator sets information on the welding object 501 and information on the laser beam 23, so that the laser output, welding speed V, welding pattern,
  • the recommended value Ha of the welding conditions such as the strength of the welded portion and the penetration of the welded portion can be determined and displayed. Furthermore, even when the operator changes the displayed recommended value Ha, the recommended value Hb of the welding conditions suitable for the changed value can be redetermined and displayed.
  • ⁇ ⁇ ⁇ Usability is further improved by adopting a system in which the operator can change the welding speed V related to the tact time and the bead width W related to the joint strength.
  • the laser welding method in the present invention is effective as a laser welding method that can suppress the generation of bubbles and realize a good welding state, and performs laser welding by irradiating a welding object with laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

溶接方向(24)に移動する回転中心(RC)を周回する螺旋形状を有する軌跡(36)に沿って溶接対象物(501)に対して相対的に移動するビームスポット(23a)を形成するようにレーザ光(23)を溶接対象物(501)に照射する。照射されたレーザ光(23)により溶接対象物(501)を溶接する。レーザ光(23)を溶接対象物(501)に照射する際には、溶接方向(24)における螺旋形状を有する軌跡(36)の重なり度合を示す値である間隔係数(L)に基づいてレーザ光(23)を溶接対象物(501)に照射する。この方法により、気泡(28)の発生を抑制し、ビード(29)が均一の良好な溶接状態が得られる。

Description

レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム
 本発明は、溶接対象物に対してレーザ光を照射して溶接を行うレーザ溶接方法、レーザ溶接条件決定方法、レーザ溶接システムに関する。
 レーザ光の照射により溶接対象物を溶接するレーザ溶接において、直線軌道での溶接の場合よりも位置ずれや、ギャップ裕度を高めるため、レーザを螺旋軌道で動かし、溶融金属量を増やし、接合するという技術が用いられている。
 この螺旋軌道溶接については、アルミニウム材質において一度溶接した個所を再び通過する際に、レーザによる撹拌効果で溶融部に含まれるガスの放出を促進するといった内容の技術が例えば、特許文献1に開示されている。
特許第2690466号公報
 溶接方向に移動する回転中心を周回する螺旋形状を有する軌跡に沿って溶接対象物に対して相対的に移動するビームスポットを形成するようにレーザ光を溶接対象物に照射する。照射されたレーザ光により溶接対象物を溶接する。レーザ光を溶接対象物に照射する際には、溶接方向における螺旋形状を有する軌跡の重なり度合を示す値である間隔係数に基づいてレーザ光を溶接対象物に照射する。
 この方法により、気泡の発生を抑制し、均一ビードの良好な溶接状態が得られる。
図1は実施の形態におけるレーザ溶接システムの概略構成図である。 図2は実施の形態における他のレーザ溶接システムの概略構成図である。 図3は実施の形態におけるレーザ溶接システムの溶接対象物の断面図である。 図4は実施の形態におけるレーザ溶接システムの溶接対象物の断面図である。 図5は実施の形態におけるレーザ溶接システムの溶接対象物の上面図である。 図6は実施の形態におけるレーザ溶接システムの溶接対象物の上面図である。 図7は実施の形態におけるレーザ溶接システムの溶接対象物の上面図である。 図8は実施の形態におけるレーザ溶接システムの溶接対象物の上面図である。 図9Aは実施の形態におけるレーザ溶接システムの溶接対象物の外観図である。 図9Bは実施の形態におけるレーザ溶接システムの溶接対象物の外観図である。 図10Aは実施の形態におけるレーザ溶接システムの外観図である。 図10Bは実施の形態におけるレーザ溶接システムの溶接対象物の外観図である。 図11Aは実施の形態におけるレーザ溶接システムの溶接対象物の外観図である。 図11Bは実施の形態におけるレーザ溶接システムの溶接対象物の外観図である。 図12は実施の形態におけるレーザ溶接システムのビード幅とビーム径と回転半径と溶接速度Vとを示す概略図である。 図13は実施の形態におけるレーザ溶接システムのレーザ溶接条件を決定する動作を示すフロー図である。
 図1は実施の形態におけるレーザ溶接システム1001の概略構成図である。レーザ溶接システム1001は、レーザ光23を出力するレーザ発振器1と、レーザ光23を溶接対象物501に向けて出射するガルバノスキャナヘッドであるレーザ用ヘッド2と、動作制御部5を有している。レーザ用ヘッド2は、ガルバノミラー3とガルバノモータ4とFθレンズ6とを有しており、その内部でレーザ光23を走査する。ガルバノミラー3はレーザ光23の軌道を変更する。ガルバノモータ4はガルバノミラー3を回転させる。ガルバノモータ4の動作は動作制御部5により制御される。Fθレンズ6は、レーザ光23を溶接対象物501で結像させる。
 レーザ溶接システム1001は、レーザ用ヘッド2が取り付けられて、レーザ用ヘッド2を移動させるロボット8をさらに備えてもよい。ロボット8はレーザ用ヘッド2を狙い位置まで移動させ、レーザ用ヘッド2でレーザ光23を相対的に走査する。
 図1に示すレーザ溶接システム1001は、上記構成により、指定された位置へレーザ光23を照射する。溶接対象物501は、互いに重ね合わされた金属板30、31を有する。レーザ溶接システム1001は金属板30にレーザ光23を照射することで、金属板30と金属板31とを溶接する。
 図2は実施の形態におけるレーザ溶接システム1002の概略構成図である。図2において、図1に示すレーザ溶接システム1001と同じ部分には同じ参照番号を付す。レーザ溶接システム1002は、レーザ発振器1と、レーザ発振器1から出力されたレーザ光23を溶接対象物501に向けて出射する溶接ヘッドであるレーザ用ヘッド7と、ロボット8と、動作制御部9とを有している。レーザ用ヘッド7は、レーザ光23を溶接対象物501で結像する。ロボット8の先端部分にレーザ用ヘッド7が取り付けられており、レーザ用ヘッド7を狙い位置まで移動させ、レーザ用ヘッド7自体を移動させてレーザ光23を走査する。動作制御部9は、ロボット8の動作や、レーザ用ヘッド7の動作を制御する。
 図2に示すレーザ溶接システム1002は、上記構成により、指定された位置へレーザ光23を照射する。レーザ溶接システム1002は、金属板30にレーザ光23を照射することで金属板30と金属板31とを溶接する。
 レーザ溶接システム1001(1002)は、レーザ発振器1から出力されたレーザ光23を溶接対象物501に向けて出射するレーザ用ヘッド2(7)と、レーザ用ヘッド2(7)が取り付けられ、レーザ用ヘッド2(7)を移動させるロボット8と、レーザ用ヘッド2(7)とロボット8との動作およびレーザ溶接を制御する制御部17とを備え、溶接対象物501に対して螺旋状にレーザ光23を照射する。制御部17は、溶接対象物501に関する情報である溶接対象物情報を入力する溶接対象物情報入力部13と、レーザ光に関する情報であるレーザ光情報を入力するレーザ光情報入力部14とを備える。溶接対象物情報は、例えば溶接対象物501の材質、継手の形状、または厚さである。レーザ光情報は例えばレーザ光23のビーム径、または間隔係数である。制御部17は、溶接対象物情報入力部13に入力された情報に基づいて、溶接速度とビード幅と溶接部の溶込み深さの内の少なくとも1つ以上を推奨値Haとして決定し、レーザ光情報入力部14に入力された情報に基づいて、回転周波数とレーザ出力の内の少なくとも1つ以上を推奨値Hbとして決定する、溶接条件の推奨値を決定する溶接条件決定部11を備える。制御部17は、溶接条件決定部11で決定された推奨値を変更するためのパラメータ変更入力部15と、溶接条件決定部11で決定された推奨値を表示する表示部16とをさらに備えている。
