WO2012043745A1 - 充電制御装置 - Google Patents

充電制御装置 Download PDF

Info

Publication number
WO2012043745A1
WO2012043745A1 PCT/JP2011/072426 JP2011072426W WO2012043745A1 WO 2012043745 A1 WO2012043745 A1 WO 2012043745A1 JP 2011072426 W JP2011072426 W JP 2011072426W WO 2012043745 A1 WO2012043745 A1 WO 2012043745A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery unit
charging
battery
voltmeter
Prior art date
Application number
PCT/JP2011/072426
Other languages
English (en)
French (fr)
Inventor
久保 守
太田垣 和久
福田 康宏
正寛 牧野
文生 米田
俊之 平田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012536560A priority Critical patent/JPWO2012043745A1/ja
Publication of WO2012043745A1 publication Critical patent/WO2012043745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging control device that controls charging of a battery.
  • Patent Documents 1-3 describe a power supply system that stores power from a system power supply in a storage battery, converts the DC power from the storage battery to AC power at a necessary timing, and supplies the power to a load connected to the system power supply. Is described.
  • a storage battery is charged with late-night power from a commercial power supply, and direct current power from the storage battery is converted into alternating current power during the daytime and supplied to a load.
  • the storage battery is repeatedly discharged and charged, and it is necessary to correctly detect the voltage of the storage battery in these controls. For example, in charging the storage battery, there is constant voltage charging. In this case, charging is terminated when the charging current decreases. Therefore, since the storage battery voltage at the end of charging is determined by constant voltage charging, and the amount of stored power is also determined by the storage battery voltage, there is a demand for accurately detecting the voltage.
  • the present invention is a battery unit charge control device, the first voltmeter provided in the battery unit for detecting the voltage of the battery unit, and connected to the battery unit, charging current to the battery unit
  • a charge control circuit for controlling the voltage a second voltmeter provided in the charge control circuit for detecting the voltage of the battery unit, a detection value detected by the second voltmeter, and a detection by the first voltmeter
  • a correction circuit that corrects the detection value detected by the second voltmeter based on the relationship, and the charge control circuit is configured to charge the battery unit.
  • the charging is controlled using the voltage detection value corrected by the correction circuit.
  • the frequency at which the detection value of the first voltmeter is taken is smaller than the frequency at which the detection value of the second voltmeter is taken in, and the control circuit detects the detection of the first voltmeter.
  • the control circuit detects the detection of the second voltmeter.
  • the charging control circuit includes a constant current control circuit that controls a charging current to the battery unit to a constant current, a constant voltage control circuit that controls a charging voltage to the battery unit to a constant voltage, and the correction circuit.
  • the corrected voltage of the battery unit is compared with the voltage setting value, and based on the obtained comparison result, constant current charging is performed until the battery voltage reaches the voltage setting value, and after reaching the voltage setting value, the constant voltage is set. It is preferable that the voltage setting value is changeable, including a control circuit that controls charging.
  • the battery has a deterioration detection circuit that detects deterioration of the battery, and the control circuit changes the voltage setting value higher as the deterioration of the battery detected by the deterioration detection circuit progresses.
  • the present invention it is possible to accurately detect the voltage of the battery unit and control the charging of the battery unit.
  • the power supply system includes a bidirectional power conversion unit 200, a battery unit 202, a system power supply 204, and a control unit 206, as shown in FIG.
  • the bidirectional power converter 200 is connected to a battery unit 202 that is a DC power source and an AC system power source 204.
  • a load 208 is connected to the system power supply 204, and AC power is supplied from the system power supply 204 to the load 208.
  • the battery unit 202 is connected to the load 208 via the bidirectional power conversion unit 200, and DC power from the battery unit 202 is converted into AC power by the bidirectional power conversion unit 200 and supplied to the load 208.
  • the battery unit 202 includes a storage battery that is a secondary battery.
  • the battery unit 202 is configured, for example, by connecting storage battery cells such as lithium ion batteries in series and parallel, and a DC open circuit voltage of about 200 V is adopted.
  • the battery unit 202 includes, for example, a plurality of battery packs that are configured by connecting 13 lithium ion battery storage battery cells connected in parallel and further connecting 13 sets in series.
  • the battery unit 202 is configured by connecting, for example, four battery pack rows in which five battery packs are connected in series, but the battery unit may be configured by one battery pack.
  • the battery unit 202 is provided with a voltage sensor, a current sensor, and a temperature sensor, and outputs the output voltage, charge / discharge current, and temperature of the battery unit 202 to the control unit 206.
  • the system power source 204 is, for example, an AC commercial power source.
  • system power supply 204 is a single-phase 200V AC power supply, but is not limited to this.
  • the bidirectional power converter 200 converts the DC power output from the battery unit 202 into AC power and supplies it to the load 208, and converts AC power from the system power supply 204 into DC power. Used to charge the battery unit 202.
  • the battery unit 202 is charged with AC power from the system power source 204 at midnight or the like when power usage is low, and is discharged from the battery unit 202 during a period when the power consumption by the load 208 is large, such as daytime. Is supplied to the load 208 in a manner superimposed on the power supplied from the power supply. Thereby, the power consumption can be averaged, and the peak of the power consumption can be reduced.
  • the bidirectional power converter 200 includes a step-up / down circuit 200a, an inverter circuit 200b, and a control circuit 200c.
  • the bidirectional power converter 200 is connected to an external controller 206, and the step-up / step-down circuit 200a and the inverter circuit 200b are controlled by a control circuit 200c that receives a control signal from the controller 206.
  • the step-up / step-down circuit 200a realizes a function of boosting the voltage output from the battery unit 202 and supplying it to the inverter circuit 200b, and a function of stepping down the voltage output from the inverter circuit 200b and supplying it to the battery unit 202. To do.
  • the step-up / down circuit 200a includes a capacitor C1, an inductor L1, and switching elements SW1 and SW2.
  • the positive line connected to the positive output terminal of the battery unit 202 and the negative line connected to the negative output terminal are connected to the step-up / down circuit 200a.
  • a capacitor C1 is connected between the positive and negative lines.
  • the positive line is connected to a connection point between the two switching elements SW1 and SW2 via the coil L1.
  • the switching elements SW1 and SW2 are each composed of an N-type transistor and a free-wheeling diode connected in parallel.
  • a power transistor that flows a large current such as an IGBT, is employed. When the transistor is turned on, a current flows from the positive side (collector) to the negative side (emitter). Current is sent from the positive side to the positive side (collector side of the transistor).
  • the switching elements SW1 and SW2 can also be configured using FETs.
  • Switching element SW1 has its collector connected to the positive bus of inverter circuit 200b and its emitter connected to the collector of switching element SW2.
  • the emitter of the switching element SW2 is connected to the negative line.
  • the gates of the switching elements SW1 and SW2 are connected to the control circuit 200c, and the control circuit 200c controls on / off of the transistors of the switching elements SW1 and SW2. That is, a full-arm DC converter is configured by the coil L1 and the switching elements SW1 and SW2, and the switching circuit SW1 is kept off by the control circuit 200c, and the switching element SW2 is turned on / off to control the inverter circuit 200b.
  • a DC voltage obtained by boosting the output voltage from the battery unit 202 can be obtained on the positive bus side.
  • the power supplied from the battery unit 202 of the step-up / down circuit 200a to the inverter circuit 200b and the battery unit 202 from the inverter circuit 200b are controlled by changing the voltage by controlling the ON / OFF duty ratio of the switching elements SW1 and SW2. It is possible to control the power transfer of the power supplied to.
  • control unit 206 receives information on the power supplied from the system power supply 204 and the required power of the load 208 obtained by the sensor S4, and the power supplied from the battery unit 202 to the load 208 from these information, that is, Electric power to be superimposed from the battery unit 202 to the system power supply 204 is obtained.
  • the control unit 206 outputs a control signal instructing that the obtained power is supplied from the battery unit 202 to the control circuit 200c.
