WO2019135300A1 - 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法 - Google Patents

蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法 Download PDF

Info

Publication number
WO2019135300A1
WO2019135300A1 PCT/JP2018/033791 JP2018033791W WO2019135300A1 WO 2019135300 A1 WO2019135300 A1 WO 2019135300A1 JP 2018033791 W JP2018033791 W JP 2018033791W WO 2019135300 A1 WO2019135300 A1 WO 2019135300A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
full charge
battery unit
voltage
power
Prior art date
Application number
PCT/JP2018/033791
Other languages
English (en)
French (fr)
Inventor
勝 川邉
松田 考史
佐藤 之也
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP18898459.5A priority Critical patent/EP3734789A4/en
Priority to CN201880085271.8A priority patent/CN111557067A/zh
Priority to JP2019563924A priority patent/JP6991247B2/ja
Publication of WO2019135300A1 publication Critical patent/WO2019135300A1/ja
Priority to US16/921,482 priority patent/US11588343B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device, a power storage system, and a power supply system.
  • the present invention particularly relates to a stationary storage device.
  • a power supply system which includes a power generation device and a power storage device in addition to the system power supply and can supply self-generated power to an external load.
  • This power supply system is parallel to the system power supply, charges the power storage device with the power supplied from the system power supply at night when the electricity charge is low, and uses the power charged from the power storage device in the daytime as an external load such as home appliances Supplying electricity can also lead to a reduction in electricity charges.
  • a storage device for storing electric power incorporates a secondary battery group in which a plurality of secondary batteries are connected in series and parallel, and the voltage is increased by connecting the plurality of secondary batteries in series, which is larger Power can be charged and discharged.
  • the constituent material of the secondary battery is deteriorated and the battery capacity is reduced by long-term use.
  • this reduction in battery capacity occurs, a difference occurs between the actual full charge capacity and the full charge capacity at the time of shipment.
  • an error may occur in the capacity display monitored by the user, or charging or discharging may be performed without being associated with the actual full charge capacity, and in some cases, overdischarge or overcharge may occur.
  • overdischarge or overcharge occurs, deterioration of the constituent material of the secondary battery is promoted, and the life of the secondary battery is further shortened.
  • this invention aims at providing the control method of an electrical storage apparatus, an electrical storage system, a power supply system, and an electrical storage apparatus which can implement the setting of the full charge capacity according to the actual full charge capacity.
  • the power storage device includes a battery unit and a control unit that controls charging and discharging of the battery unit, and the control unit is capable of discharging the battery unit from a full charge capacity to a preset set capacity.
  • the full charge capacity correction mode can be executed.
  • the full charge capacity correction mode when the battery section discharges from the full charge capacity to the set capacity, the first voltage of the battery section in the set capacity is acquired, and the first voltage and the preset battery section are obtained.
  • the consumption capacity calculating operation of calculating the consumption capacity consumed up to the set capacity, and in the full charge capacity correction mode the sum of the actual remaining capacity and the consumption capacity is set as the full charge capacity.
  • the remaining capacity calculation operation uses a correlation close to the actual environmental temperature Is executed.
  • the "current value” mentioned here includes not only positive but also negative. For example, assuming that the amount of current due to discharge is + i [A], the amount of current due to charging is ⁇ i [A].
  • full charge capacity is a charge capacity in a state considered to be fully charged according to a predetermined standard.
  • the “first voltage at the set capacity” mentioned here refers to the voltage of the entire battery unit or a part of the set capacity. That is, “the first voltage at the set capacity” refers to the voltage of the entire battery unit when the battery unit is configured by a single battery, and when the battery unit is configured by a plurality of batteries, Not only the voltage of the whole battery part but the individual voltage of each battery and a group of voltages are included.
  • the remaining capacity calculation operation for calculating the actual remaining capacity and the consumption capacity are performed under the condition that the battery unit has been discharged from the full charge capacity to the set capacity.
  • the consumption capacity calculation operation to be calculated is performed separately, and the calculation results of the remaining capacity calculation operation and the consumption capacity calculation operation are added up and set as an actual full charge capacity. That is, in the remaining capacity calculation operation, the remaining capacity which is the actual charge capacity is calculated using the correlation between the voltage of the battery section and the battery capacity set in advance, and further, in the consumption capacity calculating operation, the current of the battery section Are integrated to calculate the consumed capacity from the concept different from the remaining capacity calculating operation, and set the full charge capacity. Therefore, the actual full charge capacity can be reset according to the decrease in capacity of the battery unit due to the deterioration of the battery unit, and control can be performed accordingly, so that overdischarge and overcharge can be prevented. .
  • the correlation between the voltage of the battery unit and the battery capacity is set in advance as a plurality of correlations at different environmental temperatures, and in the remaining capacity calculation operation, the correlation between the actual environmental temperature and the actual residual is used. Calculate the capacity. Therefore, it is possible to accurately reset the actual full charge capacity according to the change of the environmental temperature.
  • the power supply system 1 is a power supply system mainly provided in a building such as a house or a building, and configuring a power supply of an external load 100 such as an electric appliance. That is, the power supply system 1 is a stationary power supply system that is fixed and used at a desired position.
  • the power supply system 1 includes a power generation device 2, a power supply control device 3, a display device (not shown), and a storage system 5.
  • the power supply system 1 has the external load 100 and the system power supply 101 connected to the power supply control device 3 and externally supplies the power supplied from the system power supply 101 serving as a commercial power supply supplied from an electric power company or the like. It supplies the load 100.
  • the power generation device 2 is a power generation device such as a solar cell module or a fuel cell module.
  • the power supply control device 3 is a device capable of switching the power supply to the external load 100 between the system power supply 101 and the storage system 5.
  • the display device (not shown) is a device that displays information related to the power of the power generation device 2 and the power of the power storage device 8 and can display the current, voltage, power and storage amount of the power generation device 2 and the power storage device 8. ing.
  • the storage system 5 includes a power converter 7 and a storage device 8.
  • the power conversion device 7 is a so-called power conditioner, and can convert AC power and DC power. That is, the power conversion device 7 converts the DC power generated by the power generation device 2 into AC power and supplies the AC power to the power control device 3 or converts AC power supplied from the system power source 101 into DC power and stores the power storage device It is possible to supply 8
  • the storage device 8 temporarily stores the electric power generated by the power generation device 2 and the electric power supplied from the system power supply 101.
  • the storage device 8 includes a secondary battery unit 10 (battery unit), voltage detection means (not shown) for detecting the voltage of the secondary battery unit 10, and a plurality of voltage detection means 11a to 11e (voltage information detection means), current detection means 12, control unit 15, and switching unit 16 are provided.
  • a secondary battery unit 10 battery unit
  • voltage detection means not shown
  • a plurality of voltage detection means 11a to 11e voltage information detection means
  • current detection means 12 control unit 15, and switching unit 16 are provided.
  • the secondary battery unit 10 is obtained by electrically connecting a plurality of secondary battery groups 20a to 20e in series. As shown in FIG. 2, the secondary battery unit 10 of the present embodiment is configured of five secondary battery groups 20a to 20e.