 レーザ光情報は、溶接方向でのレーザ光の螺旋の軌跡の重なり度合を示す間隔係数Lを含む。
 なお、レーザ溶接システム1001、1002の動作やレーザ溶接の制御を行う制御部17は、一体型の制御部で無くても良く、レーザ用ヘッド2(7)とロボット8との動作の制御および溶接条件の推奨値を決定する溶接条件決定部11を含む動作制御部と、溶接条件等の入力や表示を行う条件設定器12とに分けられたような別体の機器である機能ブロックを含んでもよい。
 また、入力操作の簡略化のため、制御部17は、適正範囲内のある間隔係数Lと、装置仕様で決まるビーム径Φを固定値として予め記憶する記憶装置10をさらに備えている。ビーム品質に関する情報はレーザ光情報としてレーザ光情報入力部14から入力したり、装置仕様で決まる情報として記憶装置10に記憶させたりしても良い。これらの装置によって、レーザ溶接経験の少ない作業者であっても、溶接対象物情報とレーザ光情報を入力するだけで、容易に溶接条件を決定することが出来、施工条件を決定する為のコスト(時間、材料、人件費、電気代など)を抑制することが出来る。
 レーザ溶接システム1001、1002のレーザ溶接条件決定のための具体的な動作ステップについては後述する。
 図1や図2に示すレーザ溶接システム1001、1002に用いる溶接ヘッドとは異なる構成として、溶接ヘッド内に、回転する複数のプリズムを配した構成として、指定された位置へレーザ光23を走査して照射してもよい。
 レーザ溶接方法に関し、レーザ出力や溶接速度Vに応じて変化する溶込み状態を以下に述べる。なお、以下に示す溶接対象物501のレーザ溶接は、例えば、図1や図2に示すレーザ溶接システム1001、1002により行うことができる。
 溶接対象物501の溶融時に、溶融池22に接する穴であるキーホールが発生する。キーホールを発生させた状態でレーザ溶接を行い、溶融した部分の外観に開いた微小孔よりなるピットや溶融した部分中に残留する気泡よりなるポロシティ等の不具合の発生頻度を溶接池と照射位置との関係によって確認する。まず直線軌道の溶接において上記の不具合の発生を確認し、次の溶接についても上記の不具合の発生を確認する。スピン軌道とは、照射するレーザ光によるスポットを円形状の軌道で移動させながら溶接方向に移動させるレーザ光の軌道であり、言い換えると溶接方向において、レーザ光の軌跡が回転しながら相対的に直線移動されている軌道である。
 直線軌道での溶接を比較例の第1の溶接条件と第2の溶接条件により観察した。
 第1の溶接条件は、溶融池内にレーザ光23を照射するキーホール型溶接である。図3は、第1の溶接条件での溶接対象物501の溶接部の溶接方向24の断面図である。この溶接では、溶融池22の中にレーザ光23を照射して溶融池22の一部を動かす。したがって、この溶接は特許文献1に開示されている溶融池の攪拌に該当する。この溶接では、レーザ光23により溶接対象物501の溶融した部分にから金属蒸気26が発生し、金属蒸気の発生の反力によって溶融池22に溶融金属に囲まれた穴であるキーホール21が発生する。
 レーザ光23はキーホール21の中で多重反射し、レーザ光23がキーホール21内に閉じ込められることにより溶接対象物501の金属のエネルギー吸収率が高くなり、溶接対象物501の金属の十分な溶込み量が得られる。しかし、液相である溶融池22内にレーザ光23が照射され、レーザ光23が溶接対象物501の溶接線に沿って進む方向である溶接方向24に移動するので、溶接方向24でのキーホール21の太い実線で示す液相であるキーホール前壁25から金属蒸気26が多量に発生する。その理由は、レーザ光23が溶融池22に照射されると、溶融池22内のキーホール前壁25へのレーザ光23の吸収率が高まり、キーホール前壁25が局所的に高温となるためである。その結果、キーホール21の溶接方向24の反対の方向のキーホール後壁27が金属蒸気26で押されることでキーホール後壁27が崩れ、溶融池22の内部に多数の気泡28が発生する。この状態で溶融池22が凝固して形成されたビード29の再凝固層29a内にポロシティとして気泡28が残留する。
 第2の溶接条件は、溶融池22の外縁部であり、溶接方向24での溶融池22の前方の未溶融部34(固相)にレーザ光23を照射するキーホール型溶接である。図4は、第2の溶接条件での溶接対象物501の溶接部の溶接方向24での断面図である。なお、第1の溶接条件では、レーザ光が進行する方向である溶接方向24のレーザ光23の前側に溶融池22の溶融層(液相)があり、第2の溶接条件では溶接方向24のレーザ光23の前側に溶融池22の溶融層(液相)は無い。
 溶融池22の外縁部であり、溶接方向24の溶融池22の前方である溶接対象物501の未溶融部34にレーザ光23が照射される。そのため、キーホール21の太い実線で示すキーホール前壁25からの金属蒸気26の発生が抑制され、点線で示すキーホール21のキーホール後壁27の崩壊が抑えられ、気泡28の発生が低減される。
 なお、第1の溶接条件では、3m/min未満の低い溶接速度Vにより溶融池22内にレーザ光23を照射し、レーザ出力を調整してキーホール型溶接を行う。
 第2の溶接条件では、3m/min以上の高い溶接速度Vにより溶融池22の外側であり溶融池22の前方にレーザ光23を照射し、レーザ出力を調整してキーホール型溶接を行う。
 以上のような溶接条件と溶接結果の関係から、良好な溶接状態が得られる溶接条件として、直線軌道の溶接において第2の溶接条件(図4参照)が好ましい。第2の溶接条件では、レーザ光23を、溶融池22の液相内ではなく、溶接方向24の溶融池22の外縁部の未溶融部34に向かう位置で照射する。第2の溶接条件では、溶融池22にキーホール21を形成するキーホール型の溶接となるようなレーザ光23のレーザのパワー密度、例えば溶接対象物が金属の場合は10~10(w/cm)でレーザ光23を照射してレーザ溶接を行う。これにより、ビード29の再凝固層29a内にポロシティまたはピットの発生を抑制する。実施の形態におけるレーザ溶接は、この様なレーザ出力とレーザ光を照射する位置との関係を利用している。なお、上記パワー密度は、レーザ出力とビーム径の組合せで決まる。
 以下に、スピン軌道のレーザ溶接について説明する。図5はスピン軌道のレーザ溶接における溶接対象物501の上面図である。上述の第2の溶接条件であっても、スピン軌道の溶接で螺旋状にレーザ光を照射する場合は、溶融池22の中(液相内)にレーザ光23が照射される場合がある。したがって、溶接条件によっては、図5に示すように溶接のビードの中心線LC付近に、溶融部外観に微小な穴が開くピット33が発生しやすい。
 図6から図8はそれぞれスピン軌道の溶接を第3の溶接条件から第5の溶接条件で行う場合の溶接対象物501の上面図である。
 ここで、図6から図8にそれぞれ示す第3の溶接条件から第5の溶接条件において、溶接方向24への移動速度は同じである。言い換えると螺旋を形成する移動速度がそれぞれ異なる。
 図5から図8はレーザ光23(ビーム)のスピン軌道(螺旋状の軌跡)とビードの形状について、レーザ光23の出射する側から見た溶接対象物501状態を示す。
 ピット33が螺旋状の軌跡の粗密の違い、言い換えると螺旋状の軌跡の間隔であるスピン間隔の粗密の違いによって、発生頻度が変化することを確認した。スピン間隔が粗であるすなわちスピン間隔が広い場合には、ピット33が発生し難く、スピン間隔が密であるすなわちスピン間隔が狭い場合、ピット33が発生しやすいすなわち、スピン間隔が密に成るほど、ピット33が発生しやすい。また、図5に示すようにビード29の溶接方向24と直角の幅方向24aにおける中心である中心線LC付近に発生しやすいことを確認した。
 なお、ビード29の中心線LC付近において、図6に示すように、第3の溶接条件では、レーザ光23のビームスポット23aが一度通過した領域をほぼ重なる様に再び通過する。
 また、図7に示すように、第4の溶接条件では、レーザ光23のビームスポット23aが一度通過した領域に接する様に通過する。
 また、図8に示すように、第5の溶接条件では、レーザ光23のビームスポット23aが一度通過した領域と離間した領域を通過する。