  • the control circuit 200c receives the voltage Vd and charge / discharge current Id of the battery unit 202 by the sensor S1 and the intermediate voltage Vm measured by the sensor S2, and based on these values and the control signal received from the control unit 206, The ON / OFF duty ratio of the switching elements SW1 and SW2 is controlled so that the power transfer is as follows.
  • a capacitor C2 is connected between the negative bus of the inverter circuit 200b to which the emitter of the switching element SW2 is connected and the positive bus of the inverter circuit 200b to which the collector of the switching element SW1 is connected.
  • the voltage is smoothed.
  • a terminal voltage with respect to the negative bus of the capacitor C2 is an intermediate voltage Vm. Note that the voltage at the connection point between the switching elements SW1 and SW2 appears on the positive bus of the capacitor C2 via a freewheeling diode connected in parallel to the switching element SW1.
  • the intermediate voltage Vm between the positive and negative buses of the inverter circuit 200b is controlled to be higher than the output voltage Vd of the battery unit 202.
  • the voltage Vd of the battery unit 202 is higher than the intermediate voltage Vm, it is only necessary to provide a step-up / down circuit that can increase the voltage from the intermediate voltage Vm to the battery unit 202 side to supply power and transport the power.
  • the inverter circuit 200b includes switching elements SW3, SW4, SW5, and SW6.
  • the switching elements SW3, SW4, SW5, and SW6 are each composed of an N-type transistor and a free-wheeling diode connected in parallel.
  • a power transistor such as an IGBT that allows a large current to flow is adopted.
  • the switching elements SW3 and SW5 constitute the upper arm of the inverter circuit 200b, and the switching elements SW4 and SW6 constitute the lower arm of the inverter circuit 200b.
  • These switching elements SW4 to SW6 may be configured using FETs similarly to the switching elements SW1 and SW2.
  • two arms of a series connection of switching elements SW3 and SW4 and a series connection of switching elements SW5 and SW6 are connected between the positive and negative buses of the inverter circuit 200b.
  • the collectors of switching elements SW3 and SW5 are connected to the positive bus, respectively, and the emitters are connected to the collectors of switching elements SW4 and SW6.
  • the emitters of the switching elements SW4 and SW6 are connected to the negative bus.
  • the single-phase inverter circuit 200b is configured by the switching elements SW3, SW4, SW5, and SW6.
  • connection point of the switching elements SW3 and SW4 is an AC output terminal connected to one end of the system power supply 204 via the coil L2, and the connection point of the switching elements SW5 and SW6 is connected to the system via the coil L3.
  • the AC output terminal is connected to the other end of the power source 204.
  • a capacitor C3 is connected between the AC output end sides of the coil L2 and the coil L3.
  • the coils L2 and L3 and the capacitor C3 are required for the function of removing high frequency components generated in the alternating current of the inverter circuit 200b and the function of bringing the phase of the alternating current close to the phase of the alternating voltage.
  • the switching elements SW3, SW4, SW5 and SW6 are on / off controlled by the control circuit 200c.
  • the DC power supplied from the step-up / down circuit 200a is converted into an inverter when the battery unit 202 is discharged, that is, during the period when power is supplied from the battery unit 202 to the load 208. It is converted into AC power by the circuit 200b and supplied to the load 208.
  • the control circuit 200c receives the input voltage Va and the input / output current Ia to the inverter circuit 200b measured by the sensor S3, detects the zero cross point from these signals, and is supplied from the system power supply 204 to the load 208.
  • the ON / OFF duty of the switching elements SW3, SW4, SW5 and SW6 is controlled so that AC power synchronized with the voltage phase of the power to be output is output from the inverter circuit 200b.
  • AC power can be supplied to the load 208 from both the system power supply 204 and the battery unit 202.
  • the switching elements SW3, SW4, SW5 and SW6 of the inverter circuit 200b are all turned off, and only the action of the bridge circuit of the freewheeling diode included in the switching elements SW3, SW4, SW5 and SW6.
  • AC power from the system power supply 204 is rectified and supplied to the step-up / step-down circuit 200a.
  • the lower switching element SW2 is fixed to OFF, and the switching element SW1 is PWM-controlled to control the charging current and charge the battery unit 202.
  • the system power supply 204 is a 200V single-phase alternating current, and its peak voltage is about 280V. Therefore, if the supply current from the system power supply 204 side is larger than the charging current of the battery unit 202, the intermediate voltage Vm settles to about 280V. Therefore, the battery unit 202 can be charged by turning on the switching element SW1.
  • the battery unit 202 is charged in a constant current mode (CC mode) until the voltage Vd of the battery unit 202 reaches a predetermined value Vth.
  • Charging in the CC mode is performed by PWM control of the switching element SW1 as described above, but the control circuit 200c controls to a constant current while monitoring the detected value of the charging current Id of the battery unit 202 ( Constant current control circuit).
  • the control circuit 200c switches the charging mode to the constant voltage mode (CV mode) in accordance with an instruction from the control unit 206.
  • the control circuit 200c performs PWM control of the switching element SW1 under the condition that Vd is constant while monitoring the voltage Vd of the battery unit 202 (constant voltage control circuit). Then, in the CV mode, the charging is terminated when the charging current reaches a predetermined low current value Iend. For this reason, the voltage Vd at the end of constant voltage charging is substantially the voltage of the battery unit 202.
  • the storage battery deteriorates with use. This is said to be affected by an increase in the number of charge / discharge cycles, the cumulative charge / discharge amount, etc., depending on the aging of the material.
  • the amount of electricity stored is proportional to the storage battery voltage, but when the battery deteriorates, the amount of electricity stored becomes small even if the storage battery voltage is the same. Therefore, in the case of a deteriorated battery, the storage battery voltage when the required amount of stored electricity is maintained is higher than that of the initial storage battery.
  • the voltage of the battery unit 202 at the end of charging is a voltage (basically the same) corresponding to the charging voltage Vd in the CV mode. Therefore, the charged amount at the end of charging is smaller in the deteriorated battery unit 202 than in the initial battery unit 202.
  • the necessary amount of electricity is determined, and it is desired to maintain the amount of electricity stored at the end of charging at or above the required amount.
  • the voltage Vth at the time of constant voltage charging is changed to be higher than the initial Vth0 as the storage battery deteriorates. Therefore, charging is performed to a higher voltage in the CC mode, and then the constant voltage charging is performed by shifting to the CV mode.
  • the voltage of the battery unit 202 at the end of charging becomes the constant voltage charging voltage Vd, which is higher than the constant voltage charging voltage Vd0 for the initial battery unit 202. Therefore, the amount of electricity stored in the battery unit 202 at the end of charging can be increased. Therefore, by setting the voltage Vth at the time of constant voltage charging to a value corresponding to the necessary amount of charge, it is possible to always perform charging while ensuring the necessary amount of charge.
  • the battery unit 202 which became unable to ensure the required charge amount it is considered that it is a lifetime and is replaced
  • exchanged about the battery unit 202 which became unable to ensure the required charge amount
  • the deterioration of the storage battery of the battery unit 202 is basically detected based on the accumulated charge current amount at the time of charging. For example, the relationship between the storage battery voltage and the storage amount from the complete discharge (0%) to the full charge (100%) at the initial charge is stored. And the reduction
  • the deterioration of the storage battery of the battery unit 202 can be detected by detecting an increase in the internal resistance of the storage battery.
  • the voltage of the battery unit 202 measured by the sensor S1 increases during charging due to the influence of the internal resistance of the battery unit 202, and conversely decreases during discharging. Therefore, this is used to detect an increase in the internal resistance of the storage battery. Can do. More specifically, the voltage of the battery unit 202 detected by the sensor S1 when charging / discharging is compared with the voltage of the battery unit 202 detected by the sensor S1 when not charging / discharging, and this difference is It is determined that the deterioration of the battery unit 202 progresses as the value increases.
  • Vth is obtained by calculation according to the detected value of the storage capacity, and this is used at the next charge.
  • the difference between the internal resistance and the pre-update may be taken into consideration, and the difference in internal resistance may be multiplied by a predetermined constant L.
  • Vth may be determined with reference to a prepared table showing the relationship between the voltage difference and Vth.
  • the battery deterioration detection described above is performed by the control circuit 200c based on the current value and voltage value measured by the sensor S1. Therefore, the control circuit 200c functions as a deterioration detection circuit.
  • the battery unit 202 includes a large number of battery cells 10. A predetermined number of battery cells are connected in parallel, and a predetermined number of battery cells are connected in series. Therefore, it has an output voltage corresponding to the number of battery cells 10 connected in series, and has a current output capability corresponding to the number of parallel connections. Further, the amount of electricity stored depends on the number of battery cells 10.
  • both ends of each row of the battery cells 10 connected in parallel are connected to the protection circuit 12.
  • the protection circuit 12 monitors the voltage of the battery cell 10 and the entire voltage from the voltage at each point, and when overcharge is likely to occur, outputs a signal regarding this.
  • the microprocessor 14 is connected to the protection circuit 12, and the microprocessor 14 receives a signal from the protection and receives the output voltage of the battery unit 202.
  • an isolator 16 is connected to the microprocessor 14, and here, the microprocessor 14 exchanges signals with the outside by disconnecting from the high voltage system of the battery pack.
  • the voltage across the battery unit 202 is detected by the voltmeter 18, and the current flowing through the battery unit 202 is detected by the ammeter 20 and supplied to the microprocessor 14. Note that one provided in the protection circuit 12 may be used.
  • the microprocessor 14 can output the current value and voltage value at that time, and stores the number of times of charge, the accumulated charge / discharge current amount, the voltage at the end of charge, etc. in a non-volatile memory, and can output it. .
  • the battery unit 202 shown in FIG. 5 may have an output voltage of 40 to 50 V, and it is preferable to connect them in series to form the battery unit 202 shown in FIG.
  • FIG. 6 shows a flowchart when the battery unit 202 is charged. Such control is performed by the control unit 206.
  • the control unit 206 starts charging the battery unit 202.
  • the battery deterioration degree of the battery unit 202 is detected (S11).
  • the degree of deterioration is detected by the storage capacity sent from the battery unit 202 or the like.
  • the predetermined value Vth may be set every time, it is preferable to set the predetermined value Vth for a certain range.
  • the predetermined value Vth is updated to an appropriate value at that time (S13).
  • Vth is updated in S13 and when it is determined that Vth is appropriate in S12, a charging process in the CC mode (constant current) is performed (S14). As described above, this constant current is performed by PW control of the switching element SW1 in the step-up / step-down circuit 200a.
  • step S15 If it is YES in S15, it shifts to constant voltage charging (CV mode) and performs CV mode charging (S16). Next, in the charging in the CV mode, it is determined whether or not the charging current has reached the charging end current Iend (S17). If not, the process returns to S16 and the constant voltage charging is continued. On the other hand, if it is determined in step S17 that charging has ended, the charging process ends.
  • CV mode constant voltage charging
  • Iend Iend
  • the charging voltage Vd cannot rise above a predetermined value, and when the obtained charging voltage Vd reaches the upper limit voltage, the battery unit 202 is replaced.
  • Battery pack voltage detection As described above, in the present embodiment, charging control is performed by detecting the voltage of the battery unit 202. In particular, in the constant voltage charging mode (CV mode), it is important to correctly measure the voltage value Vd of the battery unit 202.
  • CV mode constant voltage charging mode
  • the voltage of the battery unit 202 is detected by the sensor S1 in the bidirectional power converter 200. Therefore, at the time of charging, the control circuit 200c controls charging based on the detection value of the sensor S1.
  • the battery unit 202 has a built-in voltmeter 18 that detects the output voltage. Therefore, the output voltage of the battery unit 202 is detected by the two voltmeters S1 and S18. The output voltage value detected by the voltmeter 18 is transmitted to the control unit 206 at regular time intervals through the signal line shown in FIG.
  • the constant interval is, for example, an interval of 1 to 2 seconds.
  • the resistance of the lines and connection terminals from the battery unit 202, the resistance of an on / off relay existing in the middle, and the like cause errors, and the control circuit 200c. Since the detection result is supplied as A / D converted digital data, an error in the A / D converter is also superimposed.
  • the battery unit 202 can calibrate the detection result of the voltmeter 18 by itself. That is, in the battery unit 202, the voltage for calibration is supplied to the voltmeter 18 in a state where the storage battery cell is disconnected, and the detected value can be calibrated. Therefore, the measurement voltage of the battery unit 202 in the voltmeter 18 can be made relatively accurate.
  • the calibration of the voltmeter 18 of the battery unit 202 is normally performed in the factory when it is produced, but may be performed in the present system.
  • the output of the sensor S1 in the bidirectional power converter 200 is corrected using the detection output of the voltmeter 18 built in the battery unit 202. Then, charging of the battery unit 202 is controlled using the output of the corrected sensor S1.
  • the relationship between the detected values in the two voltmeters is stored.
  • This relationship can be detected based on comparison of corresponding detection values detected at appropriate voltage detection value intervals according to changes in the detection value of the battery unit 202 during charging or discharging. For example, it is preferable to calculate the relational expression at the time of constant current charging (CC mode) at the time of the first charging with the battery pack 200 connected. In addition, you may carry out at the time of discharge or charge of each time.
  • CC mode constant current charging
  • control unit 206 takes in the output voltage value transmitted from the battery unit 202 (S21).
  • voltage detection value of the sensor S1 in the bidirectional power conversion unit 200 is captured (S22).
  • the detected value pairs are associated with each other and stored in the memory in the control circuit 200c (S23).
  • a relational expression for correcting the output of the sensor S1 in the bidirectional power converter 200 is calculated and stored based on the detection value by the voltmeter 18 in the battery unit 202 (S25). ).
  • the output voltage value of the battery unit 202 is transmitted, for example, at intervals of 1 to 2 seconds.
  • the voltage detected by the sensor S1 is grasped at least in units of 0.2 milliseconds. Therefore, it is necessary to control the step-up / step-down circuit 200a and the like. Therefore, while data is not sent from the battery unit 202, the detection value of the sensor S1 is corrected using the above relational expression, and charge / discharge control is performed based on the corrected voltage value.
  • two voltage values from the sensor S1 and voltage value from the voltmeter 18 are supplied to the control unit 206 as voltage values from the battery unit 202. Then, if there is a detected voltage from the voltmeter 18, it is used, and when the detected voltage from the voltmeter 18 cannot be used, a voltage value obtained by correcting the detected voltage at the sensor S 1 with a relational expression is used. . Since the relational expression is appropriately updated as described above, it is possible to always grasp the accurate voltage of the battery unit 202 and perform the charge control.
  • the voltage detected by the voltmeter 18 may be used only for updating the relational expression, and may be used after being corrected by the relational expression storing the voltage value detected by the sensor S1 at normal times.
  • the control circuit 200c When voltage detection by the sensor S1 is started, the control circuit 200c first reads the relational expression shown in FIG. 9 (S31). Then, every time the voltage detection value is read from the sensor S1 (S32), the control circuit 200c corrects the detection value of the sensor S1 using the relational expression, and controls charging / discharging based on this value (S33). Then, it is determined whether or not the process is finished (S34). If not finished, the correction of the detected value is repeated.
  • the relational expression for correcting the voltage detection value of the sensor S1 in the bidirectional power conversion unit 200 using the detection value of the voltmeter 18 in the battery unit 202 is stored, and charging is performed.
  • the detection value of the sensor S1 can be corrected using this relational expression. Therefore, it is possible to detect the voltage of the battery unit 202 relatively accurately.
  • the predetermined value Vth of the constant voltage during constant voltage charging is changed.
  • the predetermined value Vth must be set as low as possible to extend the life of the storage battery of the battery unit 202 and to ensure the necessary amount of power storage, and this embodiment can achieve this.
  • the control circuit 202c can use the detection signal from the internal sensor S1, and therefore can perform appropriate charge control with a light burden.
  • the voltage value from the voltmeter 18 and the voltage value from the sensor S1 are taken into the control unit 206, and the control unit 206 calculates the relational expression of the voltage value.
  • the value may be taken into the control circuit 200c in the bidirectional power converter, and the relational expression may be calculated in the control circuit 200c.

Abstract

 電池ユニットの電圧検出を効果的に行う。双方向電力変換部200は、電池ユニット202への充電電流を制御する。電池ユニット202内には、その電圧を検出する電圧計が設けられ、双方向電力変換部200内には、前記電池ユニットの電圧を検出するセンサS1が設けられている。制御回路200cは、センサS1により検出した検出値と電池ユニット202内の電圧計により検出した検出値との関係を記憶しており、この関係に基づきセンサS1により検出した検出値を補正する。そして、双方向電力変換部200は、電池ユニット202の充電の際に、電圧検出値を用いて、充電を制御する。

Description

充電制御装置
 本発明は、電池の充電を制御する充電制御装置に関する。
 特許文献1-3には、系統電源からの電力を蓄電池に貯蔵しておき、必要なタイミングで蓄電池からの直流電力を交流電力に変換して系統電源に接続されている負荷に供給する電源システムが記載されている。特に、特許文献3では、商用電源からの深夜電力によって、蓄電池を充電し、昼間などに蓄電池からの直流電力を交流電力に変換して、負荷に供給している。
特開2006-67673号公報 特開2002-315230号公報 特許第3255304号公報
 ここで、蓄電池は放電と充電を繰り返し、これらの制御において、蓄電池の電圧を正しく検出する必要がある。例えば、蓄電池の充電においては、定電圧充電があり、この場合には、充電電流が減少することで、充電を終了する。従って、定電圧充電により、充電終了時の蓄電池電圧が決定され、その蓄電池電圧により蓄電量も決定されるため、電圧を正確に検出したいという要求がある。
 本発明は、電池ユニットの充電制御装置であって、前記電池ユニット内に設けられ、前記電池ユニットの電圧を検出する第1電圧計と、前記電池ユニットに接続され、前記電池ユニットへの充電電流を制御する充電制御回路と、前記充電制御回路内に設けられ、前記電池ユニットの電圧を検出する第2電圧計と、前記第2電圧計により検出した検出値と前記第1電圧計により検出した検出値との関係を記憶しており、この関係に基づき前記第2電圧計により検出した検出値を補正する補正回路と、を有し、前記充電制御回路は、前記電池ユニットの充電の際に、前記補正回路により補正された電圧検出値を用いて、充電を制御することを特徴とする。
 また、前記制御回路における、前記第1電圧計の検出値を取り入れる頻度は前記第2電圧計の検出値を取り入れる頻度より小さいことが好適であり、前記制御回路は、前記第1電圧計の検出値をそのまま用い、前記第1電圧計の検出値を用いることができない場合に、前記第2電圧計の検出値を用いることが好適である。
 また、前記充電制御回路は、前記電池ユニットへの充電電流を定電流に制御する定電流制御回路と、前記電池ユニットへの充電電圧を定電圧に制御する定電圧制御回路と、前記補正回路により補正した電池ユニットの電圧と、電圧設定値を比較し、得られた比較結果に基づき、電池電圧が電圧設定値に至るまでは定電流充電を行い、前記電圧設定値に至った後は定電圧充電を行うように制御する制御回路と、を含み、前記電圧設定値が変更可能であることが好適である。
 また、前記電池の劣化を検出する劣化検出回路を有し、前記制御回路は、前記劣化検出回路で検出した電池の劣化が進むほど、前記電圧設定値を高く変更することが好適である。
 本発明によれば、電池ユニットの電圧を正確に検出して、電池ユニットの充電を制御することができる。
電源システムの全体構成を示す図である。 電池ユニットの充電時における電圧、電流を示す図である。 電池の劣化と蓄電量の関係を示す図である。 劣化時の電池ユニットの充電時における電圧、電流を示す図である。 電池ユニットの構成を示す図である。 充電時の処理を示すフローチャートである。 電圧検出値の特性を示す図である。 電圧計の関係の記憶のための処理を示すフローチャートである。 変換式を示す図である。 検出値の補正を示すフローチャートである。
 以下、本発明の実施形態について、図面に基づいて説明する。
 本発明の実施の形態における電源システムは、図1に示すように、双方向電力変換部200、電池ユニット202、系統電源204及び制御部206を含んで構成される。双方向電力変換部200には、直流電源である電池ユニット202と交流の系統電源204とが接続される。また、系統電源204には負荷208が接続されており、負荷208に対して系統電源204から交流電力が供給される。さらに、負荷208には双方向電力変換部200を介して電池ユニット202が接続されており、電池ユニット202からの直流電力が双方向電力変換部200において交流電力に変換されて負荷208に供給される。
 電池ユニット202は、二次電池である蓄電池を含んで構成される。電池ユニット202は、例えば、リチウムイオン電池などの蓄電池セルを直並列に接続して構成され、直流の開放電圧が200V程度のものが採用される。電池ユニット202は、例えば、リチウムイオン電池の蓄電池セルを24個並列に接続したものを、さらに直列に13組接続して構成された電池パックを複数含んで構成される。電池ユニット202は、例えば、電池パックを5個直列に接続した電池パック列を4個並列に接続して構成されるが、電池ユニットは1つの電池パックで構成してもよい。電池ユニット202には、電圧センサ、電流センサ及び温度センサが設けられ、電池ユニット202の出力電圧、充放電電流、温度を制御部206へ出力する。
 系統電源204は、例えば、交流商用電源である。本実施の形態では、系統電源204は、単相200V交流電源とするが、これに限定されるものではない。
 双方向電力変換部200は、上記のように、電池ユニット202から出力される直流電力を交流電力へ変換して負荷208へ供給すると共に、系統電源204からの交流電力を直流電力に変換して電池ユニット202の充電を行うために用いられる。
 例えば、電力の使用が少ない深夜等において系統電源204からの交流電力によって電池ユニット202を充電し、昼間等の負荷208による電力消費が大きい期間において電池ユニット202から放電してその電力を系統電源204から供給される電力に重畳して負荷208に供給する。これにより、電力消費量の平均化を図ることができ、電力消費のピークの低減化を図ることができる。
 次に、双方向電力変換部200について説明する。図1に示すように、双方向電力変換部200は、昇降圧回路200a、インバータ回路200b及び制御回路200cを含んで構成される。双方向電力変換部200は、外部の制御部206と接続され、制御部206からの制御信号を受けた制御回路200cによって昇降圧回路200a及びインバータ回路200bが制御される。
 昇降圧回路200aは、電池ユニット202から出力される電圧を昇圧してインバータ回路200bへ供給する機能と、インバータ回路200bから出力される電圧を降圧して電池ユニット202へ供給する機能と、を実現する。昇降圧回路200aは、コンデンサC1、インダクタL1及びスイッチング素子SW1,SW2を含んで構成される。
 電池ユニット202の正側出力端に接続される正側ラインと、負側出力端に接続される負側ラインが昇降圧回路200aに接続される。この正負側ライン間には、コンデンサC1が接続されている。また、正側ラインは、コイルL1を介し、2つのスイッチング素子SW1,SW2の接続点に接続されている。ここで、スイッチング素子SW1,SW2は、それぞれN型のトランジスタと還流ダイオードの並列接続からなる。スイッチング素子SW1,SW2のトランジスタには例えばIGBTなど大電流を流すパワートランジスタが採用されオン時に正側(コレクタ)から負側(エミッタ)に電流を流し、還流ダイオードは負側(トランジスタのエミッタ側)から正側(トランジスタのコレクタ側)に電流を流す。なお、スイッチング素子SW1,SW2は、FETを用いて構成することも可能である。
 スイッチング素子SW1は、そのコレクタがインバータ回路200bの正側母線に接続され、エミッタはスイッチング素子SW2のコレクタに接続される。スイッチング素子SW2のエミッタは負側ラインに接続される。そして、スイッチング素子SW1,SW2のゲートは、制御回路200cに接続され、制御回路200cがスイッチング素子SW1,SW2のトランジスタのオン/オフを制御する。すなわち、コイルL1、スイッチング素子SW1,SW2によりフルアームのDCコンバータが構成されており、制御回路200cによりスイッチング素子SW1をオフに維持し、スイッチング素子SW2をオン/オフ制御することによって、インバータ回路200bの正側母線側に電池ユニット202からの出力電圧を昇圧した直流電圧を得ることができる。また、スイッチング素子SW2をオフに維持し、スイッチング素子SW1のオン/オフ制御によってインバータ回路200bの正側母線の電圧を降圧した直流電圧を電池ユニット202の正側出力端に得ることが可能となる。
 このとき、スイッチング素子SW1、SW2のオン/オフのデューティ比を制御して電圧を変えることによって、昇降圧回路200aの電池ユニット202からインバータ回路200bへ供給される電力及びインバータ回路200bから電池ユニット202へ供給される電力の電力移動を制御することができる。
 具体的には、制御部206は、センサS4によって得られる系統電源204からの供給電力及び負荷208の必要電力の情報を受けて、これらの情報から電池ユニット202から負荷208へ供給する電力、すなわち電池ユニット202から系統電源204へ重畳する電力を求める。制御部206は、求められた電力が電池ユニット202から供給されるように指示する制御信号を制御回路200cへ出力する。制御回路200cは、センサS1によって電池ユニット202の電圧Vd及び充放電電流IdとセンサS2によって測定される中間電圧Vmとを受けて、これらの値及び制御部206から受けた制御信号に基づいて所望の電力移動となるようにスイッチング素子SW1、SW2のオン/オフのデューティ比を制御する。なお、スイッチング素子SW2のエミッタが接続されるインバータ回路200bの負側母線と、スイッチング素子SW1のコレクタが接続されるインバータ回路200bの正側母線の間には、コンデンサC2が接続され、正負母線間の電圧を平滑化している。このコンデンサC2の負側母線に対する端子電圧を中間電圧Vmとする。なお、スイッチング素子SW1とSW2との接続点の電圧がスイッチング素子SW1に並列に接続された環流ダイオードを介してコンデンサC2の正側母線に表われている。
 一般的に、インバータ回路200bの正負母線間の中間電圧Vmは、電池ユニット202の出力電圧Vdに比べ高い電圧に制御される。ただし、電池ユニット202の電圧Vdが中間電圧Vmより高い場合には、中間電圧Vmから電池ユニット202側に昇圧して電力を供給できる昇降圧回路を設け、電力を輸送すればよい。
 インバータ回路200bは、スイッチング素子SW3,SW4,SW5及びSW6を含んで構成される。スイッチング素子SW3,SW4,SW5及びSW6は、それぞれN型のトランジスタと還流ダイオードの並列接続からなる。スイッチング素子SW3,SW4,SW5及びSW6のトランジスタには例えばIGBTなど大電流を流すパワートランジスタが採用されオン時に正側(コレクタ)から負側(エミッタ)に電流を流し、還流ダイオードは負側(トランジスタのエミッタ側)から正側(トランジスタのコレクタ側)に電流を流す。スイッチング素子SW3及びSW5はインバータ回路200bの上アームを構成し、スイッチング素子SW4及びSW6はインバータ回路200bの下アームを構成する。これらのスイッチング素子SW4~SW6は、スイッチング素子SW1,SW2と同様にFETを用いて構成してもよい。
 すなわち、インバータ回路200bの正負母線間には、スイッチング素子SW3及びSW4の直列接続およびスイッチング素子SW5及びSW6の直列接続の2本のアームが接続される。スイッチング素子SW3,SW5のコレクタが正側母線にそれぞれ接続され、エミッタがスイッチング素子SW4,SW6のコレクタに接続される。また、スイッチング素子SW4,SW6のエミッタは、負極母線に接続される。このようにして、スイッチング素子SW3,SW4,SW5及びSW6により単相のインバータ回路200bが構成されている。
 また、スイッチング素子SW3,SW4の接続点は、コイルL2を介し、系統電源204の一端に接続される交流出力端になっており、スイッチング素子SW5,SW6の接続点は、コイルL3を介し、系統電源204の他端に接続される交流出力端になっている。また、コイルL2およびコイルL3の交流出力端側間には、コンデンサC3が接続されている。コイルL2,L3及びコンデンサC3は、インバータ回路200bの交流電流に生じる高周波成分の除去と、交流電流の位相を交流電圧の位相に近づける機能のために必要となる。
 スイッチング素子SW3,SW4,SW5及びSW6は、制御回路200cによってオン/オフ制御される。スイッチング素子SW3,SW4,SW5及びSW6のオン/オフ制御によって、電池ユニット202の放電時、すなわち電池ユニット202から負荷208へ電力を供給する期間においては昇降圧回路200aから供給される直流電力がインバータ回路200bによって交流電力に変換されて負荷208へ供給される。具体的には、スイッチング素子SW3,SW6をオン及びスイッチング素子SW4,SW5をオフにすることでコイルL2側の交流出力端が正となる出力が得られ、スイッチング素子SW3,SW6をオフ及びスイッチング素子SW4,SW5をオンにすることでコイルL3側の交流出力端が正となる出力が得られる。ここで、制御回路200cは、センサS3によって測定されるインバータ回路200bへの入力電圧Va及び入出力電流Iaを受けて、これらの信号からゼロクロス点を検出して系統電源204から負荷208へ供給される電力の電圧位相と同期した交流電力がインバータ回路200bから出力されるようにスイッチング素子SW3,SW4,SW5及びSW6のオン/オフのデューティを制御する。
 これにより、負荷208へ系統電源204及び電池ユニット202の両方から交流電力を供給することが可能になる。
 このような双方向電力変換システムにおいて、充電時にはインバータ回路200bのスイッチング素子SW3,SW4,SW5及びSW6は総てオフとしてスイッチング素子SW3,SW4,SW5及びSW6に含まれる環流ダイオードのブリッジ回路の作用のみによって系統電源204からの交流電力を整流して昇降圧回路200aへ供給する。
 そして、昇降圧回路200aでは、下側のスイッチング素子SW2をオフに固定しておき、スイッチング素子SW1をPWM制御することで、充電電流を制御して、電池ユニット202の充電を行う。
 なお、系統電源204は、200Vの単相交流であり、そのピーク電圧は280V程度である。従って、系統電源204側からの供給電流が電池ユニット202の充電電流より大きければ、中間電圧Vmは280V程度に落ち着く。そこで、スイッチング素子SW1をオンすることで、電池ユニット202を充電することができる。
 電池ユニット202への充電は、図2に示すように、電池ユニット202の電圧Vdが所定値Vthとなるまで定電流モード(CCモード)で行う。このCCモードでの充電は、上述のように、スイッチング素子SW1をPWM制御することで行うが、電池ユニット202の充電電流Idの検出値を監視しながら、制御回路200cが定電流に制御する(定電流制御回路)。次に、充電時における電池ユニット202の電圧が所定値Vthに到達すると、制御回路200cが制御部206の指示に応じて充電モードを定電圧モード(CVモード)に切り替える。このCVモードでは、電池ユニット202の電圧Vdを監視しつつ、Vdが一定という条件で制御回路200cがスイッチング素子SW1をPWM制御する(定電圧制御回路)。そして、CVモードにおいて、充電電流が所定の低電流値Iendになったことをもって、充電を終了する。このため、定電圧充電の終了時の電圧Vdがほぼ電池ユニット202の電圧となる。
 ここで、蓄電池は、使用によって劣化することが知られている。これは、材料の経年変化などによるが、充放電回数の増加、累積充放電量などが影響するといわれている。
 一方、電池ユニット202からの電力を利用するシステムでは、電池ユニット202の蓄電量を一定の値であることを前提としている場合が多い。そこで、電池ユニット202の蓄電量をできるだけ一定にしたいという要求がある。
 例えば、図3に示すように、蓄電量は蓄電池電圧に比例するが、電池が劣化すると同じ蓄電池電圧であっても蓄電量が小さくなる。そこで、劣化した電池では必要な蓄電量を保持する場合の蓄電池電圧が初期の蓄電池に比べ高くなる。
 一方、充電終了時の電池ユニット202の電圧はCVモードにおける充電電圧Vdに応じたもの(基本的に同一)になる。従って、充電終了時の蓄電量は、劣化した電池ユニット202の方が、初期の電池ユニット202より小さくなってしまう。一方、上述のように必要な蓄電量は決まっており、充電終了時の蓄電量を必要量以上に維持したい。
 そこで、本実施形態では、図4に示すように、蓄電池の劣化に伴い、定電圧充電の際の電圧Vthを初期のVth0に比べて高く変更する。そこで、CCモードによって、より高い電圧まで充電を行い、その後CVモードに移行して定電圧充電を行う。これによって、充電満了時の電池ユニット202の電圧は、定電圧充電の電圧Vdとなり、初期の電池ユニット202に対する定電圧充電の電圧Vd0に比べて高くなる。そこで、充電終了時の電池ユニット202の蓄電量を大きくすることができる。従って、定電圧充電時の電圧Vthを必要な蓄電量に対応した値に設定することで、常に必要な蓄電量を確保した充電を行うことができる。なお、必要な充電量を確保できなくなった電池ユニット202については、寿命と見なし、交換する。
 ここで、電池ユニット202の蓄電池の劣化の検出は、基本的に充電時の積算充電電流量によって検出する。例えば、初期充電時における完全放電(0%)から満充電(100%)までの蓄電池電圧と蓄電量の関係を記憶しておく。そして、充電の際の充電停止までの電流量を検出することで、蓄電容量の減少を検出することができる。蓄電量0%~100%ではなく、5%~95%などの蓄電池電圧と蓄電量の関係を記憶しておいてもよい。そして、充電を開始するときの蓄電池電圧を記憶しておき、蓄電池電圧Vthまでの充電量を検出することで、その時点での電池ユニット202の蓄電容量を検出することができ、これから電池の劣化を検出することが可能になる。なお、蓄電池の蓄電容量の検出については、各種の手法が提案されており、いずれの手法を採用してもよい。そして、蓄電容量の減少から電池ユニット202の劣化度を検出することができる。
 また、電池ユニット202の蓄電池の劣化は、蓄電池の内部抵抗の増加を検知することによっても検出することができる。センサS1で測定される電池ユニット202の電圧は、電池ユニット202の内部抵抗の影響により、充電時には増加し、放電時には逆に減少するため、これを用いて蓄電池の内部抵抗の増加を検知することができる。より具体的には、充放電を行っている時にセンサS1により検出した電池ユニット202の電圧と、充放電を行っていない時にセンサS1により検出した電池ユニット202の電圧とを比較し、この差が大きくなるほど電池ユニット202の劣化が進んでいると判断する。
 電池ユニット202の蓄電容量が減少した場合、蓄電容量の検出値に応じて計算でVthを求め、これを次回の充電時に使用する。Vthの計算は、例えば、蓄電池の内部抵抗=(充電を行っている時にセンサS1により検出した電池ユニット202の電圧―充電を行っていない時にセンサS1により検出した電池ユニット202の電圧)/充電電流により内部抵抗を求め、この内部抵抗を用いて、Vth(更新後)= Vth(更新前)+ 内部抵抗×K(所定の定数)により行うことができる。更にこのVthの計算式において、内部抵抗についても更新前との差を考慮するようにして、内部抵抗の差を所定の定数Lと乗じるようにしてもよい。
 もしくは充電を行っている時にセンサS1により検出した電池ユニット202の電圧と充電を行っていない時にセンサS1により検出した電池ユニット202の電圧との差が所定の値以上となった場合、例えば、予め準備された前記電圧差とVthとの関係を示すテーブルを参照して、Vthを決定してもよい。
 上述した電池の劣化検出は、制御回路200cが、センサS1により計測した電流値、電圧値に基づき行う。従って、制御回路200cが劣化検出回路として機能する。
 次に、電池ユニット202の構成例を図5に示す。このように、電池ユニット202は、多数の電池セル10から構成されている。所定数の電池セルが並列接続されると共に、これが所定数直列接続されている。従って、電池セル10の直列接続の数に応じた出力電圧を有し、並列接続の数に応じた電流出力能力を有する。また、蓄電量は電池セル10の数による。
 また、並列接続された電池セル10の行毎の両端は、保護回路12に接続されている。保護回路12は、各点の電圧から電池セル10の電圧および全体の電圧を監視し、過充電が起こりそうなときは、そのことについて信号を出力する。保護回路12には、マイクロプロセッサ14が接続され、このマイクロプロセッサ14は保護からの信号を受け入れると共に、電池ユニット202の出力電圧も入力される。また、マイクロプロセッサ14には、アイソレータ16が接続され、ここで電池パックの高電圧系と切り離してマイクロプロセッサ14が外部との信号のやり取りを行う。
 また、電池ユニット202全体の電圧は電圧計18で検出され、電池ユニット202に流れる電流は電流計20で検出されて、マイクロプロセッサ14に供給される。なお、保護回路12内に設けられたものを利用してもよい。
 このマイクロプロセッサ14は、その時の電流値、電圧値を出力できると共に、充電回数、累積充放電電流量、充電終了時電圧などを不揮発性メモリなどに記憶しており、これを出力することができる。
 なお、図5に示した電池ユニット202は、出力電圧が40~50Vのものでもよく、これを直列接続して、図1に示す電池ユニット202とすることが好適である。
 図6には、電池ユニット202の充電時のフローチャートが示されている。このような制御は、制御部206が行う。
 まず、タイマーなどの出力によって、充電時刻となったことを検知した場合には、制御部206が電池ユニット202の充電を開始する。
 まず、電池ユニット202の電池劣化度を検出する(S11)。この劣化度の検出は、電池ユニット202から送られてくる蓄電容量などにより行う。そして、現在のCCモードからCVモードに切り換える電池ユニット202の電圧の所定値Vthが、劣化度に応じて適切であるかを判定する(S12)。この判定は、制御部206が持っている、劣化度と、図3の蓄電量と電圧の関係に応じて計算される所定値Vthの比較によって行われる。毎回、所定値Vthを設定してもよいが、ある程度の範囲に対し、所定値Vthを設定しておくことが好適である。
 このS12の判定で、適正でないと判定した場合には、その時に適正なものに所定値Vthを更新する(S13)。S13でVthが更新された場合およびS12においてVthが適正であると判断された場合には、CCモード(定電流)での充電処理を行う(S14)。この定電流は、上述のように、昇降圧回路200aにおけるスイッチング素子SW1のPW制御によって行われる。
 次に、電池ユニット202の充電電圧Vdが所定値Vthに至っているかを判定し(S15)、NOであればS14に戻り定電流充電を継続する。
 S15において、YESであれば、定電圧充電(CVモード)に移行し、CVモード充電を行う(S16)。次に、このCVモードの充電において、充電電流が充電終了電流Iendに至っていないかを判定し(S17)、至っていない場合にはS16に戻り定電圧充電を継続する。一方、S17の判定において、充電終了と判定された場合には、充電処理を終了する。
 なお、充電電圧Vdは、所定値以上の上昇することはできず、求められた充電電圧Vdが上限電圧になった場合には、電池ユニット202を交換する。
「電池パック電圧の検出」
 上述したように、本実施形態では、電池ユニット202の電圧を検出して、充電制御を行う。特に、定電圧充電モード(CVモード)においては、電池ユニット202の電圧値Vdを正しく計測することが重要となる。
 本実施形態においては、双方向電力変換部200内で、センサS1によって、電池ユニット202の電圧を検出する。そこで、充電時においては、制御回路200cが、センサS1の検出値に基づいて、充電を制御することになる。
 一方、電池ユニット202は、その出力電圧について検出する電圧計18を内蔵している。従って、電池ユニット202の出力電圧は、2つの電圧計S1,18で検出される。電圧計18で検出された出力電圧値は、図1に示される信号線により、一定時間間隔で制御部206に送信される。一定間隔とは、例えば、1~2秒間隔である。
 ここで、電圧検出には、必然的に誤差が発生する。例えば、図7に示すように、正しい電池電圧に対する電圧計の検出出力は、傾きが異なったり(特性A)、オフセットしたりする(特性B)。通常は、この両方の誤差が組み合わされた誤差が生じる(特性C)。
 特に、双方向電力変換部200内のセンサS1においては、電池ユニット202からの線路や接続端子の抵抗や、途中に存在するオンオフ用のリレーの抵抗などが誤差の原因になり、また制御回路200cには、A/D変換したデジタルデータとして検出結果を供給するため、このA/D変換器における誤差も重畳される。
 一方、電池ユニット202に内蔵されている電圧計18は、接続線路が短く、直接接続できるため、比較的正確な電圧計測が可能である。さらに、電池ユニット202は、単体で電圧計18の検出結果の較正ができる。すなわち、電池ユニット202において、蓄電池セルを切り離した状態で、電圧計18に較正用の電圧を供給して、その検出値についての較正が可能である。従って、電圧計18における電池ユニット202の計測電圧は比較的精度の高いものにできる。電池ユニット202の電圧計18の較正は、通常生産された際に工場において行われるが、本システムにおいて行ってもよい。
 本実施形態では、電池ユニット202に内蔵される電圧計18の検出出力を用いて、双方向電力変換部200内のセンサS1の出力を補正する。そして、補正後のセンサS1の出力を用いて電池ユニット202の充電を制御する。
 すなわち、図8に示すように2つの電圧計における検出値について、その関係を記憶する。この関係は、充電時や、放電時に電池ユニット202の検出値の変化に応じて、適当な電圧検出値の間隔で検出した対応する検出値の比較に基づき検出することができる。例えば、電池パック200を接続した初回の充電時において、定電流充電(CCモード)の際に関係式を算出することが好適である。なお、放電時や、毎回の充電時に行ってもよい。
 まず、制御部206は、電池ユニット202から送信された出力電圧値を取り込む(S21)。次に、双方向電力変換部200内のセンサS1の電圧検出値を取り込む(S22)。そして、この検出値のペアを関連づけて、制御回路200c内のメモリに記憶する(S23)。
 次に、取り込み終了かを判定し(S24)、NOであればS21に戻り、電圧値の取り込みを繰り返す。S24の判定において、YESであれば、電池ユニット202内の電圧計18による検出値に基づいて双方向電力変換部200内のセンサS1の出力を補正するための関係式を算出し記憶する(S25)。この関係式は、図9における変換直線y=aX+bである。なお、関係式は、必ずしも直線ではなくてもよく、マップとして記憶してもよい。また、本実施形態では、関係式は、制御回路200c内の記憶されておりこれを利用するが、関係式を制御部206に記憶しておき、制御回路200cがそれを読み出すように構成してもよい。
 上述した通り、電池ユニット202の出力電圧値は、例えば1~2秒間隔で送信されるが、充放電制御するためには、少なくとも0.2m秒単位で、センサS1で検出される電圧を把握し、昇降圧回路200aなどを制御する必要がある。従って、電池ユニット202からデータが送られてこない間は、上記関係式を用いてセンサS1の検出値を補正して、その補正した電圧値をもとに充放電制御することになる。
 このように、本実施形態においては、電池ユニット202からの電圧値として、センサS1からの電圧値と、電圧計18からの電圧値の2つが制御部206に供給される。そして、電圧計18からの検出電圧がある場合にはそれを用い、電圧計18からの検出電圧が利用できない場合に、センサS1での検出電圧を関係式により補正して得た電圧値を用いる。そして、関係式は、上述のようにして適宜更新されるため、常に正確な電池ユニット202の電圧を把握して、充電制御を行うことができる。なお、電圧計18での検出電圧は、関係式の更新のためだけに利用し、通常時は常にセンサS1で検出した電圧値を記憶している関係式で補正して用いてもよい。
 より具体的な手順を、図9及び図10に基づいて説明する。センサS1による電圧検出を開始すると、制御回路200cは、まず図9に示す関係式を読み出す(S31)。そして、制御回路200cは、センサS1から電圧検出値を読み出す(S32)度に、関係式を利用してセンサS1の検出値を補正し、この値に基づいて充放電を制御する(S33)。そして、処理が終了かを判定し(S34)、終了でなければ検出値の補正を繰り返す。
 このようにして、本実施形態では、双方向電力変換部200内のセンサS1の電圧検出値を電池ユニット202内の電圧計18の検出値を用いて補正する関係式を記憶しており、充電時など必要なときには、この関係式を用いてセンサS1の検出値を補正することができる。従って、比較的正確な電池ユニット202の電圧検出を行うことができる。
 特に、本実施形態においては、上述したように、定電圧充電(CVモード)時における定電圧の所定値Vthを変更する。この所定値Vthは、なるべく低く抑えて電池ユニット202の蓄電池の寿命を延ばすと共に、必要な蓄電量を確保するために正確に設定することが必要であり、本実施形態によりこれが達成できる。特に、充電制御において、制御回路202cは、内部のセンサS1からの検出信号を用いることができるため、負担が軽く適切な充電制御を行うことができる。
 なお、本実施例において、電圧計18からの電圧値とセンサS1からの電圧値を制御部206内に取り込み、制御部206が電圧値の関係式を算出するようにしているが、これらの電圧値を双方向電力変換部内の制御回路200cに取り込み、制御回路200c内で関係式を算出するようにしても良い。
 10 電池セル、12 保護回路、14 マイクロプロセッサ、16 アイソレータ、18 電圧計、20 電流計、200 双方向電力変換部、200a 昇降圧回路、200b インバータ回路、200c 制御回路、202 電池ユニット、204 系統電源、206 制御部、208 負荷。

Claims (5)

  1.  電池ユニットの充電制御装置であって、
     前記電池ユニット内に設けられ、前記電池ユニットの電圧を検出する第1電圧計と、
     前記電池ユニットに接続され、前記電池ユニットへの充電電流を制御する充電制御回路と、
     前記充電制御回路内に設けられ、前記電池ユニットの電圧を検出する第2電圧計と、
     前記第2電圧計により検出した検出値と前記第1電圧計により検出した検出値との関係を記憶しており、この関係に基づき前記第2電圧計により検出した検出値を補正する補正回路と、
     を有し、
     前記充電制御回路は、前記電池ユニットの充電の際に、前記補正回路により補正された電圧検出値を用いて、充電を制御する充電制御装置。
  2.  請求項1に記載の充電制御装置であって、
     前記制御回路における、前記第1電圧計の検出値を取り入れる頻度は前記第2電圧計の検出値を取り入れる頻度より小さい充電制御装置。
  3.  請求項2に記載の充電制御装置であって、
     前記制御回路は、前記第1電圧計の検出値を取り入れた時は、前記第1電圧の検出値をそのまま用い、前記第1電圧計の検出値を取り入れてない時は、前記補正された電圧検出値を用いる充電制御装置。
  4.  請求項1から請求項3のいずれかに記載の充電制御装置であって、
     前記充電制御回路は、
     前記電池ユニットへの充電電流を定電流に制御する定電流制御回路と、
     前記電池ユニットへの充電電圧を定電圧に制御する定電圧制御回路と、
     前記補正回路により補正した電池パックの電圧と、電圧設定値を比較し、得られた比較結果に基づき、電池電圧が電圧設定値に至るまでは定電流充電を行い、前記電圧設定値に至った後は定電圧充電を行うように制御する制御回路と、
     を含み、
     前記電圧設定値が変更可能である充電制御装置。
  5.  請求項4に記載の充電制御装置であって、
     さらに、
     前記電池の劣化を検出する劣化検出回路を有し、
     前記制御回路は、前記劣化検出回路で検出した電池の劣化が進むほど、前記電圧設定値を高く変更する充電制御装置。
PCT/JP2011/072426 2010-09-29 2011-09-29 充電制御装置 WO2012043745A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536560A JPWO2012043745A1 (ja) 2010-09-29 2011-09-29 充電制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010220012 2010-09-29
JP2010-220012 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043745A1 true WO2012043745A1 (ja) 2012-04-05

Family

ID=45893183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072426 WO2012043745A1 (ja) 2010-09-29 2011-09-29 充電制御装置

Country Status (2)

Country Link
JP (1) JPWO2012043745A1 (ja)
WO (1) WO2012043745A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023264A (ja) * 2012-07-18 2014-02-03 Myway Corp 電源システム、コンピュータ、及び電源装置
JP2014033496A (ja) * 2012-08-01 2014-02-20 Rohm Co Ltd 充電制御装置、及び、これを用いた電子機器
WO2016050403A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Batteriemanagementsystem und verfahren zur kalibrierung eines sensors eines batteriemanagementsystems
US10031190B2 (en) 2013-05-06 2018-07-24 Denso Corporation Voltage detection device
WO2023050614A1 (zh) * 2021-09-30 2023-04-06 西安特来电领充新能源科技有限公司 电动汽车的充电检测方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255304B2 (ja) * 1992-10-15 2002-02-12 株式会社ユアサコーポレーション 双方向電力変換装置の制御回路
JP2002315230A (ja) * 2001-04-04 2002-10-25 Nissin Electric Co Ltd 無停電工事用電源装置
JP2006067673A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 電源装置
JP2008253129A (ja) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd リチウム系二次電池の急速充電方法およびそれを用いる電子機器
JP4531113B2 (ja) * 2008-11-20 2010-08-25 三菱電機株式会社 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255304B2 (ja) * 1992-10-15 2002-02-12 株式会社ユアサコーポレーション 双方向電力変換装置の制御回路
JP2002315230A (ja) * 2001-04-04 2002-10-25 Nissin Electric Co Ltd 無停電工事用電源装置
JP2006067673A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 電源装置
JP2008253129A (ja) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd リチウム系二次電池の急速充電方法およびそれを用いる電子機器
JP4531113B2 (ja) * 2008-11-20 2010-08-25 三菱電機株式会社 電力変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023264A (ja) * 2012-07-18 2014-02-03 Myway Corp 電源システム、コンピュータ、及び電源装置
JP2014033496A (ja) * 2012-08-01 2014-02-20 Rohm Co Ltd 充電制御装置、及び、これを用いた電子機器
US10031190B2 (en) 2013-05-06 2018-07-24 Denso Corporation Voltage detection device
WO2016050403A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Batteriemanagementsystem und verfahren zur kalibrierung eines sensors eines batteriemanagementsystems
CN106716168A (zh) * 2014-10-02 2017-05-24 罗伯特·博世有限公司 电池组管理系统和用于校准电池组管理系统的传感器的方法
WO2023050614A1 (zh) * 2021-09-30 2023-04-06 西安特来电领充新能源科技有限公司 电动汽车的充电检测方法、装置及系统

Also Published As

Publication number Publication date
JPWO2012043745A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP4157317B2 (ja) 状態検知装置及びこれを用いた各種装置
CN103001299B (zh) 充电器
JP6763376B2 (ja) 蓄電池制御装置、蓄電システム、制御方法及びコンピュータ可読媒体
JP5682433B2 (ja) 充電制御システム
US9148028B2 (en) Apparatus and method for battery equalization
WO2012043744A1 (ja) 充電制御装置
EP2472278A1 (en) Power management system
JP6036236B2 (ja) 蓄電システム及び蓄電池の劣化診断方法
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP6113145B2 (ja) バランス補正装置及び蓄電システム
WO2012049965A1 (ja) 電力管理システム
KR20140138067A (ko) 배터리 랙 및 그 구동 방법
CN103636097A (zh) 对锂离子电池组充电
WO2012043745A1 (ja) 充電制御装置
JP5656154B2 (ja) 電源システム
JP2014068468A (ja) 充電制御装置
JP2012147600A (ja) 電力貯蔵装置が備える蓄電池の放電方法
CN111557067A (zh) 蓄电装置、蓄电系统、电源系统及蓄电装置的控制方法
JP2012088086A (ja) 電力管理システム
WO2013002343A1 (ja) 電池状態検出装置
CN112534672A (zh) 电源系统和管理装置
JP2007322353A (ja) 電池容量判定装置および方法ならびにそれを用いる電池パック
WO2015076188A1 (ja) 複数電池電源装置
US20230141602A1 (en) Battery bank unit, remaining charge time calculation method, and remaining charge time calculation program
JP2021083245A (ja) 蓄電ユニット及び蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536560

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829298

Country of ref document: EP

Kind code of ref document: A1