WO2019003259A1 - プラズマ処理機 - Google Patents

プラズマ処理機 Download PDF

Info

Publication number
WO2019003259A1
WO2019003259A1 PCT/JP2017/023351 JP2017023351W WO2019003259A1 WO 2019003259 A1 WO2019003259 A1 WO 2019003259A1 JP 2017023351 W JP2017023351 W JP 2017023351W WO 2019003259 A1 WO2019003259 A1 WO 2019003259A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
plasma
plasma processing
effect
gas
Prior art date
Application number
PCT/JP2017/023351
Other languages
English (en)
French (fr)
Inventor
神藤 高広
慎二 瀧川
陽大 丹羽
草太 水野
明洋 東田
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2017/023351 priority Critical patent/WO2019003259A1/ja
Priority to JP2019526395A priority patent/JP6947823B2/ja
Publication of WO2019003259A1 publication Critical patent/WO2019003259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the present invention relates to a plasma processing apparatus for irradiating a work with a gas converted into plasma and processing the surface of the work.
  • a plasma generating apparatus as described in the following patent document is used as an irradiation head, the irradiation head and the work are moved relative to each other, and the surface of the work is treated with plasma gas emitted from the irradiation head
  • a plasma processor that performs (hereinafter sometimes referred to as "plasma treatment").
  • plasma processing it is desirable that the effect of plasma processing (hereinafter, sometimes simply referred to as “processing effect”) be stable at a desired level, and a portion for generating plasma gas in the irradiation head It is also desirable to optimize the frequency of replacement of component parts resulting from the consumption of (hereinafter sometimes referred to as "plasma conversion gas generation part").
  • plasma conversion gas generation part The present invention has been made in view of such circumstances, and an object thereof is to provide a practical plasma processing apparatus.
  • a plasma processing apparatus for processing a surface of a workpiece with plasma conversion gas which is plasma conversion gas, Power supply, An irradiation head for applying a voltage between the plurality of electrodes by the power supply to generate a plasmatized gas and irradiating the plasmatized gas from the nozzle to the surface of the workpiece; A relative movement device for relatively moving the irradiation head and the work; And a controller for controlling the plasma processing machine.
  • the control device may be configured to change the processing condition based on at least one of the status of the plasma processing machine in the processing and the effect of the processing.
  • various conditions of the plasma processing can be changed according to the processing effect, the status of the plasma processing apparatus, and particularly the change of the state of the plasma conversion gas generating unit, so stable processing effect It will be obtained.
  • the conditions of the plasma processing can be changed to enhance the processing effect instead of suddenly replacing the above-mentioned components, etc. It is possible to make it smaller.
  • FIG. 1 It is a perspective view which shows the whole structure of the plasma processing machine of an Example. It is a perspective view which shows the irradiation head which the plasma processing machine of FIG. 1 has, in the state which removed the cover. It is sectional drawing of the irradiation head of FIG. It is a conceptual diagram for demonstrating the distance of a workpiece
  • the configuration of the plasma processing gas generation unit in the present plasma processing apparatus is not particularly limited.
  • a voltage is applied between a plurality of electrodes, and a pseudo arc is generated between the electrodes under atmospheric pressure. It is possible to adopt a configuration in which the generated gas is passed through its pseudo arc to plasmatize the gas, that is, a configuration in which a so-called atmospheric pressure plasma is generated.
  • a gas which is a source of plasmatized gas is referred to as a reaction gas
  • the reaction gas is not particularly limited, and, for example, oxygen gas can be adopted.
  • a carrier gas can be made to flow into the reaction chamber together with the reaction gas, and as the carrier gas, a gas having low activity such as nitrogen gas. (Hereafter, it may be called "inert gas”) can be adopted.
  • the relative movement device in the present plasma processing machine may move only the irradiation head, may move only the work, or may move both of them.
  • a relative movement device for moving the irradiation head it is possible to adopt, for example, a serial link type robot, an XYZ type movement device, or the like.
  • the power source for generating the plasmatized gas is not limited in its configuration as long as a desired voltage can be stably applied between the electrodes, but it is configured by, for example, an inverter, a transformer, etc. Things can be adopted.
  • the control unit of the present plasma processing apparatus controls at least one of the plasmatized gas generator and the relative movement unit. .
  • the voltage applied between the electrodes hereinafter sometimes referred to as "voltage applied between the electrodes"
  • the relative movement device it is desirable that the relative position between the irradiation head and the workpiece in plasma processing and the relative movement speed be controllable.
  • the control device of the present plasma processing apparatus may adopt what is mainly called a computer, and the plasma processing is performed based on at least one of the status of the plasma processing apparatus as a control-based indicator and the plasma processing effect. Perform control processing to change the condition of. It is desirable that this control process be performed automatically, that is, without being operated by the operator of the plasma processing apparatus.
  • the control process performed automatically can be called, for example, auto tuning.
  • the status which is one of the control reliance indicators in the control processing, for example, the vicinity of the consumption current of the power source and a portion (hereinafter sometimes referred to as a “nozzle”) constituting an ejection port of plasmatized gas of the irradiation head
  • a nozzle constituting an ejection port of plasmatized gas of the irradiation head
  • the light emission state of the plasmatized gas emitted from the nozzle, etc. can be adopted.
  • the processing conditions are changed so as to enhance the plasma processing effect.
  • the voltage applied between the electrodes may be raised as a change of the processing conditions.
  • the consumption current of the power supply is measured by an ammeter of the power supply
  • the light emission state of the plasma conversion gas is spectrum analysis of light transmitted through the plasma conversion gas
  • the temperature near the nozzle is a contact thermometer by a contact thermometer. Each can be detected.
  • the effect of the above process which is another control dependence indicator in the above control process, that is, the effect of plasma processing can be identified or estimated, for example, using a dedicated indicator.
  • this indicator is not limited with respect to a specific structure, composition, etc., it is possible to adopt one that changes its own color according to the degree of effect, such as litmus test paper, for example. Specifically, for example, those described in JP-A-2013-178922 can be employed.
  • the indicator may, for example, be in the form of a piece of paper.
  • the indicator of such a form is installed, for example, in an area where the plasma conversion gas can be irradiated in the plasma processing machine, and the plasma processing is performed on the workpiece while the processing conditions of the plasma processing performed on the workpiece are the same.
  • the plasma treatment may be performed on the indicator. In addition, it can also be used by attaching to a work.
  • the identification of the plasma processing effect using the indicator may be performed based on the color difference of the indicator before and after the plasma processing performed on the indicator. For example, when the color difference is large, it is determined that the plasma processing effect is high. Just do it.
  • the color difference may be obtained, for example, by obtaining a color by calculation based on imaging data of an indicator by an imaging device, or may be obtained using a color difference meter.
  • the imaging device and the color difference meter can be disposed so as to be movable relative to the work integrally with the irradiation head by the relative movement device, and in such a case, the imaging device and the color difference meter are moved Since a dedicated device for the purpose is not required, a simple plasma processor can be realized.
  • the specification of the plasma processing effect may be performed, for example, each time plasma processing is performed on one workpiece, each time plasma processing is performed on a set number of workpieces, or at each elapse of a set time. You may do so.
  • the processing conditions When changing the processing conditions based on the plasma processing effect, for example, when the plasma processing effect is low, the processing conditions may be changed so as to increase the processing capacity of the plasma processing machine, and the plasma processing effect In the case where is high, the processing conditions may be changed to reduce the processing capacity of the plasma processing apparatus. Such a change in conditions results in stable plasma throughput, which results in stable plasma processing effects.
  • the relative movement speed between the irradiation head and the work by the relative movement device (hereinafter sometimes referred to as “work / head relative speed”), the distance between the nozzle of the irradiation head and the surface of the work (Hereafter, it may be called “irradiation distance”), The number of times of plasma processing in the same part of a work (Hereafter, it may be called “number of times of processing”), Inter-electrode applied voltage etc. are mentioned.
  • a gas for shielding the periphery (in the direction intersecting with the injection direction) of the plasmatized gas emitted from the nozzle by the plasma processing machine that is, a shield gas (also referred to as “heat gas”) If it is also configured to discharge, the temperature of the shielding gas can also be a changing processing condition.
  • the plasma processing effect when the plasma processing effect is low or too low, the work / head relative speed is decreased, the irradiation distance is decreased, the number of times of processing is increased, the applied voltage between electrodes is increased, and shielding gas
  • the work / head relative velocity is increased, the irradiation distance is increased, and the number of treatments is decreased.
  • Conditions may be changed such as lowering the applied voltage between the electrodes and lowering the temperature of the shield gas.
  • the plasma processing machine includes a table 10 on which a workpiece W is placed, and a serial link robot (“multi-indirect It can also be called “type robot”, and hereinafter simply referred to as “robot” 12, an irradiation head 14 held by the robot 12 for irradiating plasma forming gas, a power supply to the irradiation head 14, and the irradiation head
  • a power supply / gas supply unit 16 for supplying a gas to the fuel cell 14 and a controller 18 serving as a control device that controls the plasma processing apparatus are configured.
  • the irradiation head 14 has a housing 20 which is generally made of ceramic, and is described with reference to FIG. 2 showing the cover removed and FIG. A reaction chamber 22 for generating a plasmatized gas is formed. Then, a pair of electrodes 24 is held so as to face the reaction chamber 22. Further, in the housing 20, a reaction gas flow passage 26 for flowing the reaction gas into the reaction chamber 22 from above and a pair of carrier gas flow passages 28 for flowing the carrier gas are formed.
  • the reaction gas is oxygen (O 2 ), but a mixed gas (eg, air) of oxygen and nitrogen (N 2 ) is made to flow between the electrodes 24 from the reaction gas flow path 26.
  • the carrier gas is nitrogen and is introduced from the respective carrier gas channels 28 so as to surround the respective electrodes 24.
  • the lower part of the irradiation head 14 is a nozzle 30, and the nozzle 30 is formed such that a plurality of discharge ports 32 are arranged in a line. Then, a plurality of discharge paths 34 are formed so as to be connected to the respective discharge ports 32 downward from the reaction chamber 22.
  • An alternating voltage is applied between the pair of electrodes 24 by the power supply unit of the power supply / gas supply unit 16.
  • a pseudo arc A is generated between the lower ends of each of the pair of electrodes 24 in the reaction chamber 22.
  • the reaction gas passes through the pseudo arc A, the reaction gas is plasmatized, and a plasmatized gas which is a plasmatized gas is discharged from the nozzle 30 together with the carrier gas.
  • the plasmatized gas is effectively present at a certain distance from the discharge port 32, and the gas discharged from the discharge port 32 may be referred to as "flare" in the following because it looks like a flare. Do.
  • a sleeve 36 is provided around the nozzle 30 so as to surround the nozzle 30.
  • a shield gas in the present plasma processing apparatus, air is employed
  • the shield gas is supplied from the nozzle 30. It is emitted along the flow of plasmatized gas so as to surround the periphery of the plasmatized gas to be injected.
  • the shielding gas is released as it is heated to secure the efficacy of the plasmatized gas. Therefore, a heater 42 for heating the shield gas is provided in the middle of the supply pipe 40.
  • the table 10 is fixedly provided, and the work W is fixedly mounted on a predetermined position of the table 10 when plasma processing is performed.
  • the robot 12 moves the irradiation head 14 in order to irradiate a plasma processing gas to a predetermined processing area on the surface of the workpiece W. Therefore, the robot 12 functions as a relative movement device that moves the workpiece W and the irradiation head 14 relative to each other.
  • the robot 12 is mounted with an operation driver 44 as a drive circuit.
  • the power supply / gas supply unit 16 is configured to include a power supply unit and a gas supply unit.
  • the power supply unit has a power supply for applying a voltage between the pair of electrodes 24 of the irradiation head 14, and the gas supply unit supplies the above-described reaction gas, carrier gas, and shield gas.
  • the adjustment of the flow rate of each gas is performed by the gas supply unit, and the adjustment of the heater 42 for heating the shield gas described above is also performed by the gas supply unit. Therefore, in the present plasma processing apparatus, it can be considered that the plasmatized gas generator is configured including the power supply / gas supply unit 16 and the irradiation head 14.
  • Control of Plasma Processor The control of the present plasma processor is performed by the controller 18. More specifically, the robot 12 is controlled by the controller 18 via the operation driver 44 possessed by the robot 12, and the irradiation head 14, that is, the generation state of plasmatized gas is controlled by the power supply / gas supply unit 16 by the controller 18. It is controlled by being controlled.
