WO2016194138A1 - プラズマ発生装置 - Google Patents

プラズマ発生装置 Download PDF

Info

Publication number
WO2016194138A1
WO2016194138A1 PCT/JP2015/065907 JP2015065907W WO2016194138A1 WO 2016194138 A1 WO2016194138 A1 WO 2016194138A1 JP 2015065907 W JP2015065907 W JP 2015065907W WO 2016194138 A1 WO2016194138 A1 WO 2016194138A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
cover
hole
housing
Prior art date
Application number
PCT/JP2015/065907
Other languages
English (en)
French (fr)
Inventor
陽大 丹羽
神藤 高広
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to EP15894173.2A priority Critical patent/EP3307030B1/en
Priority to JP2017521392A priority patent/JP6605598B2/ja
Priority to US15/578,295 priority patent/US10980101B2/en
Priority to MX2017015474A priority patent/MX2017015474A/es
Priority to PCT/JP2015/065907 priority patent/WO2016194138A1/ja
Publication of WO2016194138A1 publication Critical patent/WO2016194138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3484Convergent-divergent nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • the present invention relates to a plasma generator for ejecting plasmad gas from an ejection port.
  • plasma processing is performed on the target object by ejecting the plasma gas from the outlet toward the target object.
  • the following patent document describes an example of a plasma generator.
  • plasma gas is usually irradiated toward the object to be processed placed at a predetermined distance from the jet nozzle. That is, at the time of plasma treatment, the plasma gas is ejected into the air, and the object to be treated is irradiated with the plasma gas ejected into the air. At this time, the plasma gas reacts with an active gas such as oxygen in the air to generate ozone. For this reason, there exists a possibility that plasma gas may deactivate and a plasma processing cannot be performed appropriately.
  • a protective gas for protecting the plasma gas is ejected together with the plasma gas.
  • the flow of the plasma gas is hindered by the ejection of the protective gas, and the object to be processed may not be irradiated with the plasma gas appropriately There is.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to prevent the plasma gas from being deactivated and to appropriately irradiate the object to be processed with the plasma gas.
  • a plasma generator described in the present application includes a housing in which a reaction chamber for converting a processing gas into plasma is formed, and a plasma gas formed in the housing and converted into plasma in the reaction chamber.
  • a spout for ejecting from the housing; a cover provided in the housing so as to cover at least the spout; a gas supply device for supplying heated gas to the inside of the cover; and a tip of the spout A through hole formed in the cover so that the distance between the tip of the jet port and the opening of the through hole to the outer wall surface of the cover is from the jet port.
  • the ejection direction of the plasma gas to be ejected it is 0 to 2 mm.
  • a plasma generator described in the present application includes a housing in which a reaction chamber for converting a processing gas into plasma is formed, and a plasma gas formed in the housing and converted into plasma in the reaction chamber , A cover provided on the housing in a state of covering at least the outlet, a gas supply device for supplying heated gas heated inside the cover, and the outlet And a through hole formed in the cover such that the tip of the cover is located inside.
  • a jet outlet for jetting plasma gas is covered with a cover, and a through hole is formed in the cover so that the tip of the jet outlet is located inside. And the heated heating gas is supplied into the inside of the cover.
  • the heating gas is ejected from the through hole of the cover, and the plasma gas is ejected from the ejection port so as to penetrate the heating gas. That is, the plasma gas is ejected into the air while being surrounded by the heated gas. Since ozone is decomposed at a high temperature of 200 ° C. or higher, ozonization of the plasma gas covered with the heated gas is prevented. Thereby, deactivation of plasma gas is prevented.
  • the distance between the tip of the jet port and the opening of the through hole to the outer wall surface of the cover is set to 0 to 2 mm in the plasma gas jet direction. Accordingly, the plasma gas can be suitably covered with the heating gas without hindering the flow of the plasma gas ejected from the ejection port, and the object to be processed can be appropriately irradiated with the plasma gas.
  • the atmospheric pressure plasma generator 10 is an apparatus for generating plasma under atmospheric pressure, and includes a plasma gas ejection device 12 and a heated gas supply device 14.
  • 1 is a perspective view of the whole atmospheric pressure plasma generation apparatus 10 from a perspective from obliquely above
  • FIG. 2 is a perspective view of a lower end portion of the atmospheric pressure plasma generation apparatus 10 from a perspective from obliquely below
  • FIG. 3 is a perspective view of the lower end portion of the atmospheric pressure plasma generator 10 from a perspective from above
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the width direction of the atmospheric pressure plasma generator 10 is referred to as the X direction
  • the depth direction of the atmospheric pressure plasma generator 10 is referred to as the Y direction
  • the direction perpendicular to the X direction and the Y direction, that is, the vertical direction is referred to as the Z direction.
  • the plasma gas ejection device 12 includes a housing 20, a cover 22, and a pair of electrodes 24 and 26.
  • the housing 20 includes a main housing 30, a heat radiating plate 31, a ground plate 32, a lower housing 34, and a nozzle block 36.
  • the main housing 30 has a generally block shape, and a reaction chamber 38 is formed inside the main housing 30.
  • four first gas flow paths 50 are formed in the main housing 30 so as to extend in the Y direction, and the four first gas flow paths 50 are spaced at a predetermined interval in the X direction. Are lined up. One end of each first gas channel 50 opens to the reaction chamber 38, and the other end opens to the side surface of the main housing 30.
  • each second gas passage 52 is formed in the main housing 30 so as to correspond to the four first gas passages 50 so as to extend in the Z direction.
  • the upper end portion of each second gas flow path 52 opens to the corresponding first gas flow path 50, and the lower end portion opens to the bottom surface of the main housing 30.
  • the heat radiating plate 31 is disposed on the side surface of the main housing 30 where the first gas flow path 50 opens, and closes the opening to the side surface of the first gas flow path 50.
  • the heat radiating plate 31 has a plurality of fins (not shown) and radiates heat from the main housing 30.
  • the ground plate 32 functions as a lightning rod, and is fixed to the lower surface of the main housing 30.
  • the ground plate 32 has four through holes 56 penetrating in the vertical direction corresponding to the four second gas flow paths 52, and each through hole 56 has a corresponding second gas flow path. 52.
  • the lower housing 34 has a block shape and is fixed to the lower surface of the ground plate 32.
  • a recess 60 is formed on the upper surface of the lower housing 34 so as to extend in the X direction, and the recess 60 faces the four through holes 56 of the ground plate 32.
  • six third gas passages 62 are formed in the lower housing 34 so as to extend in the Z direction, and the six third gas passages 62 are spaced at a predetermined interval in the X direction. Are lined up.
  • the upper end portion of each third gas flow path 62 opens to the recess 60, and the lower end portion opens to the bottom surface of the lower housing 34.
  • Each through hole 56 of the ground plate 32 faces one end of the recess 60 of the lower housing 34 in the Y direction, and the third gas flow path 62 of the lower housing 34 is the other end of the recess 60 in the Y direction. Open to the part.
  • the nozzle block 36 is fixed to the lower surface of the lower housing 34, and the six fourth gas passages 66 extend in the Z direction corresponding to the six third gas passages 62 of the lower housing 34. Is formed.
