WO2016190712A2 - 안정화된 약학 조성물 및 그의 제조방법 - Google Patents

안정화된 약학 조성물 및 그의 제조방법 Download PDF

Info

Publication number
WO2016190712A2
WO2016190712A2 PCT/KR2016/005653 KR2016005653W WO2016190712A2 WO 2016190712 A2 WO2016190712 A2 WO 2016190712A2 KR 2016005653 W KR2016005653 W KR 2016005653W WO 2016190712 A2 WO2016190712 A2 WO 2016190712A2
Authority
WO
WIPO (PCT)
Prior art keywords
solution
weeks
composition
yellow
degassing
Prior art date
Application number
PCT/KR2016/005653
Other languages
English (en)
French (fr)
Other versions
WO2016190712A3 (ko
Inventor
조중웅
김경해
서민효
이사원
Original Assignee
주식회사 삼양바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양바이오팜 filed Critical 주식회사 삼양바이오팜
Priority to EP16800351.5A priority Critical patent/EP3305283B1/en
Priority to US15/561,118 priority patent/US10456362B2/en
Priority to JP2017561639A priority patent/JP6873923B2/ja
Publication of WO2016190712A2 publication Critical patent/WO2016190712A2/ko
Publication of WO2016190712A3 publication Critical patent/WO2016190712A3/ko
Priority to PH12017501828A priority patent/PH12017501828A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a pharmaceutical composition having improved stability, including pemetrexed or a pharmaceutically acceptable salt thereof, and a method for preparing the same.
  • Pemetrexed disodium salt is a new multitarget antifolate
  • NSCLC non-small cell lung cancer
  • malignant pleural mesothelioma and a wide range of solid cancers including breast cancer, colon cancer, uterine cancer, head and neck cancer and bladder cancer.
  • Altima Ju 1 and (3 ⁇ 4 ) are clinically used pemetrexed lyophilized injections that are used in combination with cisplatin in patients with inoperable malignant pleural mesothelioma who have not received chemotherapy in Korea or after prior chemotherapy. It was introduced and used in 2007 as a monotherapy for breast cancer and non-small cell lung cancer.
  • WO2012 / 121523 discloses a manufacturing process for enhancing stability by controlling the concentration of dissolved oxygen in the injection solution to lppm or less without using an antioxidant.
  • the manufacturing process disclosed in this document is capable of small scale production in a laboratory, but there are many difficulties in large scale commercial production.
  • dispensing water or aqueous solution in a vacuum vial after dispensing in a large-scale production there is a disadvantage that it is difficult to maintain the degassed state. Therefore, it was not easy to connect the process to increase the stability or the process to commercial production.
  • an object of the present invention is to provide a pharmaceutical composition stable in an aqueous solution state and a method for producing the same, which can proceed all the processes in a closed chamber in consideration of the above problems and the like, which enables large scale commercial production.
  • an object of the present invention is to provide a pharmaceutical composition and a method for producing the same by increasing the stability by removing oxygen.
  • the present invention comprises (a) a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent Freezing the solution to obtain a frozen product; And (b) degassing the freeze under vacuum decompression conditions to obtain a degassed freeze.
  • Another embodiment of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent, characterized in that it is frozen and degassed.
  • the solution of step (a) may be a solution that is not degassed, and may be frozen below -20 ° C in step (a).
  • the solution or pharmaceutical composition of step (a) may comprise 5 to 100 mg / ml, preferably 10 to 50 mg / ml, more preferably 20 to pemetrexed or a pharmaceutically acceptable salt thereof as pemetrexed. And 30 mg / ml.
  • the solution or pharmaceutical composition of step (a) may further comprise one or more selected from the group consisting of pharmaceutically acceptable excipients and pH adjusting agents, for example the excipient is manny or the P H
  • the modulator may be hydrochloric acid, sodium hydroxide or a combination thereof.
  • the excipient may be used in an amount of 0.1-10 weight 0 /., Preferably 1-5 weight 0 /., More preferably 2-3 weight%, based on the total weight of the solution or composition.
  • the pH can be used in an amount of 6 to 8, preferably 6.5 8.0, more preferably 6.6 to 7.8, even more preferably 7.0 to 7.5.
  • the solution or pharmaceutical composition of step (a) may further comprise an antioxidant.
  • an antioxidant conventional ones used in the art can be used, for example, monothioglycerol, L-cysteine, thioglycolic acid, ascorbic acid,
  • L-tryptophan, or a mixture thereof, and the like can be used, and preferably monothioglycerol, small sulfide, acetylcysteine, or a mixture thereof, more preferably monothioglycerol can be used.
  • the antioxidant may be used in a concentration of 0.01 to 10 mg / ml, preferably 0.1 to 5 mg / ml, more preferably 1 to 3 mg / ml.
  • the present invention is characterized in that in step (b), the solution comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent is degassed in the frozen frozen product.
  • the degassed freeze may include 95 parts by weight to 100 parts by weight of a solvent based on 100 parts of the solvent contained in the solution of step ( a ), and degassing at a dissolved oxygen concentration of 1.5 ppm or less in the step (b). It may be.
  • the step of freezing and degassing, optionally sealing may be carried out in a closed chamber, and thawing the degassed freeze after the step (b) or after the step of sealing. It may further comprise a step.
  • the vacuum decompression condition may be 2,000 mTorr or less.
  • One embodiment of the present invention comprises the steps of (a) freezing a solution comprising a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze; And (b) degassing the frozen product under vacuum decompression conditions to obtain a degassed frozen product.
  • Another embodiment of the present invention comprises the steps of (a) freezing a solution comprising a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a frozen product; And (b) degassing the freeze under vacuum decompression conditions to obtain a degassed freeze.
  • Preferred embodiments of the present invention comprise the steps of (a) freezing a solution comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent in a closed chamber to obtain a frozen product and (b) under vacuum decompression conditions Degassing the frozen product to obtain a degassed frozen product; Or (a) freezing the solution containing pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze, (b) degassing the freeze under vacuum reduced pressure to obtain a degassed freeze. And a step (c) sealing to remove dissolved oxygen in an aqueous solution to enhance the stability of the drug susceptible to oxidation.
  • the solution of step (a) may be one further comprising an antioxidant. It can be used a conventional antioxidant, and examples are as described above.
  • the present invention is a method of increasing the stability of the drug susceptible to oxidation by removing the dissolved oxygen in the aqueous solution, because all processes are continuously performed in a closed chamber, it is a process that can be easily performed in a sterile space without contamination, it is time It is also very effective in terms of convenience and yield.
  • the present invention can efficiently prepare an aqueous pharmaceutical composition that can be stored at room temperature, which blocks not only stability but also color change by using an antioxidant together with freezing and degassing.
  • the manufacturing method according to the present invention is preferably suitable for large-scale commercial production, and is a process that can be easily made in a sterile space without contamination, since the freezing, degassing and sealing processes are continuously performed in a closed chamber. It is a much more effective process in terms of time, convenience and yield.
  • One embodiment of the present invention comprises the steps of (a) freezing a solution comprising a pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent to obtain a freeze; And (b)
  • the present invention relates to a method for commercially producing a large-scale stable pharmaceutical composition comprising the step of degassing the frozen product under vacuum decompression conditions.
  • a further embodiment of the invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent, characterized in that it is frozen and degassed.
  • the pharmaceutical compositions according to the invention can be thawed and used as liquid parenteral preparations, in particular liquid injections.
  • step (a) a solution containing pemetrexed or a pharmaceutically acceptable salt thereof and an aqueous solvent may be prepared, and frozen to obtain a frozen product.
  • step of dispensing the solution in a layered container may be carried out before freezing.
  • the freezing, degassing and sealing processes may be sequentially performed in a closed chamber, thereby degassing during large scale production. There is an advantage to maintaining.
  • pemetrexed is a 5-substituted pyrrolo [2,3-d] pyrimidine compound, specifically represented by the following Formula 1, non-small cell lung cancer, malignant pleural mesothelioma including various cancers It refers to a multi-target antifolate which shows anticancer efficacy in species.
  • pharmaceutically acceptable salts means salts prepared according to methods conventional in the art. Specifically, the pharmaceutically acceptable salts include salts derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acids include hydrochloric acid, bromic acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-P-sulfonic acid, tartaric acid, acetic acid, citric acid, Methanesulfonic acid, formic acid, benzoic acid, malonic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid, and the like.
  • suitable bases may include, but are not limited to, alkali metals such as sodium, or potassium, alkaline earth metals such as magnesium. Especially,
  • compositions of pemetrexed may be, but are not limited to, pemetrexed disodium salt.
  • pemetrexed or a pharmaceutically acceptable salt thereof includes a hydrate of pemetrexed or a pharmaceutically acceptable salt thereof.
  • hydrates include, but are not limited to, 2.5 hydrates, 7 hydrates, and the like.
  • the aqueous solvent may be water or complete solution, preferably water for injection or saline solution.
  • the pharmaceutical composition according to the invention may further comprise at least one selected from the group consisting of pharmaceutically acceptable excipients and pH adjusting agents, for example the excipient is manny and / or the pH adjusting agent Hydrochloric acid, sodium hydroxide Or a combination thereof.
  • the excipient and pH adjusting agent may be added to the solution of step (a).
  • the pharmaceutical composition according to the present invention may further comprise an antioxidant.
  • an antioxidant conventional ones used in the art can be used, for example, monothioglycerol, L-cysteine, thioglycolic acid, ascorbic acid, sodium thiosulfate, butylated hydroxyanisole, propyl gallate, EDTA, L-methionine, L-cystine, L-cysteine, small sulfite, sodium sulfide, editiei 2 sodium, citric acid, lipoic acid, dihydrolipoic acid, L-arginine, L-glutathione, L-tryptophan, or these And a combination thereof, preferably, monothioglycerol, sodium sulfide, acetylcysteine, or a mixture thereof, more preferably monothioglycerol.
  • the antioxidant may be added to the solution of step (a). remind
  • Antioxidants can be used at concentrations of 0.01 to 10 mg / ml, preferably 0.1 to 5 mg / ml, more preferably 1 to 3 mg / ml.
  • monothioglycerol is 0.01 to 10 mg / ml, preferably more than 0.1 to 5 mg / ml, more preferably 0.2 to 3 mg / ml, for example 0.24 to 3 mg / ml, for example
  • it can be used at a concentration of 1 to 3 mg / ml.
  • the solution or solvent of step (a) may not be degassed.
  • the present invention degassing after freezing Degassing the solution containing the aqueous solvent or drug in the previous step or
  • the freezing of the solution in step (a) is -20 ° C or less, preferably -30 ° C or less, for example -20 ° C to -50 ° C, in particular -30 ° C to -50 ° C, More particularly, it can freeze at a temperature of -40 ° C.
  • a freezing method of a conventional liquid formulation may be applied.
  • step (b) The freeze degassed in step (b) is a solvent contained in the solution of step (a)
  • the pharmaceutical composition obtained according to the method of the present invention is not subjected to the drying step of removing the solvent in step (b), but to deoxygenation by reducing the content of dissolved oxygen.
  • the stability of the unstable drug pemetrexed or its pharmaceutically acceptable salt can be ensured.
  • the dissolved oxygen concentration of the degassed frozen product obtained in step (b) or after thawing composition may be 1.5 ppm or less.
  • the method for preparing the pharmaceutical composition may be performed in a hermetically sealed chamber, freezing and degassing, preferably sealing.
  • the composition may further comprise the step of filling nitrogen into the layered container.
  • this risk is achieved by reducing the negative pressure by filling nitrogen into the container in which the composition is layered after degassing and before sealing. Can be greatly reduced.
  • the step of degassing vacuum by filling with nitrogen before sealing with a rubber stopper after degassing Even after sealing and degassing, the dissolved oxygen is completely removed even though the vacuum is released.
  • the negative pressure is applied in the vial, so that air can be easily introduced into the minute hole.
  • the negative pressure in the vial is significantly reduced by filling nitrogen before sealing. Can be reduced.
  • Another method is to heat the liquid using the dissolved saturation of the gas depending on the temperature of the liquid.
  • This method has a problem of energy consumption for heating a liquid, and is not suitable for application to pharmaceuticals due to heat-denatured drug or excipient denaturation or change of concentration.
  • There are other methods such as membrane degassing and catalyst resin degassing, but there are many parts that are difficult to apply due to complex production processes.
  • the degassing process of step (b) may be carried out at a pressure of 2,000 mTorr or less, preferably 1,000 mTorr or less, more preferably 500 mTorr or less, for example, 300 mTorr or less.
  • the pressure may be at least 0 mTorr, for example at least 5 mTorr, for example at least 100 mTorr.
  • the degassing process can be carried out at a pressure of 0 to 2,000 mTorr, in particular 5 to 1,000 mTorr, more particularly 100 to 500 mTorr.
  • the degassing process may maintain the degree of vacuum for a predetermined time after achieving the desired degree of vacuum to remove oxygen or gas containing oxygen from the freeze.
  • the present invention is different from the general freeze-drying process is to release the vacuum before drying occurs when the desired degree of vacuum is reached after vacuum decompression after freezing. This is because as the drying proceeds, an increase in the concentration of the active ingredient due to the decrease of the solvent may occur.
  • the vacuum degree is preferably maintained within 12 hours, more preferably within 10 hours, even more preferably within 6 hours after reaching the desired reduced pressure conditions.
  • the sealing and / or vacuuming process can be performed immediately (at 0 hours) after reaching the desired decompression conditions.
  • the solvent contained in the degassed freeze or thawed solution of the present invention it is ideal that 100 parts by weight remain intact without drying at all, based on 100 weights of the solvent contained in the solution before freezing and degassing.
  • a solvent may be included, and more preferably 98 parts by weight to 100 parts by weight of a solvent ⁇ may be included.
  • the thawing in the process of thawing after sealing, the thawing may be performed by raising the temperature in the sealed chamber, or may be thawed after being taken out of the sealed chamber. Care should be taken as aluminum capping may cause inconvenience.
  • the pharmaceutical composition frozen and degassed after the step may be sterilized according to conventional methods, such as sterilization and / or heat sterilization.
  • the aqueous solvent or solution of step (a) of the present invention may be sterilized by conventional methods, for example, by sterile filtration and / or heat sterilization.
  • the pharmaceutical composition comprising pemetrexed prepared according to the method according to the present invention as described above or a pharmaceutically acceptable salt thereof and an aqueous solvent is characterized in that it is frozen and degassed and exhibits improved stability.
  • the glass vial containing the prepared solution was placed in a closed chamber with the rubber stopper slightly open- 4 (C for 1 hour.
  • the solution was completely frozen and kept closed at -40 ° C.
  • Vacuum decompression was started by operating the vacuum pump of the chamber. The vacuum degree was adjusted and the vacuum pump was stopped and sealed with a rubber stopper as soon as the desired vacuum was lowered as shown in Table 1. After checking the sealing state, the vacuum was released and the glass was released.
  • the vial was removed from the closed chamber, thawed and capped with an aluminum cap
  • Table 1 The dissolved oxygen concentration of the formulation obtained by freezing and degassing is shown in Table 1 below.
  • the dissolved oxygen was measured by stirring in a gloye box filled with nitrogen using a YSI 550A dissolved oxygen meter. Table 1 shows the characteristics of the thawing solution.
  • Example 1 In the same manner as in Example 1, a mixed solution layered on a vial was obtained.
  • the glass vial containing the prepared solution was placed in a closed chamber with a rubber stopper slightly open and frozen at -40 ° C for 1 hour. Confirming that the solution was completely frozen, vacuum decompression was started by operating the vacuum pump in a closed chamber while maintaining it at -40 ° C.
  • the degree of vacuum was lowered to 300 mTorr
  • the operation of the vacuum pump was stopped immediately, nitrogen was layered, and sealed with a rubber stopper.
  • the glass vial was taken out of the sealed chamber, thawed and capped with an aluminum cap.
  • the dissolved oxygen concentration of the obtained solution was about 5 ppm.
  • the glass vial containing the prepared solution was placed in a closed chamber with the rubber stopper slightly open, and then frozen at -40 ° C. for more than 1 hour. Confirming that the solution was completely frozen, vacuum decompression was started by operating the vacuum pump in a closed chamber while maintaining it at -40 ° C. As soon as the vacuum level dropped to 200 mTorr, the vacuum pump was stopped and sealed with a rubber stopper. After confirming the sealing, it was taken out of the glass vial sealed chamber, thawed and capped with an aluminum cap. The dissolved oxygen concentration of the obtained solution was about 0.5 ppm.
  • the glass vial containing the prepared solution was placed in a closed chamber with a rubber stopper slightly open and sufficiently frozen at ⁇ 40 ° C. for at least 3 hours. Verify that the solution is completely frozen and start vacuum decompression by operating the vacuum pump in a closed chamber while maintaining it at -40 ° C. If the vacuum level drops to 200 mTorr, immediately stop the operation of the vacuum pump and
  • the glass vial was taken out of the sealed chamber, thawed and capped with an aluminum cap.
  • the dissolved oxygen concentration of the obtained solution was about 0.5 ppm.
  • Example 2 In the same manner as in Example 1, a mixed solution filled in a vial was obtained.
  • the vial was capped with an aluminum cap.
  • the dissolved oxygen concentration of the obtained solution was about 7.0 ppm.
  • Stability evaluation was performed under accelerated conditions (40 ° C RH75%) of the compositions prepared in Examples 1 to 6 and 7 to 9 and Comparative Examples 1 to 2 and Comparative Examples 3 to 5. Stability evaluation was performed by high performance liquid chromatography (HPLC) of the properties and pH of the aqueous solution and the content and amount of the flexible material.
  • HPLC high performance liquid chromatography
  • Acetic acid acetate solution (30mM, pH 5.3 ⁇ 0.1): Add 1.7 mL of acetic anhydride per liter of purified water, mix well, adjust to pH5.3 ⁇ 0.1 with 50% sodium hydroxide, and filter if necessary.
  • Example 3 to 6 show almost similar results, and the degree of vacuum was nearly similar to that of degassing at 500 mTorr or less. In the case of the comparative example that did not perform the degassing process it was found that the stability is significantly lowered regardless of whether the nitrogen layer. This shows that the process of removing dissolved oxygen through degassing is a process that greatly improves the stability of pemetrexed. Table 6
  • Week 2 7.3 100.9 0.16 0.08
  • Week 3 Week 1 7.2 101. 0.19 0.08
  • Example 7 to 9 showed almost similar results in content change or formation of lead substance and showed good stability below the standard. Considering the properties, it can be seen that Example 7 and Example 9 showed excellent stability. However, when seeing Comparative Examples 3 to 5 using only antioxidants without vacuum degassing, all of the antioxidants used were not significantly deteriorated when only antioxidants were used without vacuum degassing. This shows that the process of removing dissolved oxygen by vacuum degassing is a necessary process even if an antioxidant is used.
  • Examples 7 and 9 using an antioxidant and vacuum degassing process had good stability as in Example 5, in which the content and the softening material were changed only by vacuum degassing.
  • Table 8 shows the results of performing a severe stability test (60 ° C./RH80%) for 4 weeks on the compositions of Examples 5 and 7 and Examples 10 to 15.
  • Example 1 1 prepared by the 1000 mg / ml formulation using the same concentration of the antioxidant as Example 7 prepared using the antioxidant (monothioglycerol 2.4 mg / ml) and the same concentration compared to Example 1 1 In addition, the results showed that the results showed almost similar severe stability.
  • the freeze vacuum degassing process is a process that shows the same function in both small and large production.
  • the above aqueous solution formulation which secured stability through freeze-vacuum degassing process was the most stable aqueous solution which can be stored at room temperature, which prevents the color change even when used with a small amount of antioxidant.
  • the vacuum degassing process can be applied as it is to a factory as well as a laboratory, so it can be scaled up.
  • Table 9 shows the results of performing a severe stability test (60 ° C./RH80%) for 3 months on the compositions of Examples 7 to 9 according to the compositions of Table 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