  • the irradiation head 14 When the plasma processing is performed, the irradiation head 14 is moved along the surface of the workpiece W so that the plasma processing is performed to a predetermined processing area.
  • the controller 18 stores an operation program for defining a movement route of the irradiation head 14 for processing, and a command according to the operation program is sent to the operation driver 44 of the robot 12 so that the irradiation head is 14 is moved.
  • the operation program as shown in FIG.
  • the nozzle-work distance L which is the distance between the surface of the work W when moving the irradiation head 14 and the tip of the nozzle 30, and the distance between the irradiation head 14 and the work W
  • the head movement velocity v which is a relative movement velocity, is attached as a parameter, and the irradiation head 14 is moved according to those parameters.
  • an applied voltage V which is a voltage applied between the pair of electrodes 24 of the irradiation head 14 and a shield gas temperature H (the shield gas temperature described above)
  • the power supply to the heater 42 is also attached.
  • the number N of times of processing which is the number of times of processing in the same processing region, is also attached as another parameter.
  • the above-described various parameters define the processing conditions of the plasma processing apparatus, and the values of the respective parameters can be changed by the controller 18.
  • the irradiation head 14 has the above-mentioned structure, the inner wall of the reaction chamber 22 is exposed to the environment where the plasma conversion gas contacts. If the operation time of the plasma processing machine becomes long, damage and exhaustion can not be avoided. For this reason, for example, maintenance such as replacing parts constituting the irradiation head 14 is performed. This maintenance can be performed after the lapse of a predetermined operation time, but in such a case, in order to set the above-mentioned predetermined operation time with a certain margin, it is actually planned to replace it. Components may still be replaced in an acceptable way.
  • the processing capacity of the plasma processing apparatus is stable, and it is also expected that the processing capacity may fluctuate for some reason. Therefore, in the present plasma processing apparatus, the status of the plasma processing apparatus and the processing effect of the plasma processing are monitored, that is, detected.
  • the current supplied from the power source between the electrodes 24 of the irradiation head 14, that is, the power consumption P of the irradiation head 14 with respect to the generation of the plasmatized gas is monitored.
  • the power consumption P is detected by an ammeter 50 (see FIG. 1) incorporated in the power supply / gas supply unit 16. Incidentally, when the power consumption P is lowered, the processing effect is lowered.
  • the light emission state S of the plasmatized gas emitted from the nozzle 30 of the irradiation head 14 is detected.
  • the detection of the light emission state S is performed using the transmission type spectrometer 52 (see FIG. 1) installed on the table 10.
  • the transmission type spectrometer 52 is a kind of detector, and as shown in FIG. 5, has a light emitting unit 54 and a light receiving unit 56, and converts it into plasma emitted from the nozzle 30 of the irradiation head 14 therebetween.
  • the irradiation head 14 is moved such that the gas or flare is located, and detection is performed.
  • the ability of the plasmatized gas itself is quantified, and the quantified value is detected as the light emission state S. .
  • the detection of the light emission state S is performed each time the processing for one work W is performed, and if the processing effect decreases, the quantified value decreases.
  • a detector such as a spectrometer may be provided in the irradiation head 14.
  • a nozzle temperature T which is a temperature in the vicinity of the nozzle 30 of the irradiation head 14 is monitored.
  • the detection of the nozzle temperature T is performed by a thermometer 58 (see FIG. 2) attached to the nozzle 30.
  • the processing effect decreases.
  • the detection of the processing effect is performed using an indicator 60 (see FIG. 1) attached to the table 10.
  • the indicator 60 is formed as a piece of paper, and the color changes in accordance with the processing effect, that is, the effect of the irradiation of the plasma conversion gas.
  • a camera 62 as an imaging device capable of capturing a color image is attached to the irradiation head 14, and the camera 62 is moved by the robot 12 integrally with the irradiation head 14.
  • the controller 18 is adapted to determine the hue from the intensity of each of the three primary colors of the color in the image of the indicator 60.
  • the irradiation of the plasmatizing gas to the indicator 60 is performed under the same processing conditions as the plasma processing performed to the work W, but the controller 18 determines the difference in hue of the indicator 60 before and after the irradiation, that is, the hue difference C. , Detect and digitize. Then, when the hue difference C is small, if the processing effect is small, if it is large, it is determined that the processing effect is large. Incidentally, the detection of the hue difference C of the indicator 60 is performed each time the plasma processing apparatus has been operated for a predetermined time.
  • [D] Status change of processing condition based on detection of processing effect Based on the detection of the status of the plasma processing machine, specifically, the power consumption P, the light emission state S, and the nozzle temperature T described above, the controller 18 Changes the above-mentioned applied voltage V, that is, the above-mentioned parameter of the applied voltage V. Specifically, when the power consumption P, the light emission state S, and the nozzle temperature T change in the direction in which the processing effect decreases, more specifically, when they become smaller or lower than the set threshold. The above parameters for the applied voltage V are changed such that the applied voltage V is raised by the set increase voltage ⁇ V.
  • the processing effect obtained from the hue difference C fluctuates, specifically, the detected hue difference C is relative to the reference hue difference C 0 set for the plasma processing performed at the present time
  • the processing conditions are changed according to the magnitude of the change. That is, the above-mentioned parameters are changed.
  • the processing conditions to be changed based on the hue difference C are 1 or more of the above-mentioned nozzle-work distance L, head moving speed v, applied voltage V, shield gas temperature H and number of times of processing N
  • the parameter can be selected by the setting for the controller 18.
  • the processing for reducing the processing capacity A change of conditions is made. If the processing condition to be changed is the nozzle-work distance L, it is increased, if it is the head moving speed v, it is increased, and if it is the applied voltage V, it is reduced and it is the shield gas temperature H In the case, it is lowered, and in the case of N times of processing, it is decreased.
  • the timing of maintenance such as replacement of the components of the irradiation head 14 can be made appropriate and the processing effect can be stabilized. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

電源16と、その電源によって複数の電極の間に電圧が印加してプラズマ化ガスを発生させてそのプラズマ化ガスをノズル30からワークWの表面に照射するための照射ヘッド14と、その照射ヘッドとワークとを相対移動させる相対移動装置12と、制御装置18とを備え、照射するプラズマ化ガスによってワークWの表面に処理を行うプラズマ処理機において、制御装置を、処理中における当該プラズマ処理機のステータスと、処理の効果との少なくとも一方に基づいて、処理条件を変更するように構成する。消耗による照射ヘッドの構成部品の交換の時期の適切化、処理効果の安定化を図ることが可能となる。

Description

プラズマ処理機
 本発明は、プラズマ化されたガスをワークに照射してそのワークの表面に処理を施すためのプラズマ処理機に関する。
 従来から、下記特許文献に記載されているようなプラズマ発生装置を照射ヘッドとし、その照射ヘッドとワークとを相対移動させて、その照射ヘッドから射出されるプラズマ化ガスによってそのワークの表面に処理(以下、「プラズマ処理」と言う場合がある)を施すプラズマ処理機が存在する。
特開2016-38940号公報
発明の解決しようとする課題
 上記プラズマ処理機では、プラズマ処理の効果(以下、単に「処理効果」と言う場合がある)が所望するレベルで安定的であることが望まれ、また、照射ヘッドにおけるプラズマ化ガスを発生させる部分(以下、「プラズマ化ガス発生部」という場合がある)の消耗に起因した構成部品の交換等の頻度を適正化することも望まれる。本発明は、そのような実情に鑑みてなされたものであり、実用的なプラズマ処理機を提供することを課題とする。
 上記課題を解決するために、本発明のプラズマ処理機は、
 プラズマ化されたガスであるプラズマ化ガスによってワークの表面に処理を行うプラズマ処理機であって、
 電源と、
 その電源によって複数の電極の間に電圧が印加されてプラズマ化ガスを発生させ、そのプラズマ化ガスをノズルからワークの表面に照射するための照射ヘッドと、
 その照射ヘッドとワークとを相対移動させる相対移動装置と、
 当該プラズマ処理機の制御を司る制御装置と
 を備え、
 前記制御装置が、処理の際の当該プラズマ処理機のステータスと、処理の効果との少なくとも一方に基づいて、処理条件を変更するように構成されたことを特徴とする。
 本発明のプラズマ処理機によれば、処理効果や、当該プラズマ処理機のステータス、特にプラズマ化ガス発生部の状態の変化に応じて、プラズマ処理の諸条件を変更できるため、安定した処理効果が得られることとなる。また、処理効果が低下した場合であっても、いきなり上記構成部品の交換等を行うのではなく、処理効果を高めるようにプラズマ処理の条件を変更できるため、当該プラズマ処理機の稼動ロスをも小さくすることが可能である。
実施例のプラズマ処理機の全体構成を示す斜視図である。 図1のプラズマ処理機が有する照射ヘッドを、カバーを外した状態で示す斜視図である。 図2の照射ヘッドの断面図である。 ワークと照射ヘッドのノズルとの距離、および、ワークと照射ヘッドとの相対移動の速度を説明するための概念図である。 プラズマ化ガスの発光状態を検知するために用いられる透過型分光計を説明するための模式図である。
 本プラズマ処理機、詳しくは、照射ヘッドにおけるプラズマ化ガス発生部の構成については、特に限定されないが、例えば、複数の電極の間に電圧が印加され、大気圧下で電極の間に擬似アークが発生させられ、ガスをその擬似アークを通過させることによって、そのガスをプラズマ化させるような構成、つまり、いわゆる大気圧プラズマを発生させるような構成を採用することが可能である。プラズマ化ガスの元となるガスを、反応ガスと呼べば、その反応ガスについても、特に限定されず、例えば、酸素ガスを採用することができる。また、反応ガスのプラズマ化を行う箇所を反応室と呼べば、その反応室に反応ガスとともにキャリアガスを流入させるようにすることができ、そのキャリアガスとして、窒素ガス等の活性度の低いガス(以下、「不活性ガス」と言う場合がある)を採用することができる。
 本プラズマ処理機における相対移動装置は、照射ヘッドだけを移動させるものであっても、また、ワークだけを移動させるものであってもよく、また、それらの両方を移動させるものであってもよい。照射ヘッドを移動させる相対移動装置として、例えば、シリアルリンク型のロボット,XYZ型の移動装置等を採用することが可能である。
 プラズマ化ガスを発生させるための電源は、所望の電圧を電極間に安定して印加できるものであれば、それの構成が限定されるものではないが、例えば、インバータ,トランス等によって構成されるものを採用することができる。
 上記電源とプラズマ化ガス発生部とを合わせてプラズマ化ガス発生装置と呼べば、本プラズマ処理機の制御装置は、そのプラズマ化ガス発生装置と相対移動装置との少なくとも一方を制御するものである。プラズマ化ガス発生装置を制御する場合には、電極間に印加される電圧(以下、「電極間印加電圧」と言う場合がある)を制御可能であることが望ましく、また、相対移動装置を制御する場合には、プラズマ処理における照射ヘッドとワークとの相対位置,相対移動速度を制御可能であることが望ましい。
 本プラズマ化処理機の制御装置は、いわゆるコンピュータを主体とするものを採用可能であり、制御依拠指標としての当該プラズマ化処理機のステータスと、プラズマ処理効果との少なくとも一方に基づいて、プラズマ処理の条件を変更するような制御処理を行う。この制御処理は、自動で、つまり、当該プラズマ化処理機の操作者による操作に拠らずに行われることが望ましい。この自動で行われる制御処理は、例えば、オートチューニングと呼ぶことができる。
 上記制御処理における制御依拠指標の1つである上記ステータスとして、例えば、電源の消費電流,照射ヘッドのプラズマ化ガスの射出口を構成する部分(以下、「ノズル」と言う場合がある)の近傍の温度,ノズルから射出されるプラズマ化ガスの発光状態等を採用することができる。
 上記ステータスに基づく上記制御処理では、例えば、電源の消費電流が減少した場合、ノズル近傍の温度が低下した場合、プラズマ化ガスの発光状態がプラズマ処理効果の低下を示すように変化した場合等において、プラズマ処理効果が低下した若しくは低下すると推定し、プラズマ処理効果を高くするように処理条件を変更する。具体的には、処理条件の変更として、電極間印加電圧を上昇させればよい。そのような条件変更により、プラズマ化ガス発生部が使用に耐えられない程度には劣化若しくは消耗していない場合において、構成部品の交換等の頻度を小さくして、当該プラズマ処理機の稼動率を向上させることが、つまり、当該プラズマ処理機による処理のスループットを上昇させることが可能となる。
 なお、例えば、上記電源の消費電流は、電源が有する電流計によって、プラズマ化ガスの発光状態は、プラズマ化ガスを透過した光のスペクトル分析によって、ノズル近傍の温度は、接触型温度計によって、それぞれ、検出することが可能である。
 上記制御処理における制御依拠指標のもう1つである上記処理の効果は、つまり、プラズマ処理の効果は、例えば、専用のインジケータを使用して認定若しくは推定することができる。このインジケータは、具体的な構造,組成等について限定されるものではないが、例えばリトマス試験紙のように、効果の程度に応じて自身の色味が変わるものを採用することが可能である。具体的には、例えば、特開2013-178922号公報に記載されているようなものを採用することができる。
 インジケータは、例えば、紙片のような形態となっているものを使用できる。そのような形態のインジケータは、例えば、当該プラズマ処理機においてプラズマ化ガスが照射可能な領域に設置され、ワークに対してプラズマ処理を行うついでに、ワークに行うプラズマ処理の処理条件と同じ条件で、そのインジケータに対してプラズマ処理が行われるようにして用いればよい。なお、ワークに付設するようにして用いることもできる。
 インジケータを利用したプラズマ処理効果の特定は、当該インジケータに対して行うプラズマ処理の前後の当該インジケータの色差に基づいて行えばよく、例えば、その色差が大きい場合に、プラズマ処理効果が高いと判断すればよい。色差は、例えば、撮像装置によるインジケータの撮像データに基づいて演算により色味を求めることで求めてもよく、また、色差計を利用して求めてもよい。撮像装置,色差計は、例えば、相対移動装置によって照射ヘッドと一体的にワークと相対移動可能に配設することもでき、そのように配設した場合には、撮像装置,色差計を移動させるための専用の装置が不要となるため、簡便なプラズマ処理機が実現されることになる。
 プラズマ処理効果の特定は、例えば、1つのワークに対するプラズマ処理を行った都度行うようにしてもよく、設定された数のワークに対するプラズマ処理を行う毎に、或いは、設定された時間の経過毎に行うようにしてもよい。
 プラズマ処理効果に基づいて処理条件を変更する場合、例えば、プラズマ処理効果が低い場合には、当該プラズマ処理機の処理能力を大きくするように処理条件の変更を行えばよく、また、プラズマ処理効果が高い場合には、当該プラズマ処理機の処理能力を小さくするように処理条件の変更を行えばよい。そのような条件変更により、安定したプラズマ処理能力が得られ、その結果、安定したプラズマ処理効果が得られることになる。
 変更する処理条件としては、例えば、相対移動装置による照射ヘッドとワークとの相対移動速度(以下、「ワーク/ヘッド相対速度」と言う場合がある),照射ヘッドのノズルとワークの表面との距離(以下、「照射距離」と言う場合がある),ワークの同じ箇所におけるプラズマ処理の回数(以下、「処理回数」と言う場合がある),電極間印加電圧等が挙げられる。また、当該プラズマ処理機が、ノズルから射出されるプラズマ化ガスの周囲(射出方向と交差する方向における周囲)をシールドするためのガス、つまり、シールドガス(「ヒートガス」と呼ぶこともできる)をも放出するように構成されている場合において、そのシールドガスの温度も、変更する処理条件とすることも可能である。
 具体的に言えば、プラズマ処理効果が低い場合,低すぎる場合には、ワーク/ヘッド相対速度を小さくする、照射距離を小さくする、処理回数を増加させる、電極間印加電圧を上昇させる、シールドガスの温度を高くするといった条件変更を行えばよく、逆に、プラズマ処理効果が高い場合,高すぎる場合には、ワーク/ヘッド相対速度を大きくする、照射距離を大きくする、処理回数を減少させる、電極間印加電圧を下降させる、シールドガスの温度を低くするといった条件変更を行えばよい。
 以下に本発明の実施例となるプラズマ処理機について、図を参照しつつ詳しく説明する。なお、本発明は、下記の実施例に限られず、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
[A]プラズマ処理機の構成
 実施例のプラズマ処理機は、図1に示すように、ワークWが載置されるテーブル10と、テーブル10の傍らに配置されたシリアルリンク型ロボット(「多間接型ロボット」と呼ぶこともでき、以下、単に「ロボット」と略す)12と、ロボット12に保持されてプラズマ化ガスを照射するための照射ヘッド14と、照射ヘッド14への電源であり照射ヘッド14へのガスの供給を担う電源・ガス供給ユニット16と、当該プラズマ処理機の制御を司る制御装置としてのコントローラ18とを含んで構成されている。
 照射ヘッド14は、カバーを外した状態を示す図2、および、断面図である図3を参照しつつ説明すれば、概してセラミック製のハウジング20を有しており、そのハウジング20の内部に、プラズマ化ガスを発生させるための反応室22が形成されている。そして、反応室22に臨み出るようにして、1対の電極24が保持されている。また、ハウジング20内には、上方から反応室22に反応ガスを流入させるための反応ガス流路26と、キャリアガスを流入させるための1対のキャリアガス流路28とが形成されている。反応ガスは、酸素(O2)であるが、反応ガス流路26からは、酸素と窒素(N2)との混合気体(例えば、空気)が、電極24の間に流入させられる。キャリアガスは、窒素であり、それぞれのキャリアガス流路28から、それぞれの電極24を取り巻くようにして流入させられる。照射ヘッド14の下部は、ノズル30とされており、ノズル30には、複数の放出口32が一列に並ぶようにして形成されている。そして、反応室22から下方に向かって各放出口32に繋がるように複数の放出路34が形成されている。
 1対の電極24の間には、電源・ガス供給ユニット16の電源部によって、交流の電圧が印加される。この印加によって、例えば、図3に示すように、反応室22内において、1対の電極24の各々の下端の間に、擬似アークAが発生させられる。この擬似アークAを反応ガスが通過する際に、その反応ガスがプラズマ化され、プラズマ化されたガスであるプラズマ化ガスが、キャリアガスとともに、ノズル30から放出される。プラズマ化ガスは、放出口32からある程度の距離において有効に存在し、放出口32から放出されるガスは、あたかもフレアのような様相を呈するため、以下、「フレア」と呼ぶ場合があることとする。
 なお、ノズル30の周囲には、ノズル30を囲うようにしてスリーブ36が設けられている。スリーブ36とノズル30との間の環状空間38には、供給管40を介して、シールドガス(本プラズマ処理機では、空気が採用されている)が供給され、そのシールドガスは、ノズル30から射出されるプラズマ化ガスの周囲を取り巻くようにして、プラズマ化ガスの流れに沿って放出される。シールドガスは、プラズマ化ガスの効能を担保するために加熱されたものが放出される。そのため、供給管40の途中には、シールドガスを加熱するためのヒータ42が設けられている。
 テーブル10は、固定的に設けられ、ワークWは、プラズマ処理を行う場合に、テーブル10の所定位置に固定して載置される。ロボット12は、照射ヘッド14を、ワークWの表面の所定の処理領域にプラズマ化ガスを照射すべく、移動させる。したがって、ロボット12は、ワークWと照射ヘッド14とを相対移動させる相対移動装置として機能する。なお、ロボット12には、駆動回路としての動作ドライバ44が搭載されている。
 電源・ガス供給ユニット16は、電源部とガス供給部とを含んで構成されている。電源部は、照射ヘッド14の1対の電極24間に電圧を印加するための電源を有しており、ガス供給部は、上述の反応ガス,キャリアガス,シールドガスの供給を行う。各ガスの流量の調整は、ガス供給部によって行われ、また、上述のシールドガスを加熱するためのヒータ42の調節も、ガス供給部によって行われる。したがって、本プラズマ処理機では、電源・ガス供給ユニット16と照射ヘッド14とを含んで、プラズマ化ガス発生装置が構成されていると考えることができるのである。
[B]プラズマ処理機の制御
 本プラズマ処理機の制御は、コントローラ18によって行われる。詳しくは、ロボット12については、ロボット12が有する動作ドライバ44を介して、コントローラ18によって制御され、照射ヘッド14は、つまり、プラズマ化ガスの発生状態は、電源・ガス供給ユニット16がコントローラ18によって制御されることで、制御される。
 プラズマ処理を行う場合、照射ヘッド14は、ワークWの表面に沿って、所定の処理領域にプラズマ処理が行われるように、移動させられる。コントローラ18は、処理のための照射ヘッド14の移動ルートを規定するための動作プログラムが格納されており、その動作プログラムに従った指令が、ロボット12の動作ドライバ44に送られることによって、照射ヘッド14は移動させられる。動作プログラムには、図4に示すところの、照射ヘッド14の移動に際してのワークWの表面とノズル30の先端との距離であるノズル-ワーク間距離L、および、照射ヘッド14とワークWとの相対移動速度であるヘッド移動速度vが、パラメータとして付随しており、それらのパラメータに従って、照射ヘッド14は移動させられる。
 さらに、動作プログラムには、プラズマ化ガスの発生に関するパラメータとして、照射ヘッド14の1対の電極24の間に印加される電圧である印加電圧V,上述のシールドガス温度であるシールドガス温度H(実際は、ヒータ42への供給電力である)も付随している。さらにまた、同じ処理領域における処理の回数である処理回数Nも、別のパラメータとして、付随している。
 なお、上記各種のパラメータは、当該プラズマ処理機の処理条件を規定するものであり、各パラメータの値は、コントローラ18によって変更可能とされている。
[C]プラズマ処理機のステータス,プラズマ処理機による処理効果の検知
 上述のような構造の照射ヘッド14であるが、反応室22の内壁はプラズマ化ガスが接触する環境下に晒されているため、当該プラズマ処理機の稼動時間が長くなれば、損傷,消耗といった事態は避けられない。そのため、例えば、照射ヘッド14を構成する部品を交換するといったメンテナンスが行われる。このメンテナンスは、所定の稼動時間の経過によって行うようにすることもできるが、そのようにして行う場合、ある程度の余裕をもって、上記所定の稼動時間を設定するため、実際には、交換を予定している構成部品がまだ使用に耐えうる状態で交換してしまう可能性がある。また、メンテナンスの頻度が高くなると、稼動ロスが多くなり、当該プラズマ処理機の生産性を阻害することに繋がる。一方で、当該プラズマ処理機の処理能力は安定していることが望ましく、何らかの原因で、処理能力が変動することも予想される。そこで、本プラズマ処理機では、プラズマ処理機のステータス、および、プラズマ処理の処理効果を、モニタリング、つまり、検知するようにされている。
 具体的には、当該プラズマ処理機のステータスとして、電源から照射ヘッド14の電極24間に供給される電流、つまり、プラズマ化ガスの発生に関する照射ヘッド14の消費電力Pをモニタリングするようにされている。この消費電力Pは、電源・ガス供給ユニット16に内蔵されている電流計50(図1参照)によって検知される。ちなみに、消費電力Pが低下した場合には、処理効果が低下することになる。
 また、別のステータスとして、照射ヘッド14のノズル30から射出されるプラズマ化ガスの発光状態Sが検知される。発光状態Sの検知は、テーブル10に設置されている透過型分光計52(図1参照)を利用して行われる。透過型分光計52は、検知器の一種であり、図5に示すように、投光部54と受光部56とを有しており、その間に照射ヘッド14のノズル30から射出されるプラズマ化ガス、すなわち、フレアが位置するように、照射ヘッド14が移動させられて、検知が行われる。詳しく言えば、フレアを透過して受光部56が受けた光のスペクトル分析を行うことで、プラズマ化ガス自体の能力が数値化され、その数値化されたものが、発光状態Sとして検知される。発光状態Sの検知は、1つのワークWに対する処理を行う都度行われ、処理効果が低下すれば、その数値化された値が低下する。なお、分光計等の検出器は、照射ヘッド14に設けられていてもよい。
 さらにまた、さらに別のステータスとして、照射ヘッド14のノズル30の近傍の温度であるノズル温度Tがモニタリングされる。ノズル温度Tの検知は、ノズル30に付設された温度計58(図2参照)によって行われる。ノズル温度Tが低下する場合には、処理効果が低下することとなる。
 処理効果の検知は、テーブル10に貼着されたインジケータ60(図1参照)を利用して行われる。このインジケータ60は、紙片として形成されており、処理効果、つまり、プラズマ化ガスの照射の効果に応じて、色が変化するものである。照射ヘッド14には、カラー画像が撮像可能な撮像装置としてのカメラ62が取付けられており、そのカメラ62は、照射ヘッド14と一体的に、ロボット12によって移動させられる。カメラ62によって取得されたインジケータ60の画像データを基に、コントローラ18は、インジケータ60の画像における色の3原色の各々の強度から、色相を求めるようにされている。ワークWに対して行うプラズマ処理と同じ処理条件でインジケータ60へのプラズマ化ガスの照射を行うのであるが、コントローラ18は、その照射の前後におけるインジケータ60の色相の差分、つまり、色相差Cを、数値化して検知する。そして、色相差Cの値が小さい場合に、処理効果が小さいと、大きい場合に、処理効果が大きいと判断する。ちなみに、インジケータ60の色相差Cの検知は、当該プラズマ処理機が所定時間稼動した毎に行われる。
[D]ステータス,処理効果の検知に基づく処理条件の変更
 上述の当該プラズマ処理機のステータス、具体的には、上述した消費電力P,発光状態S,ノズル温度Tの検知に基づいて、コントローラ18は、上述の印加電圧V、つまり、印加電圧Vについての上記パラメータを変更する。詳しく言えば、消費電力P,発光状態S,ノズル温度Tが、処理効果が低下する向きに変化した場合に、より詳しく言えば、それらが、設定された閾値以下に小さく若しくは低くなった場合に、印加電圧Vが、設定された増加電圧ΔVだけ高くなるように、印加電圧Vについての上記パラメータが変更される。
 また、色相差Cから得られた処理効果が変動した場合、詳しく言えば、現時点で行っているプラズマ処理に対して設定されている基準色相差C0に対して、検知された色相差Cが、設定値以上変動した場合に、その変動の大きさに応じて、処理条件が変更される。つまり、上述のパラメータが変更される。色相差Cに基づいて変更される処理条件は、上述のノズル-ワーク間距離L,ヘッド移動速度v,印加電圧V,シールドガスの温度H,処理回数Nの1以上であり、いずれを変更するかは、コントローラ18に対する設定によって選択することが可能である。
 色相差Cに基づいて処理効果が低いと判断された場合、つまり、取得された色相差Cが基準色相差C0よりも設定値以上小さくなった場合に、処理能力を高くする処理条件の変更が行われる。変更する処理条件が、ノズル-ワーク間距離Lである場合には、小さくし、ヘッド移動速度vである場合には遅くし、印加電圧Vである場合は高くし,シールドガスの温度Hである場合には、高くし、処理回数Nである場合には、多くする。
 逆に、色相差Cに基づいて処理効果が高いと判断された場合、つまり、取得された色相差Cが基準色相差C0よりも設定値以上大きくなった場合に、処理能力を低くする処理条件の変更が行われる。変更する処理条件が、ノズル-ワーク間距離Lである場合には、大きくし、ヘッド移動速度vである場合には速くし、印加電圧Vである場合は低くし,シールドガスの温度Hである場合には、低くし、処理回数Nである場合には、少なくする。
 本プラズマ処理機では、以上のような処理条件の変更により、先に説明したように、照射ヘッド14の構成部品の交換等のメンテナンスの時期の適正化、および、処理効果の安定化を図ることが可能となるのである。
 12:シリアルリンク型ロボット〔相対移動装置〕  14:照射ヘッド  16:電源・ガス供給ユニット〔電源〕  18:コントローラ〔制御装置〕  22:反応室  24:電極  30:ノズル  36:スリーブ  40:供給管  42:ヒータ  50:電流計  52:透過型分光計  58:温度計  60:インジケータ  62:カメラ  W:ワーク

Claims (19)

  1.  プラズマ化されたガスであるプラズマ化ガスによってワークの表面に処理を行うプラズマ処理機であって、
     電源と、
     その電源によって複数の電極の間に電圧が印加されてプラズマ化ガスを発生させ、そのプラズマ化ガスをノズルからワークの表面に照射するための照射ヘッドと、
     その照射ヘッドとワークとを相対移動させる相対移動装置と、
     当該プラズマ処理機の制御を司る制御装置と
     を備え、
     前記制御装置が、処理の際の当該プラズマ処理機のステータスと、処理の効果との少なくとも一方に基づいて、処理条件を変更するように構成されたプラズマ処理機。
  2.  前記制御装置が、前記処理の効果が低下する方向に前記ステータスが変化した場合に、前記処理条件としての前記印加される電圧を上昇させるように構成された請求項1に記載のプラズマ処理機。
  3.  前記制御装置が、
     前記ステータスとしての前記電源の消費電流が減少した場合に、前記印加される電圧を上昇させるように構成された請求項2に記載のプラズマ処理機。
  4.  前記制御装置が、
     前記ステータスとしての前記ノズルから射出されるプラズマ化ガスの発光状態が変化した場合に、前記印加される電圧を上昇させるように構成された請求項2または請求項3に記載のプラズマ処理機。
  5.  前記制御装置が、
     前記ステータスとしての前記ノズル若しくは前記ノズルの近傍の温度が低下した場合に、前記印加される電圧を上昇させるように構成された請求項2ないし請求項4のいずれか1つに記載のプラズマ処理機。
  6.  前記制御装置が、前記処理の効果に基づいて、前記処理条件を変更するように構成された請求項1ないし請求項5のいずれか1つに記載のプラズマ処理機。
  7.  プラズマ化ガスの照射の効果に応じて色が変化するインジケータが、当該プラズマ処理機におけるプラズマ化ガスの照射可能領域に設けられている場合に、
     前記制御装置が、
     前記インジケータの処理の前後の色の変化に依拠する前記処理の効果に基づいて、前記処理条件を変更するように構成された請求項6に記載のプラズマ処理機。
  8.  前記制御装置が、
     前記処理の効果が低い場合に、当該プラズマ処理機の処理の能力を大きくするように前記処理条件を変更するように構成された請求項6または請求項7に記載のプラズマ処理機。
  9.  前記制御装置が、
     前記処理の効果が低い場合に、前記処理条件の変更として、前記相対移動装置による前記照射ヘッドとワークとの相対移動の速度を小さくするように構成された請求項8に記載のプラズマ処理機。
  10.  前記制御装置が、
     前記処理の効果が低い場合に、前記処理条件の変更として、処理における前記照射ヘッドの前記ノズルとワークの表面との距離を小さくするように構成された請求項8または請求項9に記載のプラズマ処理機。
  11.  前記制御装置が、
     前記処理の効果が低い場合に、前記処理条件の変更として、ワークの同じ箇所における処理の回数を増加させるように構成された請求項8ないし請求項10のいずれか1つに記載のプラズマ処理機。
  12.  前記制御装置が、
     前記処理の効果が低い場合に、前記処理条件の変更として、前記印加される電圧を上昇させるように構成された請求項8ないし請求項11のいずれか1つに記載のプラズマ処理機。
  13.  前記照射ヘッドが、
     前記ノズルから射出されるプラズマ化ガスの周囲をシールドするためのシールドガスを放出するように構成されており、
     前記制御装置が、
     前記処理の効果が低い場合に、前記処理条件の変更として、前記シールドガスの温度を高くするように構成された請求項8ないし請求項12のいずれか1つに記載のプラズマ処理機。
  14.  前記制御装置が、
     前記処理の効果が高い場合に、当該プラズマ処理機の処理の能力を小さくするように前記処理条件を変更するように構成された請求項6ないし請求項13のいずれか1つに記載のプラズマ処理機。
  15.  前記制御装置が、
     前記処理の効果が高い場合に、前記処理条件の変更として、前記相対移動装置による前記照射ヘッドとワークとの相対移動の速度を大きくするように構成された請求項14に記載のプラズマ処理機。
  16.  前記制御装置が、
     前記処理の効果が高い場合に、前記処理条件の変更として、処理における前記照射ヘッドの前記ノズルとワークの表面との距離を大きくするように構成された請求項14または請求項15に記載のプラズマ処理機。
  17.  前記制御装置が、
     前記処理の効果が高い場合に、前記処理条件の変更として、ワークの同じ箇所における処理の回数を減少させるように構成された請求項14ないし請求項16のいずれか1つに記載のプラズマ処理機。
  18.  前記制御装置が、
     前記処理の効果が高い場合に、前記処理条件の変更として、前記印加される電圧を下降させるように構成された請求項14ないし請求項17のいずれか1つに記載のプラズマ処理機。
  19.  前記照射ヘッドが、
     前記ノズルから射出されるプラズマ化ガスの周囲をシールドするためのシールドガスを射出するように構成されており、
     前記制御装置が、
     前記処理の効果が高い場合に、前記処理条件の変更として、前記シールドガスの温度を低くするように構成された請求項14ないし請求項18のいずれか1つに記載のプラズマ処理機。
PCT/JP2017/023351 2017-06-26 2017-06-26 プラズマ処理機 WO2019003259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/023351 WO2019003259A1 (ja) 2017-06-26 2017-06-26 プラズマ処理機
JP2019526395A JP6947823B2 (ja) 2017-06-26 2017-06-26 大気圧プラズマ処理機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023351 WO2019003259A1 (ja) 2017-06-26 2017-06-26 プラズマ処理機

Publications (1)

Publication Number Publication Date
WO2019003259A1 true WO2019003259A1 (ja) 2019-01-03

Family

ID=64740474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023351 WO2019003259A1 (ja) 2017-06-26 2017-06-26 プラズマ処理機

Country Status (2)

Country Link
JP (1) JP6947823B2 (ja)
WO (1) WO2019003259A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166029A1 (ja) * 2020-02-17 2021-08-26
WO2022038679A1 (ja) * 2020-08-18 2022-02-24 株式会社Fuji プラズマによる処理の処理条件決定方法および処理条件決定装置
WO2022044068A1 (ja) * 2020-08-24 2022-03-03 株式会社Fuji プラズマ処理装置とプラズマ処理装置の軌道補正方法
KR20220035660A (ko) * 2020-09-14 2022-03-22 주식회사 진영코퍼레이션 Pcb 표면 세정용 플라스마 발생 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247791A (ja) * 1993-02-24 1994-09-06 Mitsubishi Electric Corp 硬質炭素薄膜形成装置およびその形成方法
JP2002187740A (ja) * 2000-12-18 2002-07-05 Nippon Sheet Glass Co Ltd 撥水性皮膜のリペア処理方法、および撥水処理方法
JP2008071684A (ja) * 2006-09-15 2008-03-27 Noritsu Koki Co Ltd ワーク処理装置
JP2009233535A (ja) * 2008-03-26 2009-10-15 Kyocera Corp 誘電性構造体、誘電性構造体の製造方法、誘電性構造体を用いた放電装置、並びに流体改質装置
JP2010527096A (ja) * 2007-04-18 2010-08-05 エスエヌユー プレシジョン カンパニー,リミテッド プラズマモニタリング装置及び方法
JP2013089331A (ja) * 2011-10-14 2013-05-13 Akitoshi Okino プラズマ制御方法およびプラズマ制御装置
JP2013178922A (ja) * 2012-02-28 2013-09-09 Nagoya Industries Promotion Corp インジケータ、評価用シート及びプラズマ処理評価方法
JP2015060672A (ja) * 2013-09-17 2015-03-30 株式会社リコー 改質装置、画像形成装置、画像形成システム、及び印刷物の製造方法
WO2016194138A1 (ja) * 2015-06-02 2016-12-08 富士機械製造株式会社 プラズマ発生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106992A (ja) * 1994-03-24 1996-04-23 Hitachi Ltd プラズマ処理方法およびその装置
JP4127435B2 (ja) * 1998-10-16 2008-07-30 後藤 俊夫 原子状ラジカル測定方法及び装置
US7335199B2 (en) * 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
JP2004087321A (ja) * 2002-08-27 2004-03-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
JP2005072347A (ja) * 2003-08-26 2005-03-17 Toshio Goto 処理装置
JP2007287454A (ja) * 2006-04-14 2007-11-01 Seiko Epson Corp プラズマ装置
JP2016060765A (ja) * 2014-09-16 2016-04-25 株式会社サクラクレパス プラズマ処理検知用インキ組成物及びプラズマ処理検知インジケータ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247791A (ja) * 1993-02-24 1994-09-06 Mitsubishi Electric Corp 硬質炭素薄膜形成装置およびその形成方法
JP2002187740A (ja) * 2000-12-18 2002-07-05 Nippon Sheet Glass Co Ltd 撥水性皮膜のリペア処理方法、および撥水処理方法
JP2008071684A (ja) * 2006-09-15 2008-03-27 Noritsu Koki Co Ltd ワーク処理装置
JP2010527096A (ja) * 2007-04-18 2010-08-05 エスエヌユー プレシジョン カンパニー,リミテッド プラズマモニタリング装置及び方法
JP2009233535A (ja) * 2008-03-26 2009-10-15 Kyocera Corp 誘電性構造体、誘電性構造体の製造方法、誘電性構造体を用いた放電装置、並びに流体改質装置
JP2013089331A (ja) * 2011-10-14 2013-05-13 Akitoshi Okino プラズマ制御方法およびプラズマ制御装置
JP2013178922A (ja) * 2012-02-28 2013-09-09 Nagoya Industries Promotion Corp インジケータ、評価用シート及びプラズマ処理評価方法
JP2015060672A (ja) * 2013-09-17 2015-03-30 株式会社リコー 改質装置、画像形成装置、画像形成システム、及び印刷物の製造方法
WO2016194138A1 (ja) * 2015-06-02 2016-12-08 富士機械製造株式会社 プラズマ発生装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166029A1 (ja) * 2020-02-17 2021-08-26
JP7455948B2 (ja) 2020-02-17 2024-03-26 株式会社Fuji ワーク表面改質方法及びワーク表面改質装置
WO2022038679A1 (ja) * 2020-08-18 2022-02-24 株式会社Fuji プラズマによる処理の処理条件決定方法および処理条件決定装置
JP7481460B2 (ja) 2020-08-18 2024-05-10 株式会社Fuji プラズマによる処理の処理条件決定方法および処理条件決定装置
WO2022044068A1 (ja) * 2020-08-24 2022-03-03 株式会社Fuji プラズマ処理装置とプラズマ処理装置の軌道補正方法
KR20220035660A (ko) * 2020-09-14 2022-03-22 주식회사 진영코퍼레이션 Pcb 표면 세정용 플라스마 발생 장치
KR102510247B1 (ko) * 2020-09-14 2023-03-15 주식회사 진영코퍼레이션 Pcb 표면 세정용 플라스마 발생 장치

Also Published As

Publication number Publication date
JPWO2019003259A1 (ja) 2020-05-21
JP6947823B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6947823B2 (ja) 大気圧プラズマ処理機
US11826847B2 (en) Controlling plasma arc torches and related systems and methods
US9583318B2 (en) Plasma processing apparatus, plasma processing method, and recording medium
EP3042552B1 (en) Plasma torch with improved cooling system and corresponding cooling method
US7781699B2 (en) Plasma torch with post flow control
JP6941231B2 (ja) プラズマ処理機
US9642237B2 (en) Method of improving electrode life by simultaneously controlling plasma gas composition and gas flow
EP3731603A1 (en) Plasma exposure device
US20180243687A1 (en) Gas treatment system
CN110463354B (zh) 等离子体产生系统
US20130020287A1 (en) Method for starting and stopping a plasma arc torch
JPWO2019012906A1 (ja) プラズマ発生装置、これを備えた発光分析装置及び質量分析装置、並びに、装置状態判定方法
JP2016172889A (ja) 成膜装置および成膜方法
US20200029413A1 (en) Plasma generation device
JPWO2020044427A1 (ja) ガス供給判定方法とプラズマ発生装置
US7084367B2 (en) Temperature indicating consumable
JPWO2020084762A1 (ja) プラズマ発生装置
JP2002124398A (ja) プラズマ処理方法及び装置
JPWO2020225920A1 (ja) プラズマ着火方法及びプラズマ生成装置
EP3832697B1 (en) Atmospheric-pressure plasma generator
JP2011049103A (ja) プラズマ発生方法
JP3231899B2 (ja) プラズマ切断方法及びプラズマ切断装置
JP7007622B1 (ja) 成膜方法及び成膜装置
RU97073U1 (ru) Горелка для сварки неплавящимся электродом
CN114747299A (zh) 等离子体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916363

Country of ref document: EP

Kind code of ref document: A1