  • the upper end portion of each fourth gas flow channel 66 is connected to the corresponding third gas flow channel 62, and the lower end portion opens at the bottom surface of the nozzle block 36.
  • the cover 22 has a generally bowl shape and is disposed on the lower surface of the ground plate 32 so as to cover the lower housing 34 and the nozzle block 36.
  • a through hole 70 is formed in the lower surface of the cover 22.
  • the through hole 70 is larger than the lower surface of the nozzle block 36, and the lower surface of the nozzle block 36 is located inside the through hole 70.
  • the lower surface of the nozzle block 36 that is, the lower end of the fourth gas channel 66 of the nozzle block 36 does not protrude downward from the through hole 70 of the cover 22, and the lower end of the fourth gas channel 66 and the cover 22. It is located at substantially the same height as the lower surface of.
  • a through hole 72 is also formed in the side surface of the cover 22 on the heated gas supply device 14 side so as to extend in the Y direction.
  • the through hole 72 faces the side surface of the lower housing 34 located inside the cover 22, and the area of the side surface is Acm 2 . Further, the cross-sectional area inside the cover 22 is set to Bcm 2 in a direction perpendicular to the through hole 72, that is, a direction perpendicular to the Y direction.
  • the pair of electrodes 24 and 26 are disposed so as to face each other inside the reaction chamber 38 of the main housing 30.
  • a processing gas supply source 78 is connected to the reaction chamber 38 via a flow rate adjustment valve 76.
  • the processing gas supply source 78 supplies a processing gas in which an active gas such as oxygen and an inert gas such as nitrogen are mixed at an arbitrary ratio. As a result, a processing gas having an arbitrary flow rate (L / min) is supplied to the reaction chamber 38.
  • the heated gas supply device 14 includes a protective cover 80, a gas pipe 82, and a connection block 84.
  • the protective cover 80 is disposed so as to cover the heat radiating plate 31 of the plasma gas ejection device 12.
  • the gas pipe 82 is disposed inside the protective cover 80 so as to extend in the Z direction, and a heating gas supply source 88 is connected to the gas pipe 82 via a flow rate adjusting valve 86.
  • the heated gas supply source 88 heats an active gas such as oxygen or an inert gas such as nitrogen to a predetermined temperature and supplies the gas.
  • heated gas having an arbitrary flow rate (L / min) is supplied to the gas pipe 82.
  • the cross-sectional area in the radial direction of the gas pipe 82 is Ccm 2, and the cross-sectional area C is smaller than the area A of the side surface of the lower housing 34 and the cross-sectional area B inside the cover 22.
  • the connecting block 84 is connected to the lower end of the gas pipe 82 and is fixed to the side surface of the cover 22 on the heated gas supply device 14 side in the Y direction.
  • the connecting block 84 is formed with a communication passage 90 that is bent in an L shape.
  • One end of the communication passage 90 opens on the upper surface of the connection block 84, and the other end of the communication passage 90 is Y. Open in the side surface on the plasma gas ejection device 12 side in the direction.
  • One end portion of the communication passage 90 communicates with the gas pipe 82, and the other end portion of the communication passage 90 communicates with the through hole 72 of the cover 22.
  • the processing gas in the plasma gas ejection device 12, the processing gas is turned into plasma inside the reaction chamber 38 by the above-described configuration, and plasma gas is ejected from the lower end of the fourth gas flow channel 66 of the nozzle block 36. Is done. Further, the gas heated by the heated gas supply device 14 is supplied into the cover 22. Then, the plasma gas is ejected from the through hole 70 of the cover 22 together with the heated gas, and the object to be processed is subjected to plasma processing.
  • the plasma processing by the atmospheric pressure plasma generator 10 will be described in detail.
  • the processing gas is supplied to the reaction chamber 38 by the processing gas supply source 78, and at that time, the supply amount of the processing gas is adjusted by the flow rate adjusting valve 76.
  • the supply amount of the processing gas is arbitrarily adjusted according to the processing content of the plasma processing, the material of the object to be processed, etc., but is preferably 5 to 30 L / min, and more specifically 10 to 25 L / min. It is preferable that
  • the processing gas is supplied to the reaction chamber 38, a voltage is applied to the pair of electrodes 24 and 26 in the reaction chamber 38, and a current flows between the pair of electrodes 24 and 26. Thereby, a discharge is generated between the pair of electrodes 24 and 26, and the processing gas is turned into plasma by the discharge.
  • the plasma generated in the reaction chamber 38 flows in the Y direction in the first gas flow path 50 and flows downward in the second gas flow path 52 and the through hole 56. Then, the plasma gas flows into the recess 60. Further, the plasma gas flows in the recess 60 in the Y direction, and flows downward in the third gas channel 62 and the fourth gas channel 66. Thereby, plasma gas is ejected from the lower end of the fourth gas channel 66.
  • the plasma gas generated in the reaction chamber 38 is ejected from the lower end of the fourth gas channel 66 through the channel bent in a crank shape. For this reason, the light generated by the discharge in the reaction chamber 38 is prevented from leaking from the lower end of the fourth gas channel 66, and discharged from the lower end of the fourth gas channel 66 such as a member deteriorated by the discharge, That is, it is possible to prevent foreign matter from entering the object to be processed.
  • the gas is supplied to the gas pipe 82 by the heated gas supply source 88, and at that time, the supply amount of the heated gas is adjusted by the flow rate adjusting valve 86. Then, the gas pipe 82 is heated.
  • the supply amount of the heating gas is arbitrarily adjusted according to the processing content of the plasma processing, the material of the object to be processed, etc., but is preferably equal to or more than the supply amount of the processing gas in the plasma gas ejection device 12.
  • the gas supply amount is preferably 1 to 2 times. Furthermore, it is preferably 1.3 to 1.7 times the supply amount of the processing gas.
  • the heated gas is heated to 600 ° C. to 800 ° C.
  • the heated gas When the heated gas is supplied from the heated gas supply source 88 to the gas pipe 82, the heated gas flows into the cover 22 from the through hole 72 of the cover 22 through the communication path 90 of the connection block 84.
  • the heated gas flowing into the cover 22 is diffused by the side surface of the lower housing 34.
  • the heated gas diffused inside the cover 22 is ejected from the through hole 70 of the cover 22.
  • the plasma gas ejected from the lower end of the fourth gas passage 66 of the nozzle block 36 is protected by the heated gas.
  • the plasma gas is irradiated toward the object to be processed placed at a predetermined distance from the plasma gas jet port of the atmospheric pressure plasma generator.
  • the plasma gas is ejected into the air, and the object to be treated is irradiated with the plasma gas ejected into the air.
  • the plasma gas reacts with an active gas such as oxygen in the air to generate ozone. For this reason, there exists a possibility that plasma gas may deactivate and a plasma processing cannot be performed appropriately.
  • the lower end surface of the nozzle block 36 that ejects plasma gas is disposed inside the through hole 70 of the cover 22. Heated gas is supplied. Accordingly, the heating gas is ejected from the through hole 70 of the cover 22 and the plasma gas is ejected from the lower ends of the six fourth gas flow paths 66 of the nozzle block 36 so as to penetrate the inside of the heating gas. . At this time, the plasma gas 100 ejected from the lower ends of the six fourth gas passages 66 of the nozzle block 36 is covered with the heating gas 102 as shown in FIG. Since the heating gas supplied to the gas pipe 82 is 600 ° C.