  • each of the secondary battery groups 20a to 20e a plurality of secondary batteries (not shown) are electrically connected in parallel.
  • each of the secondary battery groups 20a to 20e may be configured of a single secondary battery.
  • the secondary battery unit 10 five single secondary batteries are connected in series.
  • the voltage detection means 11a to 11e are provided corresponding to the respective secondary battery groups 20a to 20e, and are means for detecting the voltages of the respective secondary battery groups 20a to 20e. That is, the voltage detection means 11a to 11e can detect the voltage of each of the secondary battery groups 20a to 20e independently.
  • the current detection unit 12 is a device that detects the charge / discharge current of the secondary battery unit 10, and is also a device that detects the total amount of current passing through the secondary battery unit 10.
  • the current detection means 12 of the present embodiment detects the discharge current as positive and the charge current as negative. That is, the current detection means 12 detects “+1 A” when the discharge current of 1 A flows, and detects “ ⁇ 1 A” when the charging current of 1 A flows.
  • the control unit 15 is a charge and discharge control device that controls charge and discharge of the secondary battery unit 10, and is a remaining capacity management device that manages the remaining capacity of the secondary battery unit 10.
  • the control unit 15 is connected to each of the voltage detection units 11a to 11e and the current detection unit 12 wirelessly or by wire, and based on the information detected by each of the voltage detection units 11a to 11e and the current detection unit 12, predetermined arithmetic processing It is also a computing device that can execute
  • control unit 15 is also a current amount integration unit capable of performing integration processing of integrating the current values detected by the current detection unit 12.
  • control unit 15 is configured by a CPU (central processing unit) or the like that performs various arithmetic processing.
  • the switching unit 16 is a switch that switches electrical connection and disconnection with the power conversion device 7.
  • Power storage device 8 can perform a normal operation mode in which the charging operation for charging the power generated by power generation device 2 and the power from system power source 101 and the discharging operation for discharging the stored power to external load 100 are performed. ing.
  • power storage device 8 fulfills a predetermined condition, and based on the decrease in capacity of each secondary battery of secondary battery groups 20a to 20e due to a change with time, etc., an actual full charge. It is possible to repeatedly execute the full charge capacity correction mode for resetting the capacity (hereinafter, also referred to as FCC).
  • the full charge capacity correction mode is a correction mode in which transition is made when a predetermined condition is satisfied in a state where power storage device 8 is operated in the normal operation mode.
  • the full charge capacity correction mode is shifted as follows based on the flowchart of FIG.
  • detection is performed by satisfying one of the following two criteria.
  • the fully charged state is detected when the maximum voltage Vmax of the secondary battery groups 20a to 20e constituting the secondary battery unit 10 reaches a predetermined voltage.
  • the full charge state is detected when the total voltage of the secondary battery groups 20a to 20e reaches a predetermined voltage.
  • predetermined voltages are voltages corresponding to predetermined charging rates set in advance, and are voltages serving as threshold values for charging. Naturally, the values are different.
  • the “predetermined period T1” is a period in which the full charge capacity of the secondary battery unit 10 is expected to change to a certain extent, and for example, a period of about 20 days to 90 days is assumed.
  • the voltage detection means 11a to 11e and The current detection unit 12 monitors the voltage applied to the secondary battery unit 10 and the current passing through the secondary battery unit 10.
  • the set capacity is preferably 10% or more and 50% or less of the full charge capacity initially set or the full charge capacity set in the previous full charge capacity correction mode, and is 20% or more and 40% or less Is more preferred. That is, the charging rate (hereinafter, also referred to as SOC), which is the ratio of the amount of electricity being charged, is preferably set to 10% or more and 50% or less, and more preferably 20% or more and 40% or less.
  • SOC the charging rate
  • the charge current is not detected until the preset capacity is reached ( When it is detected that the battery has been discharged to the set capacity (No in STEP 3) (Yes in STEP 4, the discharge end detection step), the full charge capacity correction mode is entered, and the charge current and the discharge current are substantially limited to 0 A (STEP 5). ). That is, the current balance from the outside of power storage device 8 is substantially set to 0 A to form a pseudo open circuit state.
  • the predetermined time T2 is a time until the OCV is sufficiently stabilized, and varies depending on the battery used, but, for example, a time of about 100 minutes to 200 minutes is assumed.
  • the display device 8 of the present embodiment after the battery capacity reaches the set capacity, the display device is provided with a time T3 in which the state of the current and voltage of the secondary battery unit 10 is not updated. That is, in the display device, the state of the current and voltage immediately before is kept displayed during time T3, and the actual state of the current and voltage is not displayed.
  • the time T3 is set to, for example, about 10 seconds to 20 seconds.
  • the open circuit voltage V 0 of the entire secondary battery unit 10 after discharging from the full charge capacity to the set capacity, the open circuit voltage V 0 of the entire secondary battery unit 10 at time t3 when a predetermined time T2 has elapsed while maintaining the set capacity. It acquires, from the open-circuit voltage V 0, and calculates the average voltage (first voltage) V 1 of the open circuit voltage of each secondary cell group 20a ⁇ 20e.
  • the average value is used. determining the charging rate SOC 1 corresponding to the voltage (first voltage) V 1.
  • the correlation between the open circuit voltage and the battery capacity (OCV-SOC curve) shown in FIG. 5 can be stored in the storage unit of the control unit 15 as data obtained in advance for the secondary battery. .
  • the full charge capacity FCC1 can be calculated by the following equation (1).
  • the consumed capacity (DCR) consumed by each of the secondary battery groups 20a to 20e from time t1 at which the battery is fully charged to start discharging to time t2 at which the set capacity is reached is The equation (2) can be calculated by integrating the amount of current from time t1 to time t2.
  • the actual full charge capacity is calculated by adding the remaining capacity RC calculated by the above-described remaining capacity calculation operation and the consumed capacity DCR calculated by the consumed capacity calculation operation. Calculate FCC2 and reset it as FCC.
  • the power generation device 2 is connected to the power storage device 8 via the power conversion device 7. Therefore, power storage device 8 can directly charge the DC power generated by power generation device 2.
  • the power generation device 2 is electrically connected to the external load 100 via the power conversion device 7 and the power supply control device 3. Therefore, DC power generated by the power generation device 2 can be converted into AC power by the power conversion device 7 and can be supplied to the external load 100.
  • Power storage device 8 is electrically connected to external load 100 via power conversion device 7 and power supply control device 3. Therefore, it is possible to convert direct current power stored in the storage device 8 into alternating current power by the power conversion device 7 and supply the external load 100 with power.
  • the storage device 8 is electrically connected to the system power supply 101 via the power conversion device 7 and the power supply control device 3. Therefore, AC power supplied from the system power supply 101 can be converted into DC power by the power conversion device 7 and stored in the storage device 8. In other words, the storage device 8 can charge AC power supplied from the system power supply 101 as DC power.
  • the full charge capacity correction mode is performed under the condition that only the discharge from the full charge capacity to the set capacity is performed, and the voltage of each of the secondary battery groups 20a to 20e in the set capacity is
  • the present remaining capacity RC is calculated based on the (first voltage), the correlation between the voltage (OCV) set in advance and the battery capacity (SOC), and the discharge from the fully charged state to the set capacity is performed.
  • the consumption capacity DCR is calculated by integrating current values at time, and the sum of the remaining capacity RC and the consumption capacity DCR is reset as an actual full charge capacity.
  • power storage device 8 can mount a large number of secondary batteries, and can incorporate a large capacity secondary battery unit 10.
