WO2016190686A1 - 콘덴서 부싱 및 그 제조방법 - Google Patents

콘덴서 부싱 및 그 제조방법 Download PDF

Info

Publication number
WO2016190686A1
WO2016190686A1 PCT/KR2016/005591 KR2016005591W WO2016190686A1 WO 2016190686 A1 WO2016190686 A1 WO 2016190686A1 KR 2016005591 W KR2016005591 W KR 2016005591W WO 2016190686 A1 WO2016190686 A1 WO 2016190686A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating
conductive
fibers
center conductor
Prior art date
Application number
PCT/KR2016/005591
Other languages
English (en)
French (fr)
Inventor
이동원
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to JP2017561405A priority Critical patent/JP6592111B2/ja
Priority to US15/576,258 priority patent/US10297371B2/en
Publication of WO2016190686A1 publication Critical patent/WO2016190686A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • H01B17/583Grommets; Bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements

Definitions

  • the present invention relates to a capacitor bushing and a method of manufacturing the same, and more particularly, to a capacitor bushing and a method of manufacturing the same by placing a conductive layer made of conductive fibers between the insulating layer surrounding the central conductor.
  • bushing In power equipment, bushing is used to connect with external power source (power line). In order to have a long insulation distance, the bushing has an insulator of sheath with shed and wraps the electric field while wrapping the center conductor. In order to alleviate, it consists of a capacitor in which a conductive layer is laminated on insulating paper. An epoxy resin is filled between the insulating paper and the conductive layer and surrounding the insulating paper and the conductive layer.
  • the epoxy resin may not be filled so as to be sufficiently filled inside to the position of the center conductor, and because the expansion and contraction of the epoxy and the expansion and contraction of the insulating paper is different to manufacture the condenser bushing There is a problem that a lot of gaps occur between the epoxy resin and the insulating paper in the process.
  • an aluminum thin film is generally used as the conductive layer.
  • the aluminum thin film also has a different degree of expansion and contraction with the epoxy resin, and has a weak bonding force between the aluminum thin film and the epoxy resin, so that the expansion and contraction of the epoxy resin during thermal expansion and curing is difficult. There is a disadvantage in the formability accordingly.
  • the aluminum thin film has a problem that the electric field is concentrated at the sharp shape portion generated at the time of cutting as well as being an obstacle to the filling of the epoxy.
  • the synthetic fiber also has a degree of expansion and contraction is different from the epoxy resin.
  • the expansion and contraction of the epoxy resin is the largest in the longitudinal direction of the bushing, and the weft or warp constituting the synthetic fiber extends in the longitudinal direction of the bushing, causing problems between expansion and contraction between the epoxy resin and the synthetic fiber. Done.
  • the epoxy resin expands and contracts with heat, but if there are bubbles inside during expansion of the epoxy resin, there is a problem in that the filling layer is not completely filled with bubbles when the bubbles become large.
  • An object of the present invention is to solve the conventional problems as described above, to minimize the difference in the relative expansion and contraction of the insulating layer, the filling layer and the conductive layer constituting the capacitor bushing.
  • Another object of the present invention is to ensure that the material forming the filling layer is uniformly formed through the insulating layer and the conductive layer when the filling layer is formed in the insulating layer and the conductive layer.
  • Another object of the present invention is to prevent bubbles from forming in the packed layer constituting the capacitor bushing.
  • the present invention is a center conductor having a predetermined length, and the insulator fibers are wound around the outer surface of the center conductor is formed and the weft and the warp constituting the insulating fibers And an insulating layer extending in an inclined direction in the longitudinal direction of the center conductor, a conductive layer composed of conductive fibers positioned between the insulating layer, between the insulating layer and the center conductor, between the insulating layer, Filling layer formed by filling the epoxy resin between the conductive layer.
  • the conductive fiber is made of a weft and an inclination in which the first coating layer and the second coating layer are sequentially formed on the outer surface of the insulating core wire.
  • the insulating fibers and the conductive fibers are woven in a circular or polygonal warp and warp yarns.
  • the insulating fibers and the conductive fibers are woven in weft and warp hexagons.
  • Inorganic fillers are mixed up to 0 to 50% by weight in the epoxy resin forming the filler layer.
  • silica or alumina is used as the inorganic filler.
  • Wefts and warp yarns constituting the conductive fiber are woven so as to extend inclined in the longitudinal direction of the center conductor.
  • the present invention is an insulating layer forming step of winding insulating fibers on the outer surface of the center conductor, and a conductive layer forming step of forming a conductive layer by placing a conductive fiber between the insulating layer, and the center Positioning the conductive layer between the insulating layer wound on the outer surface of the conductor in the mold, and filling layer forming step of injecting a material for forming the filling layer while maintaining the inside of the mold in a vacuum; And a filling layer curing step of applying a heat while applying pressure in the mold to form the filling layer while the injection of the material forming the filling layer is completed.
  • the conductive fibers and the insulating fibers are wound so that their wefts and warp yarns are inclined in the longitudinal direction of the center conductor.
  • the material forming the filling layer is an epoxy resin, and the inorganic filler is mixed by 0 to 50% by weight.
  • the step of cooling the packed layer is further performed.
  • the insulating layer surrounding the central conductor is made of a weft yarn made of an insulating material and synthetic fibers woven at an angle
  • the conductive layer located between the insulating layers is a weft yarn coated with a conductive material and a conductive fiber woven at an angle.
  • the insulating layer and the conductive layer are formed together with thermal expansion and molding shrinkage of the epoxy resin during formation of the filling layer made of epoxy resin by arranging the weft and the warp so as to extend inclined with respect to the longitudinal direction of the center conductor.
  • the material can also expand and contract together, making the quality of the bushing uniform.
  • the conductive layer formed between the insulating layer surrounding the center conductor and the insulating layer are all made of weft and warp woven fibers, the insulating layer and the conductive layer are formed when the filling layer using epoxy resin is formed. Through the layers it is possible to obtain the effect that the filling layer is evenly formed as designed.
  • the inorganic filler is mixed with the epoxy resin forming the filling layer up to 50% by weight, the insulation is maximized, so that the insulation performance of the bushing is relatively increased.
  • an insulating layer is formed in the center conductor in the process of filling the epoxy resin, the conductive layer between the insulating layer is placed in the mold to fill the epoxy resin in vacuum and heat to cure the epoxy resin. Since the pressure is also applied to the air pressure at any time, there is also an effect that bubbles are generated inside the filling layer.
  • FIG. 1 is a cross-sectional view showing the internal configuration of a capacitor bushing according to the present invention.
  • FIG. 2 is an explanatory view illustrating the winding of insulating fibers constituting the insulating layer on the central conductor in the embodiment of the present invention.
  • Figure 3 is a perspective view and an enlarged view showing the configuration of the conductive fiber to form a conductive layer in the embodiment of the present invention.
  • Figure 4 is a flow chart showing a preferred embodiment of the manufacturing method of the capacitor bushing according to the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • the center conductor 10 is made of a conductive material to flow a current.
  • An insulating layer 20 is formed to surround the center conductor 10.
  • the insulating layer 20 is made of insulating fibers 22, which are woven with the weft 24 and the warp 26 intersecting with each other.
  • the length of one side of the quadrangle formed by the weft yarn 24 and the warp yarn 26 should be at least 0.5 mm and less than 1 mm. do. This is because the square formed by the weft 24 and the warp 26 must have a predetermined area or more so that the epoxy resin can pass therethrough.
  • one side of the quadrangle formed by the weft yarn 24 and the warp yarn 26 is larger than 0.5 mm.
  • the insulating performance of the insulating layer 20 is reduced, so that the length of one side of the quadrangle is smaller than 1 mm.
  • the thickness of the insulating fiber 22 is preferably a value between 0.2mm and 0.5mm. This is because it is difficult to handle the insulating fiber 22 when thinner than 0.2mm, and the size of the entire bushing becomes larger when larger than 0.5mm.
  • both the weft yarn 24 and the warp 26 are inclined with respect to the longitudinal direction (arrow A direction) of the center conductor 10. do. That is, neither the weft yarn 24 nor the warp 26 is as shown in FIG. 2 without being parallel to the longitudinal direction of the center conductor 10. This is in the longitudinal direction of the center conductor 10 of the weft yarn 24 or the warp 26, when the direction of extension of the weft yarn 24 or the warp 26 is parallel to the longitudinal direction of the center conductor 10. This is because the movement of is not made.
  • the weft yarn 24 and the warp yarn 26 of the insulating fiber do not necessarily have to form a quadrangle.
  • the weft 24 and the warp 26 may form a circle or a hexagon. Even when forming a circle or a hexagon, if the insulating fiber is not parallel to the longitudinal direction of the center conductor 10, the insulating fibers may be stretched and contracted at the time of expansion and contraction of the epoxy resin. That is, even when the weft 24 and the warp 26 are woven into a circular or polygonal shape, the weft 24 and the warp 26 may be inclined with respect to the longitudinal direction of the center conductor 10.
  • the insulating fiber 22 may be polyester fiber, polyethylene-naphthenate fiber.
  • the conductive layer 30 is located between the insulating layers 20.
  • the conductive layer 30 is disposed at a predetermined interval between the insulating layers 20.
  • Conductive fibers 32 constitute the conductive layer 30.
  • the configuration of the conductive fiber 32 is shown well in FIG.
  • the conductive fiber 32 is also woven while the weft yarn 34 and the warp yarn 36 cross each other.
  • the square formed by the weft yarn 34 and the warp yarn 36 of the conductive fiber 32 also has a length of 0.5 mm to 1 mm. This is the same reason as in the configuration of the insulating fiber 22. For reference, when the length of one side is 1mm or more, the conductivity may be degraded.
  • the conductive fiber 32 forming the conductive layer 30 may also have a circular or hexagonal shape in addition to the quadrangle of the weft yarn 34 and the warp 36. That is, if the weft 34 and the inclination 36 can extend inclined with respect to the longitudinal direction of the center conductor 10 may be in various forms such as polygons.
  • the weft yarn 34 and the warp yarn 36 constituting the conductive fiber 32 are, as shown in an enlarged view in FIG. 3, on the outer surface of the core wire 37 and the first coating layer 38 and the second coating layer 38 '. ) Are formed in turn.
  • the first coating layer 38 is composed of copper or a copper alloy
  • the second coating layer 38 ' is mainly composed of nickel, but gold or silver may be used.
  • the thickness of the conductive fiber 32 is between 3 micrometers and 100 micrometers, it is best to use about 10-30 micrometers in handling.
  • the filling layer 40 is formed between the insulating layer 20 and the conductive layer 30 wound on the outer surface of the center conductor 10.
  • the filling layer 40 is between the center conductor 10 and the insulating layer 20, between the conductive layer 30 and the insulating layer 20 and between the insulating layer 20 and the conductive layer 30. ) Is formed to surround all.
  • the filling layer 40 is made of epoxy resin.
  • An inorganic filler may be mixed with the epoxy resin forming the filling layer 40. Silica or alumina may be used as the inorganic filler.
  • the inorganic filler is preferably mixed up to about 50% by weight. Of course, you do not have to mix the inorganic filler, but to increase the insulation performance, the inorganic filler is mixed. Insulation performance is best when the inorganic filler is mixed in 50% by weight epoxy resin.
  • Bushing according to the present invention having such a configuration is manufactured through the following process.
  • the outer surface of the center conductor 10 is wound around the insulating synthetic fiber 22 in several layers.
  • the synthetic fiber 22 forms the insulating layer 20. do.
  • the weft yarn 24 and the warp 26 constituting the synthetic fiber 22 is wound so as to be inclined with respect to the longitudinal direction of the center conductor 10. .
  • a conductive layer 30 is formed between the insulating layer 20 formed by the synthetic fiber 22.
  • the conductive fibers 32 forming the conductive layer 30 are positioned between the insulating layers 20 in the process of forming the insulating layer 20.
  • the conductive layer 30 In the process of being seated between the insulating layer 20, the weft yarn 34 and the warp 36 constituting the conductive fiber 32 extends inclined in the longitudinal direction of the central conductor 10.
  • the winding of the insulating synthetic fiber 22 and the conductive fiber 32 is put into the mold in the mold (step 300).
  • the inside of the mold is maintained in a vacuum state (step 400).
  • the cavity inside the mold communicates with the vacuum line to make the cavity vacuum. In this way, the inside of the mold is maintained in a vacuum state in order to prevent bubbles from occurring between the insulating layer 20, the conductive layer 30, the insulating layer 30, and the insulating layer 20.
  • the epoxy resin for forming the filling layer 40 is injected while maintaining the inside of the mold in a vacuum state (step 500). After filling the mold with the epoxy resin for forming the filling layer 40, the pressure is reduced to 3 to 3 by air pressure. Heating to pressurizing at a pressure of 5bar to cure the filling layer 40 (step 600). By heating while applying a pressure in this way by curing the epoxy resin it is prevented that bubbles are generated inside.
  • the temperature for heating the epoxy resin is about 120 to 130 degrees Celsius.
  • the cooling process may be performed in the mold or may be performed in a separate space.
  • step 800 it is molded into a desired shape through machining in a machine tool (step 800). If a shed is required on the outer surface, a silicone rubber is molded by inserting the mold into a shed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Insulators (AREA)
  • Insulating Bodies (AREA)

Abstract

본 발명은 콘덴서 부싱과 그 제조방법에 대한 것이다. 본 발명의 콘덴서 부싱은 중심도체(10)의 외면에 절연성 섬유(22)를 감아 절연층(20)을 형성하고, 상기 절연층(20)의 사이사이에 도전성 섬유(32)를 두어 도전층(30)을 형성한다. 상기 도전성 섬유(32)를 구성하는 위사(34)와 경사(36)는 심선(37)의 표면에 제1코팅층(38)과 제2코팅층(38')을 차례로 형성하여 만들어진다. 상기 절연성 섬유(22)와 도전성 섬유(32)의 위사(24)(34)와 경사(26)(36)는 상기 중심도체(10)의 길이방향에 대해 경사지게 연장된다. 상기 위사(24)(34)와 경사(26)(36)는 다각형 또는 원형을 형성한다. 상기 중심도체(10)의 외면에 절연층(20)과 도전층(30)을 형성한 것을 금형 내에 투입하여 충진층(40)을 형성하는데, 상기 금형 내를 진공으로 유지하면서 충진층(40)을 형성하기 위한 에폭시 수지를 주입한다. 상기 충진층(40)을 경화하는 과정에서는 상기 금형 내에 공기압을 주어 압력을 제공하면서 열을 가하게 된다. 이와 같은 본 발명에 의하면 충진층(40)의 내부에 기포가 발생하거나 틈새가 발생하는 것이 방지되는 이점이 있다.