  • the heating gas ejected from the through hole 70 is 250 ° C. or higher. Since ozone is decomposed at 200 ° C. or higher, ozonization of the plasma gas covered with the heated gas is prevented. Thereby, the deactivation of plasma gas is prevented, and it becomes possible to perform a plasma process appropriately.
  • the plasma gas ejected from the fourth gas flow channel 66 in the state covered with the heated gas ejected from the through hole 70 of the cover 22 is appropriately directed toward the object to be processed.
  • the vertical position of the lower end of the fourth gas flow channel 66 is adjusted so that the second gas flow channel 66 is irradiated. Specifically, there are cases where it is described as an outlet to the lower end surface of the nozzle block 36 of the fourth gas passage 66 (hereinafter referred to as “gas passage opening”).
  • the gas flow path opening is an opening to the lower surface of the cover 22 of the through hole 70 (hereinafter, “through-hole opening”), the plasma gas ejected from the fourth gas flow channel 66 is ejected into the air before being covered with the heated gas, There is a risk of being deactivated.
  • the gas flow path opening is too deep inside the cover 22, that is, if the gas flow path opening is located to some extent above the through hole opening in the Z direction, There is a possibility that the flow of the plasma gas ejected from the gas flow channel 66 is hindered by the heated gas, and the target object cannot be irradiated with the plasma gas appropriately.
  • the gas flow path opening is located at the same position as the through hole opening in the Z direction, or the gas flow path opening is above the through hole opening in the Z direction.
  • the distance in the Z direction between the gas flow path opening and the through hole opening is 2 mm or less. That is, the gas flow path opening does not protrude from the through hole 70, and the distance X (see FIG. 4) in the Z direction between the gas flow path opening and the through hole opening is 0 to 2 mm.
  • the plasma gas can be suitably covered with the heating gas without hindering the flow of the plasma gas ejected from the fourth gas flow channel 66.
  • the plasma gas ejected from the fourth gas flow path 66 can be uniformly and linearly directed toward the object to be processed. It is possible to flow.
  • FIGS. 6 to 11 show the flow of the processing gas when the processing gas is jetted from the lower end of the fourth gas channel 66 in a state where the heating gas is jetted from the through hole 70 of the cover 22.
  • FIGS. 6 to 8 are diagrams showing the processing gas ejected from the fourth gas flow channel 66 in a dotted pattern
  • FIGS. 9 to 11 show the processing gas ejected from the fourth gas flow channel 66 as a line.
  • FIG. FIGS. 6 and 9 are views showing the flow of the processing gas when the distance X in the Z direction between the gas flow path opening and the through hole opening is 0 mm.
  • FIG. 8 and FIG. It is the figure which showed the flow of the process gas when the distance X in the Z direction is 1 mm.
  • the position of the gas flow path opening in the Z direction is indicated by a line 110, and the Z direction of the through hole opening The position at is indicated by line 112.
  • the processing gas in FIG. 8 is shown in a dense state even at a part away from the fourth gas flow channel 66 to some extent.
  • the processing gas is written in a diffused state at a location away from the fourth gas flow channel 66 to some extent.
  • the processing gas in FIG. 7 is shown in an intermediate state between the processing gas in FIG. 6 and the processing gas in FIG.
  • the processing gas in FIG. 11 is written linearly as a whole, but the processing gas in FIG. 9 is written in a bent state at both ends. ing.
  • the processing gas in FIG. 10 is shown in an intermediate state between the processing gas in FIG. 9 and the processing gas in FIG.
  • the flow of the processing gas ejected from the fourth gas flow path 66 can be made uniform and linear.
  • the processing gas ejected from the fourth gas flow channel 66 is treated by setting the distance in the Z direction between the gas flow channel opening and the through hole opening to 1 mm. It is possible to irradiate the object to be processed uniformly while irradiating straight toward the surface.
  • the heated gas flowing through the gas pipe 82 having the cross-sectional area C flows into the cover having the cross-sectional area B (> C).
  • the inflow speed of the heating gas can be reduced, and the heating gas can be supplied into the cover 22 without obstructing the flow of the plasma gas ejected from the fourth gas flow channel 66.
  • a lower housing 34 is disposed at a position facing the through hole 72 for supplying the heated gas to the inside of the cover 22, and an area A of a side surface of the lower housing 34 facing the through hole 72 is The cross-sectional area C of the gas pipe 82 is larger. For this reason, the heated gas flowing into the cover 22 is suitably diffused by the side surface of the lower housing 34.
  • the heated gas can be supplied into the cover 22 without hindering the flow of the plasma gas ejected from the fourth gas flow channel 66.
  • the jet outlet of the fourth gas flow channel 66 for jetting plasma gas is disposed so as not to be positioned between the through hole 72 of the cover 22 and the lower housing 34. As a result, the heated gas can be supplied into the cover 22 without hindering the flow of the plasma gas.
  • the heating gas supply device 14 supplies a heating gas having a temperature at which the surface temperature of the object to be processed is 250 ° C. or higher. Specifically, it is desirable to supply a heating gas of 600 to 800 ° C. from the heating gas supply source 88.
  • the surface temperature of the object to be processed is lower than when the heated gas is an active gas, so the temperature of the heated gas is set according to the type of heated gas. It is preferable to do. Specifically, for example, when an inert gas heated to 700 ° C. is supplied by the heated gas supply source 88, the surface temperature of the object to be processed is 250 ⁇ 10 ° C. On the other hand, when the active gas heated to 700 ° C. is supplied by the heated gas supply source 88, the surface temperature of the object to be processed is 280 ⁇ 10 ° C.
  • the surface temperature of the object to be processed when the heating gas is an inert gas is the heating gas being the active gas. It becomes lower than the surface temperature of the object to be processed. For this reason, it is preferable to set the temperature of the heated gas in consideration of the temperature difference.
  • the atmospheric pressure plasma generator 10 is an example of a plasma generator.
  • the heated gas supply device 14 is an example of a gas supply device.
  • the housing 20 is an example of a housing.
  • the cover 22 is an example of a cover.
  • the side surface of the lower housing 34 is an example of a diffusion wall.
  • the reaction chamber 38 is an example of a reaction chamber.
  • the first gas flow path 50, the second gas flow path 52, the through hole 56, the recess 60, the third gas flow path 62, and the fourth gas flow path 66 are examples of gas flow paths.
  • the through hole 70 is an example of a through hole.
  • the through hole 72 is an example of a supply hole.
  • the gas pipe 82 is an example of a supply cylinder.
  • the gas channel opening is an example of a jet outlet.
  • the present invention is applied to the atmospheric pressure plasma generator 10 that discharges between a pair of electrodes and generates plasma by the discharge.
  • the present invention can be applied to a plasma generator that discharges along the wall surface of the reaction chamber 38 and generates plasma by the discharge.
  • 10 atmospheric pressure plasma generator (plasma generator) 14: heated gas supply device (gas supply device) 20: housing 22: cover 34: lower housing (diffusion wall) 38: reaction chamber 50: first gas flow path (gas) (Flow path) 52: second gas flow path (gas flow path) 56: through hole (gas flow path) 60: recess (gas flow path) 62: third gas flow path (gas flow path) 66: fourth gas flow Road (gas flow path) 70: Through hole 72: Through hole (supply hole) 82: Gas pipe (supply cylinder)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