  • first voltages V 1 at the set volume based on the correlation between the preset voltage (OCV) and the battery capacity (SOC), was calculated actual remaining capacity RC
  • OCV preset voltage
  • SOC battery capacity
  • FIG. 7 is a graph showing the correlation between OCV and SOC (OCV-SOC curve) when the environmental temperature is different.
  • the curve shown by arrow A is more than the curve shown by arrow B. Indicates a high case.
  • a first value of voltage V 1 is the same, a different value than the SOC 1 and SOC '1 the environmental temperature is determined from each different curves A and B.
  • SOC 1 is determined from the OCV-SOC curve determined at 20 ° C.
  • ⁇ SOC 1 may typically have a magnitude of about 3 to 5%. Therefore, if the environmental temperature is different, the accuracy of the actual full charge capacity obtained in the full charge capacity correction mode may be reduced.
  • the correlation between the OCV and the SOC is set in advance as a plurality of correlations at different environmental temperatures, and in the remaining capacity calculation operation, among the plurality of correlations, the correlation close to the actual environmental temperature is used. It is preferable to calculate the remaining capacity. As a result, the full charge capacity can be reset with higher accuracy.
  • the range of the environmental temperature to be set may be appropriately determined according to the environment of the secondary battery unit to be used and the specifications of the secondary battery, but for example, it is divided into several steps within the range of -20 ° C to 50 ° C. You can set it.
  • the storage device 8 shown in FIG. 1 be provided with detection means (not shown) for detecting an actual environmental temperature.
  • detection means not shown
  • the remaining capacity calculation operation can be performed using a correlation close to the actual environmental temperature detected by the detection unit among the plurality of correlations.
  • the full charge capacity, the OCV, the SOC, and the like are necessarily updated, but the present invention is not limited to this.
  • the full charge capacity correction mode if there is almost no change in the OCV compared to the past OCV, or if the OCV increases compared to the past OCV, the full charge capacity, OCV, SOC, etc. are updated You do not have to.
  • the deterioration state may be calculated based on FCC calculated based on the full charge capacity correction mode.
  • SOH can be calculated by dividing the FCC by design capacity (DC).
  • the display device after the battery capacity reaches the set capacity, the display device is provided with the time T3 for not updating the state of the current and voltage of the secondary battery unit 10, but the present invention is limited to this It is not a thing.
  • the current state of the current and voltage of the secondary battery unit 10 may or may not always be displayed on the display device.
  • the charge current and the discharge current to the secondary battery unit 10 are substantially limited to 0 A by the program, but the present invention is not limited to this. Absent.
  • the secondary battery unit 10 may be electrically disconnected from the power conversion device 7 by the switching unit 16 to form an open circuit, and the charging current and the discharging current may be limited to 0A.
  • the open circuit voltage V 0 which entire secondary battery unit 10, calculates the average voltage V 1 of the open circuit voltage of each secondary cell group 20a ⁇ 20e, this as a first voltage, the remaining Although the capacity RC is calculated, the voltage of each of the secondary battery groups 20a to 20e may be measured, and the remaining capacity RC may be calculated with the minimum voltage Vmin as the first voltage.
  • the voltages of the secondary battery groups 20a to 20e are directly detected by the voltage detection means 11a to 11e, but the present invention is not limited to this.
  • Information regarding the voltage of the secondary battery groups 20a to 20e may be detected by the voltage detection means 11a to 11e, and the voltage may be detected indirectly.
  • the "information related to voltage” mentioned here means information corresponding to the voltage one to one.
  • the secondary battery unit 10 is provided with five secondary battery groups 20a to 20e, but the present invention is not limited to this.
  • the number of secondary battery groups 20 in the secondary battery unit 10 is not particularly limited.
  • the secondary battery group 20 is configured by a plurality of secondary batteries, but the present invention is not limited to this.
  • the secondary battery group 20 may be a single secondary battery.
  • the discharge is performed based on the power request from the external load 100 from the full charge capacity to the set capacity, and the discharge environment is left as it is, but the present invention is limited to this is not.
  • it may be forcibly discharged from the full charge capacity to the set capacity in accordance with the power supply to the electric power company or the like.
  • the battery capacity is consumed by monotonous discharge from the full charge capacity to the set capacity, but the present invention is not limited to this.
  • Charging may be performed between full charge capacity and set capacity.
  • the current amount at the time of discharge is positive and the current amount at the charge is negative, and from the time t1 when the discharge is started to the time when the set capacity is reached from the full charge state.
  • the amount of current will be integrated.
  • the voltage of the entire secondary battery unit 10 and the individual voltages of the secondary battery groups 20a to 20e are used to detect the fully charged state, but the present invention is not limited to this. .
  • the full charge state may be detected only by the voltage of the entire secondary battery unit 10, or the full charge state may be detected only by the individual voltages of the secondary battery groups 20a to 20e. Alternatively, the fully charged state may be detected by another known fully charged state detection method.
  • the full charge capacity correction mode when only the discharge is performed from the full charge capacity to the set capacity.
  • the actual full charge capacity can be set in a state where the influence of the charge on the capacity change is excluded, it is possible to set more accurately.
  • the voltage of the battery unit after a predetermined time has elapsed after reaching the set capacity, as the first voltage, in a state where the current balance in the battery unit is made substantially zero and the set capacity is maintained.
  • a pseudo open circuit voltage hereinafter, also referred to as an OCV
  • the measured value is less likely to be blurred, and a correct charge capacity can be calculated.
  • to substantially reduce the current balance in the battery unit means to limit the charging current to the battery unit and the discharging current from the battery unit to a negligible extent. Specifically, It refers to limiting the charging current to the part and the discharging current from the battery part to 0.01 C or less.
  • 1C refers to a current value at which discharge ends due to constant current discharge for one hour. That is, "0.01 C” is a current value at which the discharge is completed by constant current discharge for 100 hours.
  • the full charge capacity correction mode may be repeatedly executed.
  • the full charge capacity correction mode is performed when only the discharge is performed, so that the full charge capacity correction mode is a normal operation. It does not easily get in the way of movement.
  • the power conversion device 7 in the present embodiment can be electrically connected to the system power supply 101, and can convert AC power supplied from the system power supply 101 into DC power and charge the storage device 8. Thereby, the AC power supplied from the system power supply 101 can be converted to DC power to charge the storage device 8. For example, charging is performed in a time zone where the electricity rate is low, and the energy storage 8 is performed in a time zone where the electricity rate is high. Can use the electricity stored in the Therefore, the electricity bill etc. which a user pays can be reduced.
  • the display device capable of acquiring and displaying the information related to the power of the storage device 8 since the display device capable of acquiring and displaying the information related to the power of the storage device 8 is provided, the user can visually recognize the information related to the power of the storage device 8. I can understand the situation.
  • the display device preferably does not update the information related to the power of the power storage device in a predetermined period after the battery unit reaches the set capacity. This makes it possible to prevent the user from feeling that a failure or the like has occurred when looking at the display device.
  • Power supply system Power generation device 3 Power supply control device 5 Power storage system 7 Power conversion device 8 Power storage device 10 Secondary electric unit (battery unit) 11a to 11e Voltage detection means (voltage information detection means) 12 current detection means 15 control unit 16 switching unit 20a to 20e secondary battery group

Abstract

満充電容量補正モードを実行可能な制御部を備えた蓄電装置であって、満充電容量補正モードは、満充電容量から設定容量まで放電したときの電池部の第1電圧と、予め設定された電池部の電圧と電池容量の相関関係に基づいて、実際の残容量を算出する残容量算出動作と、満充電容量から設定容量までの放電時における電流値を積算し、満充電容量から設定容量までの消費容量を算出する動作を実行し、実際の残容量と消費容量の和が満充電容量として再設定され、電池部の電圧と電池容量の相関関係は、異なる環境温度における複数の相関関係として予め設定され、残容量算出動作は、複数の相関関係のうち、実際の環境温度に近い相関関係を用いて実行される。

Description

蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
 本発明は、蓄電装置、蓄電システム、並びに、電源システムに関する。本発明は、特に据え置き型の蓄電装置に関する。
 近年、系統電源の他に発電装置と蓄電装置を備え、自家発電した電力を外部負荷に供給可能な電源システムが開発されている。この電源システムは、系統電源に対して並列され、電力料金が低額な夜間に系統電源から供給される電力を蓄電装置に充電し、昼間において蓄電装置から充電した電力を家電製品等の外部負荷に供給することで電力料金の低減につなげることもできる。
 また、電力を蓄電する蓄電装置は、複数の二次電池が直並列接続された二次電池群を内蔵しており、複数の二次電池が直列接続されることによって電圧が高められ、より大きな電力を充放電可能となっている。
特開2016-25760号公報
 ところで、蓄電装置に内蔵される二次電池は、長期間の使用により、二次電池の構成材料が劣化し、電池容量が低下する。この電池容量の低下が生じると、実際の満充電容量と、出荷時の満充電容量との間で差が生じてしまう。この場合、ユーザーがモニターする容量表示に誤差が生じたり、実際の満充電容量に伴わない充電や放電を実施してしまい、場合によっては、過放電や過充電が生じるおそれがある。過放電や過充電が生じると、二次電池の構成材料の劣化が促進されてしまい、さらに二次電池の寿命が縮んでしまうという問題がある。特に、複数の二次電池を直並列接続された二次電池群を内蔵する蓄電装置では、二次電池群の中の二次電池間で個体差があるので、容量が小さい二次電池において過放電や過充電が生じやすいという問題もある。
 そこで、本発明は、実際の満充電容量に応じた満充電容量の設定を実施可能な蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法を提供することを目的とする。
 本発明に係る蓄電装置は、電池部と、電池部の充放電を制御する制御部を備え、制御部は、電池部が満充電容量から、あらかじめ設定された設定容量まで放電可能であって、満充電容量補正モードを実行可能である。
 満充電容量補正モードは、電池部が、満充電容量から設定容量まで放電を実施した場合に、設定容量における電池部の第1電圧を取得して、第1電圧と、あらかじめ設定された電池部の電圧と電池容量の相関関係とに基づいて、電池部の実際の残容量を算出する残容量算出動作と、満充電容量から設定容量までの放電時における電流値を積算して、満充電容量から設定容量までに消費した消費容量を算出する消費容量算出動作とを実行し、満充電容量補正モードにおいて、実際の残容量と前記消費容量の和が満充電容量として設定される。
 電池部の電圧と電池容量の相関関係は、異なる環境温度における複数の相関関係があらかじめ設定されており、残容量算出動作は、複数の相関関係のうち、実際の環境温度に近い相関関係を用いて実行される。
 ここでいう「電流値」には、正だけではなく、負も含む。例えば、放電による電流量を+i〔A〕とすると、充電による電流量は-i〔A〕となる。
 ここでいう「満充電容量」とは、所定の基準により満充電状態とみなされた状態における充電容量である。
 ここでいう「設定容量における第1電圧」とは、設定容量における電池部全体又は部分の電圧をいう。すなわち、「設定容量における第1電圧」は、電池部が単一の電池によって構成される場合には、電池部全体の電圧をいい、電池部が複数の電池によって構成されている場合には、電池部全体の電圧だけではなく、各電池の個々の電圧や一群の電圧も含む。
 本発明の構成によれば、満充電容量補正モードは、電池部が満充電容量から設定容量まで放電を実施したことを条件として、実際の残容量を算出する残容量算出動作と、消費容量を算出する消費容量算出動作を別々に実施し、残容量算出動作と消費容量算出動作の算出結果を和算して実際の満充電容量として設定する。すなわち、残容量算出動作において、あらかじめ設定された電池部の電圧と電池容量の相関関係を利用して、実際の充電容量たる残容量を算出し、さらに、消費容量算出動作において、電池部の電流を積算して、残容量算出動作とは別の考え方から消費容量を算出して、満充電容量を設定する。そのため、電池部の劣化による電池部の容量低下に応じた実際の満充電容量を再設定することができ、それに伴った制御を行うことができるので、過放電や過充電を防止することができる。
 加えて、電池部の電圧と電池容量の相関関係を、異なる環境温度における複数の相関関係としてあらかじめ設定し、残容量算出動作において、実際の環境温度に近い相関関係を利用して、実際の残容量を算出する。そのため、環境温度の変化に応じた実際の満充電容量を精度良く再設定することができる。
 本発明によれば、実際の満充電容量に応じた満充電容量の設定を実施可能である。
本発明の第1実施形態の電源システムを表すブロック図である。 本発明の第1実施形態における蓄電装置のブロック図である。 蓄電装置の通常運転モードから満充電容量補正モードに移行するまでのフローチャートである。 蓄電装置の満充電容量補正モードのフローチャートである。 二次電池ユニットを構成する二次電池の充電率と開回路電位の相関関係を示す説明図である。 蓄電装置の満充電容量補正モードにおける典型的な電圧の推移を表すグラフである。 異なる環境温度における充電率と開回路電位の相関関係を示す説明図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。
 本発明の第1実施形態の電源システム1は、主に家やビル等の建屋に設けられ、電化製品等の外部負荷100の電源を構成する電源システムである。すなわち、電源システム1は、所望の位置に固定されて使用される据え置き型の電源システムである。
 電源システム1は、図1に示されるように、発電装置2と、電源制御装置3と、図示しない表示装置と、蓄電システム5を備えている。電源システム1は、電源制御装置3に外部負荷100と系統電源101が接続され、電力会社等から供給される商用電源たる系統電源101から供給された電力または電力切換装置から供給された電力を外部負荷100に対して供給するものである。
 発電装置2は、太陽電池モジュールや燃料電池モジュールなどの電力発生装置である。
 電源制御装置3は、外部負荷100への供給電源を系統電源101と蓄電システム5との間で切替可能な装置である。
 表示装置(不図示)は、発電装置2の電力や蓄電装置8の電力に関する情報を表示する装置であり、発電装置2や蓄電装置8の電流・電圧・電力及び蓄電量等を表示可能となっている。
 蓄電システム5は、図1に示されるように、電力変換装置7と、蓄電装置8を備えている。
 電力変換装置7は、いわゆるパワーコンディショナーであり、交流電力と直流電力とを変換することが可能となっている。すなわち、電力変換装置7は、発電装置2で発電した直流電力を交流電力に変換して電源制御装置3に供給したり、系統電源101から給電された交流電力を直流電力に変換して蓄電装置8に供給したりすることが可能となっている。
 蓄電装置8は、発電装置2で発電した電力や系統電源101から供給された電力を一時的に蓄電するものである。
 蓄電装置8は、図2に示されるように、二次電池ユニット10(電池部)と、二次電池ユニット10の電圧を検知する電圧検知手段(不図示)と、複数の電圧検知手段11a~11e(電圧情報検知手段)と、電流検知手段12と、制御部15と、切替部16を備えている。
 二次電池ユニット10は、複数の二次電池群20a~20eが電気的に直列接続されたものである。本実施形態の二次電池ユニット10は、図2に示されるように、5つの二次電池群20a~20eによって構成されている。
 各二次電池群20a~20eは、複数の二次電池(不図示)が電気的に並列接続されたものである。
 なお、ここでは、各二次電池群20a~20eは、複数の二次電池が電気的に並列接続されたものとしているが、それぞれ、単体の二次電池で構成されていてもよい。この場合、二次電池ユニット10は、5つの単体の二次電池が直列接続されていることになる。
 電圧検知手段11a~11eは、各二次電池群20a~20eに対応して設けられ、各二次電池群20a~20eの電圧を検知する手段である。すなわち、電圧検知手段11a~11eは、各二次電池群20a~20eの電圧をそれぞれ独立して検知可能となっている。
 電流検知手段12は、二次電池ユニット10の充放電電流を検知する装置であり、二次電池ユニット10を通過する総電流量を検知する装置でもある。
 本実施形態の電流検知手段12は、放電電流を正とし、充電電流を負として検知している。すなわち、電流検知手段12は、1Aの放電電流が流れると「+1A」と検知し、1Aの充電電流が流れると「-1A」と検知する。
 制御部15は、二次電池ユニット10の充放電を制御する充放電制御装置であり、二次電池ユニット10の残容量を管理する残容量管理装置である。
 制御部15は、各電圧検知手段11a~11e及び電流検知手段12と、無線又は有線によって接続され、各電圧検知手段11a~11e及び電流検知手段12が検知した情報に基づいて、所定の演算処理を実行可能な演算装置でもある。
 さらに、制御部15は、電流検知手段12で検知した電流値を積算する積算処理を実施可能な電流量積算部でもある。
 具体的には、制御部15は、各種演算処理を行うCPU(中央演算装置)等で構成されている。
 切替部16は、電力変換装置7に対する電気的な接続及び切断を切り替えるスイッチである。
 蓄電装置8は、発電装置2で発電された電力および系統電源101からの電力を充電する充電動作と、蓄電した電力を外部負荷100側に放電する放電動作を行う通常運転モードを実施可能となっている。
 この通常運転モードでは、放電動作において、あらかじめ設定された電池容量以下にならないように設定されており、充電動作において、あらかじめ設定された電圧以上にならないように設定されている。
 また、蓄電装置8は、この通常運転モードに加えて、所定の条件を満たすことによって、経時変化等による二次電池群20a~20eの各二次電池の容量低下を踏まえて、実際の満充電容量(以下、FCCともいう)を再設定する満充電容量補正モードを繰り返し実行することが可能となっている。
 満充電容量補正モードは、上記したように、蓄電装置8が通常運転モードで稼働した状態で所定の条件を満たした場合に移行する補正モードである。
 具体的には、満充電容量補正モードは、図3のフローチャートに基づいて下記のように移行する。
 すなわち、蓄電装置8が通常運転モードで稼働しており、充電により二次電池ユニット10が満充電状態となったことを検知すると(STEP1,満充電検知工程)、初回起動時又は前回の満充電容量補正モードを行ってから、所定の期間T1を経過しているか判定する(STEP2)。
 ここで、本実施形態では、満充電状態を検知する方法として、下記の2つの基準のどちらか一方の基準を満たすことで検知している。
 具体的には、1つ目は、二次電池ユニット10を構成する二次電池群20a~20eの中の最大電圧Vmaxが所定の電圧に達することで満充電状態を検知している。2つ目は、二次電池群20a~20eの総電圧が所定の電圧に達することで満充電状態を検知している。これらの「所定の電圧」は、あらかじめ設定された所定の充電率に対応する電圧であり、充電の閾値となる電圧である。当然、それぞれ値は異なる。
 また、「所定の期間T1」は、二次電池ユニット10の満充電容量にある程度変化が起こったと予想される期間であり、例えば、20日以上90日以下程度の期間が想定される。
 なお、外部負荷100からの電力要求に基づいて、外部負荷100側にあらかじめ設定された所定の電池容量(以下、設定容量ともいう)に至るまで放電を行う際に、電圧検知手段11a~11e及び電流検知手段12によって、二次電池ユニット10に印加される電圧及び二次電池ユニット10を通過する電流を監視する。
 ここで、設定容量は、初期設定された満充電容量又は前回の満充電容量補正モードで設定された満充電容量の10%以上50%以下であることが好ましく、20%以上40%以下であることがより好ましい。すなわち、充電している電気量の比率である充電率(以下、SOCともいう)が10%以上50%以下で設定されていることが好ましく、20%以上40%以下であることがより好ましい。
 そして、初回起動時又は前回の満充電容量補正モードを行ってから、所定の期間T1を経過しており(STEP2でYes)、あらかじめ設定された設定容量になるまでに充電電流が検知されず(STEP3でNo)、設定容量まで放電されたことを検知すると(STEP4でYes,放電終止検知工程)、満充電容量補正モードに移行し、充電電流及び放電電流を実質的に0Aに制限する(STEP5)。すなわち、蓄電装置8の外部からの電流収支を実質的に0Aとし、疑似的な開回路状態を形成する。
 満充電容量補正モードに移行すると、図4のフローチャートのように、満充電容量補正モードの解除要求がないか確認しつつ(STEP6)、満充電容量補正モードの解除要求がない状態で、所定時間T2が経過するまで待機する(STEP7)。すなわち、二次電池ユニット10の充放電動作を行わずに、電流収支を実質的に0Aにして、設定容量を維持した状態で所定時間T2が経過するまで待機する。このため、この期間、電源システムは通常動作を行えないことになる。
 所定時間T2は、OCVが十分に安定するまでの時間であり、使用する電池によって異なるが、例えば、100分~200分程度の時間が想定される。
 なお、本実施形態の蓄電装置8では、電池容量が設定容量に到達してから、表示装置に二次電池ユニット10の電流及び電圧の状態を更新しない時間T3を設けている。すなわち、表示装置では、時間T3の間、直前の電流及び電圧の状態が表示されたままとなっており、実際の電流及び電圧の状態は表示されない。時間T3は、例えば、10秒~20秒程度の時間が設定される。
 満充電容量補正モードの解除要求がなく、設定容量を維持した状態で所定時間T2を経過すると(STEP7でYes)、二次電池ユニット10の電圧(第1電圧)と、各二次電池群20a~20eの個々の電圧(第1電圧)を検知して取得し(電池電圧検知工程)、後述する残容量算出動作を行う(STEP8)。残容量算出動作に続けて、後述する消費容量算出動作を行い(STEP9)、これらの動作に基づいて、満充電容量に関する情報を更新するFCCアップデート動作を行う(STEP10)。そして、FCCアップデート動作が終了すると、通常運転モードに移行する(STEP11)。
 STEP2において、前回の満充電となってから所定の期間T1を経過していない場合は(STEP2でNo)、満充電容量補正モードに移行する必要がないと判断し、通常運転モードのまま運転する。
 STEP3において、充電電流を検知すると(STEP3でYes)、満充電容量補正モードに移行せずに充電を行い、通常運転モードのまま運転する。
 STEP6において、満充電容量補正モードの解除要求があると(STEP6でNo)、満充電容量補正モードを終了し(STEP12)、通常運転モードに移行する(STEP11)。
 次に、残容量算出動作について説明する。
 まず、図6に示すように、満充電容量から設定容量まで放電を実施した後、設定容量を維持した状態で所定時間T2を経過した時刻t3における二次電池ユニット10全体の開回路電圧Vを取得し、開回路電圧Vから、各二次電池群20a~20eの開回路電圧の平均電圧(第1電圧)Vを算出する。
 次に、図5に示すように、あらかじめ設定された二次電池ユニット10を構成する二次電池の開回路電圧(OCV)と電池容量(充電率(SOC))の相関関係を用いて、平均電圧(第1電圧)Vに対応する充電率SOCを求める。なお、図5に示した開回路電圧と電池容量の相関関係(OCV-SOC曲線)は、二次電池に対してあらかじめ求めたデータを、制御部15の記憶部に記憶させておくことができる。
 従って、満充電容量から設定容量まで放電したときに、各二次電池群20a~20eに残っている電池容量(残容量)RCは、初期設定又は前回の満充電容量補正モードで再設定された満充電容量FCC1を用いて、以下の式(1)で算出することができる。
Figure JPOXMLDOC01-appb-M000001
 
 なお、図5に示した開回路電圧(OCV)と電池容量(充電率(SOC))の相関関係が、離散的な数値からなる表で設定されている場合は、補間法を用いて、平均電圧(第1電圧)Vに対応する充電率SOCを求めることができる。
 次に、消費容量算出動作について説明する。
 図6に示すように、満充電状態となって放電を開始する時刻t1から、設定容量になった時刻t2までに、各二次電池群20a~20eが消費した消費容量(DCR)は、以下の式(2)を用いて、時刻t1から時刻t2までの電流量を積算することによって算出することができる。
Figure JPOXMLDOC01-appb-M000002
 
 続いて、FCCアップデート動作について説明する。
 FCCアップデート動作では、以下の式(3)に示すように、上記した残容量算出動作によって算出した残容量RCと、消費容量算出動作によって算出した消費容量DCR和算して、実際の満充電容量FCC2を算出し、これをFCCとて再設定する。
Figure JPOXMLDOC01-appb-M000003
 
 続いて、電源システム1の各構成における電気接続関係について説明する。
 発電装置2は、電力変換装置7を介して蓄電装置8と接続されている。そのため、蓄電装置8は、発電装置2で発電した直流電力を直接充電することができる。
 発電装置2は、電力変換装置7及び電源制御装置3を経由して外部負荷100と電気的に接続されている。そのため、発電装置2で発電した直流電力を電力変換装置7で交流電力に変換して外部負荷100に給電することができる。
 蓄電装置8は、電力変換装置7及び電源制御装置3を経由して外部負荷100と電気的に接続されている。そのため、蓄電装置8で蓄電した直流電力を電力変換装置7で交流電力に変換して外部負荷100に給電することができる。
 蓄電装置8は、電力変換装置7及び電源制御装置3を経由して系統電源101と電気的に接続されている。そのため、系統電源101から供給される交流電力を電力変換装置7で直流電力に変換して蓄電装置8に蓄電することができる。言い換えると、蓄電装置8は、系統電源101から供給される交流電力を直流電力として充電可能となっている。
 本実施形態の蓄電装置8によれば、満充電容量から設定容量まで放電のみを実施したことを条件として、満充電容量補正モードを実施し、設定容量における各二次電池群20a~20eの電圧(第1電圧)と、あらかじめ設定された電圧(OCV)と電池容量(SOC)の相関関係とに基づいて、現在の残容量RCを算出し、満充電状態となってから設定容量までの放電時における電流値の積算によって消費容量DCRを算出し、残容量RCと消費容量DCRの和を実際の満充電容量として再設定する。すなわち、独立した異なる基準によって、消費容量DCRと残容量RCをそれぞれ算出して、実際の満充電容量を設定するため、二次電池ユニット10の劣化による二次電池ユニット10の容量低下に応じた実際の満充電容量を設定することができる。また、実際に則して設定された満充電容量に伴った制御を行うことができるので、各二次電池群20a~20eの過放電や過充電を防止することができる。それ故に、蓄電装置8は、多数の二次電池を実装でき、大容量の二次電池ユニット10を内蔵することができる。
 ところで、上記の残容量算出動作において、設定容量における第1電圧Vと、あらかじめ設定された電圧(OCV)と電池容量(SOC)の相関関係とに基づいて、実際の残容量RCを算出したが、環境温度が変われば、OCVとSOCとの相関関係が変わる場合がある。そのため、第1電圧Vを取得するタイミングによって、第1電圧Vの値が同じであっても、第1電圧Vに対応したSOCの値が変わる場合がある。
 図7は、環境温度が異なる場合のOCVとSOCとの相関関係(OCV-SOC曲線)を示したグラフで、矢印Aで示した曲線の方が、矢印Bで示した曲線よりも、環境温度が高い場合を示す。
 図7に示すように、第1電圧Vの値が同じであって、環境温度が異なる曲線Aと曲線Bからそれぞれ求めたSOCとSOC'とは違った値となる。この差(ΔSOC=|SOC'-SOC|)は、電池の種類や、環境温度によって異なるが、例えば、同じ値の第1電圧Vに対して、環境温度が25℃と、-20℃で求めたOCV-SOC曲線から、それぞれSOCを求めた場合、ΔSOCは、典型的には、3~5%程度の大きさになることがある。そのため、環境温度が異なると、満充電容量補正モードで求めた実際の満充電容量の精度が低下するおそれがある。
 そこで、OCVとSOCとの相関関係を、異なる環境温度における複数の相関関係としてあらかじめ設定しておき、残容量算出動作において、複数の相関関係のうち、実際の環境温度に近い相関関係を用いて、残容量の算出を行うことが好ましい。これにより、より精度の高い満充電容量を再設定することができる。
 ここで、設定する環境温度の範囲は、使用する二次電池ユニットの環境や、二次電池の仕様によって適宜決めればよいが、例えば、-20℃~50℃の範囲で、数段階に区分して設定すればよい。
 また、図1に示した蓄電装置8において、実際の環境温度を検知する検知手段(不図示)を備えておくことが好ましい。これにより、残容量算出動作を、複数の相関関係のうち、検知手段で検知された実際の環境温度に近い相関関係を用いて実行することができる。
 上記した実施形態では、満充電容量補正モードを行うにあたって、必ず満充電容量やOCV、SOC等を更新する場合について説明したが、本発明はこれに限定されるものではない。
 例えば、満充電容量補正モードにおいて、過去のOCVに比べてOCVにほとんど変化がない場合や、過去のOCVに比べてOCVが増加している場合には、満充電容量やOCV、SOC等を更新しなくてもよい。
 上記した実施形態の応用として、満充電容量補正モードに基づいて算出したFCCに基づいて、劣化状態(SOH)を算出してもよい。SOHは、FCCを設計容量(DC)で除算することによって算出することができる。
 上記した実施形態では、電池容量が設定容量に到達してから、表示装置に二次電池ユニット10の電流及び電圧の状態を更新しない時間T3を設けていたが、本発明はこれに限定されるものではない。
 常に現状の二次電池ユニット10の電流及び電圧の状態を表示装置に表示してもよいし、表示しなくてもよい。
 上記した実施形態では、満充電容量補正モードにおいて、プログラムによって、二次電池ユニット10への充電電流及び放電電流を実質的に0Aに制限していたが、本発明はこれに限定されるものではない。切替部16によって二次電池ユニット10を電力変換装置7から電気的に切り離し、開回路を形成し、充電電流及び放電電流を0Aに制限してもよい。
 上記した実施形態では、二次電池ユニット10全体の開回路電圧Vから、各二次電池群20a~20eの開回路電圧の平均電圧Vを算出して、これを第1電圧として、残容量RCを算出したが、各二次電池群20a~20eの電圧をそれぞれ測定し、その中で最小の電圧Vminを第1電圧として、残容量RCを算出してもよい。
 これにより、電池容量の低下が最も大きい二次電池群を基準に再設定された満充電容量を用いて、二次電池ユニット10の充放電が制御されるため、容量の小さい電池における過放電や過充電の発生をより効果的に防止することができる。
 上記した実施形態では、電圧検知手段11a~11eによって二次電池群20a~20eの電圧を直接検知していたが、本発明はこれに限定されるものではない。電圧検知手段11a~11eによって二次電池群20a~20eの電圧に関する情報を検知し、電圧を間接的に検知してもよい。
 ここでいう「電圧に関する情報」とは、電圧と1対1で対応する情報をいう。
 上記した実施形態では、二次電池ユニット10は、5つの二次電池群20a~20eを備えていたが、本発明はこれに限定されるものではない。二次電池ユニット10中の二次電池群20の数は特に限定されない。
 上記した実施形態では、二次電池群20は、複数の二次電池によって構成されていたが、本発明はこれに限定されるものではない。二次電池群20は、単体の二次電池であってもよい。
 上記した実施形態では、満充電容量から設定容量に至るまで外部負荷100からの電力要求に基づいて放電を行っており、放電環境の成り行きに任せていたが、本発明はこれに限定されるものではない。例えば、電力会社等への電力供給に合わせて満充電容量から設定容量に至るまで強制的に放電してもよい。
 上記した実施形態では、満充電容量から設定容量まで単調放電によって電池容量を消費させたが、本発明はこれに限定されるものではない。
 満充電容量から設定容量までの間に充電を行ってもよい。この場合、消費容量算出動作において、放電時の電流量を正とし、充電時の電流量を負として、満充電状態となってから放電を開始する時刻t1から設定容量になった時刻t2までの電流量を積算することなる。
 上記した実施形態では、満充電状態を検知するにあたって、二次電池ユニット10全体の電圧及び二次電池群20a~20eの個々の電圧を用いたが、本発明はこれに限定されるものではない。
 二次電池ユニット10全体の電圧のみで満充電状態を検知してもよいし、二次電池群20a~20eの個々の電圧のみで満充電状態を検知してもよい。また、他の公知の満充電状態の検知方法で満充電状態を検知してもよい。
 本実施形態において、満充電容量補正モードを、満充電容量から設定容量まで、放電のみを実施した場合に実行することが好ましい。これにより、充電による容量変化への影響を除外した状態で実際の満充電容量を設定できるため、より正確に設定することができる。
 また、電池部における電流収支を実質的に0にして設定容量を維持した状態で、設定容量に至ってから所定時間を経過した後の電池部の電圧を第1電圧として取得することが好ましい。これにより、安定した状態の設定容量における疑似的な開回路電圧(以下、OCVともいう)を取得することができるので、測定値がぶれにくく、正しい充電容量を算出することができる。
 ここでいう「電池部における電流収支を実質的に0にする」とは、電池部への充電電流及び電池部からの放電電流を無視できる程度に制限することをいい、具体的には、電池部への充電電流及び電池部からの放電電流を0.01C以下に制限することをいう。
 ここでいう「1C」とは、1時間の定電流放電によって放電終了となる電流値をいう。すなわち、「0.01C」とは、100時間の定電流放電によって放電終了となる電流値である。
 また、満充電容量補正モードを繰り返し実行してもよい。これにより、満充電容量補正モードを行う間隔が所定の期間を空けた状態であって、放電のみを実施した場合に、満充電容量補正モードを実行するので、満充電容量補正モードが通常の運転動作の妨げになりにくい。
 また、本実施形態における電力変換装置7は、系統電源101に対して電気的に接続可能であって、系統電源101から供給される交流電力を直流電力に変換して蓄電装置8に充電できる。これにより、系統電源101から供給される交流電力を直流電力に変換して蓄電装置8に充電できるので、例えば、電気料金の安い時間帯で充電を行い、電気料金が高い時間帯において蓄電装置8で蓄電した電気を使用することができる。そのため、使用者が支払う電気料金等を低減させることができる。
 また、本実施形態において、蓄電装置8の電力に関する情報を取得して表示可能な表示装置を備えているため、使用者は、蓄電装置8の電力に関する情報を視認でき、蓄電装置8の現在の状況を把握することができる。
 ところで、理論上、電池部における電流収支を実質的に0にした状態で設定容量を維持した場合、電流収支がないので一定の電圧を示すはずである。しかしながら、実際には設定容量まで放電のみを実施した直後は、電圧値が上昇する。そのため、電圧に関する情報は、電圧の変動に伴って変化するので、使用者が電圧に関する情報の表示を見たときに、故障等が生じたと感じる可能性がある。そこで、表示装置は、満充電容量補正モードにおいて、電池部が設定容量に至ってから所定の期間には、蓄電装置の電力に関する情報を更新しないことが好ましい。これにより、使用者が表示装置を見たときに、故障等が生じたと感じることを防止することができる。
  1  電源システム
  2  発電装置
  3  電源制御装置
  5  蓄電システム
  7  電力変換装置
  8  蓄電装置
  10  二次電津ユニット(電池部)
  11a~11e  電圧検知手段(電圧情報検知手段)
  12  電流検知手段
  15  制御部
  16  切替部
  20a~20e  二次電池群

Claims (11)

  1.  電池部と、前記電池部の充放電を制御する制御部を備えた蓄電装置であって、
     前記制御部は、前記電池部が満充電容量から、あらかじめ設定された設定容量まで放電可能であって、満充電容量補正モードを実行可能であり、
     前記満充電容量補正モードは、
      前記電池部が、前記満充電容量から前記設定容量まで放電を実施した場合に、前記設定容量における前記電池部の第1電圧を取得して、該第1電圧と、あらかじめ設定された前記電池部の電圧と電池容量の相関関係とに基づいて、前記電池部の実際の残容量を算出する残容量算出動作と、
      前記満充電容量から前記設定容量までの放電時における電流値を積算して、前記満充電容量から前記設定容量までに消費した消費容量を算出する消費容量算出動作と
    を実行し、
     前記満充電容量補正モードにおいて、前記実際の残容量と前記消費容量の和が満充電容量として再設定され、
     前記電池部の電圧と電池容量の相関関係は、異なる環境温度における複数の相関関係としてあらかじめ設定されており、
     前記残容量算出動作は、前記複数の相関関係のうち、実際の環境温度に近い相関関係を用いて実行されることを特徴とする蓄電装置。
  2.  前記実際の環境温度を検知する検知手段をさらに備え、
     前記残容量算出動作は、前記複数の相関関係のうち、前記検知手段で検知された実際の環境温度に近い相関関係を用いて実行されることを特徴とする請求項1に記載の蓄電装置。
  3.  前記満充電容量補正モードは、前記電池部が、前記満充電容量から前記設定容量まで放電のみを実施した場合に実行することを特徴とする請求項1または2に記載の蓄電装置。
  4.  前記残容量算出動作において、前記電池部における電流収支を実質的に0にして前記設定容量を維持した状態で、前記設定容量に至ってから所定時間を経過した後の前記電池部の電圧を前記第1電圧として取得することを特徴とする請求項1から3の何れか1項に記載の蓄電装置。
  5.  前記所定時間は、異なる環境温度における複数の所定時間としてあらかじめ設定されており、
     前記第1電圧の取得は、前記複数の所定時間のうち、実際の環境温度に近い所定時間を用いて実行されることを特徴とする請求項4に記載の蓄電装置。
  6.  前記電池部は、複数の二次電池群が直列接続されたものであり、
     前記制御部は、前記電池部における電流収支を実質的に0にして前記設定容量の状態を維持した状態で、前記設定容量に至ってから所定時間を経過した後の前記二次電池群の最小電圧を取得可能であり、
     前記残容量算出動作は、前記第1電圧と前記最小電圧に基づいて前記実際の残容量を算出することを特徴とする請求項4に記載の蓄電装置。
  7.  前記制御部は、前記満充電容量補正モードを繰り返し実行することを特徴とする請求項1から6のいずれか1項に記載の蓄電装置。
  8.  請求項1から7のいずれか1項に記載の蓄電装置と、交流電力と直流電力を変換する電力変換装置を有し、発電装置に対して電気的に接続可能な蓄電システムであって、
     前記発電装置で発電した電力を蓄電装置で充電することを特徴とする蓄電システム。
  9.  前記電力変換装置は、系統電源に対して電気的に接続可能であって、前記系統電源から供給される交流電力を直流電力に変換して前記蓄電装置に充電できることを特徴とする請求項8に記載の蓄電システム。
  10.  請求項1から7のいずれか1項に記載の蓄電装置と、蓄電装置の電力に関する情報を取得して表示可能な表示装置を有し、
     前記蓄電装置は、前記電池部における電流収支を実質的に0にして前記設定容量を維持した状態において、前記設定容量に至ってから所定時間を経過した後の前記電池部の電圧を前記第1電圧として取得するものであり、
     前記表示装置は、前記満充電容量補正モードにおいて、前記電池部が前記設定容量に至ってから所定の期間は、前記蓄電装置の電力に関する情報を更新しないことを特徴とする電源システム。
  11.  電池部が内蔵された蓄電装置の制御方法であって、
     前記電池部が、満充電容量から、あらかじめ設定された設定容量まで放電したときの前記電池部の第1電圧を測定して、該第1電圧と、あらかじめ設定された前記電池部の電圧と電池容量の相関関係とに基づいて、前記電池部の実際の残容量を算出する残容量算出工程と、
     前記満充電容量から前記設定容量までの放電時における電流値を演算して、前記満充電容量から前記設定容量までに消費した消費容量を算出する消費容量算出工程と、
     前記実際の残容量と前記消費容量の和を満充電容量として再設定する満充電容量設定工程と
    を有し、
     前記電池部の電圧と電池容量の相関関係は、環境温度の異なる複数の相関関係としてあらかじめ設定されており、
     前記残容量算出工程において、前記複数の相関関係のうち、実際の環境温度に近い相関関係に基づいて、前記電池部の前記実際の残容量が算出されることを特徴とする蓄電装置の制御方法。
     
PCT/JP2018/033791 2018-01-05 2018-09-12 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法 WO2019135300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18898459.5A EP3734789A4 (en) 2018-01-05 2018-09-12 ENERGY STORAGE DEVICE, ENERGY STORAGE SYSTEM, ENERGY SUPPLY SYSTEM AND CONTROL METHOD FOR AN ENERGY STORAGE DEVICE
CN201880085271.8A CN111557067A (zh) 2018-01-05 2018-09-12 蓄电装置、蓄电系统、电源系统及蓄电装置的控制方法
JP2019563924A JP6991247B2 (ja) 2018-01-05 2018-09-12 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
US16/921,482 US11588343B2 (en) 2018-01-05 2020-07-06 Power storage device, power storage system, power supply system, and control method for power storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018000450 2018-01-05
JP2018-000450 2018-01-05
JP2018031168 2018-02-23
JP2018-031168 2018-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/921,482 Continuation US11588343B2 (en) 2018-01-05 2020-07-06 Power storage device, power storage system, power supply system, and control method for power storage device

Publications (1)

Publication Number Publication Date
WO2019135300A1 true WO2019135300A1 (ja) 2019-07-11

Family

ID=67143642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033791 WO2019135300A1 (ja) 2018-01-05 2018-09-12 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法

Country Status (5)

Country Link
US (1) US11588343B2 (ja)
EP (1) EP3734789A4 (ja)
JP (1) JP6991247B2 (ja)
CN (1) CN111557067A (ja)
WO (1) WO2019135300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540313A (zh) * 2019-09-20 2021-03-23 比亚迪股份有限公司 修正电池可用容量的方法及车辆、介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458526B1 (ko) * 2018-02-07 2022-10-25 주식회사 엘지에너지솔루션 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법
JP7189182B2 (ja) * 2020-09-07 2022-12-13 矢崎総業株式会社 充電制御装置、バッテリシステム、及び充電制御方法
US11688889B2 (en) * 2021-11-10 2023-06-27 Beta Air, Llc Monitoring system and method for charging multiple battery packs in an electric aircraft
CN114137422B (zh) * 2021-11-23 2024-04-02 雅迪科技集团有限公司 一种电动车剩余电量的确定方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165629A1 (ja) * 2011-06-03 2012-12-06 三洋電機株式会社 組電池の制御システム及びそれを備える電力供給システム
JP2014119394A (ja) * 2012-12-18 2014-06-30 Sharp Corp 電池劣化判定方法
JP2015045561A (ja) * 2013-08-28 2015-03-12 トヨタ自動車株式会社 電力装置
JP2015059816A (ja) * 2013-09-18 2015-03-30 カヤバ工業株式会社 電池容量推定装置及び電池容量推定方法
JP2016025760A (ja) 2014-07-22 2016-02-08 大和ハウス工業株式会社 電力供給システム
JP2017125699A (ja) * 2016-01-12 2017-07-20 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
WO2018008469A1 (ja) * 2016-07-08 2018-01-11 株式会社カネカ 蓄電装置、蓄電システム、並びに、電源システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100824905B1 (ko) * 2006-08-24 2008-04-23 삼성에스디아이 주식회사 하이브리드 배터리 및 그것의 완전 충전 용량 계산 방법
JP2009031220A (ja) * 2007-07-30 2009-02-12 Mitsumi Electric Co Ltd 電池状態検知方法及び電池状態検知装置
JP4640391B2 (ja) * 2007-08-10 2011-03-02 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP5375110B2 (ja) * 2009-01-14 2013-12-25 ミツミ電機株式会社 電池パック、半導体集積回路、残容量補正方法、残容量補正プログラム
JP4852672B2 (ja) * 2010-03-05 2012-01-11 パナソニック株式会社 満充電容量値補正回路、電池パック、及び充電システム
JP5282789B2 (ja) * 2011-01-11 2013-09-04 株式会社デンソー リチウムイオン二次電池の電池容量検出装置
JP2013156202A (ja) * 2012-01-31 2013-08-15 Sanyo Electric Co Ltd 二次電池の残容量算出方法及びパック電池
JP6769046B2 (ja) * 2016-03-01 2020-10-14 株式会社Gsユアサ 蓄電素子の監視装置、蓄電素子モジュール、socの推定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165629A1 (ja) * 2011-06-03 2012-12-06 三洋電機株式会社 組電池の制御システム及びそれを備える電力供給システム
JP2014119394A (ja) * 2012-12-18 2014-06-30 Sharp Corp 電池劣化判定方法
JP2015045561A (ja) * 2013-08-28 2015-03-12 トヨタ自動車株式会社 電力装置
JP2015059816A (ja) * 2013-09-18 2015-03-30 カヤバ工業株式会社 電池容量推定装置及び電池容量推定方法
JP2016025760A (ja) 2014-07-22 2016-02-08 大和ハウス工業株式会社 電力供給システム
JP2017125699A (ja) * 2016-01-12 2017-07-20 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
WO2018008469A1 (ja) * 2016-07-08 2018-01-11 株式会社カネカ 蓄電装置、蓄電システム、並びに、電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734789A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540313A (zh) * 2019-09-20 2021-03-23 比亚迪股份有限公司 修正电池可用容量的方法及车辆、介质
CN112540313B (zh) * 2019-09-20 2022-05-13 比亚迪股份有限公司 修正电池可用容量的方法及车辆、介质

Also Published As

Publication number Publication date
EP3734789A1 (en) 2020-11-04
CN111557067A (zh) 2020-08-18
JPWO2019135300A1 (ja) 2020-12-03
JP6991247B2 (ja) 2022-01-12
US11588343B2 (en) 2023-02-21
US20200335998A1 (en) 2020-10-22
EP3734789A4 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2019135300A1 (ja) 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
CN109477871B (zh) 蓄电装置、蓄电系统以及电源系统
TWI394971B (zh) 電池特性追蹤方法及電路
JP4997358B2 (ja) 満充電容量補正回路、充電システム、電池パック、及び満充電容量補正方法
JP6225905B2 (ja) 制御方法およびそれを利用した制御装置
KR20150029204A (ko) 배터리 팩, 배터리 팩을 포함하는 장치, 및 배터리 팩의 관리 방법
KR20080105141A (ko) 배터리 충전 표시 방법, 배터리 충전 모니터링 장치, 충전가능 배터리, 및 제조 품목
JP5619744B2 (ja) 蓄電デバイスの状態検知方法及びその装置
JP2019105565A (ja) 蓄電池の経済性推定装置および経済性推定方法
JPWO2016051722A1 (ja) 蓄電装置、制御装置、蓄電システム、蓄電装置の制御方法および制御プログラム
CA2899239A1 (en) Method for determining a state of charge and remaining operation life of a battery
JP2009050085A (ja) 二次電池パック
JP2012253975A (ja) アルカリ蓄電池の充放電制御方法および充放電システム
WO2015056634A1 (ja) 蓄電システム
US10283987B1 (en) Dynamic adjustment of capacity threshold for a battery unit
US20110204852A1 (en) Power storage system
JP2013042598A (ja) 充放電制御装置
CN104166097A (zh) 电池的电量量测方法
JP2020008520A (ja) 蓄電システムの寿命判定方法、及び蓄電システム
KR101324516B1 (ko) 전기 제품과 접속되는 전원 공급 제어장치 및 이의 배터리 충전 방법
JP2008097941A (ja) 充電管理システム及び充電管理方法
JP4660367B2 (ja) 二次電池の残存容量検出方法
US20230141602A1 (en) Battery bank unit, remaining charge time calculation method, and remaining charge time calculation program
US11467215B1 (en) Battery storage charge and discharge monitor with improved battery capacity calculation, improved charge and discharge monitoring, discharge what if calculations, and multiple re-charge goals
JP4664319B2 (ja) 充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898459

Country of ref document: EP

Effective date: 20200728