Description

콘덴서 부싱 및 그 제조방법
본 발명은 콘덴서 부싱 및 그 제조방법에 관한 것으로, 더욱 상세하게는 중심도체를 감싸는 절연층의 사이에 도전성섬유로 만들어진 도전층을 두어 만들어지는 콘덴서 부싱 및 그 제조방법에 관한 것이다.
전력기기에서는 외부전원(전력선로)과 연결하기 위하여 부싱(bushing)을 사용하는데, 부싱은 절연거리를 길게 가지고자 쉐드(shed)를 가진 외피의 절연체를 두기도 하고, 중심도체를 감싸면서 전계를 완화시키기 위하여 도전층을 절연지에 겹겹이 감은 콘덴서로 구성된다. 상기 절연지와 도전층의 사이 및 절연지와 도전층을 감싸도록 에폭시 수지를 충진하게 된다.
여기서, 절연지를 사용함으로 인해, 상기 에폭시 수지가 상기 중심도체의 위치까지 내부에 충분히 채워지도록 충진되지 않을 수가 있고, 에폭시의 팽창과 수축정도와 절연지의 팽창과 수축정도가 다르기 때문에 콘덴서 부싱을 제조하는 과정에서 에폭시 수지와 절연지 사이에 틈새가 많이 발생하는 문제점이 있다.
상기 도전층으로는 일반적으로 알루미늄 박막을 사용하는데, 알루미늄 박막 역시 절연지와 같이 에폭시 수지와는 팽창과 수축 정도가 다르고 알루미늄 박막과 에폭시 수지 사이의 결합력이 약하여 에폭시 수지의 열팽창과 경화시 수축 및 팽창에 따른 성형성에서 불리한 문제점이 있다.
상기 알루미늄 박막은 에폭시의 충진에 방해되는 요소가 됨과 동시에 절단시에 생긴 날카로운 형상 부분에서 전계가 집중되는 문제도 가지고 있다.
그리고, 에폭시 수지가 내부로 까지 충분히 충진되지 않는 상기 절연지의 문제를 해결하기 위해 합성섬유를 사용하는데, 상기 합성섬유 역시 팽창과 수축의 정도가 에폭시 수지와 차이가 있다. 특히 부싱의 길이방향으로 에폭시 수지의 팽창과 수축이 가장 큰데, 합성섬유를 구성하는 위사나 경사가 부싱의 길이방향으로 연장되므로 인해, 에폭시 수지와 합성섬유의 사이에서도 팽창과 수축에 따른 문제가 발생하게 된다.
그리고, 에폭시 수지는 열에 의해서 팽창했다가 수축하는데, 에폭시 수지를 충진하는 과정에서 팽창시에 내부에 기포가 있으면 기포가 커지면서 내부에 충진층이 완벽하게 채워지지 않게 되는 문제도 있다.
본 발명의 목적은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 콘덴서 부싱을 구성하는 절연층, 충진층 및 도전층의 상대적인 팽창과 수축정도의 차이가 최소화되도록 하는 것이다.
본 발명의 다른 목적은 절연층과 도전층을 형성한 상태에서 충진층을 형성할 때 충진층을 형성하는 물질이 절연층과 도전층을 통과하여 균일하게 형성될 수 있도록 하는 것이다.
본 발명의 또 다른 목적은 콘덴서 부싱을 구성하는 충진층에 기포가 발생하는 것을 방지하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 소정의 길이를 가지는 중심도체와, 상기 중심도체의 외면에 절연성 섬유가 감아져 형성되고 상기 절연성 섬유를 구성하는 위사와 경사가 상기 중심도체의 길이방향에 경사지게 연장되는 절연층과, 상기 절연층의 사이에 위치되는 것으로 도전성 섬유로 구성되는 도전층과, 상기 절연층과 중심도체의 사이, 절연층의 사이 상기 절연층과 도전층의 사이에 에폭시 수지가 충진되어 형성되는 충진층을 포함한다.
상기 도전성 섬유는 절연성의 심선의 외면에 제1코팅층과 제2코팅층이 차례로 형성되는 위사와 경사로 만들어진다.
상기 절연성 섬유와 도전성 섬유는 위사와 경사가 원형 또는 다각형으로 직조된다.
상기 절연성 섬유와 도전성 섬유는 위사와 경사가 육각형으로 직조된다.
상기 충진층을 형성하는 에폭시 수지에는 무기충진재가 0 ~ 50중량%까지 혼합된다.
상기 무기충진재로는 실리카나 알루미나가 사용된다.
상기 도전성 섬유를 구성하는 위사와 경사가 상기 중심도체의 길이방향에 경사지게 연장되도록 직조된다.
본 발명의 다른 특징에 따르면, 본 발명은 중심도체의 외면에 절연성 섬유를 감는 절연층 형성단계와, 상기 절연층의 사이사이에 도전성 섬유를 두어 도전층을 형성하는 도전층 형성단계와, 상기 중심도체의 외면에 감아진 절연층의 사이에 도전층이 위치된 것이 금형내에 위치시키는 단계와, 상기 금형 내를 진공으로 유지하면서 충진층을 형성하는 재료를 주입하는 충진층 형성단계와, 상기 금형 내에 충진층을 형성하는 재료의 주입이 완성된 상태에서 상기 금형 내에 압력을 가하면서 열을 가해 충진층을 형성하는 충진층 경화단계를 포함한다.
상기 도전성 섬유와 절연성 섬유는 그 위사와 경사가 상기 중심도체의 길이방향에 경사지게 연장되게 감아진다.
충진층을 형성하는 재료는 에폭시 수지인데, 무기충진재를 0 ~ 50중량% 사이만큼 혼합한다.
상기 충진층 경화단계 이후에는 상기 충진층을 냉각하는 단계를 더 수행한다.
본 발명에 의한 콘덴서 부싱 및 그 제조방법에서는 다음과 같은 효과를 얻을 수 있다.
본 발명에서는 중심도체를 둘러싸는 절연층을 절연성 재질로 만들어진 위사와 경사로 직조된 합성섬유를 사용하고, 상기 절연층의 사이에 위치하는 도전층은 도전성물질이 코팅된 위사와 경사로 직조된 도전성 섬유를 사용하며, 특히 위사와 경사가 상기 중심도체의 길이방향에 대해 경사지게 연장되도록 배치함에 의해 에폭시수지로 만들어지는 충진층의 형성시에 에폭시 수지의 열팽창과 성형수축과 함께 절연층과 도전층을 구성하는 물질도 함께 팽창과 수축을 할 수 있어 부싱의 품질이 균일하게 만들어지는 효과가 있다.
그리고, 본 발명에서는 중심도체를 둘러싸는 절연층과 상기 절연층의 사이 사이에 형성되는 도전층이 모두 위사와 경사로 직조된 섬유로 만들어지므로 에폭시수지를 사용하는 충진층의 형성시에 절연층과 도전층을 통과하여 골고루 충진층이 설계된 대로 형성되는 효과를 얻을 수 있다.
또한, 본 발명에서 충진층을 형성하는 에폭시수지에 무기충진재를 50중량% 까지 혼합하여 절연성을 최대로 높였으므로, 부싱의 절연성능이 상대적으로 높아지는 효과도 있다.
본 발명에서는 에폭시 수지를 충진하는 과정에서 중심도체에 절연층을 형성하고 상기 절연층의 사이 사이에 도전층을 둔 것을 금형 내에 넣고 진공상태에서 에폭시수지를 충진하고 에폭시 수지의 경화를 위해 열을 가할 때도 공기압으로 압력을 가하므로 충진층의 내부에 기포가 발생하는 것이 방지되는 효과도 있다.
도 1은 본 발명에 의한 콘덴서 부싱의 내부 구성을 보인 단면도.
도 2는 본 발명 실시례에서 중심도체에 절연층을 구성하는 절연성 섬유를 감는 것을 설명하는 설명도.
도 3은 본 발명 실시례에서 도전층을 형성하는 도전성 섬유의 구성을 보인 보인 사시도 및 확대도.
도 4는 본 발명에 의한 콘덴서 부싱의 제조방법의 바람직한 실시례를 보인 순서도.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도면들에 도시된 바에 따르면, 부싱의 중앙에는 중심도체(10)가 있다. 상기 중심도체(10)는 도전성 재질로 만들어져 전류가 흐르게 된다. 상기 중심도체(10)를 둘러싸도록 절연층(20)이 형성된다. 상기 절연층(20)은 절연성 섬유(22)로 만들어지는데, 상기 절연성 섬유(22)는 위사(24)와 경사(26)가 서로 교차하여 직조된다.
상기 위사(24)와 경사(26)가, 도시된 예에서는, 대략 사각형을 만들게 되는데, 상기 위사(24)와 경사(26)가 형성하는 사각형의 한 변의 길이는 적어도 0.5mm 이상이고 1mm보다는 작아야 한다. 이는 위사(24)와 경사(26)가 형성하는 사각형이 일정 이상의 면적을 가져야 에폭시 수지가 통과할 수 있기 때문이다. 이를 위해서 위사(24)와 경사(26)가 형성하는 사각형의 한 변이 0.5mm보다는 크게 한다. 그리고, 상기 사각형의 한 변의 길이가 1mm보다 크게 되면 절연층(20)의 절연성능이 떨어지기 때문에 1mm보다는 작게 한다.
상기 절연성 섬유(22)의 두께는 0.2mm에서 0.5mm 사이의 값이 좋다. 이는 0.2mm 보다 얇으면 절연성 섬유(22)를 취급하기가 어렵고, 0.5mm보다 크면 전체 부싱의 크기가 커지는 문제점이 있기 때문이다.
한편, 상기 절연성 섬유(22)가 상기 중심도체(10)에 감아질 때, 상기 중심도체(10)의 길이방향(화살표 A방향)에 대해서 상기 위사(24)와 경사(26) 모두가 경사지게 되도록 한다. 즉, 위사(24)나 경사(26)중 어느 하나도 중심도체(10)의 길이방향과 평행한 것이 없이, 도 2에 도시된 바와 같이 된다. 이는 상기 위사(24)나 경사(26)중 하나의 연장방향이 상기 중심도체(10)의 길이방향과 평행하게 되면, 위사(24)나 경사(26)의 중심도체(10)의 길이 방향으로의 이동이 이루어 지지 않기 때문이다. 그 이유는 아래에서 설명될 에폭시 수지는 중심도체(10)의 길이방향으로 가장 많이 팽창되고 수축되는데, 상기 에폭시 수지의 팽창과 수축에 따라 상기 절연성 섬유(22)도 함께 팽창과 수축을 하여야 절연층(20)과 충진층(40) 사이에 틈새가 발생하지 않기 때문이다.
이와 관련해서 상기 절연성 섬유의 위사(24)와 경사(26)가 반드시 사각형을 형성할 필요는 없다. 상기 위사(24)와 경사(26)가 원형을 형성하거나 육각형을 형성할 수도 있다. 원형이나 육각형을 형성하는 경우에도 중심도체(10)의 길이방향에 대해 평행하지 않도록 하면 절연성 섬유가 에폭시 수지의 팽창과 수축 시에 신축이 거의 같이 될 수 있다. 즉, 위사(24)와 경사(26)가 직조되는 것이 원형이나 다각형상으로 되더라도, 중심도체(10)의 길이방향에 대해 경사질 수 있으면 된다. 상기 절연성 섬유(22)는 폴리에스테르 섬유, 폴리에틸렌-나프테네이트 섬유가 사용될 수 있다.
도전층(30)은 상기 절연층(20)의 사이에 위치되는 것이다. 상기 도전층(30)은 상기 절연층(20)의 사이에서 소정의 간격을 가지고 배치된다. 상기 도전층(30)을 구성하는 것은 도전성 섬유(32)이다. 상기 도전성 섬유(32)의 구성은 도 3에 잘 도시되어 있다. 상기 도전성 섬유(32)도 상기 절연성 섬유(22)와 같이, 위사(34)와 경사(36)가 서로 교차하면서 직조된다. 상기 도전성 섬유(32)의 위사(34)와 경사(36)가 만들어내는 사각형도 한 변의 길이가 0.5mm에서 1mm 사이로 된다. 이는 상기 절연성 섬유(22)의 구성에서와 같은 이유이다. 참고로, 한 변의 길이가 1mm이상이 되면 도전성능이 떨어질 수 있다. 상기 도전층(30)을 형성하는 상기 도전성 섬유(32)도 위사(34)와 경사(36)가 만들어내는 형상이 사각형 외에 원형이나 육각형으로도 될 수 있다. 즉 위사(34)와 경사(36)가 중심도체(10)의 길이방향에 대해 경사지게 연장될 수 있으면 다각형 등 다양한 형태로 될 수 있다.
상기 도전성 섬유(32)를 구성하는 위사(34)와 경사(36)는, 도 3에 확대도로 도시된 바와 같이, 심선(37)의 외면에 제1코팅층(38)과 제2코팅층(38')이 차례로 형성되어 구성된다. 상기 제1코팅층(38)은 구리나 구리합금으로 구성되고, 상기 제2코팅층(38')은 주로 니켈로 구성되는데, 금이나 은을 사용하여도 된다.
도전성 섬유(32)의 두께 3마이크로 미터에서 100마이크로미터 사이의 값인데, 10 ~ 30마이크로미터 정도의 것을 사용하는 것이 취급 상 가장 좋다.
다음으로, 충진층(40)은 상기 중심도체(10)의 외면에 감겨지는 절연층(20)과 도전층(30)의 사이에 형성된다. 물론, 상기 충진층(40)은 상기 중심도체(10)와 절연층(20)의 사이, 상기 도전층(30)과 절연층(20)의 사이 그리고 상기 절연층(20)과 도전층(30) 모두를 감싸도록 형성된다.
상기 충진층(40)은 에폭시 수지로 만들어진다. 상기 충진층(40)을 형성하는 에폭시 수지에는 무기충진재가 혼합될 수 있다. 상기 무기충진재로는 실리카나 알루미나가 사용될 수 있다. 상기 무기충진재는 50중량% 정도까지 혼합하는 것이 좋다. 물론, 무기충진재를 섞지 않아도 되나, 절연성능을 더 높이기 위해서는 무기충진재를 섞는다. 그리고 절연성능이 가장 좋기로는 무기충진재가 50중량% 에폭시 수지에 혼합되는 경우이다.
이와 같은 구성을 가지는 본 발명에 의한 부싱은 다음과 같은 과정을 통해 제조된다.
도 4에 도시된 바와 같이, 먼저, 중심도체(10)의 외면을 둘러서 절연성 합성섬유(22)를 여러 층으로 감는다.(단계100) 상기 합성섬유(22)가 절연층(20)을 형성하게 된다. 상기 합성섬유(22)를 중심도체(10)에 감는 과정에서 상기 합성섬유(22)를 구성하는 위사(24)와 경사(26)가 상기 중심도체(10)의 길이방향에 대해 경사지게 위치되도록 감는다.
상기 합성섬유(22)를 감는 과정에서 상기 합성섬유(22)가 형성하는 절연층(20)의 사이 사이에 도전층(30)이 형성된다. 이를 위해 상기 도전층(30)을 형성하는 도전성 섬유(32)를 상기 절연층(20)을 형성하는 과정에서 절연층(20)의 사이사이에 위치시킨다.(단계200) 상기 도전층(30)도 상기 절연층(20)의 사이에 안착되는 과정에서 상기 도전성 섬유(32)를 구성하는 위사(34)와 경사(36)가 중심도체(10)의 길이방향에 경사지게 연장되도록 한다.
이와 같이 중심도체(10)에 절연성 합성섬유(22)와 도전성 섬유(32)를 감은 것을 금형 내에 넣는다.(단계 300) 상기 금형의 내부는 진공상태를 유지하도록 한다.(단계 400) 이를 위해서 상기 금형의 캐비티 내부를 진공라인과 연통시켜 캐비티를 진공으로 만들어준다. 이와 같이 금형 내부를 진공상태로 유지하는 것은 상기 절연층(20), 도전층(30) 그리고 절연층(30) 및 이들 사이에 기포가 발생하는 것을 방지하기 위함이다.
상기 금형 내부를 진공상태로 유지하면서 상기 충진층(40)을 형성하는 에폭시 수지를 주입한다.(단계 500) 상기 충진층(40)을 형성하는 에폭시 수지를 금형 내에 충진한 후에는 공기압으로 3 ~ 5bar의 압력으로 가압하면서 가열하여 충진층(40)을 경화시킨다.(단계 600) 이와 같이 압력을 가하면서 가열하여 에폭시 수지를 경화함에 의해 내부에 기포가 발생하는 것을 방지하게 된다. 상기 에폭시 수지를 가열하는 온도는 섭씨 120도에서 130도 정도이다. 상기 충진층(40)의 경화가 완성되면 냉각을 시키게 된다.(단계 700) 냉각과정은 상기 금형 내에서 진행할 수도 있고, 별도의 공간에서 수행할 수도 있다.
다음으로는 공작기계에서의 가공을 통해 원하는 모양으로 성형한다.(단계 800) 그리고, 외면에 쉐드(Shed)가 필요한 경우에는 금형에 인서트하여 실리콘고무를 성형하여 쉐드를 만들게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (11)

  1. 소정의 길이를 가지는 중심도체와,
    상기 중심도체의 외면에 절연성 섬유가 감아져 형성되고 상기 절연성 섬유를 구성하는 위사와 경사가 상기 중심도체의 길이방향에 경사지게 연장되는 절연층과,
    상기 절연층의 사이에 위치되는 것으로 도전성 섬유로 구성되는 도전층과,
    상기 절연층과 중심도체의 사이, 절연층의 사이 상기 절연층과 도전층의 사이에 에폭시 수지가 충진되어 형성되는 충진층을 포함하는 콘덴서 부싱.
  2. 제 1 항에 있어서, 상기 도전성 섬유는 절연성의 심선의 외면에 제1코팅층과 제2코팅층이 차례로 형성되는 위사와 경사로 만들어지는 콘덴서 부싱.
  3. 제 2 항에 있어서, 상기 절연성 섬유와 도전성 섬유는 위사와 경사가 원형 또는 다각형으로 직조되는 콘덴서 부싱.
  4. 제 3 항에 있어서, 상기 절연성 섬유와 도전성 섬유는 위사와 경사가 육각형으로 직조되는 콘덴서 부싱.
  5. 제 1 항에 있어서, 상기 충진층을 형성하는 에폭시 수지에는 무기충진재가 0 ~ 50중량%까지 혼합되는 콘덴서 부싱.
  6. 제 5 항에 있어서, 상기 무기충진재로는 실리카나 알루미나가 사용되는 콘덴서 부싱.
  7. 제 1 항 내지 제 6 항중 어느 한 항에 있어서, 상기 도전성 섬유를 구성하는 위사와 경사가 상기 중심도체의 길이방향에 경사지게 연장되도록 직조되는 콘덴서 부싱.
  8. 중심도체의 외면에 절연성 섬유를 감는 절연층 형성단계와,
    상기 절연층의 사이사이에 도전성 섬유를 두어 도전층을 형성하는 도전층 형성단계와,
    상기 중심도체의 외면에 감아진 절연층의 사이에 도전층이 위치된 것이 금형내에 위치시키는 단계와,
    상기 금형 내를 진공으로 유지하면서 충진층을 형성하는 재료를 주입하는 충진층 형성단계와,
    상기 금형 내에 충진층을 형성하는 재료의 주입이 완성된 상태에서 상기 금형 내에 압력을 가하면서 열을 가해 충진층을 형성하는 충진층 경화단계를 포함하는 콘덴서 부싱의 제조방법.
  9. 제 8 항에 있어서, 상기 도전성 섬유와 절연성 섬유는 그 위사와 경사가 상기 중심도체의 길이방향에 경사지게 연장되게 감아지는 콘덴서 부싱의 제조방법.
  10. 제 8 항에 있어서, 충진층을 형성하는 재료는 에폭시 수지인데, 무기충진재를 0 ~ 50중량% 사이만큼 혼합하는 콘덴서 부싱의 제조방법.
  11. 제 8 항 내지 제 10 항중 어느 한 항에 있어서, 상기 충진층 경화단계 이후에는 상기 충진층을 냉각하는 단계를 더 수행하는 콘덴서 부싱의 제조방법.
PCT/KR2016/005591 2015-05-26 2016-05-26 콘덴서 부싱 및 그 제조방법 WO2016190686A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017561405A JP6592111B2 (ja) 2015-05-26 2016-05-26 コンデンサブッシング及びその製造方法
US15/576,258 US10297371B2 (en) 2015-05-26 2016-05-26 Capacitor bushing and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0072854 2015-05-26
KR1020150072854A KR101720237B1 (ko) 2015-05-26 2015-05-26 콘덴서 부싱 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2016190686A1 true WO2016190686A1 (ko) 2016-12-01

Family

ID=57392878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005591 WO2016190686A1 (ko) 2015-05-26 2016-05-26 콘덴서 부싱 및 그 제조방법

Country Status (4)

Country Link
US (1) US10297371B2 (ko)
JP (1) JP6592111B2 (ko)
KR (1) KR101720237B1 (ko)
WO (1) WO2016190686A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521786B8 (en) * 2018-01-31 2020-11-18 ABB Power Grids Switzerland AG Wound electrical component with printed electronics sensor
CN112002504A (zh) * 2020-08-06 2020-11-27 国网电力科学研究院武汉南瑞有限责任公司 一种环氧树脂浸渍玻璃纤维直流套管研制方法
KR20230146352A (ko) 2022-04-12 2023-10-19 효성중공업 주식회사 콘덴서 부싱 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204420A (ja) * 1982-05-24 1983-11-29 三菱電機株式会社 モ−ルドブツシング
JPS5940417A (ja) * 1982-08-27 1984-03-06 昭和電線電纜株式会社 ブツシングの製造方法
JP2010514395A (ja) * 2006-12-20 2010-04-30 アーベーベー・リサーチ・リミテッド ブッシング及びこのブッシングを製造するための方法
KR20120030984A (ko) * 2010-09-21 2012-03-29 에이비비 테크놀로지 아게 플러그-인 부싱, 및 이와 같은 부싱을 갖는 고전압 설비
KR101430749B1 (ko) * 2012-12-28 2014-08-14 주식회사 효성 컴포지트 인슐레이터

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659033A (en) * 1970-10-28 1972-04-25 Westinghouse Electric Corp Electrical bushing having adjacent capacitor sections separated by axially continuous conductive layers, and including a cooling duct
US3967051A (en) * 1975-05-22 1976-06-29 Westinghouse Electric Corporation Cast resin capacitor bushing having spacer members between the capacitor sections and method of making same
US4228318A (en) * 1978-01-16 1980-10-14 G & W Electric Specialty Company Method and means for dissipating heat in a high voltage termination
US4227035A (en) * 1978-05-15 1980-10-07 Westinghouse Electric Corp. Modular condenser bushing
DE3001810A1 (de) * 1980-01-18 1981-07-23 Siemens AG, 1000 Berlin und 8000 München Folienisolierte hochspannungsdurchfuehrung mit potentialsteuereinlagen
JPS5889719A (ja) * 1981-11-20 1983-05-28 三菱電機株式会社 ブツシング
US4500745A (en) * 1983-03-03 1985-02-19 Interpace Corporation Hybrid electrical insulator bushing
JPH1154332A (ja) * 1997-08-07 1999-02-26 Toshiba Henden Kiki Technol Kk ブッシング
EP1622173A1 (en) 2004-07-28 2006-02-01 Abb Research Ltd. High-voltage bushing
EP1889265A1 (en) 2005-06-07 2008-02-20 Abb Research Ltd. High-voltage bushing
WO2010014530A1 (en) * 2008-07-28 2010-02-04 Agt Services, Inc. High voltage bushing and flange with interior seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204420A (ja) * 1982-05-24 1983-11-29 三菱電機株式会社 モ−ルドブツシング
JPS5940417A (ja) * 1982-08-27 1984-03-06 昭和電線電纜株式会社 ブツシングの製造方法
JP2010514395A (ja) * 2006-12-20 2010-04-30 アーベーベー・リサーチ・リミテッド ブッシング及びこのブッシングを製造するための方法
KR20120030984A (ko) * 2010-09-21 2012-03-29 에이비비 테크놀로지 아게 플러그-인 부싱, 및 이와 같은 부싱을 갖는 고전압 설비
KR101430749B1 (ko) * 2012-12-28 2014-08-14 주식회사 효성 컴포지트 인슐레이터

Also Published As

Publication number Publication date
KR20160138691A (ko) 2016-12-06
US10297371B2 (en) 2019-05-21
JP2018517251A (ja) 2018-06-28
KR101720237B1 (ko) 2017-04-10
JP6592111B2 (ja) 2019-10-16
US20180144846A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
CA1051986A (en) Synthetic resin packed coil assembly
WO2016190686A1 (ko) 콘덴서 부싱 및 그 제조방법
CN1276568C (zh) 由收缩软管实现的定子线圈的绝缘
EP2629305B1 (en) Composite materials for use in high voltage devices
CN1336712A (zh) 加压浇注法定子绕组绝缘
US4137515A (en) Synthetic resin packed coil assembly
CN112640006B (zh) 电气设备及其制造方法
US2713715A (en) Coil making method
CA2368557A1 (en) Improvements in electrical machines
CN107293371B (zh) 一种建筑施工专用安全型供电电缆及其制备方法
US20190027300A1 (en) Winding Arrangement With Foot For Vertical Potting
KR20120093813A (ko) 변압기 코일 어셈블리
JPS63105412A (ja) コイル絶縁用集成マイカプリプレグテ−プ
JPH01125913A (ja) 変成器
CN113316826B (zh) 绝缘电线
KR100464277B1 (ko) 피뢰기 모듈 제조방법
JP2500966Y2 (ja) 樹脂モ―ルドコイル
JPS5927601Y2 (ja) 樹脂包埋コイル
JPS6199311A (ja) 樹脂モールドコイル
JP2818260B2 (ja) 耐熱絶縁線輪の製造方法
KR840000587B1 (ko) 건식 변압기용 코일 및 그 제조방법
JPS593845B2 (ja) ジユシホウマイコイル
CN115274194A (zh) 漆包线及电感元件
JPH09154265A (ja) 回転電機の製造方法
JPH0412509A (ja) 樹脂モールドコイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576258

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017561405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800325

Country of ref document: EP

Kind code of ref document: A1