CN109163739B - 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法 - Google Patents

一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法 Download PDF

Info

Publication number
CN109163739B
CN109163739B CN201810949418.5A CN201810949418A CN109163739B CN 109163739 B CN109163739 B CN 109163739B CN 201810949418 A CN201810949418 A CN 201810949418A CN 109163739 B CN109163739 B CN 109163739B
Authority
CN
China
Prior art keywords
magneto
mos
glass
preparing
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810949418.5A
Other languages
English (en)
Other versions
CN109163739A (zh
Inventor
陈秋玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201810949418.5A priority Critical patent/CN109163739B/zh
Publication of CN109163739A publication Critical patent/CN109163739A/zh
Application granted granted Critical
Publication of CN109163739B publication Critical patent/CN109163739B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glass Compositions (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明目的是提供一种制备单层磁等离激元太赫兹传感薄膜的方法。该方法通过制备Fe3O4@MoS2纳米核壳材料并掺杂该材料在石墨烯表面,形成石墨烯&Fe3O4@MoS2的纳米复合材料。制备高折射率磁光玻璃并进行表面质量控制和表面亲水性质激活,最后把石墨烯&Fe3O4@MoS2的纳米复合材料沉积在磁光玻璃表面进行热处理,以强化表面的键和作用,获得磁等离子太赫兹单层传感薄膜的实现。本发明制作的单层磁等离激元太赫兹传感薄膜利用新材料优良的磁光及太赫兹性能和单层磁等离激元结构,避免多层光耗大、工艺复杂、成本高等缺点,实现高磁光效应和高等离子效应传感,制备方法简单易行,能耗低,环境友好,易于推广。

Description

一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法
技术领域
本发明涉及磁等离子传感技术领域,尤其是涉及磁光玻璃基磁等离子太赫兹传感系统的制备方法。
背景技术
随着纳米光子学技术的发展,太赫兹传感、生物芯片等先进领域对等离子纳米材料磁光功能的需求日益迫切,以研究磁性与表面等离激元相互作用的磁等离激元 传感技术受到了前所未有的关注。
磁等离子纳米结构描述电子突破衍射极限在外场激励下的集体振荡,具有局域场增强和对介电环境敏感等性质。传统表面等离激元纳米粒子在浑浊溶液,悬浮细胞和生物组织中有很强的背景吸收和散射,且很多有机聚集体和化合物介电常数相似,致使其光谱不能通过荧光和拉曼等光谱技术有效分离。而磁等离子系统显著增大光和物质相互作用,使表面等离激元纳米粒子在共振腔附近产生强大电场并展现较高磁光活性,强化周围分子和介电环境的表面等离子效应和磁光效应,极大提高传感灵敏度,为磁光检测技术在生物、化学和医学传感应用开辟了全新的途径, 尤其在诊断学,临床医学,生物镜像学,环境检测学等领域 。
目前磁等离子系统应用光谱一般在可见光至中红外, 太赫兹作为近年来极有前景的非破坏性、非离子化、低辐射能量的检测频率,在医学、生物学、药学及安全领域有非凡的潜力。通过研制新材料实现在太赫兹区域的磁等离子传感意义重大。
虽然磁等离子传感系统前景诱人,传统等离子金和多层结构巨大光耗以及磁性晶体的高成本使现有磁等离子系统没有发挥其应有的传感优势。新型磁等离子纳米材料和高折射率基底的设计,复杂结构的简化及太赫兹磁光效应的传感增强等关键科技问题迫切需要解决。
金纳米薄膜的光学损耗、介电常数以及纳米晶界造成的散射已成为高性能太赫兹磁等离子传感的瓶颈,研究新型等离激元材料势在必行。石墨烯是从可见光到太赫兹的优良等离子体材料,具有低损耗、高局域性和宽波段激发等优点, 并能利用化学掺杂裁剪表面传播等离子体获取超强光&物质作用,可作为替代金的高性能太赫兹等离激元材料。由于洛伦兹力致使石墨烯表面具有很高磁响应,可作为实现太赫兹磁等离子传感的重要材料。由石墨烯层间范德华力作用产生的强烈团聚缺陷可通过掺杂纳米粒子(如本发明中的Fe3O4@ MoS2纳米核壳)得以消除。
磁性材料是磁等离子传感系统的核心。综合考虑磁光性能和光吸收,Fe3O4@MoS2纳米核壳是磁光波导传感器的首选材料。独特的能带性质使MoS2在磁光传感领域独具魅力。MoS2对光二维约束产生的非线性在禁带边缘激发的共振效应也有利于MoS2的磁等离子性能。太赫兹时域光谱检测表明MoS2的太赫兹吸收极小。MoS2的包覆不仅防止纳米Fe3O4的团聚、氧化性和腐蚀性,而且为Fe3O4开辟了光学性能可控的平台。可以通过裁剪Fe3O4@ MoS2纳米颗粒以及MoS2包覆厚度等参数增强法拉第效应。
提高基底玻璃折射率是提高磁等离子波谱识别率的有效方法。磁光玻璃具备熔点低、磁光性能优良、折射率高、光学吸收低等优点。其高折射率能有效抑制基底和薄膜界面之间强震荡所带来的光学损耗,优良的磁光性能增加磁光效应的非互易叠加,其成分的最大包容性允许掺杂多种调节元素,从而具备性能可控优势,是解决波谱分离的理想基底材料。
本发明提出构建新型高折射率磁光玻璃基graphene掺杂Fe3O4@MoS2纳米核壳单层磁等离子传感系统,采用石墨烯和MoS2 作为新型太赫兹等离子材料,采用高磁光性能Fe3O4@MoS2核壳作为磁性材料,采用高折射率磁光玻璃作为基底,构建单层简化结构,避免多层光耗大、工艺复杂、成本高等缺点。利用新材料优良的磁光和太赫兹性能开发的单层磁等离子系统将在医学、生物学、磁光、定向纳米天线、光催化等先进传感领域展现美好的应用前景。
发明内容
本发明的目的在于提供一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法。
为实现上述目的,本发明可采取下述技术方案:
本发明所述的磁光玻璃基单层磁等离激元太赫兹传感薄膜的制备方法为:
1)制备纳米核壳材料: 把MoS2粉末加入N-甲基吡咯烷酮中超声仪中进行超声震荡,待形成分散体后继续60分钟并保持恒温。以2000 rpm的速度离心处理10分钟,重新加水稀释形成均匀浓度约为2 mg/mL的悬浮液 。悬浮液中加入0.5gFeSO4 .7H2O, 0.16g FeCl3.6H2O, 和 0.1g PEG 的混合物,滴入15 mL NH3 •H2O 溶液后进行100 W and 20 kHz的超声处理60分钟。反应过程中调节PH为11并保持60 °C恒温状态。磁性分离反应物并反复用去离子水和无水乙醇清洗,45°C真空干燥24小时。2)制备复合纳米材料:分别把Fe3O4@MoS2 纳米粒子和氧化石墨烯溶解于1,6-己二胺(ACOOA)和ANH2,借助NHS/EDC的激活作用,通过Fe3O4@MoS2表面氨基与氧化石墨烯羧基之间的缩合反应产生羧酰胺键得到氧化石墨烯/Fe3O4@MoS2。3)制备磁光玻璃:以PbO, Bi2O3及B2O3 氧化物为原料按照摩尔比为45%, 45%,10%的比例计算、称量并搅拌均匀后放入100%Al2O3坩埚内900摄氏度融化1小时,然后快速浇注到铜板上形成玻璃,等玻璃冷却至室温后进行280摄氏度退火处理2小时。4)磁光玻璃表面激活:光学抛光玻璃样品使其粗糙度在0.1纳米左右。在抽风柜中把玻璃片置入H2SO4(96%):H2O2 (30%) 混合液中在75摄氏度保持30分钟,然后清洗样品并移入NH4OH(70%):H2O2(30%):H2O 混合液中75摄氏度浸泡10分钟。最后用去离子水清洗样品并吹干。5)制备薄膜:用匀胶机把石墨烯掺杂Fe3O4& MoS2 纳米材料和PEG的糊状混合物均匀涂敷在磁光玻璃表面,在260到275摄氏度之间保持24小时使玻璃表面与涂覆材料之间产生键和作用。
所述的磁光玻璃基磁等离子单层薄膜结构,其特征在于该磁等离子系统适用于太赫兹传感。
本发明首次采用MoS2和石墨烯作为磁等离子系统材料,首次提出构建单层磁等离子传感结构,首次提出太赫兹磁等离子传感研究。本发明研究能够对磁等离子系统的结构、材料和传感性能实现技术突破,发挥新型磁等离子系统在更多先进领域的重要作用。制备方法简单快捷,节能环保,整个制备流程操作简单,技术较易推广。
附图说明
图1 为本发明制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的流程图。
图2 为本发明实施例1制备的Fe3O4& MoS2掺杂石墨烯纳米复合材料的SEM图。
图3 为本发明实施例2制备的磁光玻璃基磁等离激元传感薄膜的SEM剖面图。
图4为本发明实施例2制备的磁等离激元传感薄膜的等离子性能测试图。
具体实施方式
下面通过具体实施例对本发明做进一步说明。
实施例1
1)制备纳米核壳材料: 把MoS2粉末加入N-甲基吡咯烷酮中超声仪中进行超声震荡,待形成分散体后继续60分钟并保持恒温。以2000 rpm的速度离心处理10分钟,重新加水稀释形成均匀浓度约为2 mg/mL的悬浮液 。悬浮液中加入0.5gFeSO4 .7H2O, 0.16g FeCl3.6H2O, 和 0.1g PEG 的混合物,滴入15 mL NH3 •H2O 溶液后进行100 W and 20 kHz的超声处理60分钟。反应过程中调节PH为11并保持60 °C恒温状态。磁性分离反应物并反复用去离子水和无水乙醇清洗,45°C真空干燥24小时。2)制备复合纳米材料:分别把Fe3O4@MoS2 纳米粒子和氧化石墨烯溶解于1,6-己二胺(ACOOA)和ANH2,借助NHS/EDC的激活作用,通过Fe3O4@MoS2表面氨基与氧化石墨烯羧基之间的缩合反应产生羧酰胺键得到氧化石墨烯/Fe3O4@MoS2。3)制备磁光玻璃:以PbO, Bi2O3及B2O3 氧化物为原料按照摩尔比为45%, 45%,10%的比例计算、称量并搅拌均匀后放入100%Al2O3坩埚内900摄氏度融化1小时,然后快速浇注到铜板上形成玻璃,等玻璃冷却至室温后进行280摄氏度退火处理2小时。4)磁光玻璃表面激活:光学抛光玻璃样品使其粗糙度在0.1纳米左右。在抽风柜中把玻璃片置入H2SO4(96%):H2O2 (30%) 混合液中在75摄氏度保持30分钟,然后清洗样品并移入NH4OH(70%):H2O2(30%):H2O 混合液中75摄氏度浸泡10分钟。最后用去离子水清洗样品并吹干。5)制备薄膜:用匀胶机把石墨烯掺杂Fe3O4& MoS2 纳米材料和PEG的糊状混合物均匀涂敷在磁光玻璃表面,在260到275摄氏度之间保持24小时使玻璃表面与涂覆材料之间产生键和作用。
本发明实施例1 制备的Fe3O4& MoS2掺杂石墨烯纳米复合材料的SEM如图2所示,薄膜表面Fe3O4& MoS2分布均匀,形貌良好。
实施例2
1)制备纳米核壳材料: 把MoS2粉末加入N-甲基吡咯烷酮中超声仪中进行超声震荡,待形成分散体后继续60分钟并保持恒温。以2000 rpm的速度离心处理10分钟,重新加水稀释形成均匀浓度约为2 mg/mL的悬浮液 。悬浮液中加入0.5gFeSO4 .7H2O, 0.16g FeCl3.6H2O, 和 0.1g PEG 的混合物,滴入15 mL NH3 •H2O 溶液后进行100 W and 20 kHz的超声处理60分钟。反应过程中调节PH为11并保持60 °C恒温状态。磁性分离反应物并反复用去离子水和无水乙醇清洗,45°C真空干燥24小时。2)制备复合纳米材料:分别把Fe3O4@MoS2 纳米粒子和氧化石墨烯溶解于1,6-己二胺(ACOOA)和ANH2,借助NHS/EDC的激活作用,通过Fe3O4@MoS2表面氨基与氧化石墨烯羧基之间的缩合反应产生羧酰胺键得到氧化石墨烯/Fe3O4@MoS2。3)制备磁光玻璃:以PbO, Bi2O3及B2O3 氧化物为原料按照摩尔比为45%, 45%,10%的比例计算、称量并搅拌均匀后放入100%Al2O3坩埚内900摄氏度融化1小时,然后快速浇注到铜板上形成玻璃,等玻璃冷却至室温后进行280摄氏度退火处理2小时。4)磁光玻璃表面激活:光学抛光玻璃样品使其粗糙度在0.1纳米左右。在抽风柜中把玻璃片置入H2SO4(96%):H2O2 (30%) 混合液中在75摄氏度保持30分钟,然后清洗样品并移入NH4OH(70%):H2O2(30%):H2O 混合液中75摄氏度浸泡10分钟。最后用去离子水清洗样品并吹干。5)制备薄膜:用匀胶机把石墨烯掺杂Fe3O4& MoS2 纳米材料和PEG的糊状混合物均匀涂敷在磁光玻璃表面,在260到275摄氏度之间保持24小时使玻璃表面与涂覆材料之间产生键和作用。
本发明实施例2制备的磁光玻璃基磁等离激元传感薄膜的SEM如图3所示,玻璃表面传感薄膜完整,厚度均匀(60纳米),无空穴断裂,与磁光玻璃表面附着良好。
本发明实施例2制备的太赫兹磁等离激元传感薄膜的磁光性能测试如图4所示,磁光等离子特征峰尖锐,具备良好磁等离子传感性能。

Claims (1)

1.一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法,其特征在于包括如下步骤:
1)制备纳米核壳材料:把MoS2粉末加入N-甲基吡咯烷酮中在超声仪中进行超声震荡,待形成分散体后继续60分钟并保持恒温,以2000rpm的速度离心处理10分钟,重新加水稀释形成均匀浓度为2mg/mL的悬浮液,悬浮液中加入0.5gFeSO4·7H2O,0.16g FeCl3·6H2O,和0.1g PEG的混合物,滴入15mL NH3•H2O溶液后进行100W 和20kHz的超声处理60分钟,反应过程中调节PH为11并保持60℃恒温状态,磁性分离反应物并反复用去离子水和无水乙醇清洗,45℃真空干燥24小时;
2)制备复合纳米材料:分别把Fe3O4 @MoS2纳米粒子和氧化石墨烯溶解于1,6-己二胺和ANH2,借助NHS/EDC的激活作用,通过Fe3O4@MoS2表面氨基与氧化石墨烯羧基之间的缩合反应产生羧酰胺键得到氧化石墨烯/Fe3O4@MoS2
3)制备磁光玻璃:以PbO,Bi2O3及B2O3氧化物为原料按照摩尔比为45%,45%,10%的比例计算、称量并搅拌均匀后放入100%Al2O3坩埚内900摄氏度融化1小时,然后快速浇注到铜板上形成玻璃,等玻璃冷却至室温后进行280摄氏度退火处理2小时;
4)磁光玻璃表面激活:光学抛光玻璃样品使其粗糙度为0.1纳米,在抽风柜中把玻璃片置入由体积分数为96%的H2SO4和体积分数为30%的H2O2按照1∶1的体积比配制的混合液中,75摄氏度保持30分钟,然后清洗样品并移入由体积分数为70%的NH4OH、体积分数为30%的H2O2和H2O按照1∶1∶1的体积比配制的混合液中,75摄氏度浸泡10分钟,最后用去离子水清洗样品并吹干;
5)制备薄膜:用匀胶机把石墨烯掺杂Fe3O4&MoS2纳米材料和PEG的糊状混合物均匀涂敷在磁光玻璃表面,在260到275摄氏度之间保持24小时使玻璃表面与涂覆材料之间产生键和作用。
CN201810949418.5A 2018-08-20 2018-08-20 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法 Active CN109163739B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810949418.5A CN109163739B (zh) 2018-08-20 2018-08-20 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810949418.5A CN109163739B (zh) 2018-08-20 2018-08-20 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法

Publications (2)

Publication Number Publication Date
CN109163739A CN109163739A (zh) 2019-01-08
CN109163739B true CN109163739B (zh) 2020-06-09

Family

ID=64896193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810949418.5A Active CN109163739B (zh) 2018-08-20 2018-08-20 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法

Country Status (1)

Country Link
CN (1) CN109163739B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058431A (zh) * 2019-04-24 2019-07-26 南开大学 太赫兹超表面磁光克尔偏振转换器
CN113189051B (zh) * 2021-05-11 2022-08-02 河南工业大学 一种磁光玻璃基周期纳米孔磁等离子传感器的制备方法
CN114935304B (zh) * 2022-04-18 2023-08-15 嘉兴学院 可自修复高灵敏柔性应变传感器及其制备方法与修复方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038337A (ko) * 2007-10-15 2009-04-20 재단법인서울대학교산학협력재단 무기계 나노입자를 수계 매질에 분산시키는 생체적합성분산 안정화제
KR101068500B1 (ko) * 2010-03-18 2011-09-29 경상대학교산학협력단 수은 및 유기수은을 고효율적으로 분리 및 검출 가능한 아미노나프탈이미드기를 함유하는 자성체 나노입자
KR101337994B1 (ko) * 2010-04-14 2013-12-06 한국과학기술원 그래핀/금속 나노 복합 분말 및 이의 제조 방법
CN104464955A (zh) * 2014-11-28 2015-03-25 中国科学院金属研究所 规模化制备大面积、高性能石墨烯复合透明导电膜的方法
CN105087105B (zh) * 2015-09-11 2017-06-23 合肥工业大学 纳米二硫化钼磁性润滑剂及其制备方法
CN106268873A (zh) * 2016-08-03 2017-01-04 江南大学 一种用于双酚f的复合磁性催化剂
CN106916586B (zh) * 2017-01-19 2019-01-15 安徽理工大学 酚醛树脂为基质的磁荧光复合材料及其制备方法和应用
CN107987482A (zh) * 2017-12-19 2018-05-04 西北工业大学 无溶剂石墨烯/碳纳米管/四氧化三铁三维复合纳米流体环氧树脂及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by sol-gel method and their magnetorheology;Chae HS 等;《COLLOID AND POLYMER SCIENCE》;20160331;647-655 *

Also Published As

Publication number Publication date
CN109163739A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
Liu et al. Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer
Liu et al. ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin
CN109163739B (zh) 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法
Aslan et al. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence
Maoz et al. Amplification of chiroptical activity of chiral biomolecules by surface plasmons
Breen et al. Sonochemically produced ZnS-coated polystyrene core− shell particles for use in photonic crystals
Zhu et al. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property
Lee et al. Surface enhanced Raman spectroscopy of organic molecules on magnetite (Fe3O4) nanoparticles
Kou et al. Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres
CN102608097B (zh) 一种具有可调拉曼散射效应的探针及其制备方法
Wang et al. Studies of Fe3O4/Ag/Au composites for immunoassay based on surface plasmon resonance biosensor
CN106905974A (zh) 一种用核壳结构纳米粒子增强量子点发光的方法
Amin et al. Solution-based SERS detection of weak surficial affinity molecules using cysteamine-modified Au bipyramids
CN105651756B (zh) 用于放大拉曼信号的拉曼增强基底及其制备方法和应用
Yi et al. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film
EP2584345A1 (en) Metal particles for surface-enhanced raman scattering and molecular sensing
Li et al. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification
CN105149612A (zh) 一种SiO2包覆Au@Ag核壳纳米棒的方法
Liu et al. Plasmonic property and stability of core-shell Au@ SiO 2 nanostructures
CN113770372B (zh) 一种金纳米颗粒聚集体材料的制备方法
Long et al. Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G
Zhao et al. Multi-dimensional plasmonic coupling system for efficient enrichment and ultrasensitive label-free SERS detection of bilirubin based on graphene oxide-Au nanostars and Au@ Ag nanoparticles
Limmer et al. Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods
Ayareh et al. Nanoplasmonic sensor chip fabricated based on au nanoparticles: effect of graphene oxide and reduced graphene oxide
Zhang et al. Graphene-Au nanosphere composite arrays and their enhanced SERS performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant