WO2016189832A1 - 蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体 - Google Patents

蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体 Download PDF

Info

Publication number
WO2016189832A1
WO2016189832A1 PCT/JP2016/002438 JP2016002438W WO2016189832A1 WO 2016189832 A1 WO2016189832 A1 WO 2016189832A1 JP 2016002438 W JP2016002438 W JP 2016002438W WO 2016189832 A1 WO2016189832 A1 WO 2016189832A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
storage battery
voltage
capacity
current
Prior art date
Application number
PCT/JP2016/002438
Other languages
English (en)
French (fr)
Inventor
潤一 宮本
梶谷 浩司
翔 大谷
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017520224A priority Critical patent/JP6763376B2/ja
Priority to US15/574,518 priority patent/US10365334B2/en
Publication of WO2016189832A1 publication Critical patent/WO2016189832A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery control device, a power storage system, a control method, and a computer-readable medium.
  • Storage batteries used for home and industrial use have a problem that the storage capacity at full charge decreases by repeating charging and discharging. For this reason, a technique for calculating the actual capacity of the storage battery has been proposed.
  • the actual capacity is obtained based on the charge capacity from the fully discharged state to the fully charged state.
  • the discharge voltage is a predetermined value (for example, about 3 V)
  • Patent Document 1 since the actual capacity is obtained based on the charge capacity from the fully discharged state to the fully charged state with the case where the discharge voltage is a predetermined value as the fully discharged state, there are the following problems.
  • the internal resistance of a storage battery such as a lithium ion battery greatly varies depending on the environmental temperature and the degree of deterioration. That is, the voltage drop based on the internal resistance R and the discharge current value I of the storage battery varies depending on the environmental temperature and the degree of deterioration.
  • Patent Document 1 determines that the discharge is complete when the discharge current is a fixed predetermined value, it may be determined that the discharge is complete even if the capacity remains. Therefore, the amount of charge from the state determined to be completely discharged to the fully charged state may not be an accurate battery capacity.
  • an object of the present invention is to provide a storage battery control device, a power storage system, and a control method that can shorten the time for obtaining the full charge capacity and improve the accuracy of the full charge capacity.
  • the storage battery control device in the present invention Voltage measuring means for measuring the terminal voltage of the storage battery; Current measuring means for measuring the charging current and discharging current of the storage battery; Capacity calculating means for calculating the accumulated capacity of the storage battery using the charging current measured by the current measuring unit; Control means for determining operation of the storage battery based on at least one of a terminal voltage, a charging current, a discharging current, and an integrated capacity; Charge / discharge control means for operating the storage battery according to the instructions of the control means,
  • the charge / discharge control means is a storage battery, The battery is charged by the first charging method from the discharge end voltage to the first charging voltage, Charging with the second charging method at the first charging voltage, Charging from the first charging voltage to the second charging voltage in the first charging method, The battery is charged by the second charging method at the second charging voltage.
  • a storage battery having a plurality of secondary batteries in the power storage system of the present invention Voltage measuring means for measuring the voltage of the storage battery; Current measuring means for measuring the charging current and discharging current of the storage battery; Capacity calculating means for calculating the accumulated capacity of the storage battery using the charging current measured by the current measuring means; Control means for determining operation of the storage battery based on at least one of a terminal voltage, a charging current, a discharging current, and an integrated capacity; Charge / discharge control means for controlling the power of the storage battery based on an instruction of the control means, The charge / discharge control means charges the storage battery from the discharge end voltage to the first charge voltage by the first charging method, Charging with the second charging method at the first charging voltage, Charging from the first charging voltage to the second charging voltage in the first charging method, The battery is charged by the second charging method at the second charging voltage.
  • the control method in the present invention is: A control method for controlling charging and discharging of a storage battery, Measure the terminal voltage of the storage battery, Measure the charging current and discharging current of the storage battery, Calculate the accumulated capacity of the storage battery using the charging current, The operation of the storage battery is determined based on at least one of the terminal voltage, the charging current, the discharging current, and the integrated capacity, Control the power of the storage battery based on the determined operation of the storage battery, In the control of storage battery power, The battery is charged by the first charging method from the discharge end voltage to the first charging voltage, Charging with the second charging method at the first charging voltage, Charging from the first charging voltage to the second charging voltage in the first charging method, The battery is charged by the second charging method at the second charging voltage.
  • a non-transitory computer readable medium storing a control program according to the present invention is: On the computer, Measure the terminal voltage of the storage battery, Let me measure the charge current and discharge current of the storage battery, Calculate the accumulated capacity of the storage battery using the charging current, The operation of the storage battery is determined based on at least one of the terminal voltage, the charging current, the discharging current, and the integrated capacity, Based on the determined operation of the storage battery, the power of the storage battery is controlled, In the control of storage battery power, Charging the storage battery from the discharge end voltage to the first charging voltage by the first charging method; Charging with the second charging method at the first charging voltage, Charging from the first charging voltage to the second charging voltage in the first charging method, The battery is charged by the second charging method at the second charging voltage.
  • Time required for full charge capacity can be shortened and accuracy can be improved.
  • FIG. 1 is a diagram illustrating a configuration of a power storage system according to the present embodiment.
  • the power storage system in the present embodiment includes a storage battery control device 10 and a storage battery 20.
  • the storage battery control device 10 includes a storage battery 20, a voltage measurement unit 30, a current measurement unit 40, a capacity calculation unit 50, a control unit 60, and a charge / discharge control unit 70.
  • the storage battery 20 has a plurality of secondary batteries 21.
  • the storage battery 20 may be configured to connect a plurality of secondary batteries 21 in series or in parallel. Or the structure which connected the some secondary battery 21 connected in series or parallel further in series or parallel may be sufficient.
  • a lithium ion secondary battery may be used as the secondary battery 21.
  • the storage battery 20 can be charged and discharged from the outside through the negative terminal Ta and the positive terminal Tb.
  • the voltage measuring unit 30 is connected to a terminal of each secondary battery 21.
  • the voltage measuring unit 30 measures the terminal voltage of the secondary battery 21.
  • the terminal voltage information G1 is output to the control unit 60.
  • the terminal voltage information G1 may be the terminal voltage of the storage battery 20 or the terminal voltage of each secondary battery 21. Alternatively, the terminal voltage information G1 may be an average value of the terminal voltage of each secondary battery 21.
  • the voltage measuring unit 30 preferably transmits the terminal voltage information G1 to the control unit 60 in synchronization with the current measuring unit 40.
  • the voltage measurement unit 30 may transmit the terminal voltage information G1 to the control unit 60 at a timing different from the timing at which the current measurement unit 40 outputs information.
  • the control unit 60 may output an output request for the terminal voltage information G ⁇ b> 1 to the voltage measurement unit 30.
  • the voltage measuring unit 30 may measure the terminal voltage in response to the output request and output the terminal voltage information G1, or may output the already measured terminal voltage information G1. The same applies to the measurement timing of the charging current and the discharging current in the current measuring unit 40 and the output timing of the charging / discharging current information G2.
  • the current measuring unit 40 measures the charging current and discharging current of the storage battery 20 at a predetermined time interval or at a specified time. And a measurement result is output to the capacity
  • the charge / discharge current information G2 is output to the capacity calculation unit 50 and the control unit 60.
  • the charge / discharge current information G2 output to the capacity calculation unit 50 is used as the charge / discharge current information G2_a for capacity calculation, and the charge / discharge current information G2 output to the control unit 60 is used for control. This is described as charge / discharge current information G2_b.
  • the current measuring unit 40 can be configured using a galvanometer, a galvanometer using a shunt resistor, a clamp meter, or the like. However, you may comprise the electric current measurement part 40 other than these apparatuses.
  • the charge / discharge current information G2 may be a measured current value or an average value of a plurality of measurement results.
  • the capacity calculation unit 50 calculates the accumulated capacity of the storage battery 20. Further, the capacity calculation unit 50 outputs the calculated integrated capacity to the control unit 60 as integrated capacity information G3.
  • the capacity calculation unit 50 calculates the integrated capacity based on the charge / discharge current information G2 input from the current measurement unit 40. Specifically, the capacity calculation unit 50 calculates the integrated capacity by time-integrating the charging current or discharging current indicated by the charging / discharging current information G2.
  • the integrated capacity is calculated as the current value at the current time multiplied by the difference time between the current time and the previous calculation time. That is, the capacity calculation unit 50 calculates the integrated capacity as an integral value for each time of the current value indicated by the charge / discharge current information G2. [Ah] is usually used as a unit of the integration capacity. The capacity calculation unit 50 calculates the integrated capacity by integrating the calculated capacities, with the current in the charging direction as positive and the current in the discharging direction as negative.
  • the control unit 60 calculates the full charge capacity of the storage battery 20 based on the terminal voltage information G1, the charge / discharge current information G2, and the integrated capacity information G3. Further, the control unit 60 determines the operation of the storage battery 20 based on at least one of the terminal voltage information G1, the charge / discharge current information G2, and the integrated capacity information G3. Control unit 60 outputs a charge / discharge control command G4 indicating the determined operation to charge / discharge control unit 70. Control unit 60 may receive a control signal from an external device (not shown) and output charge / discharge control command G4 based on the control signal.
  • the charge / discharge control command G4 may be information that instructs the operation mode (charge mode, discharge mode, standby mode) of the storage battery 20.
  • the charge / discharge control command G4 may be information indicating charge power or discharge power.
  • both the operation mode and information indicating charging power and discharging power may be included.
  • the control unit 60 calculates a charge rate (SOC: State of Charge) based on the accumulated capacity information G3 calculated by the capacity calculation unit 50.
  • SOC can be defined by a capacity ratio [%] between the current full charge capacity and the accumulated capacity from the complete discharge state.
  • the SOC can be calculated by Equation 1.
  • the control unit 60 may store the calculated SOC. Further, the control unit 60 may store the internal resistance assumed in advance of the storage battery 20. Alternatively, the control unit 60 may calculate the internal resistance of the storage battery 20 using the calculated full charge capacity, and store the calculated internal resistance.
  • the control unit 60 stores in advance an allowable voltage range in which the secondary battery 21 can operate and an allowable current range. Since the storage battery 20 generates electric power by a chemical reaction, when the secondary battery 21 is a single battery of a lithium ion secondary battery, the allowable voltage range can be exemplified as 2.5V to 4.2V.
  • the control unit 60 sends a charge / discharge control command G4 instructing to stop charging or discharging the storage battery 20 to the charge / discharge control unit 70. Output. In this way, when the voltage value of the secondary battery 21 is outside the allowable voltage range, overcharging and overdischarging can be prevented by stopping charging and discharging.
  • the control unit 60 instructs to stop charging or discharging the storage battery 20.
  • G4 is output to the charge / discharge control unit 70.
  • the charge / discharge control unit 70 has a power conversion function such as a bidirectional DC / DC converter or an AC / DC converter.
  • the charge / discharge control unit 70 controls the power of the storage battery 20 based on the charge / discharge control command G ⁇ b> 4 from the control unit 60.
  • the control of the power of the storage battery 20 includes stopping discharging, stopping charging, and adjusting the output of charging and discharging.
  • FIG. 2 is a diagram illustrating an example of a voltage waveform of the storage battery 20.
  • FIG. 3 is a flowchart showing an operation flow of the charge / discharge control apparatus 10.
  • the first section is a normal discharge section
  • the second section is a precharge section
  • the third section is a capacity calculation section.
  • step S1 the control unit 60 outputs a charge / discharge control command G4 that instructs the storage battery 20 to operate in the discharge mode to the charge / discharge control unit 70.
  • the charge / discharge control unit 70 discharges the storage battery 20 in accordance with the input charge / discharge control command G4.
  • step S2 the control unit 60 determines whether or not the terminal voltage has reached the discharge stop voltage based on the terminal voltage information G1.
  • the voltage measuring unit 30 measures the terminal voltage of the secondary battery 21.
  • the voltage measurement unit 30 outputs the measured terminal voltage to the control unit 60 as terminal voltage information G1.
  • the controller 60 determines whether the terminal voltage of the secondary battery 21 indicated by the input terminal voltage information G1 has reached the discharge stop voltage. If the terminal voltage has reached the discharge stop voltage, the process proceeds to step S3. If the terminal voltage has not reached the discharge stop voltage, step S2 is repeated.
  • the discharge stop voltage is the upper limit value of the voltage for starting the precharge period. Note that the discharge stop voltage may not coincide with the allowable lower limit voltage or the discharge end voltage of the allowable voltage range.
  • the discharge stop voltage may be any voltage that simply stops the discharge.
  • the discharge stop voltage is preferably a higher voltage. Moreover, it is a voltage which can be charged from the discharge stop voltage to a first charging voltage described later.
  • the method for setting the discharge voltage is not limited.
  • the control unit 60 may set the discharge stop voltage based on the SOC calculated by the control unit 60. Furthermore, you may set a charging / discharging schedule to the control part 60, and instruct
  • step S ⁇ b> 3 the control unit 60 outputs a charge / discharge control command G ⁇ b> 4 instructing to stop the discharge to the charge / discharge control unit 70.
  • the charge / discharge control unit 70 stops the discharge of the storage battery 20 in accordance with the input charge / discharge control command G4.
  • the first discharge period ends. That is, the first interval is an interval from the start of discharge until the terminal voltage reaches the discharge stop voltage.
  • step S4 the control unit 60 determines a first charging voltage for stopping charging in the second section.
  • Control unit 60 outputs to charging / discharging control unit 70 charging / discharging control command G4 instructing charging of storage battery 20 to the determined first charging voltage.
  • the first charging voltage can be calculated based on the voltage when the storage battery 20 stops discharging, the discharge current value (absolute value) immediately before stopping the discharge, and the internal resistance of the storage battery 20. Specifically, the first charging voltage is set to a value that satisfies Equation (2).
  • Equation 2 the calculation of the first charging voltage need not be limited to Equation 2, and may be a voltage higher than the discharge stop voltage.
  • step S5 the charge / discharge control unit 70 charges the storage battery 20 to the first charging voltage by the first charging method.
  • the charge / discharge control unit 70 sets the storage battery 20 to the charge mode according to the charge / discharge control command G4 and charges the battery 20 to the first charge voltage.
  • the first charging method may be constant current (CC) charging.
  • CC constant current
  • CP Constant Power
  • pulse charging may be used.
  • a method of performing CC charging at a variable rate may be used.
  • step S6 the control unit 60 determines whether the terminal voltage of the secondary battery 21 has reached the first charging voltage.
  • the voltage measuring unit 30 measures the terminal voltage of the secondary battery 21. Then, the voltage measuring unit 30 outputs the measured terminal voltage to the control unit 60 as terminal voltage information G1.
  • the controller 60 determines whether the terminal voltage of the secondary battery 21 indicated by the input terminal voltage information G1 has reached the first charging voltage. If the terminal voltage has reached the discharge stop voltage, the process proceeds to step S7. If the terminal voltage has not reached the first charging voltage, step S6 is repeated until the terminal voltage reaches the first charging voltage.
  • step S7 the charge / discharge control unit 70 switches the charging of the storage battery 20 from the first charging method to the second charging method.
  • the reason for switching to the second charging method is to more accurately set the terminal voltage at the end of charging to the first charging voltage that is the target voltage.
  • the second charging method may be, for example, constant voltage (CV) charging.
  • step S8 the control unit 60 determines whether or not the storage battery 20 satisfies the charge stop condition. If the storage battery 20 satisfies the charge stop condition, the process proceeds to step S9. When the storage battery 20 does not satisfy the charge stop condition, the control unit 60 repeats S8.
  • the charging stop condition may be a condition indicating that the charging current measured by the current measuring unit 40 satisfies a predetermined condition.
  • the charging stop condition may be a condition indicating that the charging current and the charging time measured by the current measuring unit 40 satisfy a predetermined condition.
  • the control unit 60 instructs to stop charging when the storage battery 20 satisfies any one of the following first to fourth charging stop conditions.
  • First charge stop condition the charging current of the storage battery 20 is sufficiently small
  • Second charge stop condition a predetermined time has elapsed since switching to the second charge method
  • Third charge stop condition Both the first charge stop condition and the second charge stop condition are satisfied.
  • Fourth charge stop condition The charge stop condition when a predetermined time has elapsed after the charge current becomes sufficiently small. Is not limited to the above, and other conditions may be used.
  • step S ⁇ b> 9 the control unit 60 outputs a charge / discharge control command G ⁇ b> 4 that instructs to stop charging the storage battery 20 to the charge / discharge control unit 70.
  • the charge / discharge control unit 70 stops the charging of the storage battery 20 in the second charging method according to the charge / discharge control command G4.
  • the preliminary charging section which is the second section ends. That is, the second section is a section from the end of the first section to the end of charging up to the first charging voltage using the second charging method.
  • step S10 the control unit 60 determines a second charging voltage indicating a voltage for terminating charging in the third section.
  • the control unit 60 may determine the second charging voltage in advance.
  • the second charging voltage may be determined before step S9 is completed.
  • the second charging voltage may be calculated from the charging current and the internal resistance of the storage battery 20.
  • the second charging voltage may be calculated as in Expression (3) using a constant current charging current in CCCV charging and the internal resistance of the storage battery 20.
  • the second charging voltage is a voltage at which the storage battery 20 can be charged at least from the first charging voltage by the first charging method. That is, the second charging voltage is higher than the first charging voltage.
  • control unit 60 holds the maximum internal resistance value that can be taken by the storage battery 20 in advance.
  • the first charging voltage can be determined in advance such that the terminal voltage corresponds to an SOC of 70%, and the second charging voltage is a terminal voltage corresponding to an SOC of 100%.
  • step S11 the control unit 60 outputs to the charge / discharge control command unit 70 a charge / discharge control command G4 that instructs to charge the storage battery 20 by the first charging method up to the second charge voltage.
  • the charge / discharge control unit 70 charges the storage battery 20 to the second charging voltage by the first charging method.
  • step S12 the control unit 60 determines whether or not the terminal voltage of the secondary battery 21 has reached the second charging voltage. When it is determined that the terminal voltage of the secondary battery 21 has reached the second charging voltage, the process proceeds to step S13. On the other hand, when the terminal voltage of the secondary battery 21 has not reached the second charging voltage, step S12 is repeated.
  • step S13 the charge / discharge control unit 70 switches the charging of the storage battery 20 from the first charging method to the second charging method.
  • step S14 it is determined whether or not the charge stop condition is satisfied.
  • the charge stop condition the charge stop condition used in step S8 can be used. Or you may use the charge stop conditions different from step S8.
  • the control unit 60 proceeds to step S15. On the other hand, when it is determined that the charging stop condition is not satisfied, step S14 is repeated.
  • step S15 the control unit 60 transmits a charge / discharge control signal G4 instructing the charge / discharge control unit 70 to stop charging the storage battery 20.
  • the charge / discharge control unit 70 stops the storage battery 60 according to the instruction indicated by the charge / discharge control signal G4.
  • step S16 the capacity calculation unit 50 calculates the integrated capacity Q1 when charging from the discharge stop voltage to the first charging voltage and the integrated capacity Q2 when charging to the second charging voltage.
  • the integrated capacity Q1 is an integrated capacity when charging from the discharge stop voltage to the first charge voltage in the first charging method.
  • the accumulated capacity Q2 is an accumulated capacity when charging up to the second charging voltage by the first charging method.
  • the capacity calculation unit 50 transmits the calculated integrated capacity Q1 and Q2 to the control unit 60 as integrated capacity information G3.
  • step S17 the control unit 60 obtains the SOC change ⁇ SOC12 between the first charging voltage and the second charging voltage.
  • FIG. 4 shows a relationship between the open circuit voltage (OCV) when the secondary battery 21 is not loaded and the SOC. Therefore, in step S17, the control unit 60 obtains the SOC corresponding to the first charging voltage OCV1 (hereinafter referred to as SOC1) and the SOC corresponding to the second charging voltage OCV2 (hereinafter referred to as SOC2). Then, using equation (4), an SOC change ⁇ SOC12 between the first charging voltage and the second charging voltage is obtained.
  • step S18 the control unit 60 calculates a differential capacity ⁇ Q12 between the first charging voltage and the second charging voltage.
  • the control unit 60 calculates the differential capacity ⁇ Q12 using the integrated capacity Q1 of the first charging voltage indicated by the integrated capacity information G3 and the integrated capacity Q2 up to the second charging voltage.
  • the differential capacity ⁇ Q12 between the first charging voltage and the second charging voltage is given by the following equation (5).
  • step S19 the full charge capacity Qfull [Ah] is calculated using the differential capacity ⁇ Q12 calculated in step S18.
  • the full charge capacity Qfull can be calculated using Equation (6).
  • step S20 the control unit 60 calculates the corrected full charge capacity Qfull_m.
  • the controller 60 calculates the full charge capacity Qfull_m by correcting the full charge capacity Qfull calculated in step S18 according to the SOC before the start of charging.
  • the operation of the storage battery control device 10 is terminated.
  • FIG. 5 is a diagram showing an example of the relationship between the capacity ratio between the calculated full charge capacity Qfull and the actually measured full charge capacity, and the SOC before the start of charging.
  • the SOC before starting charging in the first charging method (SOC before starting charging) is shown.
  • FIG. 5 shows that the smaller the SOC before the start of charging, the larger the capacity ratio. This means that the smaller the SOC before the start of charging, the larger the calculation error of the calculated full charge capacity Qfull with respect to the actually measured full charge capacity.
  • FIG. 6 is a diagram showing an example of the correction capacity ratio with respect to the SOC before the start of charging.
  • the capacity Qfull_m / actual full charge capacity * 100) is shown with respect to the SOC before the start of charging.
  • the correction factor is determined by the following procedure. First, a first charging voltage and a second charging voltage are determined using a new storage battery whose full charge capacity is known in advance or a storage battery whose full charge capacity is actually measured.
  • the differential capacity ⁇ Q12 is calculated from the measured result.
  • the full charge capacity Qfull is calculated by Equation 6. The relationship shown in FIG. 5 is obtained by calculating a capacity ratio between the calculated full charge capacity Qfull and the actually measured full charge capacity.
  • control unit 60 associates the obtained correction coefficient with the SOC before the start of charging and holds it in a look-up table or a formula.
  • the accuracy of the full charge capacity is improved by correcting the full charge capacity Qfull calculated by Expression 6. Further, since the full charge capacity can be obtained without discharging to the complete discharge state, the discharge time to the complete discharge state can be omitted, and the working efficiency is improved.
  • the control unit 60 may hold the relationship between the deterioration rate of the full charge capacity and the internal resistance. For example, the initial full charge capacity and charge / discharge cycle test may be performed in advance of shipment to obtain the full charge capacity and internal resistance corresponding to the cycle, and the relationship between the deterioration rate of the full charge capacity and the internal resistance may be obtained. Good.
  • the control unit 60 may store the initial full charge capacity of the storage battery control device 10 and calculate the deterioration rate every time the full charge capacity is calculated.
  • the control unit 60 may calculate the current internal resistance from the relationship between the stored deterioration rate of the full charge capacity and the internal resistance.
  • household storage batteries may be discharged during the day or at night and fully charged at midnight when electricity charges are low.
  • the full charge capacity can be accurately calculated during late-night charging regardless of the SOC when the discharge is stopped.
  • Some household storage batteries can be set to leave a capacity for backup. For example, there may be a setting that leaves SOC 0%, SOC 10%, SOC 20%, and SOC 30%.
  • a voltage corresponding to a higher capacity than the settable capacity may be set as the first charging voltage.
  • the first charging voltage may be set to a voltage corresponding to SOC 50%
  • the second charging voltage may be set to a voltage corresponding to SOC 100%. Since the battery is discharged during the day and at night and reaches the set value, the discharge is stopped. Therefore, in any case, the first charge voltage set during the midnight charge can be charged to the second charge voltage. Therefore, the full charge capacity can be accurately calculated by measuring the differential capacity during midnight charging and correcting it according to the SOC when the discharge is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

蓄電池制御装置は、蓄電池の端子電圧を測定する電圧測定手段と、蓄電池の充電電流及び放電電流を測定する電流測定手段と、電流測定部が測定した充電電流を用いて蓄電池の積算容量を算出する容量算出手段と、端子電圧と充電電流と放電電流と積算容量の少なくとも1つに基づいて蓄電池の運転を決定する制御手段と、制御手段の指示に従って蓄電池を運転させる充放電制御手段と、を有し、充放電制御手段は蓄電池を、放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、第1充電電圧において第2の充電方式で充電させ、第1充電電圧から第2充電電圧まで第1の充電方式で充電させ、第2充電電圧において第2の充電方式で充電させる。

Description

蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体
 本発明は、蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体に関する。
 家庭や産業用に用いる蓄電池は、充電と放電とを繰り返えすことで満充電時の蓄電容量が減少するという問題がある。このため、蓄電池の実容量を算出する技術が提案されている。
 特許文献1では、完全放電状態から満充電状態までの充電容量に基づき実容量を求める。このとき、放電電圧が所定値(例えば、3V程度)である場合に完全放電である判断する。
特開2013-247045号公報
 しかしながら、特許文献1では放電電圧が所定値である場合を完全放電状態として、完全放電状態から満充電状態までの充電容量に基づき実容量を求めているため、以下の問題があった。
 即ち、完全放電状態まで蓄電池を放電する際の放電電流は、蓄電池に接続される負荷に応じて変動する。従って、特許文献1では放電電流が小さい場合に、完全放電状態に達するまでの放電時間が長くなる。また、蓄電池を完全放電状態となるまで放電させた後に満充電状態まで充電するので、充電時間も長くなる。従って、放電と充電という一連の実容量算出処理の時間が長くなるという問題点があった。
 また、一般的にリチウムイオン電池等の蓄電池の内部抵抗は環境温度や劣化度に依存して大きく変化する。即ち、蓄電池の内部抵抗Rと放電電流値Iに基づく電圧降下は、環境温度や劣化度に応じて異なる。
 このため、放電電流が固定の所定値である場合に完全放電であると判断する特許文献1の技術では、容量が残っていても完全放電状態と判断してしまうことがある。従って、完全放電状態と判断された状態から満充電状態までの充電量が正確な電池容量ではない場合ある。
 そこで、本発明は満充電容量を求める時間を短縮し、満充電容量の精度を向上させることができる蓄電池制御装置、蓄電システム、制御方法及びを提供することを目的とする。
 本発明における蓄電池制御装置は、
蓄電池の端子電圧を測定する電圧測定手段と、
蓄電池の充電電流及び放電電流を測定する電流測定手段と、
電流測定部が測定した充電電流を用いて蓄電池の積算容量を算出する容量算出手段と、
端子電圧と充電電流と放電電流と積算容量の少なくとも1つに基づいて蓄電池の運転を決定する制御手段と、
制御手段の指示に従って蓄電池を運転させる充放電制御手段と、を有し、
充放電制御手段は蓄電池を、
放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
第1充電電圧において第2の充電方式で充電させ、
第1充電電圧から第2充電電圧まで第1の充電方式で充電させ、
第2充電電圧において第2の充電方式で充電させる。
 本発明における蓄電システム
複数の二次電池を有する蓄電池と、
蓄電池の電圧を測定する電圧測定手段と、
蓄電池の充電電流及び放電電流を測定する電流測定手段と、
電流測定手段が測定した充電電流を用いて蓄電池の積算容量を算出する容量算出手段と、
端子電圧と充電電流と放電電流と積算容量の少なくとも1つに基づいて蓄電池の運転を決定する制御手段と、
制御手段の指示に基づいて蓄電池の電力を制御する充放電制御手段と、を有し、
充放電制御手段は、蓄電池を
放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
第1充電電圧において第2の充電方式で充電させ、
第1充電電圧から第2充電電圧まで第1の充電方式で充電させ、
第2充電電圧において第2の充電方式で充電させる。
 本発明における制御方法は、
蓄電池の充電及び放電を制御する制御方法であって、
蓄電池の端子電圧を測定し、
蓄電池の充電電流及び放電電流を測定し、
充電電流を用いて蓄電池の積算容量を算出し、
端子電圧と充電電流と放電電流と積算容量の少なくとも1つに基づいて蓄電池の運転を決定し、
決定した蓄電池の運転に基づいて蓄電池の電力を制御し、
蓄電池の電力の制御においては、
放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
第1充電電圧において第2の充電方式で充電させ、
第1充電電圧から第2充電電圧まで第1の充電方式で充電させ、
第2充電電圧において第2の充電方式で充電させる。
 本発明における制御プログラムが格納された非一時的なコンピュータ可読媒体は、
コンピュータに、
蓄電池の端子電圧を測定させ、
蓄電池の充電電流及び放電電流を測定させ、
充電電流を用いて蓄電池の積算容量を算出させ、
端子電圧と充電電流と放電電流と積算容量の少なくとも1つに基づいて蓄電池の運転を決定させ、
決定した蓄電池の運転に基づいて蓄電池の電力を制御させ、
蓄電池の電力の制御においては、
蓄電池を放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
第1充電電圧において第2の充電方式で充電させ、
第1充電電圧から第2充電電圧まで第1の充電方式で充電させ、
第2充電電圧において第2の充電方式で充電させる。
 満充電容量を求める時間を短縮でき、かつ、精度を向上させることができる。
本実施形態における蓄電池制御装置のブロック図の一例である。 蓄電池の電圧の波形の一例を示す図である。 本実施形態における蓄電池制御装置の動作の一例を示すフローチャートである。 二次電池の開放電圧と、残容量との関係を例示した図である。 算出した満充電容量Qfullと実測した満充電容量との容量比率と、充電開始前のSOCと、の関係の一例を示す図である。 充電開始前のSOCに対する補正した容量比率の一例を示す図である。
 本発明の実施形態を説明する。図1は、本実施形態にかかる蓄電システムの構成を示す図である。本実施形態における蓄電システムは、蓄電池制御装置10と蓄電池20とを有する。
 蓄電池制御装置10は、蓄電池20、電圧測定部30、電流測定部40、容量算出部50、制御部60、充放電制御部70を有する。
 蓄電池20は、複数の二次電池21を有する。蓄電池20は、複数の二次電池21を直列又は並列に接続する構成であってもよい。または、直列又は並列に接続された複数の二次電池21をさらに直列又は並列に接続した構成であっても良い。なお、二次電池21としては、例えばリチウムイオン二次電池を用いてもよい。蓄電池20は負極端子Ta及び正極端子Tbを介して外部から充電および外部へ放電することができる。
 電圧測定部30は、各二次電池21の端子と接続する。電圧測定部30は、二次電池21の端子電圧を計測する。そして端子電圧情報G1を制御部60へ出力する。端子電圧情報G1は、蓄電池20の端子電圧でも良いし、各二次電池21の端子電圧であってもよい。または端子電圧情報G1は、各二次電池21の端子電圧の平均値であってもよい。
 電圧測定部30は電流測定部40と同期して、制御部60へ端子電圧情報G1を送信することが好ましい。ただし、電圧測定部30は、電流測定部40が情報を出力するタイミングとは異なるタイミングで端子電圧情報G1を制御部60へ送信してもよい。例えば、制御部60が電圧測定部30に対して端子電圧情報G1の出力要求を出力するような場合がある。この場合、電圧測定部30は出力要求に応じて端子電圧を測定し端子電圧情報G1を出力したり、既に測定した端子電圧情報G1を出力したりしてもよい。これは、電流測定部40における充電電流や放電電流の測定タイミングや充放電電流情報G2の出力タイミングについても同様である。
 電流測定部40は、蓄電池20の充電電流及び放電電流を所定の時間間隔や指定された時刻に測定する。そして、測定結果を充放電電流情報G2として容量算出部50及び制御部60に出力する。
 なお、充放電電流情報G2は、容量算出部50と制御部60とに出力される。出力先を識別する必要がある場合には、容量算出部50に出力される充放電電流情報G2を容量算出用充放電電流情報G2_a、制御部60に出力される充放電電流情報G2を制御用充放電電流情報G2_bとして記載する。
 電流測定部40は、検流計、シャント抵抗を用いた検流器、クランプメータ等を用いて構成することができる。しかし電流測定部40は、これらの機器以外で構成してもよい。また、充放電電流情報G2は、測定した電流値であってもよいし、複数回の測定結果の平均値であってもよい。
 容量算出部50は、蓄電池20の積算容量を算出する。また、容量算出部50は算出した積算容量を積算容量情報G3として制御部60に出力する。
 容量算出部50は、電流測定部40から入力された充放電電流情報G2に基づき積算容量を算出する。具体的には、容量算出部50は、充放電電流情報G2が示す充電電流又は放電電流を時間積分して積算容量を算出する。
 例えば積算容量は、現在時刻での電流値に、現在時刻と1つ前の算出時刻との差分時間を掛け合わせたものとして算出される。つまり、容量算出部50は、積算容量を、充放電電流情報G2が示す電流値の時間毎の積分値として算出する。積分容量の単位は、通常、[Ah]を用いる。容量算出部50は、充電方向の電流をプラス、放電方向の電流をマイナスとして、算出した容量を積算して積算容量を算出する。
 制御部60は、端子電圧情報G1、充放電電流情報G2、積算容量情報G3に基づき、蓄電池20の満充電容量を算出する。また、制御部60は、端子電圧情報G1、充放電電流情報G2、積算容量情報G3の少なくとも1つに基づき、蓄電池20の運転を決定する。制御部60は決定した運転を示す充放電制御指令G4を充放電制御部70に出力する。なお、制御部60は、図示しない外部の装置から制御信号を受信し、その制御信号に基づいて充放電制御指令G4を出力しても良い。
 充放電制御指令G4は、蓄電池20の運転モード(充電モード、放電モード、待機モード)を指示する情報であってもよい。または、充放電制御指令G4は、充電電力や放電電力を示す情報であってもよい。または、運転モードと充電電力や放電電力を示す情報との両方を含んでもよい。
 制御部60は、容量算出部50で算出した積算容量情報G3に基づき、充電率(SOC:State of Charge)を算出する。SOCは、現時点の満充電容量と完全放電状態からの積算容量との容量比率[%]で定義することができる。SOCは式1で算出することができる。
Figure JPOXMLDOC01-appb-I000001
 制御部60は、算出したSOCを記憶してもよい。また、制御部60は、蓄電池20の予め想定された内部抵抗を記憶してもよい。または、制御部60は、算出した満充電容量を用いて蓄電池20の内部抵抗を算出し、算出した内部抵抗を記憶してもよい。
 制御部60には、二次電池21が動作できる許容電圧範囲、及び、許容電流範囲が予め記憶されている。蓄電池20は化学反応により電力を発生するため、二次電池21がリチウムイオン二次電池の単電池の場合には、許容電圧範囲は、2.5V~4.2Vが例示できる。
 端子電圧情報G1が示す二次電池21の端子電圧の値が許容電圧範囲外の場合、制御部60は蓄電池20の充電又は放電の停止を指示する充放電制御指令G4を充放電制御部70へ出力する。このように二次電池21の電圧値が許容電圧範囲外の場合に充電や放電を停止することで、過充電や過放電を防止することができる。
 また、電流測定部40が出力した充放電電流情報G2が示す充電電流や放電電流の値が許容電流範囲外の場合、制御部60は蓄電池20の充電又は放電の停止を指示する充放電制御指令G4を充放電制御部70へ出力する。二次電池21の充電電流や放電電流が許容電流範囲外の場合に充電や放電を停止することで、過電流を防止することができる。
 充放電制御部70は、双方向のDC/DCコンバータ又はAC/DCコンバータ等の電力変換機能を備える。充放電制御部70は、制御部60からの充放電制御指令G4に基づいて蓄電池20の電力を制御する。蓄電池20の電力の制御は、放電の停止、充電の停止、充電及び放電の出力の調整を含む。
 次に、図2と図3を用いて上記蓄電池制御装置10の動作を説明する。図2は、蓄電池20の電圧の波形の一例を示す図である。また、図3は充放電制御装置10の動作の流れを示すフローチャートである。
 図2において、第1区間は通常時における放電区間、第2区間は予備充電区間、第3区間は容量算出区間である。
 ステップS1では、制御部60は蓄電池20を放電モードで動作させることを指示する充放電制御指令G4を充放電制御部70に出力する。充放電制御部70は、入力された充放電制御指令G4に従い蓄電池20を放電させる。
 ステップS2では、制御部60は、端子電圧情報G1に基づき端子電圧が放電停止電圧に達したか否かを判断することになる。電圧測定部30は二次電池21の端子電圧を測定する。電圧測定部30は測定した端子電圧を端子電圧情報G1として制御部60へ出力する。制御部60は、入力された端子電圧情報G1が示す二次電池21の端子電圧が放電停止電圧に達したかを判断する。端子電圧が放電停止電圧に達している場合、ステップS3へ進む。端子電圧が放電停止電圧に達していない場合、ステップS2を繰り返す。
 放電停止電圧は、予備充電区間を開始する電圧の上限値である。なお、放電停止電圧は、許容電圧範囲の許容下限電圧や放電終止電圧と一致していなくてもよい。放電停止電圧は、単に放電を停止する電圧であればよい。放電停止電圧は、より適宜高い電圧であることが好ましい。また、放電停止電圧から後述する第1充電電圧まで充電できる電圧である。
 放電電圧を設定する方法は限定されない。例えば、制御部60は、放電停止電圧を制御部60で算出されるSOCに基づいて設定してもよい。さらに制御部60に充放電スケジュールを設定し、当該充放電スケジュールに従い蓄電池20の放電停止を指示してもよい。
 ステップS3では、制御部60は放電停止を指示する充放電制御指令G4を充放電制御部70へ出力する。充放電制御部70は、入力された充放電制御指令G4に従い蓄電池20の放電を停止させる。放電を停止すると第1区間である放電区間が終了する。すなわち、第1区間は放電を開始してから端子電圧が放電停止電圧に達するまでの区間である。
 ステップS4では、制御部60は第2区間の充電を停止する第1充電電圧を決定する。制御部60は、決定した第1充電電圧まで蓄電池20を充電させることを指示する充放電制御指令G4を充放電制御部70へ出力する。
 第1充電電圧は、蓄電池20の放電停止時の電圧と、放電を停止する直前の放電電流値(絶対値)と、蓄電池20の内部抵抗と、に基づいて算出することができる。具体的には、第1充電電圧は式(2)を満たす値に設定する。
Figure JPOXMLDOC01-appb-I000002
 なお、第1充電電圧の算出は式2に限定する必要はなく、放電停止電圧よりも高い電圧であればよい。
 ステップS5では、充放電制御部70は蓄電池20を第1充電電圧まで第1の充電方式で充電させる。充放電制御部70は、充放電制御指令G4に従い蓄電池20を充電モードに設定し第1充電電圧まで充電させる。
 第1の充電方式は、定電流(CC:Constant Current)充電であってもよい。または、定電力(CP:Constant Power)充電やパルス充電であってもよい。CC充電を可変レートで行う方法でも良い。
 ステップS6では、制御部60は二次電池21の端子電圧が第1充電電圧に達したかを判断する。電圧測定部30は二次電池21の端子電圧を測定する。そして電圧測定部30は測定した端子電圧を端子電圧情報G1として制御部60へ出力する。制御部60は、入力された端子電圧情報G1が示す二次電池21の端子電圧が第1充電電圧に達したかを判断する。端子電圧が放電停止電圧に達している場合、ステップS7へ進む。端子電圧が第1充電電圧に達していない場合、端子電圧が第1充電電圧に達するまでステップS6を繰り返す。
 ステップS7では、充放電制御部70は蓄電池20の充電を第1の充電方式から第2の充電方式に切り替える。第2の充電方式に切り替える理由は、充電終了時の端子電圧をより正確に目標電圧である第1充電電圧とするためである。第2の充電方式は例えば定電圧(CV:Constant Voltage)充電であってもよい。
 ステップS8では、制御部60は蓄電池20が充電停止条件を満たしているかを判断する。蓄電池20が充電停止条件を満たす場合、ステップS9へ進む。蓄電池20が充電停止条件を満たさない場合、制御部60はS8を繰り返す。
 充電停止条件は、電流測定部40が測定した充電電流が所定の条件を満たすことを示す条件でもよい。または、充電停止条件は、電流測定部40が測定した充電電流と充電時間が所定の条件を満たすことを示す条件でもよい。
 例えば、制御部60は蓄電池20が以下の第1充電停止条件から第4充電停止条件のいずれか1つを満たす場合に、充電の停止を指示する。
(1)第1充電停止条件:蓄電池20の充電電流が十分に小さい
(2)第2充電停止条件:第2の充電方式に切り替えてから所定の時間が経過した
(3)第3充電停止条件:第1充電停止条件と第2充電停止条件の両方の条件が成立している
(4)第4充電停止条件:充電電流が十分に小さくなってから所定の時間が経過した
なお、充電停止条件は上記に限らず他の条件を用いてもよい。
 ステップS9では、制御部60は蓄電池20の充電の停止を指示する充放電制御指令G4を充放電制御部70へ出力する。充放電制御部70は、充放電制御指令G4に従い蓄電池20の第2の充電方式での充電を停止させる。ここで第2区間である予備充電区間が終了する。すなわち第2区間は、第1区間終了から第2の充電方式を用いた第1充電電圧までの充電が終了するまでの区間である。
 ステップS10では、制御部60は第3区間において充電を終了させる電圧を示す第2充電電圧を決定する。なお、制御部60は予め第2充電電圧を決定してもよい。例えば、ステップS9が完了する前に第2充電電圧を決定していてもよい。第2充電電圧は、充電電流と蓄電池20の内部抵抗とから算出してもよい。例えば第2充電電圧は、CCCV充電における定電流の充電電流と蓄電池20の内部抵抗とを用いて式(3)のように算出してもよい。第2充電電圧は、少なくとも第1充電電圧から第1の充電方式で蓄電池20を充電できる電圧とする。即ち、第2充電電圧は第1充電電圧より高い電圧である。
Figure JPOXMLDOC01-appb-I000003
 蓄電池20の内部抵抗は、稼働により増加する傾向がある。そこで、制御部60は、予め蓄電池20が取り得る最大の内部抵抗値を保持することが好ましい。
 なお、第1充電電圧はSOCが70%に対応する端子電圧、第2充電電圧はSOCが100%に対応する端子電圧というように予め決めておくことも可能である。
 ステップS11では、制御部60は第2充電電圧まで第1の充電方式で蓄電池20を充電させることを指示する充放電制御指令G4を充放電制御指令部70へ出力する。充放電制御部70は、蓄電池20を第2充電電圧まで第1の充電方式で充電させる。
 ステップS12では、制御部60は二次電池21の端子電圧が第2充電電圧に達したか否かを判断する。二次電池21の端子電圧が第2充電電圧に達したと判断した場合、ステップS13進む、一方、二次電池21の端子電圧が第2充電電圧に達していない場合、ステップS12を繰り返す。
 ステップS13では、充放電制御部70は蓄電池20の充電を第1の充電方式から第2の充電方式に切り替える。
 ステップS14では、充電停止条件が満たされたか否か判断する。充電停止条件はステップS8で用いた充電停止条件を用いることができる。またはステップS8とは異なる充電停止条件を用いてもよい。制御部60は、充電停止条件を満たすと判断した場合、ステップS15に進む。一方、充電停止条件を満たさないと判断した場合、ステップS14を繰り返す。
 ステップS15では、制御部60は充放電制御部70へ蓄電池20の充電の停止を指示する充放電制御信号G4を送信する。充放電制御部70は充放電制御信号G4が示す指示に従って蓄電池60を停止させる。
 ステップS16では、容量算出部50は放電停止電圧から第1充電電圧まで充電した時点での積算容量Q1と、第2充電電圧まで充電した時点での積算容量Q2とを算出する。積算容量Q1は、第1の充電方式で放電停止電圧から第1充電電圧まで充電した際の積算容量である。また積算容量Q2は、第2充電電圧まで第1の充電方式で充電した際の積算容量である。容量算出部50は、算出した積算容量Q1及びQ2を積算容量情報G3として制御部60へ送信する。
 ステップS17では、制御部60は第1充電電圧と第2充電電圧との間のSOCの変化量ΔSOC12を求める。
 二次電池21の無負荷時における開放電圧(OCV:Open Circuit Voltage)と、SOCとの間には、例えば図4のような関係がある。そこでステップS17では、制御部60は第1充電電圧OCV1に対応するSOC(以下、SOC1とする)、第2充電電圧OCV2に対応するSOC(以下、SOC2とする)を求める。そして、式(4)を用いて、第1充電電圧と第2充電電圧との間のSOCの変化量ΔSOC12を求める。
Figure JPOXMLDOC01-appb-I000004
 ステップS18では、制御部60は第1充電電圧と第2充電電圧との間の差分容量ΔQ12を算出する。制御部60は、積算容量情報G3が示す第1充電電圧の積算容量Q1と、第2充電電圧までの積算容量Q2をと用いて、差分容量ΔQ12を算出する。第1充電電圧と第2充電電圧との間の差分容量ΔQ12は、以下の式(5)で与えられる。
Figure JPOXMLDOC01-appb-I000005
 ステップS19では、ステップS18で算出した差分容量ΔQ12を用いて満充電容量Qfull[Ah]を算出する。満充電容量Qfullは式(6)を用いて算出することができる。
Figure JPOXMLDOC01-appb-I000006
 ステップS20では、制御部60は、補正した満充電容量Qfull_mを算出する。制御部60は、充電開始前のSOCに応じてステップS18で算出した満充電容量Qfullを補正することによって満充電容量Qfull_mを算出する。補正した満充電容量が算出されると、蓄電池制御装置10での動作を終了する。
 図5は、算出した満充電容量Qfullと実測した満充電容量との容量比率と、充電開始前のSOCと、の関係の一例を示す図である。図5では、式6により算出した満充電容量Qfullと、実測した満充電容量との容量比率(容量比率=算出した満充電容量Qfull/実測した満充電容量*100)を、放電終了後であって第1の充電方式での充電を開始する前のSOC(充電開始前のSOC)に対して示す。図5から充電開始前のSOCが小さいほど、容量比率が大きいことがわかる。このことは、充電開始前のSOCが小さいほど実測した満充電容量に対する算出した満充電容量Qfullの算出誤差が大きいことを意味している。
 図6は、充電開始前のSOCに対する補正容量比率の一例を示す図である。図6に示す一例では、算出した満充電容量Qfullに補正係数(後述する)を乗じて算出した満充電容量Qfull_mと、実際の満充電容量との補正容量比率(補正容量比率=算出した満充電容量Qfull_m/実際の満充電容量*100)を充電開始前のSOCに対して示す。
 補正係数は、以下の手順により決定する。先ず、予め満充電容量が分かる新品の蓄電池又は満充電容量を実測した蓄電池を用いて、第1充電電圧と第2充電電圧とを定める。
 そして、放電停止後の第1の充電方式で充電する前のSOCを変えながら、第1充電電圧や第2充電電圧までの充電量を計測する。計測した結果から差分容量ΔQ12を算出する。算出した差分容量ΔQ12を用いて、式6により満充電容量Qfullを算出する。算出した満充電容量Qfullと実測の満充電容量との容量比率を算出することにより、図5のような関係を求める。
 その後、図5から容量比率が100%となるように補正係数を、充電開始前のSOCに応じて求める。
 なお、制御部60は求めた補正係数を充電開始前のSOCと対応付けてルックアップテーブルや式等で保持する。
 以上説明したように、式6により算出した満充電容量Qfullを補正することで、満充電容量の精度が向上する。また、完全放電状態まで放電することなく満充電容量が取得できるため、完全放電状態までの放電時間が省略できて、作業効率が向上する。
 制御部60は、満充電容量の劣化率と内部抵抗の関係を保持してもよい。例えば、予め出荷前に初期の満充電容量と充放電のサイクル試験を行いサイクルに応じた満充電容量と内部抵抗を取得し、満充電容量の劣化率と内部抵抗の関係を求めておいてもよい。
 制御部60は蓄電池制御装置10の初期の満充電容量を記憶しておき、満充電容量を算出する毎に劣化率を算出してもよい。制御部60は、記憶している満充電容量の劣化率と内部抵抗の関係から現在の内部抵抗を算出してもよい。
 家庭用蓄電池では、日中や夜間に放電して、電気料金の安い深夜に満充電するような運用をする場合がある。第1充電電圧と第2充電電圧を設定しておくことで、放電停止時のSOCによらず深夜充電時に満充電容量を正確に算出することができる。
 また、家庭用蓄電池では、バックアップ用に容量を残すような設定ができるようなものがある。例えば、SOC0%、SOC10%、SOC20%、SOC30%を残すような設定ができる場合がある。この場合、設定できる容量よりも高い容量に対応する電圧を第1充電電圧として設定するとよい。例えば第1充電電圧をSOC50%に対応する電圧、第2充電電圧をSOC100%に対応する電圧設定しておくとよい。日中や夜間に放電し、設定値に達すると放電を停止するので、いずれの設定の場合でも深夜充電中に設定した第1充電電
圧から第2充電電圧まで充電することができる。このため深夜充電中に差分容量を測定し、放電停止時のSOCに応じて補正することで、正確に満充電容量を算出することができる。
 本発明は、上述した実施形態に限定されものではなく、本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2015年5月25日に出願された日本出願特願2015-105112を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 10  蓄電池制御装置
 20  蓄電池
 21  二次電池
 30  電圧測定部
 40  電流測定部
 50  容量算出部
 60  制御部
 70  充放電制御部
 G1  端子電圧情報
 G2  充放電電流情報
 G3  積算容量情報
 G4  充放電制御指令

Claims (11)

  1.  蓄電池の端子電圧を測定する電圧測定手段と、
     前記蓄電池の充電電流及び放電電流を測定する電流測定手段と、
     前記電流測定部が測定した前記充電電流を用いて前記蓄電池の積算容量を算出する容量算出手段と、
     前記端子電圧と前記充電電流と前記放電電流と前記積算容量の少なくとも1つに基づいて前記蓄電池の運転を決定する制御手段と、
     前記制御手段の指示に従って前記蓄電池を運転させる充放電制御手段と、を有し、
     前記充放電制御手段は前記蓄電池を、
    放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
    前記第1充電電圧において第2の充電方式で充電させ、
    前記第1充電電圧から第2充電電圧まで前記第1の充電方式で充電させ、
    前記第2充電電圧において前記第2の充電方式で充電させる、
    蓄電池制御装置。
  2. 前記充放電制御手段は、前記蓄電池の充電電流に基づいて前記第2の充電方式から前記第1の充電方式へ切り替えることを決定する、請求項1に記載の蓄電池制御装置。
  3. 前記制御手段は、前記第2の充電方式で充電した時間に基づいて前記第2の充電方式から前記第1の充電方式へ切り替えることを決定する、請求項1に記載の蓄電池制御装置。
  4. 前記第1充電電圧は、前記蓄電池の使用者が設定した放電の下限容量よりも高い容量に対応する電圧である、請求項1から3いずれか1項に記載の蓄電池制御装置。
  5. 前記制御手段は、前記容量測定手段が測定した前記積算容量を用いて前記蓄電池の満充電容量を算出する、請求項1から5いずれか1項に記載の蓄電池制御装置。
  6. 前記制御手段は、前記放電終了電圧における蓄電池の充電率に応じて前記満充電容量を補正する、請求項5に記載の蓄電池制御装置。
  7. 前記容量測定手段は、前記第1充電電圧までの積算容量と前記第2充電電圧までの積算容量とを算出する、請求項1から6いずれか1項に記載の蓄電池制御装置。
  8. 前記制御手段は、前記第1充電電圧までの積算容量と前記第2充電電圧までの積算容量との差分容量を算出し、
    前記差分容量と、前記第1充電電圧から前記第2充電電圧までの充電率の変化量と、から前記満充電容量を算出する請求項5から7いずれか1項に記載の蓄電池制御装置。
  9.  複数の二次電池を有する蓄電池と、
     前記蓄電池の電圧を測定する電圧測定手段と、
     前記蓄電池の充電電流及び放電電流を測定する電流測定手段と、
     前記電流測定手段が測定した前記充電電流を用いて前記蓄電池の積算容量を算出する容量算出手段と、
     前記端子電圧と前記充電電流と前記放電電流と前記積算容量の少なくとも1つに基づいて前記蓄電池の運転を決定する制御手段と、
     前記制御手段の指示に基づいて前記蓄電池の電力を制御する充放電制御手段と、を有し、
     前記充放電制御手段は、前記蓄電池を
    放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
    前記第1充電電圧において第2の充電方式で充電させ、
    前記第1充電電圧から第2充電電圧まで前記第1の充電方式で充電させ、
    前記第2充電電圧において前記第2の充電方式で充電させる、
    蓄電システム。
  10.  蓄電池の充電及び放電を制御する制御方法であって、
     前記蓄電池の端子電圧を測定し、
     前記蓄電池の充電電流及び放電電流を測定し、
     前記充電電流を用いて前記蓄電池の積算容量を算出し、
     前記端子電圧と前記充電電流と前記放電電流と前記積算容量の少なくとも1つに基づいて前記蓄電池の運転を決定し、
     決定した前記蓄電池の運転に基づいて前記蓄電池の電力を制御し、
    前記蓄電池の電力の制御においては、
    放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
    前記第1充電電圧において第2の充電方式で充電させ、
    前記第1充電電圧から第2充電電圧まで前記第1の充電方式で充電させ、
    前記第2充電電圧において前記第2の充電方式で充電させる、制御方法。
  11.  コンピュータに、
     前記蓄電池の端子電圧を測定させ、
     前記蓄電池の充電電流及び放電電流を測定させ、
     前記充電電流を用いて前記蓄電池の積算容量を算出させ、
     前記端子電圧と前記充電電流と前記放電電流と前記積算容量の少なくとも1つに基づいて前記蓄電池の運転を決定させ、
     決定した前記蓄電池の運転に基づいて前記蓄電池の電力を制御させ、
    前記蓄電池の電力の制御においては、
    前記蓄電池を放電終了電圧から第1充電電圧まで第1の充電方式で充電させ、
    前記第1充電電圧において第2の充電方式で充電させ、
    前記第1充電電圧から第2充電電圧まで前記第1の充電方式で充電させ、
    前記第2充電電圧において前記第2の充電方式で充電させる、蓄電池の制御プログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2016/002438 2015-05-25 2016-05-19 蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体 WO2016189832A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017520224A JP6763376B2 (ja) 2015-05-25 2016-05-19 蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体
US15/574,518 US10365334B2 (en) 2015-05-25 2016-05-19 Storage battery control device, power storage system, control method, and computer-readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105112 2015-05-25
JP2015-105112 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016189832A1 true WO2016189832A1 (ja) 2016-12-01

Family

ID=57392622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002438 WO2016189832A1 (ja) 2015-05-25 2016-05-19 蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体

Country Status (3)

Country Link
US (1) US10365334B2 (ja)
JP (1) JP6763376B2 (ja)
WO (1) WO2016189832A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551189A (zh) * 2018-05-14 2018-09-18 广东电网有限责任公司电力科学研究院 一种变电站直流系统的自动核容方法及装置
JP6430054B1 (ja) * 2018-05-21 2018-11-28 古河電池株式会社 蓄電池の容量把握方法および容量監視装置
JP2019050647A (ja) * 2017-09-07 2019-03-28 テルモ株式会社 充電制御装置および充電制御方法
KR20190070204A (ko) * 2017-12-12 2019-06-20 현대자동차주식회사 차량 배터리 열화판단 제어방법 및 시스템
JP2019165571A (ja) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 車両用充電システム及び充電制御方法
CN110383616A (zh) * 2017-03-29 2019-10-25 英特尔公司 控制电池充电水平
WO2020201893A1 (ja) * 2019-04-02 2020-10-08 株式会社半導体エネルギー研究所 二次電池の充電状態推定方法、二次電池の充電状態推定システム、及び二次電池の異常検知方法
WO2021261442A1 (ja) * 2020-06-22 2021-12-30 NiT合同会社 充電制御装置、二次電池、電子機器、及び制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6942657B2 (ja) * 2018-02-28 2021-09-29 株式会社東芝 蓄電池システム、残容量推定装置、及び残容量推定方法
CN109687549B (zh) * 2018-12-28 2024-01-26 深圳市简皆科技有限公司 一种移动终端的充电控制方法、存储介质及移动终端
CN110967644B (zh) 2019-05-16 2021-01-29 宁德时代新能源科技股份有限公司 电池组soc的修正方法、电池管理系统以及车辆
CN113853525A (zh) 2019-05-24 2021-12-28 株式会社半导体能源研究所 二次电池的内阻的推测方法及二次电池的异常检测系统
WO2024103213A1 (zh) * 2022-11-14 2024-05-23 宁德时代新能源科技股份有限公司 能量效率监测方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261669A (ja) * 2007-04-10 2008-10-30 Sanyo Electric Co Ltd 電池の満充電容量検出方法
JP2009031220A (ja) * 2007-07-30 2009-02-12 Mitsumi Electric Co Ltd 電池状態検知方法及び電池状態検知装置
JP2011043460A (ja) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd 二次電池の特性検出方法および二次電池装置
JP2011108550A (ja) * 2009-11-19 2011-06-02 Nissan Motor Co Ltd 非水電解質二次電池の充電方法及び充電装置
JP2014119265A (ja) * 2012-12-13 2014-06-30 Renesas Electronics Corp 半導体装置、電池パック、及び電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615439B2 (ja) * 2005-12-28 2011-01-19 株式会社Nttファシリティーズ 二次電池管理装置、二次電池管理方法及びプログラム
JP5390925B2 (ja) * 2009-04-24 2014-01-15 パナソニック株式会社 電池パック
JP2013132147A (ja) * 2011-12-22 2013-07-04 Sony Corp 蓄電装置、電子機器、電力システムおよび電動車両
JP6066163B2 (ja) * 2012-05-17 2017-01-25 株式会社Gsユアサ 開路電圧推定装置、状態推定装置及び開路電圧推定方法
JP2013247045A (ja) 2012-05-29 2013-12-09 Sharp Corp 電池システム及び電池システム搭載機器
US10038325B2 (en) * 2013-02-06 2018-07-31 Nec Corporation Electric storage device and deterioration determination method
KR20150029204A (ko) * 2013-09-09 2015-03-18 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 장치, 및 배터리 팩의 관리 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261669A (ja) * 2007-04-10 2008-10-30 Sanyo Electric Co Ltd 電池の満充電容量検出方法
JP2009031220A (ja) * 2007-07-30 2009-02-12 Mitsumi Electric Co Ltd 電池状態検知方法及び電池状態検知装置
JP2011043460A (ja) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd 二次電池の特性検出方法および二次電池装置
JP2011108550A (ja) * 2009-11-19 2011-06-02 Nissan Motor Co Ltd 非水電解質二次電池の充電方法及び充電装置
JP2014119265A (ja) * 2012-12-13 2014-06-30 Renesas Electronics Corp 半導体装置、電池パック、及び電子機器

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383616A (zh) * 2017-03-29 2019-10-25 英特尔公司 控制电池充电水平
EP3602724A4 (en) * 2017-03-29 2020-09-09 INTEL Corporation CONTROL OF A BATTERY CHARGE LEVEL
JP2019050647A (ja) * 2017-09-07 2019-03-28 テルモ株式会社 充電制御装置および充電制御方法
KR102542958B1 (ko) * 2017-12-12 2023-06-14 현대자동차주식회사 차량 배터리 열화판단 제어방법 및 시스템
KR20190070204A (ko) * 2017-12-12 2019-06-20 현대자동차주식회사 차량 배터리 열화판단 제어방법 및 시스템
JP7119464B2 (ja) 2018-03-20 2022-08-17 トヨタ自動車株式会社 車両用充電システム及び充電制御方法
JP2019165571A (ja) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 車両用充電システム及び充電制御方法
CN110311430A (zh) * 2018-03-20 2019-10-08 丰田自动车株式会社 车辆用充电系统及充电控制方法
CN110311430B (zh) * 2018-03-20 2023-03-31 丰田自动车株式会社 车辆用充电系统及充电控制方法
US11453305B2 (en) 2018-03-20 2022-09-27 Toyota Jidosha Kabushiki Kaisha Vehicle charge system and charge control method
CN108551189B (zh) * 2018-05-14 2021-03-12 广东电网有限责任公司电力科学研究院 一种变电站直流系统的自动核容方法及装置
CN108551189A (zh) * 2018-05-14 2018-09-18 广东电网有限责任公司电力科学研究院 一种变电站直流系统的自动核容方法及装置
JP2019203719A (ja) * 2018-05-21 2019-11-28 古河電池株式会社 蓄電池の容量把握方法および容量監視装置
JP6430054B1 (ja) * 2018-05-21 2018-11-28 古河電池株式会社 蓄電池の容量把握方法および容量監視装置
WO2020201893A1 (ja) * 2019-04-02 2020-10-08 株式会社半導体エネルギー研究所 二次電池の充電状態推定方法、二次電池の充電状態推定システム、及び二次電池の異常検知方法
WO2021261442A1 (ja) * 2020-06-22 2021-12-30 NiT合同会社 充電制御装置、二次電池、電子機器、及び制御方法
JPWO2021261442A1 (ja) * 2020-06-22 2021-12-30
CN115836458A (zh) * 2020-06-22 2023-03-21 Nit合伙公司 充电控制装置、可充电电池、电子设备及控制方法
JP7282337B2 (ja) 2020-06-22 2023-05-29 NiT合同会社 充電制御装置、二次電池、電子機器、及び制御方法
CN115836458B (zh) * 2020-06-22 2024-01-23 Nit合伙公司 充电控制装置、可充电电池、电子设备及控制方法

Also Published As

Publication number Publication date
JPWO2016189832A1 (ja) 2018-03-22
US20180128880A1 (en) 2018-05-10
JP6763376B2 (ja) 2020-09-30
US10365334B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6763376B2 (ja) 蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体
JP5897701B2 (ja) 電池状態推定装置
EP2580842B1 (en) Charging control system
US10444296B2 (en) Control device, control method, and recording medium
US20140278170A1 (en) State of charge (soc) display for rechargeable battery
JP2008253129A (ja) リチウム系二次電池の急速充電方法およびそれを用いる電子機器
US20210184278A1 (en) Battery monitoring device, computer program, and battery monitoring method
EP3663780A1 (en) Deterioration state computation method and deterioration state computation device
JP2016114469A (ja) 二次電池の充電状態推定方法および推定装置
WO2019230033A1 (ja) パラメータ推定装置、パラメータ推定方法及びコンピュータプログラム
JP2008220121A (ja) 充電装置
WO2015178075A1 (ja) 電池制御装置
EP3271994B1 (en) A method for operating a battery charger, and a battery charger
JP2013108919A (ja) Soc推定装置
JP2014068468A (ja) 充電制御装置
JP2015180179A (ja) 充電装置
JP6826152B2 (ja) 二次電池の充電状態推定方法および推定装置
WO2012043745A1 (ja) 充電制御装置
JP6350174B2 (ja) 電池システム用制御装置および電池システムの制御方法
JP2014109535A (ja) 内部抵抗推定装置、充電装置、放電装置、内部抵抗推定方法
JP6787220B2 (ja) 蓄電システム
JP2937796B2 (ja) 電力貯蔵用二次電池の充放電電流測定方法及び残存電力量測定方法並びに測定装置
JP2018169238A (ja) 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP2018169237A (ja) 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP6542113B2 (ja) 双方向dc−dcコンバータの並列運転装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520224

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574518

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799545

Country of ref document: EP

Kind code of ref document: A1