페메트렉시드와 같이 산화에 의한 분해가 쉽게 일어나는 약물을 포함하는 조성물의 제조에 있어서 제조공정상에서 산소를 제거하여 안정성을 높인 조성물 및 그 제조방법이 개시된다. 상기 제조방법은 밀폐된 챔버 내에서 동결 및 탈기하여 제조의 용이성을 높인 제조방법이며, 산화에 블안정한 약물의 안정성을 획기적으로 높인 조성물을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
안정화된 약학 조성물 및 그의 제조방법
【기술분야】
본 발명은 페메트렉시드 또는 그의 약학적으로 허용가능한 염을 포함하는 안정성이 향상된 약학 조성물 및 그 제조방법에 관한 것이다.
【배경기술】
페메트렉시드 이나트륨염은 새로운 다중표적 항엽산제로
비소세포폐암 (NSCLC), 악성 흉막중피종 (methothelioma) 및 유방암, 대장암, 자궁암, 두경부암 및 방광암을 포함하는 광범위한 고형암에 우수한 항암활성을 가지고 있다. 알림타 주씨1 &)는 임상에 사용되고 있는 페메트렉시드 동결건조제형 주사제로서, 국내에서는 화학요법을 받은 적이 없는 수술 불가능한 악성 흉막 중피종 환자에게 시스플라틴과 병용하여 사용하거나 이전 화학요법 실시 후, 국소 진행성 유방암과 비소세포 폐암의 단독요법제로 2007년에 출시되어 사용되고 있다.
현재 사용되고 있는 대부분의 동결건조 제형의 주사제는 수용액상에서 약물의 불안정성으로 인하여 동결건조분말 형태로 제조하고 이를 환자에
투약하기 전 생리식염수나 주사용수 등으로 재건하여 사용하고 있다. 그러나 이러한 재건 과정은 필요한 양올 측량해 동결건조제 바이알에 투입해야 하는 번거로움이 있고, 재건과정에서 미생물 오염의 위험이 있으며 재건 후 일정 시간 내에 사용해야 하는 제한도 있다. 그리고 이러한 동결건조 제형은 동결건조 과정에서 긴 건조 사이클로 인하여 많은 시간이 소비되어, 생산 비용이 높아지고 제조 공정도 복잡한 문제점이 있다. 이에, 제조시의 경제성 면이나 사용자의 편이성 등을 고려해 볼 때, 안정성이 확보된 즉시 사용가능한 (ready-to-use) 액상 조성물의 필요성이 대두되었다.
그러나, 페메트렉시드는 수용액내에서 빠른 산화를 일으켜 여러
유연물질을 생성하는 대표적인 약물이다. 액상에서 약물의 불안정성으로 인하여, 약물의 안정성을 높이는 방법으로 대표적인 것이 항산화제를 첨가하거나 용존 산소를 제거하는 방법이다ᅳ 항산화제를 사용하는 방법으로는 국제특허공개 제 WO2001/56575호에서 페메트렉시드를 모노티오글리세를, L-시스테인 또는 티오글리콜산의 항산화제와 함께 제제화한 액상제제를 개시한바 있다. 대한민국 등록특허 제 10-1260636호에서는 페메트렉시드에 항산화제로 아세틸 시스테인, 완충제로 시트르산을 사용하여 안정성을 높인 제제를 개시하였다. 국제특허공개 제 WO2012/121523호에서는 항산화제를 사용하지 않고 주사 용액중 용존산소의 농도를 lppm 이하로 조절하여 안정성을 높이는 제조공정에 대해 개시하였다. 그러나 상기 문헌에 개시된 제조공정은 실험실내에서의 소규모 생산은 가능하나 대규모의 상업용 생산에는 많은 공정의 어려움이 있다. 특히 대규모 생산시 주사용수나 수용액을 진공 탈기한 후 유리 바이알에 분주하는 경우 탈기된 상태를 유지하는 것에 상당한 어려움이 따르는 단점이 있다ᅳ 상기 문헌은 항산화제 등의 안정화제를 사용하지 않고 산화를 방지하여 안정성을 높일 수 있는 공정이나 이를 상업생산 가능한 공정으로 연결시키는 것은 쉬운 일이 아니었다.
【발명의 상세한 설명】
【기술적 과제】
그리하여 본 발명은 상기한 문제점등을 고려하여 밀폐된 챔버 내에서 모든 공정을 진행할 수 았어 대규모의 상업생산이 가능한, 수용액 상태에서 안정한 약학 조성물 및 그의 제조 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 산소를 제거하여 안정성을 높인 약학 조성물 및 이의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은 탈기한 수용액으로 밀폐된 시스템에서 조성물을 제조하는 번거로움 대신, 밀폐된 챔버내에서 동결 및 탈기하여 공정을 간단히 수행함으로써, 산화에 불안정한 약물의 안정성 확보와 함께 대규모 생산이 가능한, 페메트렉시드 함유 약학 조성물 및 이의 제조방법을 제공하는 것이다. 본 발명의 또 다른 목적은 항산화제 첨가와 함께 상기 동결 및 탈기 공정을 수행하여, 안정성은 물론 색상 변화까지 차단한, 실온보관 가능한 수용액 상태의 약학 조성물 및 그의 제조방법을 제공하는 것이다.
【기술적 해결방법】
상기와 같은 과제를 해결하기 위한 하나의 구현예로서, 본 발명은 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 약학 조성물의 제조방법에 관한 것이다.
본 발명의 또 다른 구현예는 페메트렉시드 또는 이의 약학적으로 허용 가능한 염과 수성 용매를 포함하고, 동결 및 탈기된 것을 특징으로 하는, 약학 조성물에 관한 것이다.
상기 단계 (a)의 용액은 탈기처리가 되지 않는 용액일 수 있으며, 단계 (a)에서 -20°C 이하로 동결될 수 있다.
상기 단계 (a)의 용액 또는 약학 조성물은 페메트렉시드 또는 이의 약학적으로 허용가능한 염을 페메트렉시드로서 5 ~ 100 mg/ml, 바람직하게는 10 ~ 50 mg/ml, 보다 바람직하게는 20 ~ 30 mg/ml로 포함할 수 있다.
상기 단계 (a)의 용액 또는 약학 조성물은 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함할 수 있으며, 예를 들면 상기 부형제는 만니를이거나, 상기 PH 조절제는 염산, 수산화나트륨 또는 이들의 흔합물일 수 있다. 상기 부형제는 용액 또는 조성물 총 중량 대비 0.1 - 10 중량0 /。, 바람직하게는 1 ~ 5 중량0 /。, 보다 바람직하게는 2 ~ 3 중량 %로 사용할 수 있으며, 상기 pH 조절제는 용액 또는 조성물의 pH를 6~ 8, 바람직하게는 6.5 8.0, 보다 바람직하게는 6.6〜 7.8, 보다 더 바람직하게는 7.0 ~ 7.5 범위로 조절하는 양으로 사용할 수 있다.
상기 단계 (a)의 용액 또는 약학 조성물은 항산화제를 추가로 포함할 수 있다. 항산화제로서는, 당업계에서 사용돠는 통상적인 것들을 사용할 수 있으며, 예를 들어 모노티오글리세를, L-시스테인, 티오글리콜산, 아스코르브산,
티오황산나트륨, 부틸레이티드하이드록시아니솔, 프로필갈레이트, EDTA,
L-메티오닌, L-시스틴, L-시스테인, 소듐설파이트, 소듐설파이드, 이디티에이 2 나트륨, 구연산, 리포익산, 디하이드로리포익산, L-아르기닌, L-글루타티온,
L-트립토판, 또는 이들의 흔합물 등을 사용할 수 있으며, 바람직하게는, 모노티오글리세를, 소듬설파이드, 아세틸시스테인, 또는 이들의 흔합물, 보다 바람직하게는, 모노티오글리세를을 사용할 수 있다. 상기 항산화제는 0.01 ~ 10 mg/ml, 바람직하게는 0.1 ~ 5 mg/ml, 보다 바람직하게는 1 ~ 3 mg/ml의 농도로 사용할 수 있다. 본 발명에서는 상기 단계 (b)에서 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액이 동결된 동결물을 탈기하는 것을 일특징으로 한다. 상기 탈기된 동결물은 단계 (a)의 용액에 함유된 용매 100 중량을 기준으로 95 중량부 내지 100 중량부의 용매를 포함하는 것일 수 있으며, 상기 단계 (b)에서 용존산소농도 1.5 ppm 이하로 탈기하는 것일 수 있다.
바람직하게는, 상기 동결 및 탈기, 선택적으로 밀봉하는 단계는 밀폐된 챔버 내에서 수행될 수 있으며, 상기 단계 (b)를 수행한 후에, 또는 밀봉하는 단계를 수행한 후에 탈기된 동결물을 해동하는 단계를 추가로 포함할 수 있다. 상기 단계 (b)에서 진공감압 조건은 2,000 mTorr 이하의 조건일 수 있다. 본 발명의 일구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 약학 조성물의 용존산소 농도를 감소시키는 방법에 관한 것이다.
본 발명의 또 다른 구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 약학 조성물을 안정화시키는 방법에 관한 것이다.
본 발명의 바람직한 구현예는 밀폐된 챔버 내에서 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계 및 (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계; 또는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계, (b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계 및 (c) 밀봉하는 단계를 포함하는, 수용액상에서 용존 산소를 제거하여 산화에 약한 약물의 안정성을 높이는 방법에 관한 것이다.
본 발명의 다른 구현예에서, 단계 (a)의 용액은 항산화제를 추가로 포함하는 것일 수 있다. 통상적인 항산화제를 사용할 수 있으며, 그 예들은 전술한 '바와 같다. 본 발명은 수용액상에서 용존 산소를 제거하여 산화에 약한 약물의 안정성을 높이는 방법으로서, 모든 공정이 밀폐된 챔버 내에서 연속적으로 이루어지므로 오염 없이 무균 공간에서 간편하게 이루어질 수 있는 공정으로 다른 탈기방법보다 시간이나 편의성, 수율 면에서도 월등히 효과적이다.
나아가, 본 발명은 동결 및 탈기와 함께 항산화제를 사용하여, 안정성은 물론 색상 변화까지 차단한, 실온보관 가능한 수용액상 약학 조성물을 효율적으로 제조할 수 있다.