 そこで、レーザ光23を螺旋状に照射しながら相対的に溶接方向24に移動させるレーザ光23の軌道であるスピン軌道36により溶接する場合において、溶接方向24に互いに隣接するスピン軌道36の螺旋間の間隔であるスピン間隔を、図6から図8に示す第3の溶接条件から第5の溶接条件でのスピン間隔になる様にそれぞれ溶接を行い、溶接結果を観察した。
 レーザ光23のビームスポット23aはスピン軌道36上で動くため、ビームスポット23aはビード29の幅方向24aに沿った方向124aから見て、ビームスポット23aは1度目(実線)にビード29の幅方向24aに沿った方向124aに中心線LCを通過し、ビード29の幅方向24aに沿ってかつ方向124aとは反対の方向224aに2度目(破線)に中心線LCを通過する。すなわちビームスポット23aは2回、ビード29の中心線LCを通過する。
 図6に、溶接方向24のビード29の中心線LCをレーザ光23のビームスポット23aが一度目(実線)に通過した領域をほぼ(実質的に)重なる様な二度目に通過した領域(破線)で再び通過する第3の溶接条件で溶接した場合のレーザ光23のビームスポット23aのスピン軌道36とビード29の形状について、レーザ光23の出射する側から見た様子を示す。
 ビード29の中心線LC上において、レーザ光23のビームスポット23aが溶接方向24と同じ向きから通過した場合を実線で、溶接方向24と反対向きから通過した場合を点線で示す。スピン軌道36の螺旋のスピン間隔が狭い(螺旋状の軌跡が密)ため、ビード幅Wは変動が小さく、ビード29の幅方向24aのビード端29bの形状は滑らかである。
 しかし、スピン軌道36上で、ビード幅方向のビード29の中心線LCでは、レーザ光23のビームスポット23aが通過して、溶融池22内(液相中)にレーザ光23のビームスポット23aを再び通過させることにより広い溶融池22が形成される。それと共に、第1の溶接条件(図3参照)と同様に、レーザ光23がスピン軌道36の進行方向のキーホール21の液相であるキーホール前壁25から金属蒸気26が多量に発生される。この金属蒸気26により気泡28が発生し、この結果、ピット33が発生しやすくなる。
 図7に、ビード幅方向のビード29の中心線LCにおいて、レーザ光23のビームスポット23aが一度目(実線)に通過した領域にやや接する様な二度目に通過する領域(破線)で再び通過する第4の溶接条件で溶接した場合のビームスポット23aのスピン軌道36とビード29の形状について、レーザ光23の出射する側から見た様子を示す。
 ビード幅Wは変動があり、第3の条件(図6参照)に比べて、スピン軌道36の螺旋のスピン間隔が広いため、ビード29の幅方向24aのビード端29bの形状はわずかに波打っている。
 スピン軌道36上で、ビード幅方向のビード29の中心線LCにおいては、レーザ光23のビームスポット23aが通過して溶融している狭い溶融池22の外縁部に接するようにレーザ光23のビームスポット23aを通過させて狭い溶融池22のみを再び通過させるため、第2の溶接条件(図4参照)と同様に、スピン軌道36の進行方向の溶融池22の外縁部の前方である溶接対象物501の未溶融部34にレーザ光23が照射される。そのため、キーホール21の太い実線で示すキーホール前壁25からの金属蒸気26の発生が抑制され、キーホール21のキーホール後壁27の崩壊が抑えられて、気泡28の発生が低減されピット33の発生が抑制される。
 このように金属蒸気26による気泡28の発生が抑制され、溶融部外観に微小な穴が開くピット33の発生は少ない。
 図8に幅方向24aのビード29の中心線LCにおいて、レーザ光23のビームスポット23aが、一度目(実線)に通過した領域と、その領域に対して離間する様に二度目に通過する領域(破線)で、再び通過する第5の溶接条件で溶接した場合のビード29のスピン軌道36とビード29の形状について、レーザ光23の出射する側から見た様子を示す。
 第5の条件では第4の条件(図7参照)に比べて、スピン軌道36の螺旋のスピン間隔がさらに広い(螺旋状の軌跡がさらに粗)ため、ビード幅Wは変動が大きく、幅方向24aのビード端29bの形状は波打っている。
 第5の条件ではビード29の中心線LCにおける、溶接方向24に螺旋が回転する溶接方向24の幅においては、第3、第4の溶接条件(図6と図7参照)に比べて、スピン軌道36の螺旋のスピン間隔が広い。逆に、溶接方向24とは反対の方向24bに、螺旋が回転する溶接方向24の幅(螺旋の大きさ)においては、第3、第4の溶接条件(図6と図7参照)に比べて小さい。この様に、螺旋を形成する移動の速度である螺旋状に照射するレーザ光23の速度が相対的に遅くなるため、入熱量が集中する。したがって、レーザ光23のビームスポット23aが通過して溶融している溶融池22内の液相中にレーザ光23のビームスポット23aを再び通過させることになり広い溶融池22が形成される。
 この様に、レーザ光23のビームスポット23aが溶融池22内の液相中を再び通過している液相状態の溶融池22の部分は、第1の溶接条件(図3参照)と同様に、スピン軌道36のレーザ光23の進行方向において、溶接対象物501のキーホール21のキーホール前壁25から金属蒸気26が多量に発生される。このため、第5の条件ではビームスポット23aが幅方向24aのビード29の中心線LCを横切る際において金属蒸気26により気泡28が発生し、この結果、第4の溶接条件(図7参照)と比較すると、ピット33が発生しやすくなる。
 また、第5の条件では第3の溶接条件(図6参照)と比較するとピット33が相対的に少ないが、方向24bに螺旋が回転する溶接方向24の幅が小さい部分、言い換えると上述の広い溶融池22が形成された部分に、ピット33が集中している。
 図9Aから図11Bは、第3から第5の溶接条件(図6から図8を参照)で実際に溶接した際のビード29の外観(表面および裏面)を示す。図9Aと図10Aと図11Aは第3と第4と第5の溶接条件でのビード29の表面をそれぞれ示し、図9Bと図10Bと図11Bは第3と第4と第5の溶接条件でのビード29の裏面をそれぞれ示す。なお、図9Aから図11Aに示す表面は、溶接対象物501のレーザビーム23を受ける面であり、裏面はその反対側の面である。
 第3から第5の溶接条件において、溶接方向24への移動の速度である溶接速度Vは1m/minである。レーザ出力は2.5kWのレーザ光23を溶接速度Vで溶接方向24へ移動しながら螺旋状に照射されるように、レーザ光23が回転される回転半径rは1.0mmである。上記の第3から第5のそれぞれの溶接条件に合うようにレーザ光23の螺旋を形成する回転周波数を調整している。第3から第5の溶接条件において溶接速度Vが同じなので、溶接対象物501に対してレーザ光23が出力する熱量は同じである。
 なお、回転半径rは、ビード29上における幅方向24aのスピン軌道36の幅の半分に等しい。
 第3の溶接条件(図6参照)で溶接したビード29の外観(表面)を示す図9Aでは、ビード29の中心線LCに連続して大きなピット33を確認できる。
 第4の溶接条件(図7参照)で溶接したビード29の外観(表面)を示す図10Aでは、ビード29の中心線LC付近にはピット33を確認できない。
 第5の溶接条件(図8参照)で溶接したビード29の外観(表面)を示す図11Aでは、スピン軌道36上のビームスポット23aが横切る中心線LC付近で、方向24bに螺旋が回転する溶接方向24の幅が小さい部分すなわち最後に固まる中心線LC付近の凝固点付近に小さなピット33を確認できる。
 以下、実施の形態におけるレーザ溶接方法について説明する。
 本実施の形態のレーザ溶接方法は、例えば、図1や図2に示すレーザ溶接システムにより行うことができる。
 実施の形態のレーザ溶接方法では、金属板30と金属板31とを重ねた溶接対象物501に対して、金属板30のから螺旋状にレーザ光23を照射しながら溶接方向24に相対的にビームスポット23aを移動させるスピン軌道36でレーザ光23を照射して溶接対象物501を溶接する。なお、レーザ光23の照射が、第4の溶接条件(図7参照)に示す様に、溶融池22である液相部分をできるだけ避け、未溶融部34である固相を通過するように溶接対象物501を溶接するのが好ましい。
 なお、溶接方向24のビード29の中心線LC付近において、図6に示すように、第3の溶接条件では、レーザ光23のビームスポット23aが一度通過した領域をほぼ重なる様に再び通過する。
 図7に示すように、第4の溶接条件では、レーザ光23のビームスポット23aが一度通過した領域に接する様に通過する。