本発明の大気圧プラズマ発生装置(10)では、プラズマガスを噴出する第4ガス流路(66)が形成されたノズルブロック(36)が、カバー(22)によって覆われており、そのカバーに、第4ガス流路(66)の先端が内側に位置するように貫通穴(70)が形成されている。そして、カバー(22)の内部に、加熱された加熱ガスが供給される。これにより、カバー(22)の貫通穴(70)から加熱ガスが噴出されるとともに、その加熱ガスを貫くように、プラズマガスが噴出される。これにより、プラズマガスが加熱ガスによって囲まれることで、プラズマガスの失活が防止される。また、第4ガス流路(66)の先端と、貫通穴(70)のカバー(22)の外壁面への開口との間の距離Xが、プラズマガスの噴出方向において、0~2mmとされている。これにより、プラズマガスの流れを阻害することなく、加熱ガスによってプラズマガスを好適に覆うことが可能となる。

Description

プラズマ発生装置
 本発明は、プラズマ化されたガスを噴出口から噴出させるプラズマ発生装置に関する。
 プラズマ発生装置では、噴出口からプラズマ化されたガスが、被処理体に向かって噴出されることで、被処理体に対してプラズマ処理が行われる。下記特許文献には、プラズマ発生装置の一例が記載されている。
特開2012-059548号公報
 上記特許文献に記載のプラズマ発生装置によれば、被処理体に対してプラズマ処理を行うことが可能となる。しかしながら、プラズマ発生装置によるプラズマ処理時には、通常、噴出口から所定の距離、離れた位置に載置された被処理体に向かって、プラズマガスが照射される。つまり、プラズマ処理時において、プラズマガスは空気中に噴出され、空気中に噴出されたプラズマガスが被処理体に照射される。この際、プラズマガスは、空気中において、酸素等の活性ガスと反応し、オゾンが発生する。このため、プラズマガスは失活し、適切にプラズマ処理を行うことができない虞がある。そこで、プラズマガスを保護するための保護ガスを、プラズマガスとともに噴出させることが考えられるが、保護ガスの噴出により、プラズマガスの流れが阻害され、被処理体にプラズマガスを適切に照射できない虞がある。本発明は、そのような実情に鑑みてなされたものであり、本発明の課題は、プラズマガスの失活を防止するとともに、プラズマガスを適切に被処理体に照射することである。
 上記課題を解決するために、本願に記載のプラズマ発生装置は、処理ガスをプラズマ化させる反応室が形成されたハウジングと、前記ハウジングに形成され、前記反応室においてプラズマ化されたプラズマガスを前記ハウジングから噴出させるための噴出口と、少なくとも前記噴出口を覆う状態で前記ハウジングに設けられたカバーと、前記カバーの内部に加熱された加熱ガスを供給するガス供給装置と、前記噴出口の先端が内側に位置するように、前記カバーに形成された貫通穴とを備え、前記噴出口の先端と、前記貫通穴の前記カバーの外壁面への開口との間の距離が、前記噴出口から噴出されるプラズマガスの噴出方向において、0~2mmであることを特徴とする。
 また、上記課題を解決するために、本願に記載のプラズマ発生装置は、処理ガスをプラズマ化させる反応室が形成されたハウジングと、前記ハウジングに形成され、前記反応室においてプラズマ化されたプラズマガスを前記ハウジングから噴出させるための噴出口と、少なくとも前記噴出口を覆う状態で前記ハウジングに設けられたカバーと、前記カバーの内部に加熱された加熱ガスを供給するガス供給装置と、前記噴出口の先端が内側に位置するように、前記カバーに形成された貫通穴とを備えることを特徴とする。
 本願に記載のプラズマ発生装置では、プラズマガスを噴出する噴出口が、カバーによって覆われており、そのカバーに、噴出口の先端が内側に位置するように貫通穴が形成されている。そして、そのカバーの内部に、加熱された加熱ガスが供給される。これにより、カバーの貫通穴から加熱ガスが噴出されるとともに、その加熱ガスを貫くように、プラズマガスが噴出口から噴出される。つまり、プラズマガスは、加熱ガスによって囲まれた状態で、空気中に噴出される。オゾンは、200℃以上の高温下において分解されるため、加熱ガスに覆われたプラズマガスのオゾン化が防止される。これにより、プラズマガスの失活が防止される。また、噴出口の先端と、貫通穴のカバーの外壁面への開口との間の距離が、プラズマガスの噴出方向において、0~2mmとされている。これにより、噴出口から噴出されたプラズマガスの流れを阻害することなく、加熱ガスによってプラズマガスを好適に覆うことが可能となり、プラズマガスを適切に被処理体に照射することが可能となる。
大気圧プラズマ発生装置を示す斜視図である。 大気圧プラズマ発生装置の下端部を示す斜視図である。 大気圧プラズマ発生装置の下端部を示す斜視図である。 図3でのAA線における断面図である。 加熱ガスによって覆われた状態のプラズマガスを示す概念図である。 ガス流路開口と貫通穴開口とのZ方向における距離Xが0mmである場合のプラズマガスの流れを示す概念図である。 ガス流路開口と貫通穴開口とのZ方向における距離Xが0.5mmである場合のプラズマガスの流れを示す概念図である。 ガス流路開口と貫通穴開口とのZ方向における距離Xが1mmである場合のプラズマガスの流れを示す概念図である。 ガス流路開口と貫通穴開口とのZ方向における距離Xが0mmである場合のプラズマガスの流れを示す概念図である。 ガス流路開口と貫通穴開口とのZ方向における距離Xが0.5mmである場合のプラズマガスの流れを示す概念図である。 ガス流路開口と貫通穴開口とのZ方向における距離Xが1mmである場合のプラズマガスの流れを示す概念図である。
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。
 <大気圧プラズマ発生装置の構成>
 図1乃至図4に、本発明の実施例の大気圧プラズマ発生装置10を示す。大気圧プラズマ発生装置10は、大気圧下でプラズマを発生させるための装置であり、プラズマガス噴出装置12と加熱ガス供給装置14とを備えている。なお、図1は、斜め上方からの視点における大気圧プラズマ発生装置10全体の斜視図であり、図2は、斜め下方からの視点における大気圧プラズマ発生装置10の下端部の斜視図であり、図3は、斜め上方からの視点における大気圧プラズマ発生装置10の下端部の斜視図であり、図4は、図3のAA線における断面図である。また、大気圧プラズマ発生装置10の幅方向をX方向と、大気圧プラズマ発生装置10の奥行方向をY方向と、X方向とY方向とに直行する方向、つまり、上下方向をZ方向と称する。
 プラズマガス噴出装置12は、ハウジング20、カバー22、1対の電極24,26によって構成されている。ハウジング20は、メインハウジング30、放熱板31、アース板32、下部ハウジング34、ノズルブロック36を含む。メインハウジング30は、概してブロック状をなし、メインハウジング30の内部には、反応室38が形成されている。また、メインハウジング30には、Y方向に延びるように、4本の第1ガス流路50が形成されており、4本の第1ガス流路50は、X方向に所定の間隔をおいて並んでいる。各第1ガス流路50の一端部は、反応室38に開口し、他端部は、メインハウジング30の側面に開口している。さらに、メインハウジング30には、4本の第1ガス流路50に対応して、4本の第2ガス流路52が、Z方向に延びるように形成されている。各第2ガス流路52の上端部は、対応する第1ガス流路50に開口し、下端部は、メインハウジング30の底面に開口している。
 放熱板31は、メインハウジング30の第1ガス流路50が開口する側面に配設されており、第1ガス流路50の側面への開口を塞いでいる。放熱板31は、複数のフィン(図示省略)を有しており、メインハウジング30の熱を放熱する。また、アース板32は、避雷針として機能するものであり、メインハウジング30の下面に固定されている。アース板32には、4本の第2ガス流路52に対応して、上下方向に貫通する4個の貫通穴56が形成されており、各貫通穴56は、対応する第2ガス流路52に連結されている。
 下部ハウジング34は、ブロック状をなし、アース板32の下面に固定されている。下部ハウジング34の上面には、X方向に延びるように、凹部60が形成されており、凹部60は、アース板32の4個の貫通穴56と対向している。また、下部ハウジング34には、Z方向に延びるように、6本の第3ガス流路62が形成されており、6本の第3ガス流路62は、X方向に所定の間隔をおいて並んでいる。各第3ガス流路62の上端部は、凹部60に開口し、下端部は、下部ハウジング34の底面に開口している。なお、アース板32の各貫通穴56は、下部ハウジング34の凹部60のY方向における一端部と対向しており、下部ハウジング34の第3ガス流路62は、凹部60のY方向における他端部に開口している。
 ノズルブロック36は、下部ハウジング34の下面に固定されており、下部ハウジング34の6本の第3ガス流路62に対応して、6本の第4ガス流路66が、Z方向に延びるように形成されている。各第4ガス流路66の上端部は、対応する第3ガス流路62に連結され、下端部は、ノズルブロック36の底面に開口している。
 カバー22は、概して枡形をなし、下部ハウジング34およびノズルブロック36を覆うように、アース板32の下面に配設されている。カバー22の下面には、貫通穴70が形成されている。その貫通穴70は、ノズルブロック36の下面より大きく、ノズルブロック36の下面が、貫通穴70の内部に位置している。なお、ノズルブロック36の下面、つまり、ノズルブロック36の第4ガス流路66の下端は、カバー22の貫通穴70から下方に突出しておらず、第4ガス流路66の下端と、カバー22の下面とは略同じ高さに位置している。また、カバー22の加熱ガス供給装置14側の側面にも、Y方向に延びるように貫通穴72が形成されている。なお、貫通穴72は、カバー22の内部に位置する下部ハウジング34の側面と対向しており、その側面の面積は、Acmとされている。また、カバー22の内部の断面積は、貫通穴72に対して直角に交わる方向、つまり、Y方向に直角に交わる方向において、Bcmとされている。
 1対の電極24,26は、メインハウジング30の反応室38の内部において、対向するように配設されている。その反応室38には、流量調整弁76を介して、処理ガス供給源78が接続されている。処理ガス供給源78は、酸素等の活性ガスと窒素等の不活性ガスとを任意の割合で混合させた処理ガスを供給するものである。これにより、反応室38に、任意の流量(L/min)の処理ガスが供給される。
 また、加熱ガス供給装置14は、保護カバー80、ガス管82、連結ブロック84を含む。保護カバー80は、プラズマガス噴出装置12の放熱板31を覆うように配設されている。ガス管82は、保護カバー80の内部において、Z方向に延びるように配設されており、ガス管82には、流量調整弁86を介して、加熱ガス供給源88が接続されている。加熱ガス供給源88は、酸素等の活性ガス、若しくは、窒素等の不活性ガスを所定の温度に加熱し、そのガスを供給するものである。これにより、ガス管82に、任意の流量(L/min)の加熱されたガスが供給される。なお、ガス管82の径方向における断面積は、Ccmとされており、その断面積Cは、下部ハウジング34の側面の面積Aおよび、カバー22内部の断面積Bより小さくされている。
 連結ブロック84は、ガス管82の下端に連結されるとともに、カバー22のY方向での加熱ガス供給装置14側の側面に固定されている。連結ブロック84には、概してL字型に屈曲した連通路90が形成されており、連通路90の一端部は、連結ブロック84の上面に開口するとともに、連通路90の他端部は、Y方向でのプラズマガス噴出装置12側の側面に開口している。そして、連通路90の一端部がガス管82に連通し、連通路90の他端部が、カバー22の貫通穴72に連通している。
 <大気圧プラズマ発生装置によるプラズマ処理>
 大気圧プラズマ発生装置10において、プラズマガス噴出装置12では、上述した構成により、反応室38の内部で処理ガスがプラズマ化され、ノズルブロック36の第4ガス流路66の下端からプラズマガスが噴出される。また、加熱ガス供給装置14により加熱されたガスがカバー22の内部に供給される。そして、カバー22の貫通穴70から、プラズマガスが、加熱されたガスとともに噴出され、被処理体がプラズマ処理される。以下に、大気圧プラズマ発生装置10によるプラズマ処理について、詳しく説明する。
 プラズマガス噴出装置12では、処理ガス供給源78によって処理ガスが反応室38に供給され、その際、流量調整弁76によって処理ガスの供給量が調整される。処理ガスの供給量は、プラズマ処理の処理内容,被処理体の材質等に応じて、任意に調整されるが、5~30L/minであることが好ましく、さらに言えば、10~25L/minであることが好ましい。
 また、処理ガスが反応室38に供給される際に、反応室38では、1対の電極24,26に電圧が印加されており、1対の電極24,26間に電流が流れる。これにより、1対の電極24,26間に放電が生じ、その放電により、処理ガスがプラズマ化される。反応室38で発生したプラズマは、第1ガス流路50内をY方向に向かって流れ、第2ガス流路52および貫通穴56内を下方に向かって流れる。そして、プラズマガスは、凹部60内に流れ込む。さらに、プラズマガスは、凹部60内をY方向に向かって流れ、第3ガス流路62および、第4ガス流路66内を下方に向かって流れる。これにより、第4ガス流路66の下端から、プラズマガスが噴出される。
 このように、プラズマガス噴出装置12では、反応室38において発生したプラズマガスが、クランク状に屈曲した流路を経由して、第4ガス流路66の下端から噴出される。このため、反応室38内での放電により生じた光が、第4ガス流路66の下端から漏れることを防ぐとともに、放電により劣化した部材等の第4ガス流路66の下端からの排出、つまり、被処理体への異物混入を防止することが可能となる。
 また、加熱ガス供給装置14では、加熱ガス供給源88によってガスがガス管82に供給され、その際、流量調整弁86によって加熱ガスの供給量が調整される。そして、ガス管82において加熱される。加熱ガスの供給量は、プラズマ処理の処理内容,被処理体の材質等に応じて、任意に調整されるが、プラズマガス噴出装置12での処理ガスの供給量以上であることが好ましく、処理ガスの供給量の1~2倍であることが好ましい。さらに言えば、処理ガスの供給量の1.3~1.7倍であることが好ましい。また、加熱ガスは、600℃~800℃に加熱される。
 加熱ガス供給源88からガス管82に加熱ガスが供給されると、連結ブロック84の連通路90を介して、加熱ガスが、カバー22の貫通穴72からカバー22の内部に流入する。カバー22内に流入した加熱ガスは、下部ハウジング34の側面によって拡散される。そして、カバー22の内部において拡散された加熱ガスが、カバー22の貫通穴70から噴出される。この際、ノズルブロック36の第4ガス流路66の下端から噴出されるプラズマガスが、加熱ガスによって保護される。詳しくは、プラズマ処理時において、大気圧プラズマ発生装置のプラズマガスの噴出口から所定の距離、離れた位置に載置された被処理体に向かって、プラズマガスが照射される。つまり、プラズマ処理時において、プラズマガスは空気中に噴出され、空気中に噴出されたプラズマガスが被処理体に照射される。この際、プラズマガスは、空気中において、酸素等の活性ガスと反応し、オゾンが発生する。このため、プラズマガスは失活し、適切にプラズマ処理を行うことができない虞がある。
 このため、大気圧プラズマ発生装置10では、プラズマガスを噴出するノズルブロック36の下端面が、カバー22の貫通穴70の内部に位置するように配設されており、カバー22の内部には、加熱ガスが供給されている。これにより、カバー22の貫通穴70から加熱ガスが噴出されるとともに、その加熱ガスの内部を貫くように、ノズルブロック36の6本の第4ガス流路66の下端からプラズマガスが噴出される。この際、ノズルブロック36の6本の第4ガス流路66の下端から噴出されるプラズマガス100は、図5に示すように、加熱ガス102によって覆われている。ガス管82に供給される加熱ガスは、600℃~800℃であることから、貫通穴70から噴出される加熱ガスは、250℃以上となっている。200℃以上において、オゾンは分解されるため、加熱ガスに覆われたプラズマガスのオゾン化が防止される。これにより、プラズマガスの失活が防止され、適切にプラズマ処理を行うことが可能となる。
 また、大気圧プラズマ発生装置10では、カバー22の貫通穴70から噴出された加熱ガスに覆われた状態で、第4ガス流路66から噴出されたプラズマガスが、被処理体に向かって適切に照射されるように、第4ガス流路66の下端の上下方向の位置が調整されている。詳しくは、プラズマガスを噴出する第4ガス流路66の噴出口、つまり、第4ガス流路66のノズルブロック36下端面への開口(以下、「ガス流路開口」と記載する場合がある)が、カバー22の貫通穴70から突出している場合、つまり、ガス流路開口が、処理ガスの噴出方向、つまり、Z方向において、貫通穴70のカバー22の下面への開口(以下、「貫通穴開口」と記載する場合がある)より下方に位置している場合には、第4ガス流路66から噴出されたプラズマガスが、加熱ガスによって覆われる前に、空気中に噴出され、失活する虞がある。
 一方、ガス流路開口が、カバー22の内部に入り込み過ぎている場合、つまり、ガス流路開口が、Z方向において、貫通穴開口より、ある程度、上方に位置している場合には、第4ガス流路66から噴出されたプラズマガスの流れが、加熱ガスによって阻害され、被処理体に適切にプラズマガスを照射できない虞がある。
 このようなことに鑑みて、大気圧プラズマ発生装置10では、ガス流路開口が、Z方向において、貫通穴開口と同じ位置、若しくは、ガス流路開口が、Z方向において、貫通穴開口より上方に位置し、ガス流路開口と貫通穴開口とのZ方向における距離が2mm以下とされている。つまり、ガス流路開口が貫通穴70から突出することなく、ガス流路開口と貫通穴開口とのZ方向における距離X(図4参照)が0~2mmとされている。これにより、第4ガス流路66から噴出されたプラズマガスの流れを阻害することなく、加熱ガスによってプラズマガスを好適に覆うことが可能となる。特に、ガス流路開口と貫通穴開口とのZ方向における距離を1mmとすることで、第4ガス流路66から噴出されたプラズマガスを、被処理体に向かって均一、かつ、直線的に流すことが可能となる。
 具体的に、カバー22の貫通穴70から加熱ガスが噴出された状態で、第4ガス流路66の下端から処理ガスが噴出される際の処理ガスの流れを、図6~図11に示し、それら図6~図11を用いて説明する。図6~図8は、第4ガス流路66から噴出される処理ガスを点状に示した図であり、図9~図11は、第4ガス流路66から噴出される処理ガスを線状に示した図である。また、図6および図9は、ガス流路開口と貫通穴開口とのZ方向における距離Xが0mmとされた場合の処理ガスの流れを示した図であり、図7および図10は、ガス流路開口と貫通穴開口とのZ方向における距離Xが0.5mmとされた場合の処理ガスの流れを示した図であり、図8および図11は、ガス流路開口と貫通穴開口とのZ方向における距離Xが1mmとされた場合の処理ガスの流れを示した図である。なお、ガス流路開口のZ方向における位置、および、貫通穴開口のZ方向における位置を明確にするべく、ガス流路開口のZ方向における位置を、線110により示し、貫通穴開口のZ方向における位置を、線112により示す。
 図6~図8を比較して解るように、図8における処理ガスは、第4ガス流路66から、ある程度離れた個所であっても、密集した状態で記されているが、図6における処理ガスは、第4ガス流路66から、ある程度離れた個所において、拡散した状態で記されている。また、図7における処理ガスは、図6における処理ガスと図8における処理ガスと中間の状態で記されている。また、図9~図11を比較して解るように、図11における処理ガスは、全体的に直線的に記されているが、図9における処理ガスは、両端部において屈曲した状態で記されている。また、図10における処理ガスは、図9における処理ガスと図11における処理ガスと中間の状態で記されている。つまり、ガス流路開口と貫通穴開口とのZ方向における距離を1mmとすることで、第4ガス流路66から噴出される処理ガスの流れを均一、かつ、直線的にすることが可能となる。このように、大気圧プラズマ発生装置10では、ガス流路開口と貫通穴開口とのZ方向における距離を1mmとすることで、第4ガス流路66から噴出される処理ガスを、被処理体に向けて真っ直ぐに照射するとともに、被処理体に均一に照射することが可能となる。
 また、大気圧プラズマ発生装置10では、断面積Cのガス管82を流れる加熱ガスが、断面積B(>C)のカバーの内部に流入する。これにより、加熱ガスの流入速度を緩和することが可能となり、第4ガス流路66から噴出されたプラズマガスの流れを阻害することなく、加熱ガスをカバー22の内部に供給することが可能となる。また、カバー22の内部に加熱ガスを供給するための貫通穴72の対向する位置には、下部ハウジング34が配設されており、その下部ハウジング34の貫通穴72に対向する側面の面積Aは、ガス管82の断面積Cより大きい。このため、カバー22内に流入した加熱ガスは、下部ハウジング34の側面によって好適に拡散する。これにより、第4ガス流路66から噴出されたプラズマガスの流れを阻害することなく、加熱ガスをカバー22の内部に供給することが可能となる。さらに言えば、プラズマガスを噴出する第4ガス流路66の噴出口は、カバー22の貫通穴72と下部ハウジング34との間に位置しないように、配設されている。これにより、プラズマガスの流れを阻害することなく、加熱ガスをカバー22の内部に供給することが可能となる。
 また、大気圧プラズマ発生装置10では、200℃以上の加熱ガスが、プラズマガスとともに、被処理体に向かって噴出されるため、加熱ガスによって被処理体が加熱され、その加熱された被処理体にプラズマ処理が行われる。これにより、被処理体の反応性が向上し、効果的にプラズマ処理を行うことが可能となる。なお、被処理体の加熱によりプラズマ処理を効果的に行うために、被処理体の表面温度が250℃以上となるような温度の加熱ガスを、加熱ガス供給装置14が供給することが望ましい。具体的には、加熱ガス供給源88から600℃~800℃の加熱ガスを供給することが望ましい。
 なお、加熱ガスが不活性ガスである場合には、加熱ガスが活性ガスである場合と比較して、被処理体の表面温度が低いため、加熱ガスの種類に応じて加熱ガスの温度を設定することが好ましい。具体的には、例えば、700℃に加熱された不活性ガスが加熱ガス供給源88によって供給された場合に、被処理体の表面温度は、250±10℃となる。一方、700℃に加熱された活性ガスが加熱ガス供給源88によって供給された場合に、被処理体の表面温度は、280±10℃となる。このように、同じ温度の加熱ガスが加熱ガス供給源88によって供給された場合であっても、加熱ガスが不活性ガスである場合の被処理体の表面温度は、加熱ガスが活性ガスである場合の被処理体の表面温度より低くなる。このため、それらの温度差を考慮して、加熱ガスの温度を設定することが好ましい。
 ちなみに、上記実施例において、大気圧プラズマ発生装置10は、プラズマ発生装置の一例である。加熱ガス供給装置14は、ガス供給装置の一例である。ハウジング20は、ハウジングの一例である。カバー22は、カバーの一例である。下部ハウジング34の側面は、拡散壁の一例である。反応室38は、反応室の一例である。第1ガス流路50,第2ガス流路52,貫通穴56,凹部60,第3ガス流路62,第4ガス流路66は、ガス流路の一例である。貫通穴70は、貫通穴の一例である。貫通穴72は、供給穴の一例である。ガス管82は、供給筒の一例である。ガス流路開口は、噴出口の一例である。
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、1対の電極間で放電させ、その放電によりプラズマを発生させる大気圧プラズマ発生装置10に、本発明が適用されているが、1対の電極間だけでなく、反応室38の壁面に沿って放電し、その放電によりプラズマを発生させるプラズマ発生装置に、本発明を適用することが可能である。
 10:大気圧プラズマ発生装置(プラズマ発生装置)  14:加熱ガス供給装置(ガス供給装置)  20:ハウジング  22:カバー  34:下部ハウジング(拡散壁)  38:反応室  50:第1ガス流路(ガス流路)  52:第2ガス流路(ガス流路)  56:貫通穴(ガス流路)  60:凹部(ガス流路)  62:第3ガス流路(ガス流路)  66:第4ガス流路(ガス流路)  70:貫通穴  72:貫通穴(供給穴)  82:ガス管(供給筒)

Claims (5)

  1.  処理ガスをプラズマ化させる反応室が形成されたハウジングと、
     前記ハウジングに形成され、前記反応室においてプラズマ化されたプラズマガスを前記ハウジングから噴出させるための噴出口と、
     少なくとも前記噴出口を覆う状態で前記ハウジングに設けられたカバーと、
     前記カバーの内部に加熱された加熱ガスを供給するガス供給装置と、
     前記噴出口の先端が内側に位置するように、前記カバーに形成された貫通穴と
     を備え、
     前記噴出口の先端と、前記貫通穴の前記カバーの外壁面への開口との間の距離が、前記噴出口から噴出されるプラズマガスの噴出方向において、0~2mmであることを特徴とするプラズマ発生装置。
  2.  前記ハウジングに、前記反応室と前記噴出口とを繋ぐガス流路が形成されており、
     前記ガス流路が、クランク状に屈曲していることを特徴とする請求項1に記載のプラズマ発生装置。
  3.  前記ガス供給装置が、加熱ガスを供給するための供給筒を有し、
     前記カバーの内部に供給される加熱ガスの供給方向に交わる方向における前記カバーの内部の断面積が、前記供給筒の径方向の断面積より大きく、
     前記プラズマ発生装置が、
     前記カバーの内部に加熱ガスを供給するための供給穴に対向するように、前記カバーの内部に配設され、前記カバーの内部に供給された加熱ガスを拡散させる拡散壁を備え、
     前記拡散壁の前記供給穴に対向する面の面積が、前記供給筒の径方向の断面積より大きいことを特徴とする請求項1または請求項2に記載のプラズマ発生装置。
  4.  前記噴出口が、
     前記供給穴と前記拡散壁との間以外の箇所に配設されていることを特徴とする請求項3に記載のプラズマ発生装置。
  5.  処理ガスをプラズマ化させる反応室が形成されたハウジングと、
     前記ハウジングに形成され、前記反応室においてプラズマ化されたプラズマガスを前記ハウジングから噴出させるための噴出口と、
     少なくとも前記噴出口を覆う状態で前記ハウジングに設けられたカバーと、
     前記カバーの内部に加熱された加熱ガスを供給するガス供給装置と、
     前記噴出口の先端が内側に位置するように、前記カバーに形成された貫通穴と
     を備えるプラズマ発生装置。
PCT/JP2015/065907 2015-06-02 2015-06-02 プラズマ発生装置 WO2016194138A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15894173.2A EP3307030B1 (en) 2015-06-02 2015-06-02 Plasma generating device
JP2017521392A JP6605598B2 (ja) 2015-06-02 2015-06-02 プラズマ発生装置
US15/578,295 US10980101B2 (en) 2015-06-02 2015-06-02 Plasma generating device
MX2017015474A MX2017015474A (es) 2015-06-02 2015-06-02 Dispositivo generador de plasma.
PCT/JP2015/065907 WO2016194138A1 (ja) 2015-06-02 2015-06-02 プラズマ発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065907 WO2016194138A1 (ja) 2015-06-02 2015-06-02 プラズマ発生装置

Publications (1)

Publication Number Publication Date
WO2016194138A1 true WO2016194138A1 (ja) 2016-12-08

Family

ID=57440337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065907 WO2016194138A1 (ja) 2015-06-02 2015-06-02 プラズマ発生装置

Country Status (5)

Country Link
US (1) US10980101B2 (ja)
EP (1) EP3307030B1 (ja)
JP (1) JP6605598B2 (ja)
MX (1) MX2017015474A (ja)
WO (1) WO2016194138A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179362A1 (ja) * 2017-03-31 2018-10-04 株式会社Fuji プラズマ発生装置
WO2018185835A1 (ja) * 2017-04-04 2018-10-11 株式会社Fuji プラズマ発生システム
WO2019003259A1 (ja) * 2017-06-26 2019-01-03 株式会社Fuji プラズマ処理機
EP3609300A4 (en) * 2017-04-04 2020-04-08 Fuji Corporation PLASMA GENERATION DEVICE
EP3745825A4 (en) * 2018-01-23 2021-01-20 Fuji Corporation PLASMA GENERATOR AND INFORMATION PROCESSING METHOD
JPWO2021079420A1 (ja) * 2019-10-22 2021-04-29

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112753286B (zh) * 2018-10-26 2023-09-05 株式会社富士 等离子体发生装置
TWI786417B (zh) * 2020-07-14 2022-12-11 大氣電漿股份有限公司 常壓電漿產生裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192697A (ja) * 1989-12-20 1991-08-22 Sumitomo Metal Ind Ltd シールドプラズマジェットの温度・速度低下防止方法
WO2012002478A1 (ja) * 2010-06-30 2012-01-05 国立大学法人名古屋大学 反応種供給装置および表面等処理装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578130A (en) * 1990-12-12 1996-11-26 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for depositing a film
JP2840699B2 (ja) * 1990-12-12 1998-12-24 株式会社 半導体エネルギー研究所 被膜形成装置及び被膜形成方法
WO1992015421A1 (en) * 1991-02-28 1992-09-17 Kabushiki Kaisha Komatsu Seisakusho Plasma torch for cutting
US5562841A (en) * 1991-11-01 1996-10-08 Overseas Publishers Association (Amsterdam) Bv Methods and apparatus for treating a work surface
US5869832A (en) * 1997-10-14 1999-02-09 University Of Washington Device and method for forming ions
US6056824A (en) * 1998-01-16 2000-05-02 Silicon Valley Group Thermal Systems Free floating shield and semiconductor processing system
DE29919142U1 (de) * 1999-10-30 2001-03-08 Agrodyn Hochspannungstechnik G Plasmadüse
FR2805194B1 (fr) * 2000-02-18 2002-06-28 Air Liquide Procede et installation de travail a l'arc plasma avec melange gazeux a base d'hydrogene, d'azote et/ou d'argon
JP4002960B2 (ja) * 2000-02-29 2007-11-07 独立行政法人物質・材料研究機構 消耗電極式ガスシールドアーク溶接方法とその装置
WO2002040742A1 (fr) * 2000-11-14 2002-05-23 Sekisui Chemical Co., Ltd. Procede et dispositif de traitement au plasma atmospherique
US6849306B2 (en) * 2001-08-23 2005-02-01 Konica Corporation Plasma treatment method at atmospheric pressure
EP1488669B1 (fr) * 2002-03-28 2006-09-13 Apit Corp. S.A. Procede de traitement de surface par plasma atmospherique et dispositif pour sa mise en oeuvre
CN100553400C (zh) * 2003-05-14 2009-10-21 积水化学工业株式会社 制造等离子处理设备的方法
JP3853803B2 (ja) 2004-02-04 2006-12-06 積水化学工業株式会社 プラズマ処理装置およびその製造方法
CN101023714B (zh) * 2004-09-29 2010-09-29 积水化学工业株式会社 等离子加工设备
JP2009524527A (ja) 2006-01-27 2009-07-02 ハイパーサーム インコーポレイテッド プラズマアークトーチの切断品質を改善する方法および装置
US8748785B2 (en) * 2007-01-18 2014-06-10 Amastan Llc Microwave plasma apparatus and method for materials processing
TWI578854B (zh) * 2008-08-04 2017-04-11 Agc北美平面玻璃公司 使用電漿增強化學氣相沉積以形成塗層之方法
KR100974566B1 (ko) 2008-08-08 2010-08-06 한국생산기술연구원 상압 플라즈마 장치
EP2281921A1 (en) * 2009-07-30 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition.
EP2362001A1 (en) * 2010-02-25 2011-08-31 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and device for layer deposition
JP5725601B2 (ja) * 2010-06-30 2015-05-27 国立大学法人名古屋大学 反応種供給装置および表面処理装置
CN102387653B (zh) * 2010-09-02 2015-08-05 松下电器产业株式会社 等离子体处理装置及等离子体处理方法
JP2012059548A (ja) 2010-09-09 2012-03-22 Ihi Corp プラズマガス生成装置及びそれを用いた微粉炭燃焼試験装置
US8765232B2 (en) * 2011-01-10 2014-07-01 Plasmasi, Inc. Apparatus and method for dielectric deposition
US20120190180A1 (en) * 2011-01-24 2012-07-26 Lobue Joseph D Thin film crystallization device and method for making a polycrystalline composition
JP5638631B2 (ja) * 2011-01-25 2014-12-10 三菱電機株式会社 大気圧プラズマ処理装置および大気圧プラズマ処理方法
EP2481832A1 (en) * 2011-01-31 2012-08-01 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus for atomic layer deposition
US9711333B2 (en) * 2015-05-05 2017-07-18 Eastman Kodak Company Non-planar radial-flow plasma treatment system
US20160329192A1 (en) * 2015-05-05 2016-11-10 Eastman Kodak Company Radial-flow plasma treatment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192697A (ja) * 1989-12-20 1991-08-22 Sumitomo Metal Ind Ltd シールドプラズマジェットの温度・速度低下防止方法
WO2012002478A1 (ja) * 2010-06-30 2012-01-05 国立大学法人名古屋大学 反応種供給装置および表面等処理装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018179362A1 (ja) * 2017-03-31 2019-11-14 株式会社Fuji プラズマ発生装置
EP3606293A4 (en) * 2017-03-31 2020-03-25 Fuji Corporation PLASMA GENERATION DEVICE
WO2018179362A1 (ja) * 2017-03-31 2018-10-04 株式会社Fuji プラズマ発生装置
US10772181B2 (en) 2017-03-31 2020-09-08 Fuji Corporation Plasma generation device
US11259396B2 (en) 2017-04-04 2022-02-22 Fuji Corporation Plasma generation system
WO2018185835A1 (ja) * 2017-04-04 2018-10-11 株式会社Fuji プラズマ発生システム
CN110463354B (zh) * 2017-04-04 2022-05-13 株式会社富士 等离子体产生系统
CN110463354A (zh) * 2017-04-04 2019-11-15 株式会社富士 等离子体产生系统
EP3609299A4 (en) * 2017-04-04 2020-04-01 Fuji Corporation PLASMA GENERATION SYSTEM
EP3609300A4 (en) * 2017-04-04 2020-04-08 Fuji Corporation PLASMA GENERATION DEVICE
US10690728B2 (en) 2017-04-04 2020-06-23 Fuji Corporation Plasma-generating device
JPWO2019003259A1 (ja) * 2017-06-26 2020-05-21 株式会社Fuji プラズマ処理機
WO2019003259A1 (ja) * 2017-06-26 2019-01-03 株式会社Fuji プラズマ処理機
EP3745825A4 (en) * 2018-01-23 2021-01-20 Fuji Corporation PLASMA GENERATOR AND INFORMATION PROCESSING METHOD
JPWO2021079420A1 (ja) * 2019-10-22 2021-04-29
WO2021079420A1 (ja) * 2019-10-22 2021-04-29 株式会社Fuji プラズマ発生装置、およびプラズマ処理方法
JP7133724B2 (ja) 2019-10-22 2022-09-08 株式会社Fuji プラズマ発生装置、およびプラズマ処理方法

Also Published As

Publication number Publication date
JPWO2016194138A1 (ja) 2018-03-22
MX2017015474A (es) 2018-08-15
EP3307030A1 (en) 2018-04-11
US20180146537A1 (en) 2018-05-24
JP6605598B2 (ja) 2019-11-13
EP3307030B1 (en) 2020-04-29
US10980101B2 (en) 2021-04-13
EP3307030A4 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6605598B2 (ja) プラズマ発生装置
KR100782369B1 (ko) 반도체 제조장치
WO2013046950A1 (ja) パウダ供給ノズルおよび肉盛溶接方法
TW200732500A (en) Apparatus and process for plasma-enhanced atomic layer deposition
KR20100051594A (ko) 표면을 처리하거나 코팅하는 방법 및 장치
JP2008130503A (ja) 大気圧プラズマジェット装置
JP2008294101A (ja) レーザ処理装置のガス噴射手段
KR20170054495A (ko) 성막 장치에의 가스 분사 장치
JP6768133B2 (ja) プラズマ発生装置
TWI447258B (zh) 原料氣體產生裝置
JP6534745B2 (ja) プラズマ発生装置
JP2019050216A (ja) プラズマガス照射装置
JP2012174741A (ja) 複連ノズル及び当該複連ノズルを備える基板処理装置
KR101912886B1 (ko) 가스 분사 장치, 이를 포함하는 기판 처리 설비 및 이를 이용한 기판 처리 방법
KR100874341B1 (ko) 플라즈마 발생장치
WO2018179362A1 (ja) プラズマ発生装置
JP2010147168A (ja) プラズマ処理装置
JP6644911B2 (ja) プラズマ発生装置
KR20180065927A (ko) 급배기 구조체
JP6587689B2 (ja) 大気圧プラズマ発生装置
JP2017183119A (ja) プラズマ発生装置
JP2015153652A (ja) 大気圧プラズマ発生装置
JP2017054943A (ja) プラズマ処理装置
JP7168792B2 (ja) プラズマ発生装置
TW201813451A (zh) 輻射遮罩x射線離子產生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521392

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578295

Country of ref document: US

Ref document number: MX/A/2017/015474

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015894173

Country of ref document: EP