【유리한 효과】
본 발명에 따른 제조방법은, 바람직하게는 밀폐된 챔버 내에서 동결, 탈기 및 밀봉 공정이 연속적으로 이루어지므로, 대규모 상업 생산에 적합하며, 오염 없이 무균 공간에서 간편하게 이루어질 수 있는 공정으로서, 다른 탈기방법보다 시간이나 편의성, 수율면에서도 월등히 효과적인 공정이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일구현예는 (a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및 (b)
진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 안정성이 우수한 약학 조성물을 대규모로 상업 생산할 수 있는 방법에 관한 것이다.
본 발명의 추가 구현예는 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하고, 동결 및 탈기된 것을 특징으로 하는, 약학 조성물을 제공하는 것이다. 본 발명에 따른 약학 조성물은 해동될 수 있으며, 액상 비경구 제제, 특히 액상 주사제로 사용될 수 있다.
상기 단계 (a)에서, 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 제조하고, 이를 동결하여 동결물을 얻을 수 있다. 또한, 동결 전에 상기 용액을 층진 용기에 분주하는 단계를 수행할 수도 있다. 본 발명의 제조방법에서는 상기 단계 (a)의 용액을 앰플 또는 바이알과 같은 용기에 분주한 후 밀폐된 챔버 내에서 동결, 탈기 및 밀봉 공정을 순차적으로 수행할 수 있으므로, 대규모의 생산시 탈기 상태를 유지하는데 유리한 장점이 있다. 본 발명에서, "페메트렉시드 (pemetrexed)' '는 5-치환 피를로 [2,3-d]피리미딘 화합물로서, 구체적으로 하기 화학식 1로 표시되며, 비소세포 폐암, 악성 흉막 중피종올 비롯한 다양한 암 종에서 항암효능을 나타내는 다중표적 항엽산제를 의미한다.
화학식 1]
Figure imgf000007_0001
본 발명에서, "약학적으로 허용가능한 염"은 당해 기술분야에서 통상적인 방법에 따라 제조된 염을 의미한다. 구체적으로, 상기 약학적으로 허용가능한 염은 약학적으로 허용되는 무기산과 유기산 및 염기로부터 유도된 염을
포함하지만 이것으로 한정되지는 않는다. 적합한 산의 예로는 염산, 브롬산, 브름화수소산, 황산, 질산, 과염소산, 푸마르산, 말레산, 인산, 글리콜산, 락트산, 살리실산, 숙신산, 를루엔 -P-설폰산, 타르타르산, 아세트산, 시트르산, 메탄설폰산, 포름산, 벤조산, 말론산, 나프탈렌 -2-설폰산, 벤젠설폰산 등을 포함할 수 있다. 적합한 염기의 예로는 알칼리 금속, 예를 들어, 나트륨, 또는 칼륨, 알칼리 토금속, 예를 들어, 마그네슘을 포함할 수 있으나 이에 제한되지 않는다. 특히,
페메트렉시드의 약학적으로 허용가능한 염은 페메트렉시드 이나트륨염일 수 있으나 이에 제한되지 않는다.
본 발명에서,"페메트렉시드 또는 그의 약학적으로 허용가능한 염"은 페메트렉시드 또는 그의 약학적으로 허용가능한 염의 수화물을 포함하는
개념으로서, 모든 형태의 수화물, 예를 들어 2.5수화물 , 7수화물 등을 포함하나 이들로 제한되는 것은 아니다.
상기 수성 용매는 물 또는 완층용액일 수 있으며, 바람직하게는 주사용수 또는 생리식염수일 수 있다ᅳ
본 발명에 따른 약학 조성물은 추가로 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함할 수 있으며, 예를 들면 상기 부형제는 만니를이고 /거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 흔합물일 수 있다. 상기 부형제 및 pH 조절제는 단계 (a)의 용액에 추가될 수 있다.
본 발명에 따른 약학 조성물은 항산화제를 추가로 포함하는 것일 수 있다. 항산화제로서는, 당업계에서 사용되는 통상적인 것들을 사용할 수 있으며, 예를 들어 모노티오글리세를, L-시스테인, 티오글리콜산, 아스코르브산, 티오황산나트륨, 부틸레이티드하이드록시아니솔, 프로필갈레이트, EDTA, L-메티오닌, L-시스틴, L-시스테인, 소듬설파이트, 소듐설파이드, 이디티에이 2 나트륨, 구연산, 리포익산, 디하이드로리포익산, L-아르기닌, L-글루타티온, L-트립토판, 또는 이들의 흔합물 등을 사용할 수 있으며, 바람직하게는, 모노티오글리세를, 소듐설파이드, 아세틸시스테인, 또는 이들의 흔합물, 보다 바람직하게는, 모노티오글리세롤을 사용할 수 있다. 상기 항산화제는 단계 (a)의 용액에 추가될 수 있다. 상기
항산화제는 0.01 ~ 10 mg/ml, 바람직하게는 0.1 ~ 5 mg/ml, 보다 바람직하게는 1 ~ 3 mg/ml의 농도로 사용할 수 있다. 예를 들어, 모노티오글리세를은 0.01 ~ 10 mg/ml, 바람직하게는 0.1 초과 ~ 5 mg/ml, 보다 바람직하게는 0.2〜 3 mg/ml, 예를 들어 0.24 - 3 mg/ml, 예를 들어 1 ~ 3 mg/ml의 농도로 사용할 수 있다. 상기 단계 (a)의 용액 또는 용매는 탈기처리되지 않은 것일 수 있다.
종래에 액상 제제의 용존산소 농도를 조절하기 위하여, 수성용매 그 자체 또는 수성 용매에 약물을 용해시킨 용액에 대해 용존산소 농도를 조절하기 위한 단계를 수행할 필요가 있으나, 본 발명은 동결후 탈기처리를 수행하므로 그 전단계에서 수성용매 또는 약물을 포함하는 용액에 대해 탈기처리 또는
용존산소의 농도를 조절하기 위한 처리가 필요하지 않다. 따라서, 본 발명에 따르면, 안정성이 높은 액상 제제를 용이하게 간단히 제조할 수 있다.
상기 단계 (a)에서 상기 용액의 동결은 -20°C 이하, 바람직하게는 -30°C 이하, 예를 들어 -20°C 내지 -50°C, 특히 -30 °C 내지 -50 °C, 보다 특히 -40°C의 온도에서 동결할 수 있다. 동결 방법은 통상의 액상제제의 동결방법을 적용할 수 있다.
상기 단계 (b)에서 탈기된 동결물은, 단계 (a)의 용액에 함유된 용매
100중량을 기준으로 95 중량부 내지 100 중량부, 또는 더욱 바람직하게는 98 중량부 내지 100 중량부의 용매를 포함하는 것일 수 있으며, 동결물의 탈기 후에 용매함량이 대부분 그대로 유지되어 해동할 경우 액상의 조성물이 얻어지며, 따라서 재건 등을 수행할 필요없이 바로 사용할 수 있는 이점이 있다. 종래의 동결건조된 분말형 제제와 달리, 본 발명의 방법에 따라 얻어진 약학 조성물은 단계 (b)에서 용매를 제거하는 건조공정이 아니라, 용존산소의 함량을 감소시키는 탈기공정을 수행함으로써, 산소에 불안정한 약물인 페메트렉시드 또는 이의 약학적으로 허용가능한 염의 안정성을 확보할 수 있다.
상기 단계 (b)에서 얻어진 탈기된 동결물 또는 이후 해동된 조성물의 용존산소농도는 1.5 ppm 이하일 수 있다. 탈기공정을 수행하여, 조성물 중에 함유된 용존산소의 함량을 감소시켜, 산소에 불안정한 약물인 페메트렉시드 또는 이의 약학적으로 허용가능한 염의 안정성을 확보할 수 있다.
본 발명의 또 다른 일예에서, 상기 약학 조성물의 제조방법은 동결 및 탈기공정, 바람직하게는 밀봉공정을 밀폐 챔버 내에서 수행할 수 있다.
구체적으로, -20 °C이하의 온도에서 상기 단계 (a)의 용액을 동결시킨 후, 진공감압하여 동결 상태의 조성물에서 산소를 제거하고 이를 바로 밀봉함으로써 한 챔버내에서 일체의 공정으로 동결, 탈기 및 밀봉을 모두 수행할 수 있다. 본 발명의 일예에서, 상기 단계 (a)의 동결 및 단계 (b) 탈기공정 이후 및 밀봉공정 전에, 조성물이 층진된 용기에 질소를 충진하는 공정을 추가로 포함할 수 있다. 충진 용기의 상부 공간에 잔공으로 생긴 음압으로 인하여 대기중의 공기가 역류할 가능성을 완전히 배제하기 위하여, 탈기 공정후, 밀봉공정 전에, 조성물이 층진된 용기에 질소를 충진하여 음압을 줄여줌으로써 이러한 위험성을 크게 감소시킬 수 있다. 구체적으로, 탈기 후 고무마개로 밀봉하기 전 질소를 충진하여 진공해제하는 공정을 포함한다. 탈기 후 밀봉하고 진공을 해제하여도 용존산소를 층분히 제거하나 바이알 내에 음압이 걸려있어 미세한 구멍에도 공기가 쉽게 투입될 가능성이 있기 때문에 밀봉 전 질소를 충진하여 바이알 내의 음압을 상당 부분 낮추어 줌으로써 이러한 위험성을 줄일 수 있다.
일반적으로 용액상태에서 진공감압을 하면 증기압에 의해 바로 수분이 끓어 넘치는 현상이 일어나지만, 밀폐된 챔버 내에서 용액 상태의 약학 조성물을 동결 및 탈기하는 경우 조성물의 성분 및 함량 손실 없이 진공감압으로 수용액보다 빙점이 낮은 기체가 제거 가능하다. 본 명세서에서, 용어 "탈기 "란 고체 또는 액체중에 포함되어 있는 기체분자를 제거하는 것이다. 이 기체분자를 제거하는 기본 원리는 헨리의 법칙과 달턴의 분압의 법칙이 적용된다. 헨리의 법칙은 용액중의 용존 기체의 양은 그 액체와 접하고 있는 기체의 압력에 비례한다는 것으로써 액체와 접하는 기체의 압력을 낮추어서 즉, 진공으로 하여 액체 중의 기체분자가 배출되도록 하는 것이 기본 원리이다.