 図8に示すように、第5の溶接条件では、レーザ光23のビームスポット23aが一度通過した領域と離間した領域を通過する。
 以上の様に、溶接対象物501に対して、螺旋状にレーザ光23を照射しながら溶接方向24に移動させて溶接を行うレーザ溶接においては、レーザ光23が溶融箇所を再び通過することで、溶接方向24に照射されるレーザ光23の螺旋の軌跡の重なり度合に基づいて、溶接状態が変化する。軌跡の重なり度合は間隔係数Lとして表される。
 また、さらに、溶接速度Vと回転半径rとに対する間隔係数Lが指定した範囲より小さい場合や大きい場合にピット33が発生しやすい。
 また、溶接速度Vおよび回転半径rに対する間隔係数Lが指定した範囲より大きい場合に入熱にばらつきが生じ、均一なビード29が形成されない。以上のように、間隔係数Lが指定した範囲より外れる溶接条件では、十分な継ぎ手強度を得ることができない。
 螺旋状にレーザ光23を照射しながら溶接方向24に相対的に移動させるスピン軌道36に伴うピット33やポロシティ(気泡28)の発生を抑制し、均一なビード29を得るには、ある範囲の間隔で、溶接材料に合ったスピン軌道36を設定する。任意の溶接速度Vとビード幅Wから適切な回転周波数Fを算出し、決定する方法を提供する。
 螺旋状にレーザ光23を照射しながら溶接方向24に相対的に移動させて溶接を行うレーザ溶接方法においては、スピン軌道36上の螺旋間の間隔であるスピン間隔(間隔係数Lとして表される)とピット33の発生とが関係する。
 上記のレーザ溶接方法は、螺旋軌跡の重なり度合を示す間隔係数Lを予め設定し、間隔係数Lに基づいて溶接を行う。
 図12は、レーザ光23のビームスポット23aの螺旋状のスピン軌道36を示す。図12を参照して、溶接方向24に対して螺旋状に照射されるレーザ光23のビームスポット23aの移動の軌跡の重なり度合を示す間隔係数Lについて説明する。
 ビームスポット23aは、溶接方向24に移動する回転中心RCを周回する螺旋形状を有する軌跡(スピン軌道36)に沿って溶接対象物501に対して相対的に移動する。ビームスポット23aは、回転中心RCから回転半径rだけ離れて回転周波数Fすなわち回転周期(1/F)で回転中心RCを周回する。実施の形態では、回転半径rは所定の一定の値である。
 スピン軌道36のうち、ある周期で回転中心RCを周回する部分36aは、その次の周期で回転中心RCを周回する部分36bと溶接方向24で重なっている。間隔係数Lは、スピン軌道36で、螺旋状に照射されるレーザ光23の移動の軌跡の重なり度合、すなわちスピン軌道36の部分36a、36bの重なり度合を示す値である。間隔係数Lは、レーザ光23のビームスポット23aが溶接方向24の成分を有する移動速度23bで回転中心RCを周回する溶接方向24における幅Aと、ビームスポット23aが溶接方向24の逆の方向24bの成分を有する移動速度23bで回転中心RCを周回する溶接方向24における幅Bの比である。実施の形態では間隔係数Lは幅Bに対する幅Aの比であり、ビームスポット23aのビーム径Φと、ビームスポット23aが溶接方向24に移動する溶接速度Vと、螺旋状の軌跡の回転成分の回転周波数Fにより以下の数式にて表される。
L=A/B
A=W-Φ+V/(2×F)
B=W-Φ-V/(2×F)
 幅Aは、回転半径rの2倍の距離に、溶接速度Vで半周期の時間(1/2F)で進んだ距離を足して得られる。幅Bは回転半径rの2倍の距離に、溶接速度Vで半周期の時間(1/(2×F))で逆に進んだ距離を引いて得られる。したがって、幅A、Bは以下の数式で表される。
A=2×r+V/(2×F)
B=2×r-V/(2×F)
 ここで、回転半径rとは、螺旋の軌跡の回転成分としてのビード29の幅方向24aの回転半径である。溶接方向24は螺旋状の軌跡の直線成分が合成されるため、螺旋における溶接方向24への回転ではビームスポット23aの移動の相対速度が上がり、逆に、螺旋の方向24bへの戻り回転の時は、ビームスポット23aの移動の相対速度が低下する。回転半径rは以下の数式により、ビード29の幅Wおよびビーム径Φから算出される。
r=(W-Φ)/2
 以上の関係から、幅A、Bは以下の数式で表される。
A=W-Φ+V/(2×F)
B=W-Φ-V/(2×F)
 上記の数式によって求められ、予め設定される間隔係数Lは、第4の溶接条件(図7参照)に示すスピン軌道が得られるように、好ましくは1.5~3、より好ましくは2から2.5に設定することで、ビード29の幅方向24aの変動や、ピット33等の気泡の発生を抑制したビード29を作成することが出来る。スピン軌道36を用いたレーザ溶接を行う際に、溶接速度Vやビード幅Wを変更した後に、間隔係数Lを用いて、回転半径rと回転周波数Fを算出し、決定することで、溶接速度Vやビード幅Wが変更されても、意図したレーザ光23の螺旋の間隔係数Lに対応した一定の重なり度合で、スピン軌道36の溶接を行うことができるようになり、溶接個所の入熱の粗密を容易に調整できる。
 主な使用方法として、間隔係数Lの上記の最適値の範囲を満たすように、レーザ光23のスピン軌道36の螺旋間の間隔を調整して、溶接対象物501にギャップがある場合のギャップ溶接を行う。詳細には、金属板30(上板)と金属板31(下板)との間にギャップ32がある場合に、ギャップ32を溶融池22(融液)で満たすことで、ギャップ32への裕度を高めることや、ピット33等の溶接欠陥が発生しにくい溶接条件を選定する。
 実験によると、この様に上板と下板との板金間にギャップを有する重ね溶接を行う場合、直線軌道の溶接では、ギャップの間隔が上板の厚みの1/2を超えた場合に、上板に穴が開く接合不良が発生しやすいことが分かっている。実施の形態におけるレーザ溶接方法では、レーザ光23の螺旋の軌跡の重なり度合を示す間隔係数Lに基づいて、レーザ光23を螺旋状に照射しながら溶接方向24に相対的に移動させて溶接を行うことにより、溶接対象物501の溶接される溶接部位を広範囲に溶融することで溶融する金属の量を増やし、ギャップ32の間隔が上板の厚みの1/2を超えた場合であっても上記接合不良を回避することができる。この際、螺旋状にレーザ光23のビームスポット23aを移動させるため、溶接対象物501は、ビード29の幅方向24aの端部が、中心線LCについて非対称となり、中心線LCで分けられて方向124a、224aにそれぞれ存在する両側のうち片側の凹凸が大きい非対称のビード29が形成される(図7参照)。溶接速度Vに対し、螺旋の回転周波数Fを高くすることでこの非対称性は緩和されるが、ビームスポット23aが溶融池22内を通過する回数が増えるため、ピット33が発生しやすくなる(図6参照)。
 実施の形態では、リモート溶接を想定しており、ワーキングディスタンスとビード幅Wの確保のため、ビームスポット23aのビーム径Φは0.3~1.0mmの範囲である。回転半径rが小さすぎると溶融する金属の量が不足しギャップ32を満たすことができず、逆に回転半径rが大きすぎると広範囲の金属を溶融することになりレーザの出力が不足し、溶接対象物501を溶融できない。回転半径rは、金属板の厚みとギャップ32の幅との関係から算出できるため、実験等によりあらかじめ決めることができる。
 軟鋼を直線軌道でキーホール溶接する場合、移動速度23bが3m/min以上であれば、ピット33等の溶接不良を抑制しやすい。したがって、スピン軌道36で溶接する場合であっても、これ以上の移動速度23bでビームスポット32aを移動させることが好ましい。これに加え、スピン軌道36の場合は、ビームスポット32aが溶接対象物501を一度溶融させた場所を再度通過するので、適正な間隔係数Lによるスピン間隔でビームスポット23aを移動させることが好ましい。スピン間隔が狭い場合は、ビームスポット23aが溶融池22内を複数回通過するためピット33が発生しやすく、スピン間隔が広い場合はビード29がより不均一(中心線LCについて非対称)になる。また、ピット33の発生の頻度は金属の種類によって異なる。ピット33は溶接対象物501が軟鋼よりなる場合に発生しやすく、溶接対象物501がステンレスよりなる場合には発生しにくい。したがって、溶接対象物501の材料に応じて、スピン間隔を調整する。
 図13は、実施の形態におけるレーザ溶接方法のけるレーザ溶接条件の決定のフローチャートである。
 まず、溶接対象物501に関する情報である溶接対象物情報を入力する(ステップS101)。溶接対象物情報は、溶接対象物501の材質と、継手形状と、溶接対象物501の厚みのうち少なくとも一つ以上を含む。レーザ光23に関する情報であるレーザ光情報を入力する(ステップS103)。レーザ光情報は、ビーム径Φと間隔係数Lとを含む。溶接対象物情報から、タクトタイムや継手強度に関係する推奨値Haを算出して決定する(ステップS102)。推奨値Haは、溶接速度Vと、ビード幅Wと、溶接部の溶込み深さとのうちの少なくとも1つ以上である。レーザ光情報と推奨値Haとからレーザ挙動に関係する推奨値Hbを算出し、決定する。推奨値Hbは、回転周波数Fと、レーザ出力のうちの少なくとも1つ以上である。
 制御部17は推奨値Ha、推奨値Hbを表示部16(図1、図2参照)に表示する(ステップS105)。溶接対象物501に求められる要件に応じて作業者は推奨値Haを変更するか否かを選択する(ステップS106)。推奨値Haを変更する場合(ステップS106の「Yes」)、制御部17は推奨値Haを再計算、再決定し(ステップS107)、レーザ光情報とステップS107で再決定された推奨値Haとを用いてステップS104で推奨値Hbを再計算、再決定し、ステップS105において再表示する。
 レーザ光情報は、装置によって決まる数値なので、予め入力して置いた値を保存しておいても良い。
 推奨値Haとして決定される溶接速度Vは加工工程のタクトタイムに関係し、ビード幅Wは溶接の継ぎ手強度に関係する重要なパラメータなので、実施の形態では推奨値Haは変更可能とする。
 入力操作の簡略化のため、適正範囲のある間隔係数Lと、装置仕様で決まるビーム径Φとは固定値として記憶装置10に予め記憶しておき、計算に使用する際に呼び出しても良い。
 ステップS102、S107で決定される溶接速度Vとして、使用対象のレーザ発振器に合った範囲での推奨値を提示する。作業者は、この推奨値を基準に意図するタクトタイムや継手強度になるように、ステップS107で、溶接速度Vやビード幅Wを修正することで、ステップS104で再計算された推奨値Hbとしてのレーザ出力を知ることが出来る。
 スピン軌道36(螺旋軌道)のレーザ溶接に要するレーザ出力は、直線軌道で溶接した場合の溶接速度Vとレーザ出力との関係に補正係数を乗じて算出する。補正係数はレーザ光がスピン軌道36を描くことによる熱の分散の効果を表し、1よりも大きい。
 広いビード幅W、つまり大きい回転半径rを設定した場合、直線状に溶接する場合よりも熱分散が大きくなるため、より高いレーザ出力が必要となる。したがって補正係数は大きくなる。
 ステップS104で推奨値Hbとして決定される上記レーザ出力がレーザ発振器の上限出力を超える場合は、制御部17はステップS105でレーザ出力を表示しないか、エラーメッセージを表示しても良い。
 ステップS104で推奨値Hbとして決定される回転周波数Fは、ステップS102またはステップS107の推奨値Haとして決定される溶接速度Vと、ステップS103の間隔係数Lと、ステップS102またはステップS107で推奨値Haとして決定されるビード幅Wと、ステップS103で入力されるビーム径Φから以下の数式によって求められる。
F=V×{(L+1)/(L-1)}/{2×(W-Φ)}
 ここで、レーザ発振器の仕様からステップS103にてビーム径Φが設定され、ステップS102またはステップS107の推奨値Haとして、要求されるタクトタイム等から溶接速度Vが決定され、要求される継手強度に応じてビード幅Wが決められる。したがって、スピン軌道36における螺旋の軌跡の粗密を示すスピン間隔の複数の値にそれぞれ対応する間隔係数Lの複数の値を予め決めておけば、ステップS104で推奨値Hbの回転周波数Fを求めることが出来る。
 以上のようなレーザ溶接条件決定方法により、板厚や材料毎に、施工条件を決定する実験を行うことなく、施工条件を決定することができ、実験時間や材料コストを削減することが出来る。
 実施の形態のレーザ溶接方法は、レーザ光23の照射によって溶融した部分である液相部分でのビームスポット23aの通過を出来る限り避け、ビームスポット23aが溶融していない部分である固相部分を通過するように、スピン軌道を決定し、このスピン軌道に対応するレーザ光23の螺旋の軌跡の重なり度合、言い換えると螺旋の軌跡の粗密を示す間隔係数Lに基づいて、レーザ光23を螺旋状に照射しながら相対的に溶接方向24に移動させて溶接対象物501を溶接する。
 具体的には、第4の溶接条件(図7参照)に示すように、ビード29の中心線LC付近において、レーザ光23のビームスポット23aが一度目に通過した領域(実線)にやや接する領域(破線)で再び通過し、ビームスポット23aが溶融池22である液相部分をできるだけ避け、未溶融部34である固相を通過するように、可能な限り、レーザ光23を溶接対象物501の未溶融部34へ照射して溶接対象物501を溶接する。したがって、例えば、重ね溶接において、溶接対象物501の金属板30、31間にギャップ32がある場合でもギャップ32に対する裕度を高めると共に、気泡やピット等の発生を抑制し、均一なビートでの良好な溶接状態を得ることができる。
 なお、レーザ光23を溶接対象物501の未溶融部34へ照射するためのスピン軌道の軌跡としての間隔係数Lは、好ましい値や、好ましい範囲内になるように、例えば、実験や上述の数式やデータテーブル等により、事前に求め、予め設定することが好ましい。
 前述したレーザ光を螺旋状に照射して溶接を行う従来のレーザ溶接は、螺旋状に照射するレーザ光による溶融池の撹拌効果でガスの排出を促進としている。
 しかし、液相部分である溶融池にレーザ光を照射することで、溶融時に形成される、溶融池に接する穴であるキーホールから気泡が発生し易くなり、かえって溶融部外観に開いているピットと言われる微小な穴や溶融部に気泡が残留して形成されるポロシティは増加してしまう恐れがある。
 また、このように複数のパラメータの作用によって決定される溶接現象に対し、熟練作業者は自身の経験を活かすことで、比較的短時間で所望の溶接結果を得るための溶接条件を設定することができる可能性がある。しかしながら、最近では、レーザ溶接施工の経験が少ない作業者も多い。経験が少ない作業者が、適正なレーザ溶接条件をロボットやXYテーブルとレーザ溶接用ヘッド等に設定するには、多くの時間を費やしてしまう。
 さらに近年では、溶接品質の向上が強く要望されている。継手形状、必要な溶込み量や継手強度によって、溶接速度やレーザ出力等の溶接条件は異なる。経験の少ない作業者にとって、ロボットやXYテーブル等のマニピュレータを調整したら良いのか、レーザ用ヘッドを調整したら良いのか、レーザ出力を調整したら良いのかが判り難い。このため、適正な溶接条件を導出するためには、繰り返しレーザ溶接を行う必要があり、多くの時間を消費してしまう。
 上述のように、本実施の形態のレーザ溶接方法は、上下に重ねられた2枚以上の金属板30、31をレーザ光23により溶接すると共に、レーザ溶接時に、主にキーホール後壁27から発生する気泡28を抑制する。そのため、本実施の形態のレーザ溶接方法は、可能な限り、金属板30、31の固相部分にレーザ光23が通過するように溶接対象物にレーザ光23を照射して、溶接対象物501を溶接する。また、溶接時のレーザ出力は、キーホール型溶接になる値以上を選択し、例えば、溶接方向24へ移動する溶接速度Vは、1m/min以上であることが好ましい。また、溶接時の溶接速度Vは、可能な限りビームスポット23aが、大きい溶融池22にかからないような速度以上を選択するのが好ましい。
 このような本実施の形態のレーザ溶接方法によれば、金属板30、31の板厚に拘らず、良好な溶接状態を得ることができる。
 なお、本実施の形態では、2枚の金属板30、31を重ねてレーザ溶接を行うが、上記のレーザ溶接方法は3枚以上の金属板を重ねてレーザ溶接を行う際にも適用することができる。
 また、スピン軌道36の螺旋の軌跡である螺旋形状の軌跡は、単純な螺旋形状だけでなく、また、円状や、四角や三角等の多角形状や、一部途切れた不連続な円弧状など、レーザ光23が走査されて照射されることにより形成される形状の連続的な軌跡であれば、種々の形状とすることができる。間隔係数Lは、この螺旋の軌跡の粗密度合(重なり度合)を示す。
 また、スピン軌道36のレーザ光23のビームスポット23aの溶接方向24に対しての照射の回転方向は、時計回りであっても良いし、反時計回りであっても良い。
 また、本実施の形態では、良好な溶接結果を得るため、レーザ光23の溶接速度Vや、レーザ光23の間隔係数Lや、レーザ光23のレーザ出力等を適切にする。なお、これらのパラメータは、これら全て、あるいは、全ての内から複数を選択する等、適宜組み合わせて実施するようにしても良い。
 これまで溶接対象物501として、重ね継手への適用を例に説明したが、このレーザ溶接方法、レーザ溶接条件決定方法、レーザ溶接システムは、溶接対象物501として、重ね隅肉継手、突合せ継手、T字継手、角継手、へり継手、フレア継手の溶接にも適用することが出来る。
 このように、実施の形態におけるレーザ溶接方法では、気泡の発生を抑制し、均一なビード29を得ることで、良好な溶接状態が得られる。
 実施の形態におけるレーザ溶接条件設定方法およびレーザ溶接装置により、作業者が、溶接対象物501に関する情報とレーザ光23に関する情報を設定することで、それに適したレーザ出力や溶接速度Vや溶接パターンや溶接部の強度や溶接部の溶込みといった溶接条件の推奨値Haを決定して表示することができる。さらに、作業者が、表示された推奨値Haを変更した場合でも、変更後の値に適した溶接条件の推奨値Hbを再決定して表示することができる。
 タクトタイムに関係する溶接速度Vと、継手強度に関係するビード幅Wを作業者が変更可能なシステムとすることで、より使い勝手が向上する。
 このため、溶接条件を決定するまでの試行錯誤を行う時間や労力を低減することができ、溶接条件の設定に関する作業者の負担を軽減することができる。
 本発明におけるレーザ溶接方法は、気泡の発生を抑制して良好な溶接状態を実現でき、溶接対象物にレーザ光を照射してレーザ溶接を行うレーザ溶接方法として有用である。
1  レーザ発振器
10  記憶装置
11  溶接条件決定部
12  条件設定器
13  溶接対象物情報入力部
14  レーザ光情報入力部
15  パラメータ変更入力部
16  表示部
17  制御部
21  キーホール
22  溶融池
23  レーザ光
23a  ビームスポット
24  溶接方向
25  キーホール前壁
26  金属蒸気
27  キーホール後壁
28  気泡
29  ビード
29a  再凝固層
29b  ビード端
30  金属板
31  金属板
32  ギャップ
33  ピット
34  未溶融部
36  スピン軌道
501  溶接対象物
A  幅
B  幅
Φ  ビーム径
W  ビード幅
r  回転半径

Claims (12)

  1. 溶接方向に移動する回転中心を周回する螺旋形状を有する軌跡に沿って溶接対象物に対して相対的に移動するビームスポットを形成するようにレーザ光を前記溶接対象物に照射するステップと、
    前記照射されたレーザ光により前記溶接対象物を溶接するステップと、
    を含み、前記レーザ光を前記溶接対象物に照射するステップは、前記溶接方向における前記螺旋形状を有する前記軌跡の重なり度合を示す値である間隔係数に基づいて前記レーザ光を前記溶接対象物に照射するステップを含む、レーザ溶接方法。
  2. 前記間隔係数は、前記ビームスポットが前記溶接方向の成分を有する移動速度で前記回転中心を周回する前記溶接方向における第1の幅と、前記ビームスポットが前記溶接方向の反対の方向の成分を有する移動速度で前記回転中心を周回する前記溶接方向における第2の幅との比である、請求項1に記載のレーザ溶接方法。
  3. 前記間隔係数は前記第2の幅に対する前記第1の幅の比であり1.5~3の範囲である、請求項1または2に記載のレーザ溶接方法。
  4. 前記間隔係数は2~2.5の範囲である、請求項3に記載のレーザ溶接方法。
  5. 溶接方向に移動する回転中心を周回する螺旋形状を有する軌跡に沿って溶接対象物に対して相対的に移動するビームスポットを形成するようにレーザ光を前記溶接対象物に照射して前記溶接対象物を溶接するレーザ溶接システムで用いられるレーザ溶接条件決定方法であって、
    前記溶接対象物に関する情報である溶接対象物情報に基づき、前記回転中心が前記溶接方向に移動する溶接速度と、前記レーザ光により前記溶接対象物に形成されるビードのビード幅と、前記レーザ光により前記溶接対象物に形成される溶接部の溶込み深さの内の1つ以上を決定するステップと、
    前記レーザ光に関する情報であるレーザ光情報を設定するステップと、
    前記溶接速度と前記ビード幅と前記溶込み深さの内の前記決定された少なくとも1つと前記レーザ光情報とに基づき、前記ビームスポットが前記回転中心を周回する回転周波数と、前記レーザ光のレーザ出力の内の1つ以上を決定するステップと、
    を含み、
    前記レーザ光情報は、前記螺旋形状を有する前記軌跡の重なり度合を示す値である間隔係数を含む、レーザ溶接条件決定方法。
  6. 前記間隔係数は、前記ビームスポットが前記溶接方向の成分を有する移動速度で前記回転中心を周回する前記溶接方向における第1の幅と、前記ビームスポットが前記溶接方向の反対の方向の成分を有する移動速度で前記回転中心を周回する第2の幅との比である、請求項5に記載のレーザ溶接条件決定方法。
  7. 前記間隔係数は前記第2の幅に対する前記第1の幅の比であり1.5~3の範囲である、請求項5または6に記載のレーザ溶接条件決定方法。
  8. 前記間隔係数は2~2.5の範囲である、請求項7に記載のレーザ溶接条件決定方法。
  9. 前記溶接速度と前記ビード幅と前記溶込み深さの内の前記決定された1つ以上と、前記回転周波数と前記レーザ出力の内の前記決定された1つ以上とを表示するステップと、
    前記溶接速度と前記ビード幅と前記溶込み深さの内の前記決定された1つ以上のうちの少なくとも1つを再び決定するステップと、
    前記溶接速度と前記ビード幅と前記溶込み深さの内の前記決定された1つ以上のうちの前記再決定された少なくとも1つに基づき、前記回転周波数と前記レーザ出力の内の前記1つ以上を再び決定するステップと、
    をさらに含む、請求項7に記載のレーザ溶接条件決定方法。
  10. 前記溶接対象物情報は、前記溶接対象物の材質と継手の形状と前記溶接対象物の厚みとの内の少なくとも1つを含み、
    前記レーザ光情報は、前記レーザ光のビーム径の情報をさらに含む、請求項5に記載のレーザ溶接条件決定方法。
  11. レーザ光を溶接対象物に向けて出射するレーザ用ヘッドと、
    溶接方向に移動する回転中心を周回する螺旋形状を有する軌跡に沿って前記溶接対象物に対して相対的に移動するビームスポットを形成するように前記レーザ光を前記溶接対象物に照射するように、前記レーザ用ヘッドと前記レーザ光とを制御する制御部と、
    を備え、
    前記制御部は、
           前記溶接対象物に関する情報である溶接対象物情報を入力するための溶接対象物情報入力部と、
           レーザ光に関する情報であるレーザ光情報を入力するためのレーザ光情報入力部と、
           前記溶接対象物情報に基づいて、前記回転中心が前記溶接方向に移動する溶接速度と、前記レーザ光により前記溶接対象物に形成されるビードのビード幅と、前記レーザ光により前記溶接対象物に形成される溶接部の溶込み深さの内の1つ以上の第1の推奨値を決定し、
           前記レーザ光情報に基づいて、前記ビームスポットが前記回転中心を周回する回転周波数と、前記レーザ光のレーザ出力の内の1つ以上の第2の推奨値を決定する、
       ように構成された溶接条件決定部と、
       前記決定された前記第1推奨値を変更するパラメータ変更入力部と、
       前記決定された第1推奨値と前記決定された第2推奨値とを表示する表示部と、
    を有し、
    前記レーザ光情報は、前記螺旋形状の前記軌跡の重なり度合を示す値である間隔係数を含む、レーザ溶接システム。
  12. 前記間隔係数は、前記溶接方向における前記溶接方向に前記ビームスポットが前記回転中心を周回する第1の幅と、前記溶接方向における前記溶接方向と反対の方向に前記ビームスポットが前記回転中心を周回する第2の幅との比であり、
    前記レーザ光情報入力部は、前記間隔係数を入力する間隔係数入力部を有し、
    溶接条件決定部は、前記溶接速度Vと前記間隔係数Lと前記ビード幅Wと前記ビームスポットのビーム径Φとにより前記回転周波数Fを以下の式:
    F=V×{(L+1)/(L-1)}/{2×(W-Φ)}
    で求める、請求項11に記載のレーザ溶接システム。
PCT/JP2016/002423 2015-06-01 2016-05-18 レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム WO2016194322A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/564,207 US10807191B2 (en) 2015-06-01 2016-05-18 Laser welding method, laser welding conditions determining method, and laser welding system
CN201680024556.1A CN107530831B (zh) 2015-06-01 2016-05-18 激光焊接方法、激光焊接条件决定方法以及激光焊接系统
EP16802765.4A EP3305459B1 (en) 2015-06-01 2016-05-18 Laser welding method, laser welding conditions determining method, and laser welding system
JP2017521674A JP6967700B2 (ja) 2015-06-01 2016-05-18 レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015111047 2015-06-01
JP2015-111047 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016194322A1 true WO2016194322A1 (ja) 2016-12-08

Family

ID=57440377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002423 WO2016194322A1 (ja) 2015-06-01 2016-05-18 レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム

Country Status (5)

Country Link
US (1) US10807191B2 (ja)
EP (1) EP3305459B1 (ja)
JP (1) JP6967700B2 (ja)
CN (1) CN107530831B (ja)
WO (1) WO2016194322A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297570A (zh) * 2017-06-29 2017-10-27 大族激光科技产业集团股份有限公司 一种圆柱形电池负极与连接片焊接方法
CN107552958A (zh) * 2017-08-03 2018-01-09 大族激光科技产业集团股份有限公司 一种动力电池封口的焊接方法
JP2019005760A (ja) * 2017-06-20 2019-01-17 トヨタ自動車株式会社 レーザ溶接方法及びレーザ溶接装置
JP2019181496A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 溶接方法
JP2020019037A (ja) * 2018-07-31 2020-02-06 株式会社アマダホールディングス レーザ加工機及びレーザ加工方法
JP2020526395A (ja) * 2017-07-13 2020-08-31 トルンプフ レーザー− ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser− und Systemtechnik GmbH 少なくとも2つのワークピースを接合するための方法および装置
US10857624B2 (en) 2017-06-15 2020-12-08 Toyota Jidosha Kabushiki Kaisha Laser-beam welding method and laser-beam welding apparatus
KR20210122545A (ko) * 2020-04-01 2021-10-12 주식회사 한화 레이저 용접 장치
JP2021534977A (ja) * 2018-08-30 2021-12-16 アイピージー フォトニクス コーポレーション 裏側表面の溶接システムおよび方法
US11964339B2 (en) 2018-02-16 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Laser welding device and laser welding method
US11999008B2 (en) 2018-02-16 2024-06-04 Panasonic Intellectual Property Management Co., Ltd. Laser welding device and laser welding method
JP7496366B2 (ja) 2019-03-05 2024-06-06 オートテック エンジニアリング エス.エル. アルミニウム材料で作製された2つのブランクをレーザ接合するための方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063083B2 (ja) * 2018-04-25 2022-05-09 トヨタ自動車株式会社 レーザ溶接方法
WO2020045263A1 (ja) * 2018-08-30 2020-03-05 ローム株式会社 接合構造体、半導体装置および接合方法
JP7366429B2 (ja) * 2018-09-05 2023-10-23 古河電気工業株式会社 溶接方法および溶接装置
DE102018217526A1 (de) * 2018-10-12 2020-04-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Ermitteln einer Kenngröße eines Bearbeitungsprozesses und Bearbeitungsmaschine
JP7017497B2 (ja) 2018-10-19 2022-02-08 フタバ産業株式会社 溶接方法
CN111682157A (zh) * 2020-06-19 2020-09-18 珠海冠宇电池股份有限公司 电池及其制备方法以及用电设备
CN112475602B (zh) * 2020-11-13 2022-06-28 哈尔滨工业大学 一种消除铝锂合金t型接头激光焊接气孔的方法
JP2022127158A (ja) * 2021-02-19 2022-08-31 株式会社神戸製鋼所 銅合金板の接合方法及び銅合金板の接合体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058170A (ja) * 1996-08-19 1998-03-03 Mazda Motor Corp レーザ溶接の品質判定方法およびその装置
JPH1071480A (ja) * 1996-08-28 1998-03-17 Nippon Steel Corp めっき鋼板の重ねレーザ溶接方法
JP2000141070A (ja) * 1998-11-05 2000-05-23 Amada Eng Center Co Ltd レーザ加工ヘッド
WO2013167240A1 (de) * 2012-05-08 2013-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum laserfügen von mindestens zwei werkstücken unter verwendung einer dampfkapillare und oszillation des laserstrahles
WO2015072107A1 (ja) * 2013-11-15 2015-05-21 パナソニックIpマネジメント株式会社 レーザ溶接条件決定方法およびレーザ溶接装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690466B2 (ja) 1995-01-11 1997-12-10 住友電気工業株式会社 レーザビームスピンナ
US7910855B2 (en) * 2005-09-23 2011-03-22 Lasx Industries, Inc. No gap laser welding of coated steel
EP2617508B1 (en) * 2010-09-17 2017-07-05 Panasonic Intellectual Property Management Co., Ltd. Welding condition determining method, and welding device
CN102612419B (zh) * 2010-09-24 2016-01-06 日本先锋公司 激光加工装置
JP6314310B2 (ja) 2013-08-05 2018-04-25 パナソニックIpマネジメント株式会社 レーザ溶接方法およびレーザ溶接装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058170A (ja) * 1996-08-19 1998-03-03 Mazda Motor Corp レーザ溶接の品質判定方法およびその装置
JPH1071480A (ja) * 1996-08-28 1998-03-17 Nippon Steel Corp めっき鋼板の重ねレーザ溶接方法
JP2000141070A (ja) * 1998-11-05 2000-05-23 Amada Eng Center Co Ltd レーザ加工ヘッド
WO2013167240A1 (de) * 2012-05-08 2013-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum laserfügen von mindestens zwei werkstücken unter verwendung einer dampfkapillare und oszillation des laserstrahles
WO2015072107A1 (ja) * 2013-11-15 2015-05-21 パナソニックIpマネジメント株式会社 レーザ溶接条件決定方法およびレーザ溶接装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092238B2 (ja) 2017-06-15 2022-06-28 トヨタ自動車株式会社 レーザ溶接方法およびレーザ溶接装置
US10857624B2 (en) 2017-06-15 2020-12-08 Toyota Jidosha Kabushiki Kaisha Laser-beam welding method and laser-beam welding apparatus
JP2021142571A (ja) * 2017-06-15 2021-09-24 トヨタ自動車株式会社 レーザ溶接方法およびレーザ溶接装置
JP2019005760A (ja) * 2017-06-20 2019-01-17 トヨタ自動車株式会社 レーザ溶接方法及びレーザ溶接装置
CN107297570A (zh) * 2017-06-29 2017-10-27 大族激光科技产业集团股份有限公司 一种圆柱形电池负极与连接片焊接方法
US11565348B2 (en) 2017-07-13 2023-01-31 Trumpf Laser- Und Systemtechnik Gmbh Methods and systems for joining at least two workpieces
JP7014823B2 (ja) 2017-07-13 2022-02-01 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも2つのワークピースを接合するための方法および装置
JP2020526395A (ja) * 2017-07-13 2020-08-31 トルンプフ レーザー− ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser− und Systemtechnik GmbH 少なくとも2つのワークピースを接合するための方法および装置
CN107552958A (zh) * 2017-08-03 2018-01-09 大族激光科技产业集团股份有限公司 一种动力电池封口的焊接方法
US11964339B2 (en) 2018-02-16 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Laser welding device and laser welding method
US11999008B2 (en) 2018-02-16 2024-06-04 Panasonic Intellectual Property Management Co., Ltd. Laser welding device and laser welding method
JP7036651B2 (ja) 2018-04-05 2022-03-15 トヨタ自動車株式会社 溶接方法
JP2019181496A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 溶接方法
WO2020026701A1 (ja) * 2018-07-31 2020-02-06 株式会社アマダホールディングス レーザ加工機及びレーザ加工方法
US11780032B2 (en) 2018-07-31 2023-10-10 Amada Co., Ltd. Laser machining apparatus and laser machining method
JP2020019037A (ja) * 2018-07-31 2020-02-06 株式会社アマダホールディングス レーザ加工機及びレーザ加工方法
JP2021534977A (ja) * 2018-08-30 2021-12-16 アイピージー フォトニクス コーポレーション 裏側表面の溶接システムおよび方法
JP7496366B2 (ja) 2019-03-05 2024-06-06 オートテック エンジニアリング エス.エル. アルミニウム材料で作製された2つのブランクをレーザ接合するための方法
KR102339409B1 (ko) * 2020-04-01 2021-12-14 주식회사 한화 레이저 용접 장치
KR20210122545A (ko) * 2020-04-01 2021-10-12 주식회사 한화 레이저 용접 장치

Also Published As

Publication number Publication date
CN107530831A (zh) 2018-01-02
JPWO2016194322A1 (ja) 2018-04-19
US20180126491A1 (en) 2018-05-10
EP3305459B1 (en) 2020-10-07
EP3305459A4 (en) 2018-07-11
CN107530831B (zh) 2019-08-09
EP3305459A1 (en) 2018-04-11
JP6967700B2 (ja) 2021-11-17
US10807191B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2016194322A1 (ja) レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム
JP6554670B2 (ja) レーザ溶接方法
JP6383952B2 (ja) レーザ溶接方法
JP6846619B2 (ja) レーザ溶接方法
WO2017022238A1 (ja) レーザ溶接方法
JP5902400B2 (ja) レーザ溶接装置、レーザ溶接方法、鋼板積層体の製造方法及び積層体のレーザ溶接による溶接構造
JP5609632B2 (ja) レーザ重ね溶接方法
CN109562491B (zh) 铝合金激光焊接系统以及激光焊接铝合金的方法
JP7017497B2 (ja) 溶接方法
WO2018017931A1 (en) Laser welding, cladding, and/or additive manufacturing systems and methods of laser welding, cladding, and/or additive manufacturing
JP5812527B2 (ja) ホットワイヤレーザ溶接方法と装置
JP6756755B2 (ja) 接合方法
WO2009131030A1 (ja) レーザ・アーク複合溶接ヘッド
JP2017039145A (ja) レーザ溶接制御方法及びレーザ溶接システム
JP6092163B2 (ja) 溶接装置及び溶接方法
JP7122171B2 (ja) 3次元造形方法および3次元造形装置
JP6898287B2 (ja) 溶接方法
JP2014024078A (ja) レーザ溶接装置
KR102580252B1 (ko) 개선된 위빙을 이용한 레이저 용접방법
Colombo et al. Remote Fiber Laser Processing of Zinc Coated Steels for Automotive Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521674

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15564207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE