WO2016192242A1 - 一种可控壳层隔绝银纳米粒子的合成方法 - Google Patents

一种可控壳层隔绝银纳米粒子的合成方法 Download PDF

Info

Publication number
WO2016192242A1
WO2016192242A1 PCT/CN2015/090008 CN2015090008W WO2016192242A1 WO 2016192242 A1 WO2016192242 A1 WO 2016192242A1 CN 2015090008 W CN2015090008 W CN 2015090008W WO 2016192242 A1 WO2016192242 A1 WO 2016192242A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
silver
silver nanoparticles
synthesizing
acid
Prior art date
Application number
PCT/CN2015/090008
Other languages
English (en)
French (fr)
Inventor
李超禹
蒙萌
刘国坤
李剑锋
田中群
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2016192242A1 publication Critical patent/WO2016192242A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the invention relates to a shell coating method for core-shell structure silver nanoparticles, in particular to a synthesis method for isolating silver nanoparticles by using a very thin shell layer.
  • Silver then has a higher surface plasmon resonance efficiency over a larger wavelength range. Therefore, if silver nanoparticles are substituted for gold, as a shell to isolate the metal core of the nanoparticles, it will further expand the application of the methodology in the fields of spectroscopy, catalysis and the like. However, in the traditional chemical synthesis, it is difficult to obtain silver nanoparticles with high morphology uniformity in the presence of surface protective agents without strong adsorption, and the strongly adsorbed surface protective agent is not conducive to subsequent shell coating. And electrochemical experiments.
  • the silica-coated silver nanoparticles obtained by the prior method have the advantages that the shell layer is not dense, the monodispersity is poor, the strong adsorption surfactant is affected, and the like, and because the experimental reaction period is long (usually more than one day), the air impurity contamination is easy.
  • a thick oxide/sulfide layer is formed on the silver surface.
  • the purpose of the present invention is to provide a metal core-silver nanoparticle with high monodispersity, compact shell, good uniformity, simple and easy operation, short period of shell isolation silver nanoparticles. Synthetic method.
  • a method for synthesizing shell-incorporated silver nanoparticles wherein the controllable shell-insulating silver nanoparticles are composed of 20-300 nm silver nanoparticles as a core, and the coated silica is an outer shell, and the silica shell layer is In the range of 1 to 30 nm, its life span is up to 16 months, and the lifetime decay is less than 20%.
  • the method includes the following steps:
  • step 2) The particle size of the silver nanoparticles synthesized in step 2) is coated with a silica shell layer of 1 to 30 nm on the surface:
  • the silver nanoparticle sol synthesized in the step 2) is diluted 1 to 10 times with ultrapure water, added to the flask, and then added to the silane solution to a final concentration of 0.01 to 0.05 mM, at least one of sodium borohydride solution or ascorbic acid and oxalic acid.
  • step 1) the synthesis of 8-20 nm particle size gold nanoparticles can be carried out as follows:
  • step 2) the following specific methods can be used to synthesize silver nanoparticles of 52-96 nm size:
  • the 8-20 nm gold seed sol obtained in the step 1) is diluted with ultrapure water, and then ascorbic acid is added to a final concentration of 1.5 to 2 M and the sodium citrate solution to a final concentration of 0.01 to 0.06 wt%, and the perchloric acid is slowly added dropwise.
  • the silver solution is brought to a final concentration of 1 to 2 M; after the completion of the dropwise addition, the reaction is allowed to stand for 6 to 10 hours to complete the reaction, and the silver nanospheres of 20 to 300 nm can be controlled according to the amount of silver perchlorate added.
  • the slow speed is preferably from 1 to 10 drops per minute.
  • the silane coupling agent of the step 3) preferably comprises (3-aminopropyl)triethoxysilane, methoxyaminosilane, ethoxylated silane, methoxy group. At least one of mercaptosilanes.
  • step 3) uses an acid to adjust the pH, preferably comprising at least one of sulfuric acid, hydrochloric acid, carbonic acid, phosphoric acid.
  • the silver nanoparticles as the inner core are preferably 56 to 92 nm.
  • the thickness of the silica shell layer is preferably from 2 to 20 nm.
  • the water bath time of 50 to 70 ° C is 10 min to 150 min.
  • a shell layer isolating silver nanoparticles, wherein the controllable shell layer isolating silver nanoparticles with 20-300 nm silver nanoparticles as a core, coated with dense and uniform silica as an outer shell, and the silica shell layer is Adjustable in the range of 1 to 30 nm; as a Raman-active substrate, the surface enhancement performance can be maintained above 80% over 16 months.
  • controllable shell is used to isolate silver nanoparticles for Raman spectroscopy.
  • the present invention Compared with the conventional synthesis method, the present invention has the following outstanding advantages and technical effects:
  • the shell layer is composed of chemically inert, electrically insulating and optically transparent silica, and is extremely thin and dense;
  • nano-particles are obtained, and the thickness of the shell layer can be adjusted from 1 nm to 30 nm, and can be respectively applied to local electromagnetic field enhanced surface-enhanced Raman experiments (1 to 10 nm) and surface-enhanced fluorescence experiments (5 to 20 nm). Wide application prospects.
  • the Ag@SiO 2 nanoparticles obtained by the present invention have an Raman enhancement ability of 80% even if the storage time exceeds 1 year or even exceeds 16 months.
  • Example 1 is a scanning electron micrograph of a gold seed of 16 nm particle size synthesized in Example 1, and in FIG. 1, the scale is 100 nm.
  • Example 2 is a scanning electron micrograph of a silver nanosphere of 96 nm particle size synthesized in Example 2. In FIG. 2, the scale is 500 nm.
  • Example 3 is a transmission electron micrograph of the silica-coated silver synthesized in Example 3, the silica shell layer being ⁇ 2 nm, and in FIG. 3, the scale was 50 nm.
  • Example 4 is a transmission electron micrograph of the silica-coated silver synthesized in Example 4, and the silica shell layer is ⁇ 20. Nm, in Figure 4, the scale is 200nm
  • FIG. 5 is a pull of 10 mM pyridine molecules obtained by synthesizing a 4 nm silica shell-coated 96 nm silver nanosphere-coated Ag@SiO 2 nanoparticle on a smooth silver electrode (a) and a silicon wafer (b), respectively.
  • Man signal In Fig. 6, the abscissa is Raman shift/cm -1 unit, the ordinate is the unit of spectral intensity normalized to time and power, and the vertical axis spectral intensity scale is 1000 cps ⁇ mW -1 .
  • FIG. 6 is a graph showing the performance lifetime of Ag@SiO 2 nanoparticles coated with a 4 nm silica shell coated with 96 nm silver nanospheres in Example 5.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The Ag@SiO 2 nanoparticles coated with a 4 nm silica shell coated with 96 nm silver nanospheres on the smooth silver electrode and 10 mM pyridine as a probe molecule were used to characterize the v 1 vibration mode of pyridine.
  • Raman enhancement ability normalize the intensity of each time period to freshly prepared samples, indicating that the surface enhancement performance can be maintained above 80% over a long period of time (over 16 months), indicating the results obtained by the present invention. Nanoparticles have extremely high practical value.
  • Example 1 Specific synthetic steps for gold seeds. 50 ml of chloroauric acid solution (0.24 mM), heated to reflux, 1.5 ml of a 1% by weight sodium citrate solution was added, and refluxing was continued for 1 hour. After cooling, a gold seed sol having a particle diameter of 16 nm was obtained, and the color was obtained. The wine was red, and 1.5 ml of the sol was transferred into a centrifuge tube, centrifuged at 10,000 rpm, and centrifuged for 10 minutes. The mother liquor was removed and then washed with ultrapure water to obtain a concentrated solution, which was then dropped onto a clean silicon wafer for scanning electron microscopy. , get Figure 1.
  • Example 2 Specific synthetic steps for a 96 nm particle size silver nanocore.
  • the gold seed sol obtained in Example 1 was diluted 45 times, and then ascorbic acid and sodium citrate solution were respectively added, and the final concentrations were 1.873 mM and 0.033% wt, respectively, and then a dropping rate of 0.08 ml/min, slow.
  • a silver perchlorate solution was added dropwise to a final concentration of 1.248 mM. After the completion of the dropwise addition, the reaction was completed in the dark for 8 hours, and finally a silver nanosphere having a particle diameter of 96 nm was obtained, and the color of the sol was reddish white.
  • Example 3 A 4 nm silica shell layer was coated on the surface of silver nanoparticles having a particle diameter of 96 nm.
  • the silver nanoparticle sol synthesized in Example 2 was diluted 1 time with ultrapure water, added to a round bottom flask, and then added with (3-aminopropyl)triethoxysilane solution, sodium borohydride solution and sodium silicate. The final concentrations of the solutions were 0.026 mM, 5 mM and 0.054% wt., respectively.
  • the pH was adjusted to 9.2 with a sulfuric acid solution. After stirring uniformly, it was transferred into a 100 ° C water bath, and after 60 min, it was transferred into a 60 ° C water bath. After 5 min, a silica-coated silver nanoparticle having a thickness of 4 nm was obtained, and the sol color was reddish milky white.
  • Example 4 A 20 nm silica shell layer was coated on the surface of silver nanoparticles having a particle diameter of 96 nm.
  • the silver nanoparticle sol synthesized in Example 2 was diluted 10 times with ultrapure water, added to a round bottom flask, and then added with (3-aminopropyl)triethoxysilane solution, sodium borohydride solution and sodium silicate. The final concentrations of the solutions were 0.02 mM, 5.5 mM and 0.054% wt., respectively.
  • the pH was adjusted to 9.7 with a sulfuric acid solution. After stirring evenly, it was transferred into a 100 ° C water bath, and after 60 min, it was transferred to a 60 ° C water bath. After 150 min, a silica-coated silver nanoparticle having a shell thickness of 20 nm was obtained, and the sol color was reddish milky white.
  • Example 5 The obtained 4 nm silica shell layer coated with 96 nm silver nanospheres of Ag@SiO 2 nanoparticles was subjected to reinforcement and pinhole testing.
  • the silver electrode was polished with alumina powder of 1 and 0.3 ⁇ m, and the surface was ultrasonically cleaned.
  • 10 ⁇ l of the diluted sol solution obtained in Example 3 was dropped on the surface of the smooth silver electrode and placed in a vacuum desiccator. After draining, 50 ⁇ l of 10 mM pyridine solution was added dropwise, and the washed glass window was covered for Raman test.
  • the test laser is 532 nm, the power is 1.5 mW, and the acquisition time is 1 s.
  • Example 6 The Ag@SiO 2 nanoparticles coated with 96 nm silver nanospheres with different storage time of 4 nm silica shell were respectively tested by the method of testing the enhancement ability on the smooth silver electrode in Example 5.
  • the storage time is freshly synthesized, stored for 1 week, stored for half a month, stored for 1 month, and stored for 16 months.
  • the test conditions were as follows: the laser was 532 nm, the power was 1.5 mW, and the acquisition time was 1 s. After averaging the signals obtained from 10 or more arbitrary acquisition points on the substrate, the curve in Fig. 6 is obtained.
  • controllable shell-incorporated silver nanoparticles of the invention can be applied to local electromagnetic field enhanced surface enhanced Raman experiments (1 ⁇ 10nm) and surface enhanced fluorescence experiments (5-20nm), respectively, and have wide application prospects.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Silicon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种可控壳层隔绝银纳米粒子的合成方法,可控壳层隔绝银纳米粒子以20-300nm银纳米粒子为内核,包覆致密、均匀的二氧化硅为外壳,其二氧化硅壳层在1-30nm范围内可调,方法包括以下步骤:1)合成粒径为8-20nm的金纳米粒子:2)合成粒径为20~300nm的银纳米粒子:3)在步骤2)中所合成粒径为银纳米粒子表面包覆1-30nm的二氧化硅壳层。由可控壳层隔绝银纳米粒子的合成方法得到的二氧化硅包银纳米粒子,壳层由具有化学惰性、电学绝缘以及光学透明的二氧化硅组成,而且极薄、致密。

Description

一种可控壳层隔绝银纳米粒子的合成方法 技术领域
本发明涉及一种核壳结构银纳米粒子的壳层包覆方法,尤其是涉及一种用极薄壳层隔绝银纳米粒子的合成方法学。
背景技术
20世纪末开始,纳米技术出现飞速发展,对纳米科学中表面等离子体共振理论的研究愈发深入,具有不同粒径、形貌的币族金属(金、银、铜)纳米粒子,被广泛研究,并作为表面增强拉曼光谱的活性基底。在以往的传统技术中,是在拉曼光谱基底上通过电化学或物理方法沉积以及组装贵金属纳米颗粒,以此得到较强的电磁场增强因子,但是在现实实验中不可避免地出现几个影响真实信息的因素:(探针)分子接触、溶液接触、电子学接触。在2010年时,田中群教授课题组提出了壳层隔绝纳米粒子增强拉曼光谱(SHINERS)的技术,用惰性的二氧化硅或者氧化铝壳层包覆在金纳米粒子外部,这样可以防止上述的影响因素的同时,亦获得较高的局域电磁场增强因子。(Li,J.et al.Shell-isolated nanoparticle-enhanced Raman spectroscopy.Nature 464,392-395(2010))但是对于金纳米粒子而言,因为在530nm左右出现带间跃迁,只能在红光波段(>530nm)得到有效的电磁场增强;另外,因为金属介电函数的色散关系,电磁场增强因子还有待进一步提高。然后,银在更大的波长范围下,具有更高的表面等离子体共振效率。因此,若将银纳米颗粒取代金,作为壳层隔绝纳米粒子的金属内核,那将进一步拓展该方法学在光谱学、催化等领域中的应用。但是,在传统的化学法合成中,难以在没有强吸附的表面保护剂存在下,得到具有较高形貌均一性的银纳米颗粒,而且强吸附的表面保护剂不利于后续的壳层包覆以及电化学实验。现有方法得到的二氧化硅包银纳米粒子分别存在壳层不致密、单分散性差、强吸附表面活性剂影响,等等,而且因为实验反应周期较长(通常一天以上),容易空气中杂质污染,在银表面形成较厚的氧化物/硫化物层。
发明内容
本发明的目的旨在针对上述合成方法学中的不足,提供一种金属内核-银纳米粒子单分散性高,壳层致密、均一性好,简单易操作,周期短的壳层隔绝银纳米粒子的合成方法。
本发明的技术方案如下:
可控壳层隔绝银纳米粒子的合成方法,所述的可控壳层隔绝银纳米粒子以20~300nm银纳米粒子为内核,包覆上的二氧化硅为外壳,其二氧化硅壳层在1~30nm范围内,其寿命长达16个月,寿命期衰减不超过20%,方法包括以下步骤:
1)合成粒径为8~20nm的金纳米粒子:
2)合成粒径为20~300nm的银纳米粒子:
3)在步骤2)中所合成粒径为银纳米粒子表面包覆上1~30nm的二氧化硅壳层:
取步骤2)中合成得到银纳米粒子溶胶用超纯水稀释1~10倍,加入烧瓶中,再分别加入硅烷溶液至终浓度0.01~0.05mM,硼氢化钠溶液或抗坏血酸、草酸中的至少一种至终浓度4~6M以及硅酸钠或者正硅酸乙酯溶液至终浓度0.01~0.2wt%,并调节反应溶液的pH至9.2~9.7;搅拌均匀后,移入100℃水浴中50~70min,之后再转入50~70℃水浴中,控制反应时间可以得到不同壳层厚度的二氧化硅壳层。
在步骤1)中,合成8-20nm粒径金纳米颗粒可以采用如下具体方法:
50ml的氯金酸溶液0.2~0.3M,加热回流后,加入柠檬酸钠溶液0.5~2wt%,继续回流0.5~2小时,冷却后,得到粒径为8~20nm的金种子溶胶。
在步骤2)中,合成52~96nm粒径银纳米颗粒可以采用如下具体方法:
将步骤1)中得到8~20nm金种子溶胶用超纯水稀释,然后分别加入抗坏血酸至终浓度1.5~2M以及柠檬酸钠溶液至终浓度0.01~0.06wt%,再慢速滴加入高氯酸银溶液至终浓度1~2M;滴加结束后避光放置6~10小时使反应完全,根据加入高氯酸银的量的不同可以控制合成20~300nm的银纳米球。
在前述步骤中,所述的慢速优选为每分钟1~10滴。
在本发明的较佳实施例中,步骤3)所述的硅烷偶联剂优选包括(3-氨丙基)三乙氧基硅烷、甲氧基氨基硅烷、乙氧基巯基硅烷、甲氧基巯基硅烷中的至少一种。
在本发明的较佳实施例中,步骤3)采用酸来调节pH,所述的酸优选包括硫酸、盐酸、碳酸、磷酸中的至少一种。
在本发明的较佳实施例中,所述作为内核的银纳米粒子优选为56~92nm。
在本发明的较佳实施例中,二氧化硅壳层厚度优选为2~20nm。
在本发明的较佳实施例中,步骤(3)中,50~70℃水浴时间为10min~150min。
一种壳层隔绝银纳米粒子,所述的可控壳层隔绝银纳米粒子以20~300nm银纳米粒子为内核,包覆上致密、均匀的二氧化硅为外壳,其二氧化硅壳层在1~30nm范围内可调;作为拉曼活性基底,在16个月以上,表面增强性能都能保持在80%以上。
前述的可控壳层隔绝银纳米粒子的应用,其用于拉曼光谱检测。
与传统的合成方法相比,本发明具有以下突出的优点和技术效果:
1)本发明得到的二氧化硅包银纳米粒子,壳层由具有化学惰性、电学绝缘以及光学透明的二氧化硅组成,而且极薄、致密;
2)本发明所使用合成方法中,时间短,操作简单,重复性高,避免使用会对后续实验造成影响的强吸附试剂;
3)本发明中得到纳米粒子,壳层厚度可以从1nm到30nm进行调节,可以分别适用于局域电磁场增强表面增强拉曼实验(1~10nm)以及表面增强荧光实验(5~20nm),具有广泛的应用前景。
4)在合成过程中,对银纳米粒子表面吸附的银离子或银氧化物等杂质进行预处理,有效消除了这些杂质对壳层包覆时的影响。使得本发明得到的Ag@SiO2纳米粒子,即使存放时间超过1年,甚至超过16个月,仍然具有80%的拉曼增强能力。
附图说明
图1为实施例1中合成的16nm粒径的金种子扫描电镜图,在图1中,标尺为100nm。
图2为实施例2中合成的96nm粒径的银纳米球的扫描电镜图,在图2中,标尺为500nm。
图3为实施例3中合成的二氧化硅包银的透射电镜图,二氧化硅壳层为~2nm,在图3中,标尺为50nm。
图4为实施例4中合成的二氧化硅包银的透射电镜图,二氧化硅壳层为~20 nm,在图4中,标尺为200nm
图5为实施例5所合成4nm二氧化硅壳层包覆96nm银纳米球的Ag@SiO2纳米粒子分别在平滑银电极上(a)以及硅片上(b)得到的10mM吡啶分子的拉曼信号。图6中,横坐标为Raman shift/cm-1单位,纵坐标为对时间、功率归一化后的光谱强度单位,纵轴光谱强度标尺为1000cps·mW-1。(a)中使用532nm激光,1.5mW功率,积分时间1s,表明所合成的Ag@SiO2纳米粒子在银表面有较强的拉曼增强活性;(b)中使用532m激光,1.4mW功率,积分时间1s,在基底上任意选择20个以上点采集信号做平均值,表明所合成的纳米粒子表面所包覆的二氧化硅壳层是致密的,对银内核具有良好的隔绝保护性能。
图6为实施例5所合成4nm二氧化硅壳层包覆96nm银纳米球的Ag@SiO2纳米粒子性能寿命曲线。具体实施方式为该方法所合成4nm二氧化硅壳层包覆96nm银纳米球的Ag@SiO2纳米粒子分别在平滑银电极上,以10mM吡啶为探针分子,对吡啶的v1振动模表征拉曼增强能力,将各个时间段的强度对新鲜制得的样品做归一化,表明在长时间内(16个月以上),表面增强性能都能保持在80%以上,说明本发明得到的纳米粒子具有极高的实际应用价值。
具体实施方式
实施例1:金种子的具体合成步骤。50ml的氯金酸溶液(0.24mM),加热回流后,加入1.5ml质量分数为1%wt.的柠檬酸钠溶液,继续回流1小时,冷却后,得到粒径为16nm的金种子溶胶,颜色呈现酒红色,取1.5ml溶胶移入离心管中,以10000rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液后滴在干净硅片上,进行扫描电镜拍摄,得到图1。
实施例2: 96nm粒径银纳米内核的具体合成步骤。将实施例1中所得到的金种子溶胶稀释45倍,然后分别加入抗坏血酸以及柠檬酸钠溶液,两者最终浓度分别为1.873mM以及0.033%wt.再以0.08ml/min的滴加速度,慢速滴加入高氯酸银溶液,其最终浓度为1.248mM。滴加结束后避光放置8小时使反应完全,最后得到粒径为96nm的银纳米球,溶胶颜色呈泛红乳白色。取1.5ml溶胶移入离心管中,以5000rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液后滴在干净硅片上,进行扫描电镜拍摄,得到 图2。
实施例3:在粒径为96nm的银纳米粒子表面包覆上4nm的二氧化硅壳层。
取实施例2中合成得到银纳米粒子溶胶用超纯水稀释1倍,加入圆底烧瓶中,再分别加入(3-氨丙基)三乙氧基硅烷溶液,硼氢化钠溶液以及硅酸钠溶液,最后浓度分别为0.026mM,5mM以及0.054%wt.。并用硫酸溶液调节pH值在9.2。搅拌均匀后,移入100℃水浴中,60min后再移入60℃水浴中,5min后得到4nm壳层厚度的二氧化硅包银纳米粒子,溶胶颜色为泛红乳白色。取1.5ml溶胶立即进行冷去,然后移入离心管中,以5000rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液,并稀释到1ml,之后滴在透射铜网上,进行透射电镜拍摄,得到图3。
实施例4:在粒径为96nm的银纳米粒子表面包覆上20nm的二氧化硅壳层。
取实施例2中合成得到银纳米粒子溶胶用超纯水稀释10倍,加入圆底烧瓶中,再分别加入(3-氨丙基)三乙氧基硅烷溶液,硼氢化钠溶液以及硅酸钠溶液,最后浓度分别为0.02mM,5.5mM以及0.054%wt.。并用硫酸溶液调节pH值在9.7。搅拌均匀后,移入100℃水浴中,60min后再转入60℃水浴中,150min后分别得到20nm壳层厚度的二氧化硅包银纳米粒子,溶胶颜色为泛红乳白色。取1.5ml溶胶立即进行冷去,然后移入离心管中,以5000rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液,并稀释到1ml,之后滴在透射铜网上,进行透射电镜拍摄,得到图4。
实施例5:将得到的4nm二氧化硅壳层包覆96nm银纳米球的Ag@SiO2纳米粒子进行增强以及针孔测试。将银电极分别用1以及0.3μm规格的氧化铝粉末进行抛光,对其表面超声清洗干净后,取10μl实施例3中得到的稀释溶胶液,滴在光滑银电极表面,放在真空干燥器中抽干,之后滴上50μl 10mM的吡啶溶液,再盖上洗净的玻璃窗片,进行拉曼测试。测试激光为532nm,功率为1.5mW,采集时间1s。在基底上对10个以上任意采集点得到的信号进行平均后,得到图5中的(a)。得到了具有较好信噪比的吡啶v1以及v12振动模信号,表明该粒子具有较强的隔绝纳米粒子增强拉曼信号能力。在针孔测试中,取实施例3中离心得到的浓缩液,滴在洗净的硅片上,放在真空干燥器中抽干,再滴上50μl 10mM的吡啶溶液,并盖上玻璃窗片,进行拉曼测试实验。测试激光为532nm,功率 为1.4mW,采集时间1s。在基底上对20个以上任意采集点得到的信号进行平均后,得到图5中的(b)。所得光谱未发现吡啶的特征振动峰,表明该粒子所包覆的二氧化硅壳层致密,能够保护银内核粒子不受到探针分子的干扰。
实施例6:以实施例5中测试平滑银电极上增强能力的方法,分别对不同存放时间的4nm二氧化硅壳层包覆96nm银纳米球的Ag@SiO2纳米粒子进行增强测试。存放时间依次为新鲜合成,存放1周,存放半个月,存放1个月,存放16个月。测试条件都为:激光为532nm,功率为1.5mW,采集时间1s。在基底上对10个或以上任意采集点得到的信号进行平均后,得到图6中的曲线。
工业实用性
本发明的可控壳层隔绝银纳米粒子可以分别适用于局域电磁场增强表面增强拉曼实验(1~10nm)以及表面增强荧光实验(5~20nm),具有广泛的应用前景。

Claims (10)

  1. 可控壳层隔绝银纳米粒子的合成方法,其特征在于,所述的可控壳层隔绝银纳米粒子以20~300nm银纳米粒子为内核,包覆上的二氧化硅为外壳,其二氧化硅壳层在1~30nm范围内,方法包括以下步骤:
    1)合成粒径为8~20nm的金纳米粒子:
    2)合成粒径为20~300nm的银纳米粒子:
    3)在步骤2)中所合成粒径为银纳米粒子表面包覆上1~30nm的二氧化硅壳层:
    取步骤2)中合成得到银纳米粒子溶胶用超纯水稀释1~10倍,加入烧瓶中,再分别加入硅烷偶联剂溶液至终浓度0.01~0.05mM,硼氢化钠溶液或抗坏血酸或草酸至终浓度4~6M,以及硅酸钠或正硅酸乙酯溶液至终浓度0.01~0.2wt%,并调节反应溶液的pH至9.2~9.7;搅拌均匀后,移入100℃水浴中50~70min,之后再转入50~70℃水浴中,控制反应时间得到不同壳层厚度的二氧化硅壳层。
  2. 如权利要求1所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:在步骤1)中,所合成的8~20nm粒径金纳米颗粒的具体方法为:
    50ml的氯金酸溶液0.2~0.3M,加热回流后,加入柠檬酸钠溶液0.5~2wt%,继续回流0.5~2小时,冷却后,得到粒径为8~20nm的金种子溶胶。
  3. 如权利要求2所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:在步骤2)中,所合成的52~96nm粒径银纳米颗粒的具体方法为:
    将步骤1)中得到8~20nm金种子溶胶用超纯水稀释,然后分别加入抗坏血酸至终浓度1.5~2M以及柠檬酸钠溶液至终浓度0.01~0.06wt%,再慢速滴加入高氯酸银溶液至终浓度1~2M;滴加结束后避光放置6~10小时使反应完全,根据加入高氯酸银的量的不同控制合成20~300nm的银纳米球。
  4. 如权利要求1所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:步骤3)所述的硅烷偶联剂包括(3-氨丙基)三乙氧基硅烷、甲氧基氨基硅烷、乙氧基巯基硅烷、甲氧基巯基硅烷中的至少一种。
  5. 如权利要求1所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:步骤3)采用酸来调节pH,所述的酸包括硫酸、盐酸、碳酸、磷酸中的至少一 种。
  6. 如权利要求1所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:内核银纳米粒子为56~92nm。
  7. 如权利要求1所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:二氧化硅壳层厚度为2~20nm。
  8. 如权利要求1所述的可控壳层隔绝银纳米粒子的合成方法,其特征在于:步骤(3)中,50~70℃水浴时间为10min~150min。
  9. 一种壳层隔绝银纳米粒子,其特征在于,所述的可控壳层隔绝银纳米粒子以20~300nm银纳米粒子为内核,包覆上的二氧化硅为外壳,其二氧化硅壳层在1~30nm范围内可调;作为拉曼活性基底。
  10. 如权利要求9所述的可控壳层隔绝银纳米粒子的应用,其用于拉曼光谱检测。
PCT/CN2015/090008 2015-05-29 2015-09-18 一种可控壳层隔绝银纳米粒子的合成方法 WO2016192242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510287999.7 2015-05-29
CN201510287999.7A CN104827029B (zh) 2015-05-29 2015-05-29 一种壳层隔绝银纳米粒子的合成方法

Publications (1)

Publication Number Publication Date
WO2016192242A1 true WO2016192242A1 (zh) 2016-12-08

Family

ID=53805428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090008 WO2016192242A1 (zh) 2015-05-29 2015-09-18 一种可控壳层隔绝银纳米粒子的合成方法

Country Status (2)

Country Link
CN (1) CN104827029B (zh)
WO (1) WO2016192242A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122539A (zh) * 2019-12-24 2020-05-08 深圳大学 一种核壳嵌入型拉曼增强剂及其制备方法与应用
CN114235780A (zh) * 2021-12-17 2022-03-25 厦门大学 一种增强氧化钛表面物种拉曼信号的方法
CN114871426A (zh) * 2022-05-20 2022-08-09 爱科美材料科技(南通)有限公司 一种介孔氧化铝原位包覆纳米银材料、制备方法及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104827029B (zh) * 2015-05-29 2017-07-11 厦门大学 一种壳层隔绝银纳米粒子的合成方法
CN107456930A (zh) * 2016-06-03 2017-12-12 南京理工大学 一步法合成镶嵌Ag纳米颗粒的SiO2纳米囊及其制备方法
CN106706593A (zh) * 2016-11-18 2017-05-24 兰州大学 一种壳层隔离纳米粒子增强拉曼散射光谱探针的制备方法
CN107367499A (zh) * 2017-09-08 2017-11-21 厦门大学深圳研究院 一种铂单晶表面清洗及增强拉曼信号采集方法
CN107511479A (zh) * 2017-09-08 2017-12-26 厦门大学 一种超薄壳层隔绝大粒径金纳米粒子的合成方法
CN108007918A (zh) * 2017-11-22 2018-05-08 厦门斯贝克科技有限责任公司 一种基于壳层隔绝纳米粒子的三维热点拉曼检测芯片
WO2019100231A1 (zh) * 2017-11-22 2019-05-31 厦门斯贝克科技有限责任公司 一种基于壳层隔绝纳米粒子的三维热点拉曼检测芯片
CN108031838B (zh) * 2017-12-25 2020-01-10 畅的新材料科技(上海)有限公司 一种m@n核壳结构纳米材料的制备方法
CN109280389B (zh) * 2018-08-06 2020-10-23 青岛科技大学 一种银纳米粒子复合有机硅树脂的制备方法
CN109548393B (zh) * 2018-11-09 2020-06-19 南京理工大学 一种窄频段微波响应材料及其制备方法
CN109807323B (zh) * 2019-01-16 2021-03-02 宁波工程学院 一种银立方体/花状二氧化硅核壳纳米材料及其制备方法和应用
CN110779907A (zh) * 2019-11-26 2020-02-11 启东科赛尔纳米科技有限公司 一种快速检测过氧化氢含量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097677A (ja) * 2003-09-25 2005-04-14 Sumitomo Metal Mining Co Ltd 銅微粒子の製造方法及び銅微粒子分散液
CN101069930A (zh) * 2007-06-15 2007-11-14 北京化工大学 一种银/二氧化硅核壳结构纳米颗粒制备方法
CN101306468A (zh) * 2007-05-19 2008-11-19 浙江师范大学 导电聚吡咯包裹铜银复合纳米粒子的制备方法
CN104827029A (zh) * 2015-05-29 2015-08-12 厦门大学 一种壳层隔绝银纳米粒子的合成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832933B (zh) * 2010-01-21 2011-12-28 厦门大学 用壳层隔绝纳米粒子增强拉曼光谱的方法
CN102078787A (zh) * 2010-12-09 2011-06-01 厦门大学 一种大核二氧化硅包金核壳结构纳米粒子的合成方法
CN102784928A (zh) * 2012-09-11 2012-11-21 华东理工大学 一种氧化硅包银的核壳结构纳米颗粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097677A (ja) * 2003-09-25 2005-04-14 Sumitomo Metal Mining Co Ltd 銅微粒子の製造方法及び銅微粒子分散液
CN101306468A (zh) * 2007-05-19 2008-11-19 浙江师范大学 导电聚吡咯包裹铜银复合纳米粒子的制备方法
CN101069930A (zh) * 2007-06-15 2007-11-14 北京化工大学 一种银/二氧化硅核壳结构纳米颗粒制备方法
CN104827029A (zh) * 2015-05-29 2015-08-12 厦门大学 一种壳层隔绝银纳米粒子的合成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122539A (zh) * 2019-12-24 2020-05-08 深圳大学 一种核壳嵌入型拉曼增强剂及其制备方法与应用
CN114235780A (zh) * 2021-12-17 2022-03-25 厦门大学 一种增强氧化钛表面物种拉曼信号的方法
CN114871426A (zh) * 2022-05-20 2022-08-09 爱科美材料科技(南通)有限公司 一种介孔氧化铝原位包覆纳米银材料、制备方法及应用
CN114871426B (zh) * 2022-05-20 2023-12-22 爱科美材料科技(南通)有限公司 一种介孔氧化铝原位包覆纳米银材料、制备方法及应用

Also Published As

Publication number Publication date
CN104827029A (zh) 2015-08-12
CN104827029B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2016192242A1 (zh) 一种可控壳层隔绝银纳米粒子的合成方法
CN111289493B (zh) 一种表面增强拉曼基底及其制备方法
US9040158B2 (en) Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies
CN106493381B (zh) 一种银/氧化亚铜微纳结构复合材料的制备方法及其应用
Han et al. Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks
CN102608103B (zh) 表面增强拉曼散射基底及其制备方法
CN110296973B (zh) 一种SiO2@Ag@ZrO2多层核壳结构纳米材料及其制备方法和应用
CN107976431B (zh) 基于金属纳米粒子的表面增强拉曼基底及其制备方法
CN106905974A (zh) 一种用核壳结构纳米粒子增强量子点发光的方法
CN107511479A (zh) 一种超薄壳层隔绝大粒径金纳米粒子的合成方法
Long et al. Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G
Gao et al. Graphene oxide wrapped individual silver nanocomposites with improved stability for surface-enhanced Raman scattering
Liao et al. An effective oxide shell-protected surface-enhanced Raman scattering (SERS) substrate: the easy route to Ag@ Ag x O-silicon nanowire films via surface doping
Liao et al. Au–Ag–Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole
CN111675495A (zh) 一种玻璃sers平台基底及其制备方法
CN112692298A (zh) 一种核壳结构纳米金银复合材料衬底的制备方法
Xie et al. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper (II)
CN108645835A (zh) 高度分枝化的金纳米粒子sers活性基底及其制备方法
CN109163739B (zh) 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法
CN111451520B (zh) 一种纳米金的制备方法
Zhao et al. SERS-active Ag nanoparticles embedded in glass prepared by a two-step electric field-assisted diffusion
CN111122539A (zh) 一种核壳嵌入型拉曼增强剂及其制备方法与应用
CN108611604B (zh) 一种基于高介电材料的经济型高精密表面增强拉曼活性基底的制造方法
CN107328750B (zh) 高活性高均一性表面增强拉曼散射基底及其制备方法
Jiang et al. Harvesting the lost photon by plasmonic enhanced hematite-upconversion nanocomposite for water splitting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893897

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/02/2018)