또 다른 방법으로는 액체의 온도에 따라 기체의 용존 포화도가 달라지는 것을 이용하여 액체를 가열하는 방법이 있다. 이 방법은 액체를 가열하기 위한 에너지 소비의 문제가 있고 또 열에 약한 약물이나 부형제의 변성이나 농도의 변화 등으로 의약품에 적용하기에는 적합한 방법이라 할 수 없다. 그 외 막탈기나 촉매수지 탈기 등의 방법이 있으나 생산공정이 복잡하여 적용하기에는 어려운 부분이 많이 있다. 본 발명에서는 진공감압 탈기공정을 통해 수용액 내에 존재하는 산소의 농도를 현저히 낮춤으로써 산화반응올 차단할 수 있는 것이다. 상기 단계 (b)의 탈기공정은 2,000 mTorr 이하의 압력, 바람직하게는 1,000 mTorr 이하, 보다 바람직하게는 500 mTorr 이하, 예를 들면 300 mTorr 이하의 압력에서 수행할 수 있다. 상기 압력은 0 mTorr 이상, 예를 들어 5 mTorr 이상, 예를 들어 100 mTorr 이상일 수 있다. 예를 들어, 탈기공정은 0 내지 2,000 • mTorr, 특히 5 내지 1,000 mTorr, 보다 특히 100 내지 500 mTorr의 압력에서 수행될 수 있다. 상기 탈기공정은 목적하는 진공도를 달성한 후에 소정의 시간 동안 진공도를 유지하여, 동결물에 함유된 산소 또는 산소를 포함하는 기체를 제거할 수 있다. 본 발명이 일반적인 동결건조공정과 다른 점은 동결 후 진공감압 후 원하는 진공도에 이르면 건조가 일어나기 전에 진공을 해제하여야 하는 것이다. 이것은 건조가 진행될수록 용매의 감소로 인한 유효성분 등의 농도 증가가 일어날 수 있기 때문이다. 건조를 미연에 방지하기 위해서는 목적하는 감압조건에 이른 후에, 진공도를 바람직하게는 12시간 이내, 보다 바람직하게는 10시간 이내, 보다 더 바람직하게는 6시간 이내로 유지한다. 예를 들어, 목적하는 감압조건에 이른 후 즉시 (0시간에) 밀봉 및 /또는 진공해제 공정을 수행할 수 있다.
본 발명의 탈기된 동결물 또는 해동된 용액에 함유된 용매의 경우, 동결 및 탈기 전 용액에 함유된 용매 100중량을 기준으로 전혀 건조 없이 100중량부가 그대로 남아 있는 것이 이상적이나, 바람직하게는 95중량부 내지 100중량부의 용매를 포함할 수 있으며, 보다 바람직하게는 98 중량부 내지 100중량부의 용매 Ϊ 포함할 수 있다.
또한 본 발명에서는 밀봉 후 해동하는 공정에 있어서 밀폐된 챔버 내에서 온도를 올려가며 해동하여도 되고, 밀폐된 챔버 내에서 꺼낸 후 해동하여도 된다, 너무 낮은 온도에서 바이알을 꺼내면 바이알 표면의 습기로 인하여 알루미늄 캡핑 시 불편함을 초래할 수 있으므로 이는 주의하여야 한다.
나아가, 상기 단계 이후에 동결 및 탈기된 상기 약학 조성물을 통상의 방법, 예를 들어 멸균여과 및 /또는 가열멸균 등의 방법에 따라 멸균처리할 수도 있다. 또한 본 발명의 단계 (a)의 수성 용매, 또는 용액을 통상의 방법, 예를 들어 멸균여과 및 /또는 가열멸균 등의 방법에 따라 멸균처리를 수행할 수도 있다. 이상과 같은 본 발명에 따른 방법에 따라 제조된 페메트렉시드 또는 이의 약학적으로 허용 가능한 염 및 수성 용매를 포함하는 약학 조성물은 동결 및 탈기된 것을 특징으로 하며 향상된 안정성을 나타낸다.
【발명의 실시를 위한 형태】
다음의 이하 본 발명을 실시예을 통하여 보다 상세히 설명하지만, 이들은 본 발명을 설명하기 위한 것이며, 본 발명의 범주가 이들에 의해 제한되는 것은 아니다.
[실시예 1 내지 5] 진공도에 따른 액상제제의 제조
(1) 바이알에 충진된 흔합용액
주사용수 1500ml에 페메트렉시드 이나트륨 2.5수화물 48.3g
(페메트렉시드로 함량기준 40g)을 완전히 녹이고 여기에 만니를 40g을 넣어 완전히 용해하였다. 상기 용액에 iN HCl을 가하여 pH를 7.3으로 맞추고 주사용수를 가하여 흔합 용액의 총 무게를 l,600g으로 조절하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다. 상기 제조한 흔합용액을 멸균필터를 이용하여 여과하고, 클린 벤치에서 5ml 바이알에 4ml씩 층진하고 고무마개로 밀봉하여, 상기 바이알에 충진된 흔합용액을 얻었다. (2) 동결 및 탈기
상기 제조한 용액이 담긴 유리 바이알을 고무마개를 약간 열어준 상태로 밀폐된 챔버에 넣고 -4( C에서 1시간 동안 동결시켰다. 완전히 용액이 동결된 것을 확인하고 -40 °C로 유지하면서 밀폐된 챔버의 진공펌프를 작동시켜 진공 감압을 시작하였다. 아래 표 1과 같이 진공도를 조절하고 원하는 진공도까지 내려가면 즉시 진공펌프의 작동을 중지하고 고무마개로 밀봉하였다. 밀봉상태를 확인한 후 진공올 해제하고 유리 바이알을 밀폐된 챔버에서 꺼낸 후 해동하고 알루미늄 캡으로 캡핑하였다. 동결 및 탈기를 수행하여 얻는 제제의 용존 산소농도를 하기 표 1에 나타냈다.
용존 산소의 측정은 YSI 550A 용존산소 측정기를 사용하여 질소로 충진되어 있는 gloye box 내에서 교반하면서 측정하였다. 상기 해동용액의 특성을 표 1에 나타냈다.
【표 1 ]
Figure imgf000012_0001
[실시예 61 동결 및 탈기후 질소충진한 액상제제의 제조
상기 실시예 1과 동일한 방법으로 바이알에 층진된 흔합용액을 얻었다. 상기 제조한 용액이 담긴 유리 바이알을 고무마개를 약간 열어준 상태로 밀폐된 챔버에 넣고 -40°C에서 1시간 동안 동결시켰다. 완전히 용액이 동결된 것을 확인하고 -40°C로 유지하면서 밀폐된 챔버의 진공펌프를 작동시켜 진공 감압을 시작하였다. 진공도가 300 mTorr까지 내려가면 즉시 진공펌프의 작동을 중지하고 질소를 층진한 후 고무마개로 밀봉하였다. 밀봉상태를 확인한 후 진공이 해제되면 유리 바이알을 밀폐된 챔버에서 꺼낸 후 해동하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 으 5ppm 이었다. [실시예 7 내지 91 항산화제 첨가 및 동결탈기한 액상제제의 제조 주사용수 1500ml에 페메트렉시드 이나트륨 2.5수화물 48.3g
(페메트렉시드로 함량기준 40g)을 완전히 녹이고 여기에 만니를 40g을 넣어 완전히 용해하였다. 여기에 표 2에서와 같이 항산화제를 첨가하고 상기 용액에 0.1N HC1 또는 0.1~lN NaOH를 가하여 pH를 7.3으로 맞추고 주사용수를 가하여 흔합 용액의 총 무게를 l ,600g으로 조절하였다. 상기 얻어진 용액의 용존 산소 농도는 약 그 Oppm 이었다. 상기 제조한 흔합용액을 멸균필터를 이용하여 여과하고 클린 벤치에서 5ml 바이알에 4ml씩 충진하고 고무마개로 밀봉하여, 상기 바이알에 충진된 혼합용액을 얻었다. 상기 제조한 용액이 담긴 유리 바이알을 고무마개를 약간 열어준 상태로 밀폐된 챔버에 넣고 -40 °C에서 1시간 이상 층분히 동결시켰다. 완전히 용액이 동결된 것을 확인하고 -40 °C로 유지하면서 밀폐된 챔버의 진공펌프를 작동시켜 진공 감압을 시작하였다. 진공도가 200 mTorr까지 내려가면 즉시 진공펌프의 작동을 중지하고 고무마개로 밀봉하였다. 밀봉상태를 확인한 후 유리 바이알올 밀폐된 챔버에서 꺼낸 후 해동하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 0.5ppm 이었다.
【표 2】
Figure imgf000013_0001
[실시예 10 내지 15] 항산화제 농도의 영향 및 스케일업 영향을 보기 위한 동결탈기한 액상제제의 제조
주사용수 7500ml에 페메트렉시드 이나트륨 2.5수화물 241.5g
(페메트렉시드로 함량기준 200g)을 완전히 녹이고 여기에 만니를 200g을 넣어 완전히 용해하였다ᅳ 여기쎄 표 3에서와 같이 항산화제의 농도를 다르게 첨가하고 상기 용액에 0.1N HC1 또는 0.1~lN NaOH를 가하여 pH를 7.3으로 맞추고 주사용수를 가하여 흔합 용액의 총 무게를 8,000g으로 조절하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다. 상기 제조한 흔합용액을 멸균필터를 이용하여 여과하고, 클린 벤치에서 50ml 바이알에 40ml씩 충진하고 고무마개로 밀봉하여, 상기 바이알에 충진된 흔합용액을 얻었다. 상기 제조한 용액이 담긴 유리 바이알을 고무마개를 약간 열어준 상태로 밀폐된 챔버에 넣고 -40 °C에서 3시간 이상 충분히 동결시켰다. 완전히 용액이 동결된 것을 확인하고 -40 °C로 유지하면서 밀폐된 챔버의 진공펌프를 작동시켜 진공 감압을 시작한다. 진공도가 200 mTorr까지 내려가면 즉시 진공펌프의 작동을 중지하고 고무마개로
밀봉하였다. 밀봉상태를 확인한 후 유리 바이알을 밀폐된 챔버에서 꺼낸 후 해동하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 0.5ppm 이었다.
【표 3】
Figure imgf000014_0001
[비교예 1] 동결 및 탈기하지 않은 액상제제의 제조
상기 실시예 1과 동일한 방법으로 바이알에 충진된 흔합용액을 얻었다. 상기 바이알을 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다.
[비교예 2] 동결 및 탈기하지 않고 질소층진한 액상제제의 제조 상기 실시예 1과 동일한 방법으로 바이알에 층진된 흔합용액올 얻었다. 상기 바이알에 질소를 충진한 후 고무마개로 밀봉하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다.
【비교예 3 내지 5J 항산화제 첨가하고 동결 및 탈기하지 않은 액상제제의 제조
상기 실시예 7 내지 9와 동일한 방법으로 바이알에 층진된 흔합용액을 얻었다. 상기 바이알을 고무마개로 밀봉하고 알루미늄 캡으로 캡핑하였다. 상기 얻어진 용액의 용존 산소 농도는 약 7.0ppm 이었다. [실험예 11 가속안정성 시험
상기 실시예 1 내지 6 및 7 내지 9와 비교예 1 내지 2 및 비교예 3 내지 5에서 제조한 조성물에 대해서 가속조건 (40°C RH75%) 에서 안정성 평가를 수행하였다. 안정성 평가는 수용액의 성상 및 pH 그리고 함량 및 유연물질의 양을 고속액체크로마토그래피 (HPLC)로 분석하였다.
A. 함량 액체크로마토그래프 조건
a. 칼 럼 : ZorbaxSB-C8,4.6mm X 150mm,3.5 jm, 또는 이와 유사한 칼럼 b. 검출기 : 자외부흡광광도계 (측정파장 : 285 nm)
c. 주입량 : 20 ^
d. 유 속 : 1.0mL/min
e. 칼럼온도 : 30°C
f. 이동상 : 초산완층액 : 아세토니트릴 =(89 :11)(ν/ν%)
※ 초산완층액 (30mM,pH5.3±0.1): 정제수 1 L 당 1.7 mL의 아세트산 무수물을 넣고 잘 흔합한 후 50% 수산화나트륨으로 pH5.3±0.1로 조절한 뒤 필요 시 여과
B. 유연물질 액체크로마토그래프 조건
a. 칼 럼 : ZorbaxSB-C8,4.6mm x 150mm,3.5 jm, 또는 이와 유사한 칼럼 b. 검출기 : 자외부흡광광도계 (측정파장: 250 nm)
c. 주입량 : 20 ≠ d. 유 속 : l.OmL/min
e. 칼럼온도 :25°C
f. 자동주입기 온도 :2 내지 8°C
g. 이동상 : 구배 용출
【표 4】
Figure imgf000016_0001
이동상 A: 포름산 완층액 : 아세토니트릴 =95 :5(v/v)
이동상 B: 포름산 완층액 : 아세토니트릴 =70:30 (v/v)
포름산 완층액 : 암모늄 포름산 2.9g을 2L의 정제수에 녹인 후 포름산을 이용하여 pH3.5±0.1로 조정함. 상기한 바와 같이 모든 실시예와 비교예의 가속 안정성시험
(4( C/RH75%)을 12주간 수행한 결과를 표 5 및 표 6에 제시하였다. 안정성시험의 평가기준은 pH는 6.6 내지 7.8, 함량은 95 내지 105%, 총유연물질은 1.5% 이하, 개개유연물질은 으2% 이하이다.
【표 5】
시간 총유연물질 개개유연
성상ᄋ pH 함량 (%)
(주) (%) 물질 (%) 초기 무시1 7.3 103.2 0.04 0.04
1주 연한미황색 7.3 99.5 0.65 0.48 실시예 1 2주 미황색 7.3 91.7 2.15 0.99
3주 황색 7.2 88.1 4.88 2.11
4주 황색 7.1 84.7 7.66 3.77 8주 황색 7.1 82.3 12.60 5.52
12주 진한황색 7.0 74.0 15.33 6.89 초기 口 ΛΪΙ
丁섹 7.3 102.4 0.04 0.04
1주 연한미황색 7.3 100.3 0.07 0.05
2주 연한미황색 7.2 99.1 0.15 0.10 실시예 2 3주 연한미황색 7.3 99.2 0.96 0.46
4주 미황색 7.2 98.2 1.25 0.56
8주 미황색 7.2 96.7 2.33 0.96
12주 황색 7.1 95.3 3.05 1.38 초기 무색 7.3 102.1 0.04 0.04
1주 연한미황색 7.3 101.4 0.05 0.05
2주 연한미황색 7.3 102.5 0.06 0.06 실시예 3 3주 연한미황색 7.3 101.8 0.09 0.06
4주 연한미황색 7.2 101.4 0.12 0.07
8주 연한미황색 7.2 100.1 0.16 0.10
12주 연한미황색 7.2 100.6 0.21 0.12 초기 무색 7.3 103.3 0.05 0.05
1주 무색 7.3 103.3 0.05 0.05
2주 연한미황색 7.3 103.0 0.06 0.05 실시예 4 3주 연한미황색 7.3 102.5 0.06 0.05
4주 연한미황색 7.3 102.6 0.1 1 0.06
8주 연한미황색 7.1 101.1 0.12 0.07
12주 연한미황색 7.2 101.6 0.15 0.08 초기 7.3 102.7 0.05 0.05
1주 무색 7.3 103.4 0.05 0.05 실시예 5 2주 연한미황색 7.3 102.1 0.05 0.05
3주 연한미황색 7.2 102.2 0.06 0.06
4주 연한미황색 7.2 102.0 0.10 0.06 8주 연한미황색 7.2 101.7 0.13 0.07
12주 연한미황색 7.2 101.5 0.16 0.09 초기 무색 7.3 103.1 0.05 0.05
1주 무색 7.3 102.4 0.05 0.05
2주 연한미황색 7.2 102.1 0.05 0.05 실시예 6 3주 연한미황색 7.3 101.1 0.06 0.06
4주 연한미황색 7.2 101.8 0.10 0.06
8주 연한미황색 7.1 102.1 0.12 0.07
12주 연한미황색 7.2 101.6 0.14 0.08 초기 무색 7.3 103.5 0.05 0.05
1주 연한미황색 7.2 97.5 0.90 0.52
2주 미황색 7.2 91.0 3.05 1.33 비교예 1 3주 황색 7.1 84.1 9.09 4.84
4주 황색 7.1 78.2 1 1.72 5.42
8주 진한황색 7.0 71.5 16.20 6.10
12주 진한황색 6.9 61.9 18.56 7.14 초기 무색 7.3 102.9 0.05 0.05
1주 연한미황색 7.3 99.1 0.76 0.53
2주 미황색 7.2 95.7 2.52 1.1 1 비교예 2 3주 황색 7.2 82.2 8.09 2.84
4주 황색 7.1 79.2 12.72 4.29
8주 진한황색 7.1 72.8 15.01 6.00
12주 진한황색 7.0 66.5 17.56 6.84 측정결과 실시예 3 내지 6은 거의 비슷한 결과를 보이며, 진공도는 500 mTorr 이하에서는 거의 탈기가 비슷하게 진행된 것으로 보여졌다. 탈기공정을 수행하지 않은 비교예의 경우 질소 층진 여부에 관계 없이 안정성이 현저히 떨어지는 것을 볼 수 있었다. 이를 통해 탈기를 통해 용존산소를 제거하는 공정은 페메트렉시드의 안정성을 월등히 개선시켜 주는 공정임을 보여준다. 【표 6】
시간 총유연물질 개개유연
ύ ᄋ pH 함량 (%)
(주) (%) 물질 (%) 초기 丁ᄀ 7.3 101.7 0.10 0.05
1주 끅ᅳ Α
丁 -1 7.3 101.5 0.10 0.07
2주 丁ᄀ 7.3 100.9 0.16 0.08 실시예 7 3주 丁 — 1 7.2 101. 0.19 0.08
4주 丁ᄀ 7.2 100.5 0.21 0.09
8주 무시1
丁ᄀ 7.2 101.0 0.28 0.10
12주 ᄀ^ I 7.1 100.3 0.32 0.1 1 초기 丁ᄀ 7.4 102.3 0.08 0.04
1주 丁ᄀ 7.4 102.0 0.05 0.05
2주 연한미황색 7.3 101.1 0.08 0.08 실시예 8 3주 연한미황색 7.3 101.5 0.08 0.08
4주 연한미황색 7.3 101.4 0.09 0.09
8주 연한미황색 7.3 101.0 0.16 0.10
12주 미황색 7.2 101.4 0.26 0.1 1 초기 무색 7.3 101.9 0.14 0.05
1주 丁ᄀ 7.3 102.3 0.18 0.07
2주 丁 "Ί 7.2 102.0 0.21 0.08 실시예 9 3주 우시 1
丁 — 1 7.2 101.7 0.24 0.09
4주 丁ᄀ 7.2 101.8 0.31 0.09
8주 丁 I 7.1 101.4 0.40 0.1 1
12주 무색 7.1. 101.1 0.47 0.14 초기 무색 7.3 102.5 0.13 0.05 비교예 3 1주 미황색 7.3 101.0 0.45 0.17
2주 미황색 7.2 98.1 1.20 0.35 3주 ᄀ 7.2 92.9 2.20 0.51
4주 황색 7.1 86.3 6.48 1.28
8주 진한황색 6.9 79.6 1 1.85 2.66
12주 지니하화ᄋ새ᄀ 6.8 71.1 19.33 5.45 초기 丁 7.4 102.9 0.08 0.04
1주 연한미황색 7.3 99.8 0.76 0.22
2주 미황색 7.1 95.7 2.22 1.01
비교예 4 3주 황색 7.0 88.2 7.09 2.85
4주 황색 7.0 79.2 12.62 3.66
8주 진한황색 6.9 72.8 18.15 5.12
12주 진한황색 6.7 63.5 27.50 6.98 초기 무색 . 7.3 102.8 0.15 0.05
1주 미황색 7.2 100.7 0.96 0.53
2주 미황색 7.2 96.5 3.52 1.15
비교예 5 3주 황색 7.1 90.2 7.69 2.86
4주 황색 6.9 75.2 10.02 4.01
8주 진한황색 6.8 69.1 1 1.51 5.40
12주 진한황색 6.6 61.2 13.65 6.84 측정결과 실시예 7 내지 9는 함량변화나 유연물질 생성에 있어서 거의 비슷한 결과를 보이며 기준 이하의 좋은 안정성을 나타내었다. 성상까지 생각한다면 실시예 7과 실시예 9가 우수한 안정성을 보이는 것올 알 수 있었다. 하지만 진공탈기를 하지 않고 항산화제만 사용한 비교예 3 내지 5를 보았을 때 사용된 모든 항산화제의 경우 진공탈기를 하지 않고 항산화제만 단독으로 사용할 경우 안정성이 현저히 떨어지는 것을 볼 수 있었다. 이는 진공탈기를 하여 용존산소를 제거하는 공정은 항산화제를 사용하더라도 반드시 필요한 공정임을 보여준다.
[실험예 2] 가혹 안정성 시험 실시예 5 및 7 내지 9와 비교예 1 및 3 내지 5의 조성물에 대해 가혹 上정성시험 (60 °C /RH80%)을 4주간 수행한 결과를 표 7 에 제시하였다.
【표 7】
시간 총유연물질 개개유연
성상 pH 함량 (%)
(주) (%) 물질 (%) 초기 무색 7.2 102.1 0.05 0.05
1주 무시 1
丁 7.2 101.2 0.07 0.05
실시예 5 2주 연한미황색 7.2 101.6 0.16 0.07
3주 연한미황색 7.1 100.5 0.22 0.09
4주 미황색 7.1 101.0 0.29 0.12 초기 무색 7.3 102.5 0.10 0.05
1주 . 무색 7.2 101.9 0.23 0.08 실시예 7 2주 丁 — 7.2 101.6 0.31 0.08
3주 무시!
丁 ᄀ 7.1 101.5 0.35 0.09
4주 丁 7.1 101.5 0.36 0.09 초기 T ᄀ 7.4 102.0 0.04 0.04
1주 무색 7.3 101.5 0.09 0.05 실시예 8 2주 연한미황색 7.2 101.1 0.20 0.08
j丁 연한미황색 7.2 100.9 0.28 0.10
4주 미황색 7.1 101.0 0.34 0.12 초기 丁 7.3 101.5 0.14 0.07
1주 무색 7.2 101.2 0.30 0.08 실시예 9 2주 무색 7.2 101.3 0.40 0.09
3주 무시!
Τ ᄀ 7.2 100.5 0.44 0.09
4주 丁 7.1 100.0 0.46 0.09 초기 丁 ~ᄀ 7.2 102.5 0.05 0.05 비교예 1 1丁 연한미황색 7.1 87.9 7.91 3.81
2丁 미황색 7.1 75.9 10.22 4.97 3주 황색 7.0 67.0 17.35 7.46
4주 진한황색 6.9 56.9 27.23 12.22 초기 무색 7.3 102.1 0.10 0.05
1주 미황색 7.2 92.9 6.15 3.01 비교예 3 2주 미황색 7.1 85.9 10.75 5.32
3주 황색 7.0 77.0 16.33 7.45
4주 진한황색 6.9 65.9 25.1 1 10.28 초기 무색 7.4 102.0 0.08 0.04
1주 연한미황색 7.2 94.9 7.91 2.61 비교예 4 2주 미황색 7.2 81.9 9.32 4.33
3주 황색 7.0 70.0 13.69 6.19
4주 진한황색 6.9 58.5 26.56 1 1.84 초기 무색 7.3 101.5 0.12 0.05
1주 미황색 7.1 90.7 7.91 3.81 비교예 5 2주 황색 7.1 79.3 1 1.22 4.97
■3丁 진한황색 7.0 68.4 18.35 8.46
4주 진한황색 6.8 56.9 31.23 12.22 측정결과 실시예 5는 가흑안정성 1개월 결과에도 성상은 약간 변하였으나 함량의 변화는 거의 없었고 총 유연물질 (기준 : 1.5% 이하)이나 개개
유연물질 (기준 : 0.2% 이하)도 기준 이하로 유지되고 있었다. 하지만 탈기를 하지 않은 비교예 1의 경우 1주 만에 기준에서 함량, 유연물질 모두 벗어났고 성상도 진한 갈색으로 변한 것을 볼 수 있어서 상당한 산화반웅이 진행됨을 알 수 있었다ᅵ
항산화제를 사용하고 진공탈기 공정을 실시한 실시예 7과 9는 함량이나 유연물질의 변화는 진공탈기만 실시한 실시예 5와 같이 좋은 안정성을
보여주지만 색의 변화 면에서는 확연한 효과를 보여주었다. 실시예 8의 경우인 소듐설파이드는 다른 항산화제에 비하면 변색에 대한 효과는 적은 것으로 나타났다. 하지만 비교예 3 .내지 .5에서.볼 수 있듯이 진공탈기를 하지 않고 항산화제만 사용한 경우 비교예 1과 마찬가지로 색의 변화뿐 아니라 함량이나 유연물질의 변화도 크게 나타나 약물의 안정화에 효과를 나타내지 못하는 것으로 나타났다. 위의 시험 결과로 미루어 볼 때 탈기 공정을 통해 안정성을 획기적으로 개선한 위 수용액 제형은 항산화제와 병용함으로써 색의 변화까지도 차단한, 실온보관이 가능한 가장 안정한 수용액 제형이라고 할 수 있다.
[실험예 3ᅵ 항산화제 농도에 따른 영향 및 스케일업 영향에 대한 가흑 안정성 시험
실시예 5 및 실시예 7과 실시예 10 내지 15의 조성물에 대해 가혹 안정성시험 (60 °C/RH80%)을 4주간 수행한 결과를 표 8 에 제시하였다.
【표 8]
시간 총유연물질 개개유연
성ᄋ상ᄋ pH 함량(%)
(주) (%) 물질 (%) 초기 무색 7.2 102.1 0.05 0.05
1주 무색 7.2 101.2 0.07 0.05 실시예 5 2주 연한미황색 7.2 101.6 0.16 0.07
3주 연한미황색 7.1 100.5 0.22 0.09
4주 미황색 7.1 101.0 0.29 0.12 초기 丁ᄀ 7.3 102.5 0.10 0.05
1주 丁 — 7.2 101.9 0.23 0.08 실시예 7 2주 무섀 7.2 101.6 0.31 0.08
3주 丁 7.1 101.5 0.35 0.09
4주 무시1
丁 — 7.1 101.5 0.36 0.09 초기 무색 7.4 101.2 0.06 0.06
1주 연한미황색 7.3 101.5 0.17 0.07 실시예 10 2주 연한미황색 7.2 101.1 0.26 0.1 1
3주 미황색 7.2 100.7 0.38 0.14
4주 미황색 7.0 100.8 0.42 0.16 초기 口 λϋ
丁섹 7.3 101 .7 0.1 1 0.06
1주 무시
丁 "Ί 1 7.2 101.2 0.12 0.06 실시예 1 1 2주 무 Α 7.2 101.3 0.13 0.07
3주 무색 7.2 100.9 0.15 0.06
4주 무색 7.1 100.2 0.20 0.07 초기 丁 — 1 7.2 101.5 0.1 1 0.06
1주 丁 — 1 7.2 100.7 0.12 0.06 실시예 12 2주 丁 -1 7.1 100.6 0.15 0.06
3주 무시;
丁 — 1 7.0 101.0 0.21 0.07
4주 무 All
丁 — 1 6.9 100.5 0.20 0.06 초기 무시1 7.3 101.1 0.1 1 0.06
1주 무색 7.2 101.3 0.12 0.06 실시예 13 2주 무색 7.1 100.4 0.21 0.06
3주 무시;
丁 - 1 7.0 100.2 0.24 0.07
4주 丁 - 1 6.9 100.2 0.25 0.06 초기 무색 7.3 102.1 0.1 1 0.06
1주 무색 7.2 101.2 0.23 0.07 실시예 14 2주 무색 7.0 100.5 0.29 0.07
3주 무색 7.0 100.4 0.34 0.07
4주 연한미황색 6.9 100.0 0.38 0.08 초기 우시!
丁 — 1 7.3 101.8 0.09 0.05
1주 무색 7.2 100.9 0.25 0.06 실시예 15 2주 연한미황색 7.1 100.2 0.33 0.07
3주 연한미황색 7.0 99.9 0.39 0.08
4주 연한미황색 6.8 100.3 0.43 0.09 측정결과 항산화제 없이 100mg/mi 제형으로 제조하여 동결탈기를 진행했던 실시예 5와 1000mg/ml 제형으로 제조하여 동결탈기한 실시예 10의 가흑안정성 결과를 비교해보니 성상은 거의 유사하게 변하였고 함량의 변화도 거의 없었으며 총 유연물질 (기준 : 1.5% 이하)이나 개개 유연물질 (기준 : 0.2% 이하)도 기준 이하로 유지되고 있었다. 항산화제 (모노티오글리세롤 2.4mg/ml)를 사용하여 100mg/ml 제형으로 제조한 실시예 7과 동일한 농도의 항산화제를 사용하여 1000mg/ml 제형으로 제조하여 동결탈기한 실시예 1 1을 비교하여도 거의 유사한 가혹안정성 결과를 보이는 것으로 나타나 본 연구에서 진행한
동결진공탈기공정은 소량 생산 및 대량 생산에 모두 동일한 기능을 보여주는 공정이라 할 수 있다.
항산화제의 농도를 달리하여 안정성을 확인해본 결과 함량 및 유연물질 기준으로 보았을 때 모노티오글리세롤의 농도에 관계없이 충분히 기준 안에 들어오는 안정성을 보여주고 있다. 하지만 색의 변화를 보았을 때 실시예 15의 모노티오글리세롤의 농도가 O.lmg/ml인 경우 연한 미황색으로 변색이 일어남을 확인할 수 있었다. 이것으로 보았을 때 모노티오글리세롤을 항산화제로 사용한 경우 0.24mg/ml 이상의 농도에서는 색상 및 함량 유연물질 면에서 차이가 없이 우수한 안정성을 나타냄을 알 수 있다.
위의 시험 결과로 미루어 볼 때 동결진공탈기 공정을 통해 안정성을 확보한 위 수용액 제형은 소량의 항산화제와 병용함으로도 색의 변화까지도 차단한, 실온보관이 가능한 가장 안정한 수용액 제형임이 확인되었고 이러한 동결진공탈기 공정은 실험실 뿐아니라 공장에서도 그대로 적용할 수 있어 스케일업이 가능한 공정이라 하겠다.
[실험예 4] 항산화제 종류에 따른 가혹안정성 시험
표 2의 조성대로 제조하여 실시예 7 내지 9의 조성물에 대해 가혹 안정성시험 (60°C/RH80%)을 3개월간 수행한 결과를 표 9 에 제시하였다. 【표 9】
시간 총유연물질 개개유연
성상 pH 함량 (%)
(개월) (%) 물질 (%) 초기 무색 7.3 102.5 0.10 0.05 실시예 7
1개월 무색 7.1 101.5 0.36 0.09 2개월 Τ 7.1 100.7 0.46 0.1 1
3개월 丁 — 7.0 100.1 0.54 0.12 초기 무색 7.4 102.0 0.04 0.04
1개월 미황색 7.1 101.0 0.34 0.12 실시예 8
2개월 황색 7.0 100.5 0.58 0.21
3개월 황색 6.8 99.8 0.84 0.29 초기 丁 ᄀ 7.3 101.5 0.14 0.07
1개월 무색 7.1 100.0 0.46 0.09 실시예 9
2개월 연한 미황색 7.0 100.2 0.55 0.10
3개월 연한 미황색 6.9 99.6 0.69 0.1 1 측정 결과 세가지 종류의 항산화제의 경우 유연물질이나 함량면에서는 모두 기준을 충족하였다. 하지만 색상면에서는 실시예 8의 소듐설과이드의 경우 시간이 자남에 따라 황색으로 변하였고 실시예 9의 아세틸 시스테인의 경우도 연하기는 하지만 가혹 2개월부터는 약간의 변색을 볼 수 있었다. 유연물질 면에서도 모두 기준치에 만족하기는 하였으나 총 유연물질로 보았을 때 모노티오글리세롤을 사용한 조성아 약간 더 우수한 안정성을 보여주는 것을 볼 수 있다.
위의 실험 결과로 볼 때 항산화제중 모노티오글리세를이 유연물질 면에서나 색상의 변화면에서 가장 적합한 항산화제임올 알 수 있다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims

【청구의 범위】
【청구항 1】
(a) 페메트렉시드 또는 이의 약학적으로 허용가능한 염과 수성 용매를 포함하는 용액을 동결하여 동결물을 얻는 단계; 및
(b) 진공감압 조건 하에서 상기 동결물을 탈기하여 탈기된 동결물을 얻는 단계를 포함하는, 약학 조성물의 제조방법.
【청구항 2]
제 1 항에 있어서, 상기 탈기된 동결물은 상기 단계 (a)의 용액에 함유된 용매 100 중량을 기준으로 95 중량부 내지 100 중량부의 용매를 포함하는 것인 제조방법.
【청구항 3】
제 1 항에 있어서, 상기 단계 (b)에서 용존산소농도 1.5 ppm 이하로 탈기하는 제조방법.
【청구항 4】
제 1 항에 있어서, 상기 단계 (b)의 탈기단계는 12 시간 이내로 수행되는 것인 제조방법.
【청구항 5】
제 1 항에 있어서, 상기 단계 (a) 내지 (b)는 밀폐된 챔버 내에서 수행되는 것인 제조방법. "
【청구항 6】
제 1 항에 있어서, 상기 단계 (a)의 용액은 탈기처리가 되지 않는 용액인 제조방법.
【청구항 7】
제 1 항에 있어서, 상기 용액은 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함하는 것인 제조방법.
【청구항 8]
제 7 항에 있어서, 상기 부형제는 만니를이거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 흔합물인 제조방법.
【청구항 9】
제 1 항에 있어서, 상기 용액은 항산화제를 추가로 포함하는 것인 제조방법.
【청구항 10】
제 9 항에 있어서, 상기 항산화제는 모노티오글리세를, 소듐설파이드,
아세틸시스테인, 또는 이들의 흔합물인 제조방법.
【청구항 1 1】
제 1 항에 있어서, 상기 단계 (a)에서 -20 °C 이하로 동결하는 것인 제조방법.
【청구항 12]
제 1 항에 있어서, 상기 단계 (b)에서 진공감압 조건은 2,000 mTorr 이하의 조건인 제조방법.
【청구항 13 ]
제 1 항 내지 제 12 항 중 어느 한 항에 있어서, 상기 단계 (b)를 수행한 후에, 밀봉하거나, 질소로 충진한 후 밀봉하는 단계를 추가로 포함하는 제조방법ᅳ
【청구항 14]
제 1 항 내지 제 12 항 중 어느 한 항에 있어서, 상기 단계 (b)를 수행한 후에, 탈기된 동결물을 해동하는 단계를 추가로 포함하는 제조방법.
【청구항 15】
제 13 항에 있어서, 밀봉하는 단계를 수행한 후에, 탈기된 동결물을 해동하는 단계를 추가로 포함하는 제조방법.
【청구항 16】
페메트렉시드 또는 이의 약학적으로 허용 가능한 염과 수성 용매를 포함하고, 동결 및 탈기된 것을 특징으로 하는, 약학 조성물.
【청구항 17】
제 16 항에 있어서, 동결 및 탈기 전 함유된 용매 100중량을 기준으로 95 중량부 내지 100 중량부의 용매를 포함하는 것인 조성물.
【청구항 18]
제 16 항에 있어서, 용존산소농도 1.5 ppm 이하인 조성물.
【청구항 19]
제 16 항에 있어서, 약학적으로 허용가능한 부형제 및 pH 조절제로 이루어지는 군에서 선택되는 1종 이상을 추가로 포함하는 조성물.
【청구항 20]
제 19 항에 있어서, 상기 부형제는 만니를이거나, 상기 pH 조절제는 염산, 수산화나트륨 또는 이들의 흔합물인 조성물.
【청구항 21】
제 16 항에 있어서, 항산화제를 추가로 포함하는 조성물.
【청구항 22]
제 21 항에 있어서, 상기 항산화제는 모노티오글리세롤, 소듐설파이드, 아세틸시스테인, 또는 이들의 흔합물인 조성물.
【청구항 23】
제 16 항 내지 제 22 항 중 어느 한 항에 있어서, 해동된 것인 조성물. 【청구항 24】
제 23 항에 있어서, 액상 비경구 제제로 사용하기 위한 조성물.
PCT/KR2016/005653 2015-05-28 2016-05-27 안정화된 약학 조성물 및 그의 제조방법 WO2016190712A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16800351.5A EP3305283B1 (en) 2015-05-28 2016-05-27 Stabilized pharmaceutical composition and method for preparing same
US15/561,118 US10456362B2 (en) 2015-05-28 2016-05-27 Stabilized pharmaceutical composition and method for preparing same
JP2017561639A JP6873923B2 (ja) 2015-05-28 2016-05-27 安定化された薬学組成物およびその製造方法
PH12017501828A PH12017501828A1 (en) 2015-05-28 2017-10-06 Stabilized pharmaceutical composition and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150074540A KR101919436B1 (ko) 2015-05-28 2015-05-28 안정화된 약학 조성물 및 그의 제조방법
KR10-2015-0074540 2015-05-28

Publications (2)

Publication Number Publication Date
WO2016190712A2 true WO2016190712A2 (ko) 2016-12-01
WO2016190712A3 WO2016190712A3 (ko) 2017-02-02

Family

ID=57392877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005653 WO2016190712A2 (ko) 2015-05-28 2016-05-27 안정화된 약학 조성물 및 그의 제조방법

Country Status (6)

Country Link
US (1) US10456362B2 (ko)
EP (1) EP3305283B1 (ko)
JP (2) JP6873923B2 (ko)
KR (1) KR101919436B1 (ko)
PH (1) PH12017501828A1 (ko)
WO (1) WO2016190712A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177650A (ja) * 2017-04-04 2018-11-15 日本化薬株式会社 医薬品溶液製剤の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919436B1 (ko) * 2015-05-28 2018-11-16 주식회사 삼양바이오팜 안정화된 약학 조성물 및 그의 제조방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2527760T3 (es) * 1998-07-23 2015-01-29 Yeda Research And Development Co., Ltd. Tratamiento de enfermedad de Crohn con copolímero 1 y polipéptidos
TR200401436T4 (tr) 2000-02-04 2004-07-21 Eli Lilly And Company Monotiyogliserol, L-sistem veya tiyoglikolik asitle birlikte pemetrexed içeren farmasötik bileşim
WO2005044229A1 (en) * 2003-11-05 2005-05-19 The Australian National University Dispersions and methods of preparing them
US20070077303A1 (en) * 2005-09-30 2007-04-05 Azaam Alli Methods for providing oxidatively stable ophthalmic compositions
EP2055953B1 (en) * 2007-11-01 2018-08-15 Danfoss Power Solutions Aps Fluid working machine
CN101260636A (zh) * 2008-04-29 2008-09-10 刘全祥 倒刺道钉
KR101069128B1 (ko) * 2011-03-10 2011-09-30 건일제약 주식회사 페메트렉시드 또는 그의 염을 포함하는 항산화제-비함유 주사용 용액 형태의 약학적 제제의 제조방법
WO2013179248A1 (en) * 2012-05-30 2013-12-05 Fresenius Kabi Oncology Ltd. Pharmaceutical compositions of pemetrexed
WO2014060962A1 (en) * 2012-10-17 2014-04-24 Shilpa Medicare Limited Pemetrexed dipotassium formulations
KR101260636B1 (ko) 2012-11-29 2013-05-13 씨제이제일제당 (주) 안정화된 페메트렉시드 제제
CN103006584B (zh) * 2012-12-26 2014-04-16 哈药集团技术中心 一种注射用培美曲塞二钠的制备方法
KR101485243B1 (ko) * 2013-05-08 2015-01-21 씨제이헬스케어 주식회사 안정화된 페메트렉시드 제제
WO2014198337A1 (en) * 2013-06-14 2014-12-18 Synthon B.V. Stable and water soluble pharmaceutical compositions comprising pemetrexed
CN103432086B (zh) * 2013-08-28 2015-07-22 南京正大天晴制药有限公司 一种注射用培美曲塞二钠冻干粉针剂及其制备方法
PL3040074T3 (pl) * 2013-10-03 2019-03-29 Fujifilm Corporation Preparat iniekcyjny i sposób jego wytwarzania
KR101703980B1 (ko) * 2013-12-30 2017-02-08 주식회사 삼양바이오팜 항산화제를 함유하지 않는 약학 조성물 및 그의 제조방법
KR101919436B1 (ko) * 2015-05-28 2018-11-16 주식회사 삼양바이오팜 안정화된 약학 조성물 및 그의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177650A (ja) * 2017-04-04 2018-11-15 日本化薬株式会社 医薬品溶液製剤の製造方法

Also Published As

Publication number Publication date
EP3305283B1 (en) 2020-09-02
JP6873923B2 (ja) 2021-05-19
KR101919436B1 (ko) 2018-11-16
EP3305283A4 (en) 2019-01-09
US20180125786A1 (en) 2018-05-10
WO2016190712A3 (ko) 2017-02-02
JP2020097570A (ja) 2020-06-25
JP2018516253A (ja) 2018-06-21
EP3305283A2 (en) 2018-04-11
US10456362B2 (en) 2019-10-29
PH12017501828B1 (en) 2018-04-11
PH12017501828A1 (en) 2018-04-11
KR20160139514A (ko) 2016-12-07

Similar Documents

Publication Publication Date Title
EP2854768B1 (en) Pharmaceutical compositions of pemetrexed
AU2020244613B2 (en) Methods for treatment of diseases
JP6505114B2 (ja) 抗酸化剤を含有しない薬学組成物およびその製造方法
WO2013144814A1 (en) Stable ready-to-use pharmaceutical composition of pemetrexed
WO2016166653A1 (en) Stable liquid pharmaceutical compositions of bortezomib
CN101500571A (zh) 稳定的冻干制剂
JP2022107687A (ja) ペメトレキセドまたはその薬剤学的に許容可能な塩を含有する安定化された薬学組成物
JP6501399B2 (ja) ペメトレキセドを含有する注射用溶液製剤
WO2016190712A2 (ko) 안정화된 약학 조성물 및 그의 제조방법
WO2008023807A1 (fr) Composition pharmaceutique stabilisée
US8481781B2 (en) Formulations of canfosfamide and their preparation
DK2436386T3 (en) A stabilized and lyophilized formulation of the anthracycline compounds
WO2016171446A1 (ko) 펩타이드 붕소산 화합물을 함유하는 안정화 약학 제제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800351

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15561118

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12017501828

Country of ref document: PH

REEP Request for entry into the european phase

Ref document number: 2016800351

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017561639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE