WO2012165629A1 - 組電池の制御システム及びそれを備える電力供給システム - Google Patents

組電池の制御システム及びそれを備える電力供給システム Download PDF

Info

Publication number
WO2012165629A1
WO2012165629A1 PCT/JP2012/064317 JP2012064317W WO2012165629A1 WO 2012165629 A1 WO2012165629 A1 WO 2012165629A1 JP 2012064317 W JP2012064317 W JP 2012064317W WO 2012165629 A1 WO2012165629 A1 WO 2012165629A1
Authority
WO
WIPO (PCT)
Prior art keywords
bmu
battery
assembled battery
certain
assembled
Prior art date
Application number
PCT/JP2012/064317
Other languages
English (en)
French (fr)
Inventor
孝義 阿部
岩▲崎▼ 利哉
山口 昌男
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP12792646.7A priority Critical patent/EP2717422A4/en
Priority to JP2013518194A priority patent/JP5967378B2/ja
Publication of WO2012165629A1 publication Critical patent/WO2012165629A1/ja
Priority to US14/036,051 priority patent/US9093864B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to an assembled battery control system for controlling an assembled battery configured by connecting a plurality of chargeable / dischargeable battery packs in series, and a power supply system including the same.
  • Such a power supply system can discharge the storage battery (supply power) at an arbitrary timing by charging the storage battery in advance (consuming power). That is, by controlling the charging and discharging timing of the storage battery, it is possible to control the timing of consuming grid power (power supplied from the power company).
  • the grid electricity charge includes a fixed basic charge and a pay-per-use charge.
  • the electric power company sets the basic charge so that the basic charge becomes cheaper as the maximum value of the amount of grid power consumed per unit time becomes smaller.
  • the usage fee is set so that the price per unit power of the usage fee is lower at night when the power consumption is lower than during the day when the power consumption is high. Therefore, the user who uses the system power can reduce the power charge of the system power as the consumption of the system power is leveled.
  • a user who uses the grid power to charge the storage battery using grid power during a time zone when the power demand of the grid power user is small or a nighttime electricity rate is applied
  • the power charge of the grid power can be suppressed by supplementing the power (the hatched portion shown in FIG. 1) that exceeds the predetermined threshold with the discharge of the storage battery. it can.
  • the charge / discharge voltage can be increased by using an assembled battery configured by connecting a plurality of chargeable / dischargeable battery packs in series, and charging the entire system by connecting a plurality of the assembled batteries in parallel.
  • the discharge current can be increased.
  • the storage battery degrades as it is used or stored, and the full charge capacity (FCC) gradually decreases.
  • the full charge capacity is used, for example, when obtaining the SOC (State Of Charge), which is a parameter representing the ratio of the dischargeable capacity (remaining capacity) to the full charge capacity as a percentage. It is important to understand.
  • SOC State Of Charge
  • the process for updating the full charge capacity is called capacity learning. For example, there is a method of calculating the full charge capacity by integrating the discharge capacity until the fully charged battery is completely discharged, and updating the full charge capacity.
  • the assembled battery is configured by connecting a plurality of battery packs in series, if one battery pack in the assembled battery is fully charged when an attempt is made to fully charge the assembled battery, In order to avoid overcharging, charging of other battery packs in the assembled battery cannot be continued.
  • the other battery packs in the assembled battery continue to be discharged in order to avoid overdischarge of the fully discharged battery pack. You can't. Therefore, if there is a large difference in the amount of charge between one battery pack in the assembled battery that has been fully charged and another battery pack in the assembled battery that has not reached full charge, the above-described combination is performed by performing capacity learning.
  • the full charge capacity of each battery pack constituting the battery is updated to be smaller than the stored power amount difference.
  • Patent Documents 1 to 3 disclose techniques for adjusting the voltage balance between the battery packs of the assembled battery. However, the balance adjustment is performed regardless of the capacity learning of the assembled battery. It was impossible to determine the state of each battery pack of the assembled battery during the capacity learning.
  • the present invention provides a battery pack control system capable of improving the capacity learning accuracy of a battery pack configured by connecting a plurality of chargeable / dischargeable battery packs in series, and a power supply system including the battery pack control system.
  • the purpose is to provide.
  • a control system for an assembled battery includes an assembled battery configured by connecting a plurality of chargeable / dischargeable battery packs in series, and a control unit that controls the assembled battery.
  • the battery pack has a discharge unit, and the control unit checks the open voltage of each of the battery packs in the assembled battery after fully charging the assembled battery, The target voltage is determined based on the confirmation result of the open voltage of each of the battery packs in the assembled battery, and the open voltage is the target for the battery pack in which the open voltage in the assembled battery is larger than the target voltage.
  • Each of the battery packs in the assembled battery is discharged by the discharging unit until the voltage is reached, the assembled battery is fully charged again, and then the assembled battery is discharged to a first predetermined level. And configured to execute the capacity learning.
  • at least a part of the control unit may be incorporated in the assembled battery.
  • a power supply system includes an assembled battery control system configured as described above, includes a plurality of assembled batteries included in the assembled battery control system, and the plurality of assembled batteries are arranged in parallel. It is assumed that it is connected. A plurality of the assembled batteries may share a part of a control unit included in the assembled battery control system.
  • the discharge unit for the battery pack in which the open circuit voltage in the battery pack is larger than the target voltage until the open circuit voltage reaches the target voltage.
  • the capacity learning can be performed in a state in which the variation in the amount of electricity stored in the battery pack is reduced by performing the process of causing the battery to discharge, so that the assembled battery configured by connecting a plurality of chargeable / dischargeable battery packs in series The accuracy of capacity learning can be improved.
  • FIG. 2 It is a figure which shows the typical example of the electric power demand of the user who utilizes grid power. It is a figure showing a schematic structure of an electric power supply system concerning one embodiment of the present invention. It is a figure which shows the structural example of the battery pack in an assembled battery. It is a figure which shows the structural example of BMU. It is a figure which shows one Example of communication using the optical line of BMU and an assembled battery. It is a figure which shows an example of the address allocation process in one Example of communication using the optical line of BMU and an assembled battery. It is a flowchart of the capacity learning process for every assembled battery which the electric power supply system which concerns on one Embodiment of this invention shown in FIG. 2 performs.
  • FIG. 2 is a block diagram showing a schematic configuration of a power supply system according to an embodiment of the present invention.
  • a thick line connecting the blocks indicates a power line
  • a thin line connecting the blocks indicates a communication line.
  • each communication line is realized by wired communication from the viewpoint of emphasizing reliability, but can also be realized by wireless communication.
  • the communication may be performed by, for example, TCP (Transmission Control Protocol) / IP (Internet Protocol) or UDP (User Datagram Protocol) / IP (Internet Protocol).
  • a power supply system includes a master controller 1, a PCS (Power Conditioning System) 2, a PCS management control unit 3, a BSU (Battery Switching Unit) 4, and a BMU (Battery). Management Unit) 5, master BMU 6, and assembled battery 7.
  • a plurality of sequences each including the PCS 2, the PCS management control unit 3, the BSU 4, the BMU 5, and the assembled battery 7 are provided. Each series is connected to the master controller 1 so that 7 are connected in parallel.
  • the master controller 1 is connected to an external load 100 and a power system 200.
  • the load 100 is a load having an AC power input terminal
  • the power system 200 is a power system that supplies AC power.
  • the master controller 1 comprehensively monitors and controls the PCS management control units 3 of each series. That is, the master controller 1 determines the charge / discharge amount for each series at normal times, and transmits a charge / discharge control command according to the determination to the PCS management control unit 3 of each series.
  • a PCS 2 stop command, a PCS 2 standby command, or a breaker command (not shown) installed on the PCS 2 side is transmitted to the management control unit 3.
  • the PCS 2 is a bidirectional AC / DC power converter, which converts AC power supplied from the power system 200 via the master controller 1 to DC power during charging, and the same from the assembled batteries 7 belonging to the same series during discharging. DC power supplied via the BSU 4 belonging to the series is converted into AC power.
  • the master controller 1 is connected to an external DC load (a load having a DC power input terminal) and a DC power source (for example, a solar cell)
  • the PCS 2 is connected to a bidirectional DC / DC power. What is necessary is just to change to a converter.
  • the PCS management control unit 3 controls the operation of the PCS 2 belonging to the same series based on the charge / discharge control command sent from the master controller 1 and monitors the state of the PCS 2 belonging to the same series. Further, the PCS management control unit 3 stops the PCS2 belonging to the same series, waits for the PCS2 belonging to the same series, or shuts off a breaker (not shown) installed on the PCS2 side belonging to the same series when an abnormality occurs.
  • the PCS management control unit 3 detects an abnormality of the BMU 5 by periodically communicating with the BMU 5. Even when an abnormality of the BMU 5 is detected, it is included at the time of the abnormality. Therefore, the PCS management control unit 3 is installed on the side of the PCS 2 belonging to the same series, stopping the PCS 2 belonging to the same series, waiting for the PCS 2 belonging to the same series. Shut off the breaker (not shown).
  • the BSU 4 is a switch for turning on / off the electrical connection between the PCS 2 belonging to the same series and the assembled battery 7 belonging to the same series, and is controlled by the BMU 5 belonging to the same series.
  • the BSU 4 has a configuration in which a power FET (Field Effect Transistor), a contactor, and a breaker are connected in series.
  • the BMU 5 controls the BSU 4 belonging to the same series, and monitors the state of the BSU 4 belonging to the same series and the state of the assembled battery 7 belonging to the same series.
  • the BMU 5 transmits log information regarding the state of the assembled battery 7 belonging to the same series, the state of the BSU 4 belonging to the same series, the state of itself (BMU 5), the state of the PCS 2 belonging to the same series, and the like to the master BMU 6. Since the BMU 5 cannot directly acquire the state of the PCS 2 belonging to the same series, the BMU 5 acquires the state of the PCS 2 belonging to the same series through periodic communication with the PCS management control unit 3 described above.
  • the BMU 5 transmits a command to turn off the power FET, the contactor, and the breaker in the BSU 4 to the BSU 4 belonging to the same series when the abnormality is detected by the state monitoring.
  • the BMU 5 detects an abnormality in the PCS management control unit 3 by periodically communicating with the PCS management control unit 3. Even when an abnormality of the PCS management control unit 3 is detected, it is included in the case of the abnormality. Therefore, the BMU 5 transmits a command to turn off the power FET, the contactor, and the breaker in the BSU 4 to the BSU 4 belonging to the same series.
  • the master BMU 6 monitors and controls the assembled battery 7, BSU 4, and BMU 5 of each series in an integrated manner. That is, the master BMU 6 collects and stores log information regarding the state of the assembled battery 7, the state of the BSU 4, the state of the BMU 5, the state of the PCS 2, etc. sent from the BMU 5 of each series, and arbitrarily stores them as necessary. A command to turn off the power FET, the contactor, and the breaker in the BSU 4 belonging to the same series as the arbitrary BMU 5 is transmitted to the BMU 5.
  • the master BMU 6 determines that there are more than a predetermined number of series in which an abnormality has occurred based on the above log information, the master BMU 6 is directed to each BMU 5 in the series in which no abnormality has occurred for safety. It is conceivable to send a command to turn off the power FET, contactor, and breaker in the BSU 4 belonging to the same series as each BMU 5.
  • the master BMU 6 sets the charge / discharge amount assignment related information so that the master controller 1 can assign the charge / discharge amount for each series in consideration of the deterioration state (state of health: SOH) of each assembled battery 7. It transmits to BMU5 of a series.
  • the assembled battery 7 includes 14 battery packs connected in series.
  • the number of battery packs connected in series is 14, but other numbers may be used.
  • the battery pack 700 includes a plurality of storage battery cells 701, a battery state detection unit 702, a control unit 703, an optical communication unit 704, and a discharge unit 705.
  • a plurality of storage battery cells 701 such as lithium ion batteries are connected in parallel and in series. For example, 24 storage battery cells 701 are connected in parallel, and 13 stages connected in parallel are connected in series.
  • Battery pack 700 may have only one unit in which storage battery cells 701 are connected in parallel, or may have only a single storage battery cell 701.
  • the battery state detection unit 702 detects the voltage value of each stage where the storage battery cells 701 are connected in parallel, and the current value and voltage value between the + and-electrodes of the battery pack 700, the SOC of the battery pack 700, and the battery pack 700. Are detected, and the detected data is output to the control unit 703.
  • the SOC of the battery pack 700 is obtained from the integrated value of the charging / discharging current flowing through the battery pack 700, or a calculation formula indicating the relationship between the predetermined open circuit voltage (OCV) of the battery pack 700 and the SOC. It can be obtained by referring to the table.
  • the control unit 703 transmits the detection data acquired from the battery state detection unit 702 as battery data via the optical communication unit 704.
  • the optical communication unit 704 includes an optical transmission module and an optical reception module.
  • Discharge unit 705 is configured to include a resistor and a switch connected in series with each other, and is disposed between the + and-electrodes of battery pack 700. When the switch in discharge unit 705 is in the ON state, The storage battery cell 701 is discharged by resistance.
  • the drive power of the communication unit 704 is supplied from the storage battery cell 701 because the drive power of the communication unit cannot be supplied from the BMU 5 side as in the case of communication by metal. Like to do. Therefore, when an optical line is used for communication between the BMU 5 and the assembled battery 7 as in this embodiment, even if a communication configuration using an optical line described later is devised, the LED of the light transmission module between the battery packs 700 is used.
  • One battery pack 700 in the assembled battery that has been fully charged and not fully charged when trying to fully charge the assembled battery 7 compared to the case of communication by metal due to variations in lighting time, etc.
  • the difference in the amount of charge between the other battery pack 700 in the assembled battery increases.
  • the BMU 5 includes a control unit 601, an optical communication unit 602, and a communication interface 603.
  • the optical communication unit 602 includes an optical transmission module and an optical reception module.
  • the control unit 601 transmits a battery data request command to the assembled battery 7 via the optical communication unit 602, and acquires battery data from the assembled battery 7.
  • the control unit 601 controls the BSU 4 to be in a connected state or an open state, and communicates with the PCS management control unit 3 and the master BMU 6 (see FIG. 2) via the communication interface 603.
  • FIG. 5 shows an example of communication using the optical line of the BMU 5 and the assembled battery 7.
  • the BMU 5 and each battery pack 700 are daisy chain connected by optical fiber for communication of battery data request, and the optical transmission modules Tx and BMU 5 of each battery pack 700 have 14 for communication of battery data.
  • One optical receiving module Rx is connected to an optical fiber one-to-one.
  • the BMU 5 transmits a battery data request command by designating an address for broadcasting from its own optical transmission module Tx.
  • the battery pack 700 that has received the battery data request command determines that it is addressed to itself from the broadcast address, transmits the battery data from its own optical transmission module Tx to the BMU 5, and supplies the battery to the next adjacent battery pack 700. Transfer the data request command.
  • the 14th to 2nd battery packs 700 sequentially transmit the battery data to the BMU 5, and the first battery pack 700 to which the battery data request command is transferred transmits the battery data to its own optical transmission module. While transmitting from Tx to BMU5, a battery data request command is transferred to BMU5.
  • the BMU 5 that has received the battery data request command can determine whether the data is garbled or the optical line is disconnected by confirming the battery data request command. Note that an optical line for transferring a battery data request command from the first battery pack 700 to the BMU 5 is not essential (a connection form without such an optical line is also included in the daisy chain connection).
  • an increase in communication ports in the BMU 5 can be suppressed as much as possible by combining the daisy chain connection and the one-to-one connection. Further, by broadcasting the battery data request command and transmitting the battery data by the one-to-one connection, it is possible to suppress the variation in the LED lighting time between the battery packs 700 and reduce the difference in the charged amount between the battery packs 700, and the LED lighting. The power consumption due to can also be suppressed.
  • the battery data from which battery pack 700 can be uniquely identified by the connection port but the following address is used so that the battery pack 700 can be correctly identified even if there is a wiring error.
  • Allocation processing may be performed.
  • the address assignment process is performed as follows at the start of communication (see FIG. 6, “x” in FIG. 6 indicates “disable”).
  • Step 1 First, the BMU 5 broadcasts an address setting command to each battery pack 700.
  • Step 2 Each battery pack 700 disables its own optical transmission module Tx connected in a daisy chain.
  • Step 3 The BMU 5 issues an initial ID number (for example, “# 1”).
  • Step 4 When the light transmission module Tx of the battery pack 700 is disabled, the battery pack 700 sets the received ID number to its own ID number, responds to the BMU 5 via the battery data transmission optical line, The optical transmission module Tx is enabled. Then, the battery pack 700 issues an ID number obtained by adding 1 to its own ID number to the next adjacent battery pack 700.
  • the battery pack 700 transmits its ID number to the BMU 5 when the battery data is transmitted, so that the BMU 5 can identify which battery pack 700 the battery data from.
  • the optical transmission modules Tx and the 14 optical reception modules Rx of the BMU 5 can be correctly identified without depending on the one-to-one wiring.
  • wiring for battery data request communication is performed by daisy chain connecting adjacent battery packs 700 in series connection, the possibility of wiring mistake is low, and the address assignment process works effectively.
  • FIG. 7 is a flowchart of the capacity learning process for each assembled battery 7 executed by the power supply system according to the embodiment of the present invention shown in FIG.
  • the flowchart shown in FIG. 7 is good to implement in order with respect to the assembled battery 7 of each series, for example.
  • the master BMU 6 has a battery pack voltage difference (the difference between the maximum value and the minimum value of each battery pack voltage in the assembled battery 7 that is the target of the capacity learning process) in the assembled battery 7 that is the target of the capacity learning process. It is determined whether or not a predetermined threshold value is exceeded (step S10). If the battery pack voltage difference in the assembled battery 7 subject to the capacity learning process is equal to or greater than a predetermined threshold (YES in step S10), the master BMU 6 corresponds to the BMU 5 corresponding to the assembled battery 7 subject to the capacity learning process. A capacity learning request command is transmitted to Thereby, it transfers to step S50 mentioned later.
  • a battery pack voltage difference the difference between the maximum value and the minimum value of each battery pack voltage in the assembled battery 7 that is the target of the capacity learning process
  • the master BMU 6 determines the latest battery pack 7 to be subjected to the capacity learning process. It is determined whether or not the charge / discharge amount from the completion of the (most recent) capacity learning is equal to or greater than a predetermined threshold (step S20). If the amount of charge / discharge from the completion of the latest (most recent) capacity learning of the assembled battery 7 to be subjected to capacity learning processing is equal to or greater than a predetermined threshold (YES in step S20), the master BMU 6 performs capacity learning. A capacity learning request command is transmitted to the BMU 5 corresponding to the assembled battery 7 to be processed. Thereby, it transfers to step S50 mentioned later.
  • step S30 If the charge / discharge amount from the completion of the latest (most recent) capacity learning of the assembled battery 7 to be subjected to the capacity learning process is not equal to or greater than a predetermined threshold (NO in step S20), the master BMU 6 It is determined whether or not the elapsed time from the completion of the latest (most recent) capacity learning of the assembled battery 7 to be subjected to learning processing is equal to or greater than a predetermined threshold value (step S30). If the elapsed time from the completion of the latest (most recent) capacity learning of the assembled battery 7 to be subjected to the capacity learning process is equal to or greater than a predetermined threshold (YES in step S30), the master BMU 6 performs the capacity learning process. A capacity learning request command is transmitted to the BMU 5 corresponding to the assembled battery 7 to be subjected to the above. Thereby, it transfers to step S50 mentioned later.
  • step S30 If the elapsed time from the completion of the latest (most recent) capacity learning of the assembled battery 7 to be subjected to the capacity learning process is not equal to or more than a predetermined threshold (NO in step S30), the capacity learning is not performed. End the flow operation.
  • the master BMU 6 monitors whether or not a capacity learning request command has been sent from the PCS management control unit 3 via the BMU 5 (step S40).
  • a capacity learning request command is sent from the PCS management control unit 3 via the BMU 5 (YES in step S40)
  • the process proceeds to step S50 described later.
  • step S50 the BMU 5 corresponding to the assembled battery 7 to be subjected to the capacity learning process controls the PCS 2 corresponding to the assembled battery 7 to be subjected to the capacity learning process via the PCS management control unit 3 to perform capacity learning.
  • the assembled battery 7 to be processed is fully charged.
  • only one battery pack in the assembled battery 7 to be subjected to the capacity learning process is fully charged.
  • the other battery packs in the assembled battery 7 to be subjected to the capacity learning process are not fully charged.
  • step S60 following step S50 the BMU 5 corresponding to the assembled battery 7 to be subjected to capacity learning processing confirms the open voltage of each battery pack in the assembled battery 7 to be subjected to capacity learning processing.
  • step S70 following step S60 the BMU 5 corresponding to the assembled battery 7 to be subjected to the capacity learning process determines the target voltage based on the confirmation result in step S60. For example, when the minimum value of the open voltage of each battery pack in the assembled battery 7 to be subjected to the capacity learning process is set to the target voltage, the capacity learning accuracy of the assembled battery can be most improved. However, the smaller the target voltage, the longer the processing time of step S80, which will be described later, so that each battery in the assembled battery 7 to be subjected to the capacity learning process at some sacrifice of the capacity learning accuracy of the assembled battery.
  • An intermediate value between the maximum value and the minimum value of the open voltage of the pack (for example, the average value of the open voltage of each battery pack) may be used as the target voltage.
  • the battery pack 7 to be subjected to the capacity learning process When the minimum value of the open voltage of each battery pack is set as the target voltage, and the difference between the maximum value and the minimum value of the open voltage of each battery pack in the assembled battery 7 to be subjected to the capacity learning process is larger than a predetermined value, the capacity learning An intermediate value between the maximum value and the minimum value of the open voltage of each battery pack in the assembled battery 7 to be processed (for example, the average value of the open voltage of each battery pack) may be used as the target voltage.
  • step S80 the BMU 5 corresponding to the assembled battery 7 that is the target of the capacity learning process controls the assembled battery 7 that is the target of the capacity learning process, and the inside of the assembled battery 7 that is the target of the capacity learning process.
  • the discharge unit 705 (see FIG. 3) is discharged until the open circuit voltage reaches the target voltage.
  • the BMU 5 corresponding to the assembled battery 7 to be subjected to the capacity learning process transmits a discharge command only to the battery pack whose open voltage in the assembled battery 7 to be subjected to the capacity learning process is larger than the target voltage.
  • each battery pack transmits a discharge state (defined as a block discharge state, indicating whether or not discharge is performed) by the discharge unit 705 (see FIG. 3) to the BMU 5, and when the battery pack is discharged to the target voltage, the block discharge state is turned ON ( The state is changed from OFF (with discharge execution) to OFF (no discharge execution), and the state is transmitted to BMU 5.
  • the discharge by the discharge part 705 (refer FIG. 3) is set to the value with very small discharge amount per unit time, in order to suppress the temperature rise by discharge.
  • step S90 following step S80 the BMU 5 corresponding to the assembled battery 7 to be subjected to the capacity learning process controls the PCS 2 corresponding to the assembled battery 7 to be subjected to the capacity learning process via the PCS management control unit 3. Then, the assembled battery 7 to be subjected to the capacity learning process is fully charged again.
  • the BMU 5 corresponding to the assembled battery 7 to be subjected to the capacity learning process is fully charged with respect to other battery packs in the assembled battery 7 to be subjected to the capacity learning process. Notification (full charge setting request to be described later).
  • step S90 Since the full charge in step S90 is executed after the process in step S80, the variation in the amount of charge of each battery pack in the assembled battery 7 that is the target of the capacity learning process is a step compared to the time when the full charge ends in step S50. The value at the end of full charge in S90 becomes smaller.
  • step S100 following step S90 the BMU 5 corresponding to the assembled battery 7 to be subjected to the capacity learning process controls the PCS 2 corresponding to the assembled battery 7 to be subjected to the capacity learning process via the PCS management control unit 3.
  • the battery pack 7 to be subjected to the capacity learning process is discharged to the first predetermined level. That is, discharging is performed until one or more battery packs in the assembled battery 7 to be subjected to the capacity learning process reach a certain predetermined level (a level corresponding to the first predetermined level).
  • the BMU 5 corresponding to the assembled battery 7 subject to the capacity learning process or each battery pack in the assembled battery 7 subject to the capacity learning process integrates the discharge capacity from the full charge of each battery pack.
  • the first predetermined level should be essentially a level corresponding to complete discharge, but in this embodiment, the driving power of the optical communication unit 704 (see FIG. 3) of the battery pack is the storage battery cell 701 (see FIG. 3). 3), if the battery is completely discharged, communication between the BMU 5 and the assembled battery 7 will be interrupted. Therefore, a state in which some electric charge remains (for example, SOC 8%) is set as the first predetermined value. It is in the level.
  • step S110 subsequent to step S100 the BMU 5 corresponding to the assembled battery 7 that is the target of the capacity learning process passes the PCS 2 corresponding to the assembled battery 7 that is the target of the capacity learning process via the PCS management control unit 3. Control is performed to charge the assembled battery 7 that was the target of the capacity learning process to the second predetermined level, and the flow operation is terminated.
  • the second predetermined level is a state in which the assembled battery 7 stores more charge than the first predetermined level. In this way, by charging the assembled battery 7 that was the target of the capacity learning process to the second predetermined level, the assembled battery 7 that was the target of the capacity learning process was then returned to the normal charge / discharge mode. In this case, the assembled battery 7 that was the target of the capacity learning process can be discharged without any problem.
  • FIG. 8 shows the first pattern of the start sequence until the capacity learning process of FIG. 7 is started.
  • the master BMU 6 transmits a capacity learning request command to a certain BMU 5.
  • a certain BMU 5 receives a capacity learning request command from the master BMU 6, it returns an acknowledgment signal ACK and transmits a capacity learning permission command to the PCS management control unit 3 that can communicate with the certain BMU 5.
  • the PCS management control unit 3 that can communicate with a certain BMU 5 receives a capacity learning permission command from a certain BMU 5, it returns an acknowledgment signal ACK.
  • a certain BMU 5 When a certain BMU 5 receives an acknowledgment signal ACK from the PCS management control unit 3 that can communicate with a certain BMU 5, it transmits a capacity learning request acceptance message to the master BMU 6.
  • the master BMU 6 When the master BMU 6 receives the capacity learning request acceptance message from a certain BMU 5, the master BMU 6 returns an acknowledgment signal ACK. When a certain BMU 5 receives the acknowledgment signal ACK from the master BMU 6, it starts the capacity learning process of FIG. 7 and transmits a capacity learning start message to the PCS management control unit 3 that can communicate with the certain BMU 5.
  • the PCS management control unit 3 When receiving the capacity learning start message from a certain BMU 5, the PCS management control unit 3 that can communicate with a certain BMU 5 performs preliminary charging of the PCS 2 corresponding to the certain BMU 5 and the assembled battery 7 corresponding to the certain BMU 5. And the power line are connected, an acknowledgment signal ACK is returned to a certain BMU 5.
  • FIG. 9 shows a permission waiting sequence in the first pattern of the start sequence until the capacity learning process of FIG. 7 is started.
  • the master BMU 6 transmits a capacity learning request command to a certain BMU 5.
  • a certain BMU 5 receives a capacity learning request command from the master BMU 6, it returns an acknowledgment signal ACK and transmits a capacity learning permission command to the PCS management control unit 3 that can communicate with the certain BMU 5.
  • the PCS management control unit 3 capable of communicating with a certain BMU 5 switches the assembled battery 7 corresponding to the certain BMU 5 from a normal charge / discharge mode to a mode for performing capacity learning. If there is a problem, a negative response signal NACK is returned.
  • a certain BMU 5 When a certain BMU 5 receives a negative response signal NACK from the PCS management control unit 3 that can communicate with a certain BMU 5, it transmits a capacity learning request non-acceptance message to the master BMU 6.
  • the master BMU 6 When the master BMU 6 receives a capacity learning request non-acceptance message from a certain BMU 5, the master BMU 6 returns an acknowledgment signal ACK, and then transmits a capacity learning request command to a certain BMU 5 again after a predetermined period.
  • FIG. 10 shows a second pattern of the start sequence until the capacity learning process of FIG. 7 is started.
  • the PCS management control unit 3 transmits a capacity learning request command to a certain BMU 5 that can communicate with the PCS management control unit 3.
  • a certain BMU 5 receives a capacity learning request command from the PCS management control unit 3, it returns an acknowledgment signal ACK and transmits a capacity learning acceptance message to the master BMU 6.
  • the master BMU 6 returns an acknowledgment signal ACK.
  • a certain BMU 5 When a certain BMU 5 receives the acknowledgment signal ACK from the master BMU 6, it starts the capacity learning process shown in FIG. 7 and transmits a capacity learning start message to the PCS management control unit 3.
  • the PCS management control unit 3 When receiving the capacity learning start message from a certain BMU 5, the PCS management control unit 3 performs preliminary charging of the PCS 2 corresponding to the certain BMU 5 and connection between the assembled battery 7 corresponding to the certain BMU 5 and the power line. Then, an acknowledgment signal ACK is returned to a certain BMU 5.
  • FIG. 11 shows a normal sequence.
  • a certain BMU 5 communicates with a certain BMU 5 a constant current charging command for charging the assembled battery 7 corresponding to the certain BMU 5 with a constant current (eg, 7.68 A).
  • a constant current eg, 7.68 A
  • the PCS management control unit 3 When receiving a constant current charge command from a certain BMU 5, the PCS management control unit 3 returns an acknowledgment signal ACK to the constant current charge command from a certain BMU 5 to a certain BMU 5.
  • the certain BMU 5 A constant voltage charging command for charging the assembled battery 7 corresponding to the BMU 5 with a constant voltage is transmitted to the PCS management control unit 3 capable of communicating with a certain BMU 5.
  • the PCS management control unit 3 When receiving a constant voltage charge command from a certain BMU 5, the PCS management control unit 3 returns an acknowledgment signal ACK to the constant voltage charge command from a certain BMU 5 to a certain BMU 5.
  • a certain BMU 5 receives a full charge flag from any one or more battery packs in the assembled battery 7 corresponding to the certain BMU 5, it determines that the assembled battery 7 corresponding to the certain BMU 5 is fully charged. Then, a charge stop command is transmitted to the PCS management control unit 3.
  • the PCS management control unit 3 returns an acknowledgment signal ACK to the charge stop command from a certain BMU 5 to a certain BMU 5.
  • a certain BMU 5 issues a turn-off command requesting to control the state of the PCS 2 corresponding to a certain BMU 5 so that the assembled battery 7 corresponding to the certain BMU 5 is disconnected from the power line.
  • the PCS management control unit 3 controls the state of the PCS 2 corresponding to a certain BMU 5 so that the assembled battery 7 corresponding to the certain BMU 5 is disconnected from the power line.
  • An acknowledgment signal ACK is returned to a certain BMU 5.
  • a certain BMU 5 receives an acknowledgment signal ACK for the turn-off command from the PCS management control unit 3, it performs the processing of Step S60 and Step S70 in the flowchart shown in FIG.
  • each battery pack in the assembled battery 7 corresponding to a certain BMU 5 receives information on a target voltage and a discharge command by broadcast from a certain BMU 5, it returns a block discharge state to the certain BMU 5. And each battery pack in the assembled battery 7 corresponding to a certain BMU5 will transmit block discharge state OFF to a certain BMU5, when the discharge to a target voltage is completed.
  • the process of step S80 in the flowchart shown in FIG. 7 ends.
  • a certain BMU 5 issues a turn-on command requesting to control the state of the PCS 2 corresponding to a certain BMU 5 so that the assembled battery 7 corresponding to the certain BMU 5 and the power line are connected. It transmits to the management control unit 3.
  • the PCS management control unit 3 performs preliminary charging of the PCS 2 corresponding to the certain BMU 5 and connection between the assembled battery 7 corresponding to the certain BMU 5 and the power line.
  • an acknowledgment signal ACK is returned to the certain BMU 5.
  • the constant current indicating that the assembled battery 7 corresponding to the certain BMU 5 is charged with a constant current (for example, 7.68A).
  • the charging command is transmitted to the PCS management control unit 3 that can communicate with a certain BMU 5.
  • the PCS management control unit 3 returns an acknowledgment signal ACK to the constant current charge command from a certain BMU 5 to a certain BMU 5.
  • the certain BMU 5 A constant voltage charging command for charging the assembled battery 7 corresponding to the BMU 5 with a constant voltage is transmitted to the PCS management control unit 3 capable of communicating with a certain BMU 5.
  • the PCS management control unit 3 When receiving a constant voltage charge command from a certain BMU 5, the PCS management control unit 3 returns an acknowledgment signal ACK to the constant voltage charge command from a certain BMU 5 to a certain BMU 5.
  • a certain BMU 5 receives a full charge flag from any one or more battery packs in the assembled battery 7 corresponding to the certain BMU 5, it determines that the assembled battery 7 corresponding to the certain BMU 5 is fully charged. Then, a charge stop command is transmitted to the PCS management control unit 3.
  • the PCS management control unit 3 returns an acknowledgment signal ACK to the charge stop command from a certain BMU 5 to a certain BMU 5.
  • a certain BMU 5 receives an acknowledgment signal ACK to the charge stop command, it transmits a request for setting each battery pack to a fully charged state.
  • each battery pack in the assembled battery 7 corresponding to a certain BMU 5 When each battery pack in the assembled battery 7 corresponding to a certain BMU 5 receives a request for setting full charge from a certain BMU 5, it sets full charge and returns a full charge flag to a certain BMU 5.
  • a certain BMU 5 receives the full charge flag from all the battery packs of the assembled battery 7 corresponding to the certain BMU 5, the process of step S90 in the flowchart shown in FIG. 7 ends.
  • a certain BMU 5 transmits to the PCS management control unit 3 a discharge command for discharging the assembled battery 7 corresponding to the certain BMU 5 with a constant current (for example, 19.2 A).
  • the PCS management control unit 3 returns an acknowledgment signal ACK to the discharge command to a certain BMU 5.
  • the low remaining capacity flag is a flag indicating that the SOC has reached 8%, but 8% is an example, and may be another value.
  • a certain BMU 5 receives a low remaining capacity flag (a flag indicating that the SOC has reached 8%) from any one or more battery packs in the assembled battery 7 corresponding to the certain BMU 5, the discharge is stopped. Rather than sending a command to the PCS management control unit 3, the discharge end flag (a flag indicating that the SOC has become 0%) from any one or more battery packs in the assembled battery 7 corresponding to a certain BMU 5 May be transmitted to the PCS management control unit 3.
  • a certain BMU 5 When a certain BMU 5 receives an acknowledgment signal ACK to the discharge stop command from the PCS management control unit 3, it transmits a capacity learning request to each battery pack by broadcast. When each battery pack receives a capacity learning request from a certain BMU 5, it updates the full charge capacity from the result of integration of the discharge capacity and transmits a low remaining capacity flag to the certain BMU 5. In this case, it is also possible to use a discharge end flag instead of the low remaining capacity flag. By the operation so far, the process of step S100 of the flowchart shown in FIG. 7 is completed.
  • a certain BMU 5 sends a constant current charging command for charging a battery pack 7 corresponding to a certain BMU 5 with a constant current (eg, 7.68 A) to a PCS management control unit 3 capable of communicating with the certain BMU 5.
  • a PCS management control unit 3 capable of communicating with the certain BMU 5.
  • the PCS management control unit 3 returns an acknowledgment signal ACK to the constant current charge command from a certain BMU 5 to a certain BMU 5.
  • the SOC calculated in each battery pack in the assembled battery 7 corresponding to a certain BMU 5 may be used, and the SOC calculated in a certain BMU 5 may be used. It may be used. If the SOC calculated in each battery pack in the assembled battery 7 corresponding to a certain BMU 5 is used, for example, any one or more battery packs in the assembled battery 7 corresponding to a certain BMU 5 have a predetermined SOC. If the average SOC of each battery pack in the assembled battery 7 corresponding to a certain BMU 5 becomes a predetermined SOC, for example, it may be detected that the battery has been charged to a predetermined SOC. It may be possible to detect that the battery has been charged.
  • the battery pack voltage detected by each battery pack in the assembled battery 7 corresponding to a certain BMU 5 may be used.
  • a series voltage of the battery 7 may be used. If the battery pack voltage detected by each battery pack in the assembled battery 7 corresponding to a certain BMU 5 is used, which of the battery pack voltages detected by each battery pack in the assembled battery 7 corresponding to a certain BMU 5 is selected. When one or more of them reaches a predetermined voltage, it may be detected that the battery has been charged up to the predetermined voltage.
  • step S110 of the flowchart shown in FIG. 7 is completed.
  • the PCS management control unit 3 periodically transmits a BMU state acquisition command to the communicable BMU 5 to report the state of the BMU 5 periodically.
  • the BMU 5 periodically transmits a BMU state response (the BMU state acquisition command response signal) to the PCS management control unit 3 in order to periodically report its state.
  • constant power charging is performed instead of constant current charging.
  • the constant current value is 7.68 A
  • the constant power value may be 5.17 kW. This calculation is based on the assumption that the assembled battery 7 is composed of 14 series battery packs and the nominal voltage of each battery pack is 48.1V. Since the constant current value of 7.68 A and the constant power value of 5.17 kW are examples, other values may be used.
  • constant power discharge is performed instead of constant current discharge.
  • the constant current value is 19.2 A
  • the constant power value may be 12.93 kW. This calculation is based on the assumption that the assembled battery 7 is composed of 14 series battery packs and the nominal voltage of each battery pack is 48.1V. Since the constant current value of 19.2 A and the constant power value of 12.93 kW are examples, other values may be used.
  • FIG. 12 shows an end sequence.
  • a certain BMU 5 transmits a capacity learning completion message to the master BMU 6 and also transmits a capacity learning completion message to the PCS management control unit 3 that can communicate with the certain BMU 5.
  • Each of the master BMU 6 and the PCS management control unit 3 returns an acknowledgment signal ACK to a certain BMU 5.
  • a certain BMU 5 receives the acknowledgment signal ACK from the master BMU 6 and the PCS management control unit 3, it returns to the normal charge / discharge mode.
  • FIG. 13 shows an error sequence.
  • a certain BMU 5 transmits a capacity learning failure message to the master BMU 6 and also transmits a capacity learning failure message to the PCS management control unit 3 that can communicate with the certain BMU 5.
  • Each of the master BMU 6 and the PCS management control unit 3 returns an acknowledgment signal ACK to a certain BMU 5.
  • a certain BMU 5 receives the acknowledgment signal ACK from the master BMU 6 and the PCS management control unit 3, it returns to the normal charge / discharge mode.
  • the master BMU 6 or the PCS management control unit 3 may request to cancel capacity learning depending on various circumstances. A stop sequence executed in such a case will be described.
  • FIG. 14 shows the first pattern of the stop sequence.
  • the master BMU 6 transmits a capacity learning stop request command to a certain BMU 5.
  • a certain BMU 5 receives a capacity learning stop request command from the master BMU 6, it returns an acknowledgment signal ACK and transmits a capacity learning stop permission command to the PCS management control unit 3 that can communicate with a certain BMU 5.
  • the PCS management control unit 3 that can communicate with a certain BMU 5 receives a capacity learning stop permission command from a certain BMU 5, it returns an acknowledgment signal ACK.
  • a certain BMU 5 When a certain BMU 5 receives an acknowledgment signal ACK from the PCS management control unit 3 that can communicate with a certain BMU 5, it transmits a capacity learning stop request acceptance message to the master BMU 6. When the master BMU 6 receives the capacity learning stop request acceptance message from a certain BMU 5, the master BMU 6 returns an acknowledgment signal ACK. When a certain BMU 5 receives an acknowledgment signal ACK for the capacity learning stop request acceptance message from the master BMU 6, it transmits a capacity learning failure message to the master BMU 6 and PCS management control capable of communicating the capacity learning failure message with a certain BMU 5. Also transmitted to part 3. Each of the master BMU 6 and the PCS management control unit 3 returns an acknowledgment signal ACK to a certain BMU 5. When a certain BMU 5 receives the acknowledgment signal ACK from the master BMU 6 and the PCS management control unit 3, it returns to the normal charge / discharge mode.
  • FIG. 15 shows a sequence of waiting for permission in the first pattern of the stop sequence of FIG.
  • the master BMU 6 transmits a capacity learning stop request command to a certain BMU 5.
  • a certain BMU 5 receives a capacity learning stop request command from the master BMU 6, it returns an acknowledgment signal ACK and transmits a capacity learning stop permission command to the PCS management control unit 3 that can communicate with a certain BMU 5.
  • the PCS management control unit 3 that can communicate with a certain BMU 5 returns a negative response signal NACK when there is a problem in stopping the capacity learning.
  • a certain BMU 5 When a certain BMU 5 receives a negative response signal NACK from the PCS management control unit 3 capable of communicating with a certain BMU 5, it transmits a capacity learning stop request non-acceptance message to the master BMU 6.
  • the master BMU 6 When the master BMU 6 receives a capacity learning stop request non-acceptance message from a certain BMU 5, the master BMU 6 returns an acknowledgment signal ACK, and then transmits a capacity learning stop request command to a certain BMU 5 again after a predetermined period. .
  • FIG. 16 shows a second pattern of the stop sequence.
  • the PCS management controller 3 that can communicate with a certain BMU 5 transmits a capacity learning cancel request command to a certain BMU 5.
  • a certain BMU 5 receives a capacity learning stop request command from the PCS management control unit 3 communicable with a certain BMU 5, it returns an acknowledgment signal ACK and transmits a capacity learning stop request acceptance message to the master BMU 6.
  • the master BMU 6 receives the capacity learning stop request acceptance message from a certain BMU 5, the master BMU 6 returns an acknowledgment signal ACK.
  • a certain BMU 5 When a certain BMU 5 receives an acknowledgment signal ACK to the capacity learning stop request acceptance message from the master BMU 6, it transmits a capacity learning failure message to the master BMU 6 and PCS management control capable of communicating the capacity learning failure message with a certain BMU 5. Also transmitted to part 3. Each of the master BMU 6 and the PCS management control unit 3 returns an acknowledgment signal ACK to a certain BMU 5. When a certain BMU 5 receives the acknowledgment signal ACK from the master BMU 6 and the PCS management control unit 3, it returns to the normal charge / discharge mode.
  • the determination subject of each determination in steps S10 to S30 in FIG. 7 is the master BMU 6.
  • the present invention is not limited to this, and the master controller 1 performs the step S10 in FIG. Each determination of S30 may be performed.
  • the master controller 1 When the master controller 1 performs each determination of steps S10 to S30 in FIG. 7, the master controller 1 has a capacity via the PCS management control unit 3 that can communicate with the BMU 5 corresponding to the assembled battery 7 that is the target of capacity learning.
  • the capacity learning request command may be transmitted to the BMU 5 corresponding to the assembled battery 7 to be learned.

Abstract

 組電池の制御システムは、充放電可能な電池パックが複数直列接続されて構成される組電池と、前記組電池を制御する制御部とを備える。前記電池パックは放電部を有する。前記制御部が、前記組電池を満充電にしてから前記組電池内の前記電池パックそれぞれの開放電圧を確認し、前記組電池内の前記電池パックそれぞれの開放電圧の確認結果を基にターゲット電圧を決定し、前記組電池内の開放電圧が前記ターゲット電圧よりも大きかった前記電池パックを対象として、開放電圧が前記ターゲット電圧になる迄前記放電部による放電を行わせ、前記組電池を再び満充電にしてから前記組電池を第1所定レベル迄放電し、前記組電池内の前記電池パックそれぞれの容量学習を実行する。

Description

組電池の制御システム及びそれを備える電力供給システム
 本発明は、充放電可能な電池パックが複数直列接続されて構成される組電池を制御する組電池の制御システム及びそれを備える電力供給システムに関する。
 近年、蓄電池の大容量化が進み、ビルや工場、店舗、家庭などで消費される電力を貯蔵する電力供給システムの導入が進められている。このような電力供給システムは、事前に蓄電池を充電する(電力を消費する)ことで、任意のタイミングで蓄電池を放電する(電力を供給する)ことができる。すなわち、蓄電池の充電及び放電のタイミングを制御することで、系統電力(電力会社から供給される電力)を消費するタイミングを制御することが可能になる。
 一般的に、系統電力の電力料金には、固定制の基本料金と、従量制の使用料金とが含まれる。そして、電力会社は、単位時間に消費する系統電力の電力量の最大値が小さくなるほど、基本料金が安くなるように基本料金を設定している。また、電力消費が大きい日中よりも電力消費が小さい夜間の方が、使用料金の単位電力当りの価格が安くなるように使用料金を設定している。そのため、系統電力を利用する利用者は、系統電力の消費を平準化するほど、系統電力の電力料金を安くすることができる。
 したがって、電力供給システムにおいて、系統電力を利用する利用者の電力需要が小さい時間帯や夜間電気料金が適用される時間帯に系統電力を利用して蓄電池を充電し、系統電力を利用する利用者の電力需要が所定の閾値を越えているときに所定の閾値を越えている分の電力(図1に示す斜線部分)を蓄電池の放電で補うことによって、系統電力の電力料金を抑制することができる。
特開2010-272219号公報 特開2009-178040号公報 特開2007-325451号公報
 電力供給システムでは、充放電可能な電池パックが複数直列接続されて構成される組電池を用いることによって充放電電圧を大きくすることができ、前記組電池を複数並列接続することによってシステム全体の充放電電流を大きくすることができる。
 蓄電池は、使用するにしたがってあるいは保存しているときに劣化して、満充電容量(FCC:Full Charge Capacity)が次第に減少する。満充電容量は、例えば、満充電容量に対する放電可能容量(残存容量)の比を百分率で表したパラメータであるSOC(State Of Charge)を求める場合等に利用されるため、満充電容量を正確に把握することが重要である。満充電容量を更新するための処理を容量学習と呼び、例えば、満充電した電池を完全放電するまでの放電容量を積算して満充電容量を演算し、満充電容量を更新する方法がある。
 しかしながら、組電池は電池パックが複数直列接続されて構成されるので、組電池の満充電を試みた場合、組電池内の1つの電池パックが満充電になると、満充電になった電池パックの過充電を回避するために組電池内の他の電池パックの充電を継続することができなくなる。また、組電池の完全放電を試みた場合、組電池内の1つの電池パックが完全放電すると、完全放電した電池パックの過放電を回避するために組電池内の他の電池パックの放電を継続することができなくなる。したがって、満充電になった組電池内の1つの電池パックと、満充電に達しなかった組電池内の他の電池パックとの間で蓄電量差が大きければ、容量学習の実行により、前記組電池を構成する各電池パックの満充電容量が前記蓄電量差分小さく更新される。このように、組電池内を構成する各電池パックの蓄電量に差があると、前記組電池の容量学習の精度が低くなってしまうという問題がある。
 尚、特許文献1~3では、組電池の各電池パック間の電圧バランスを調整する技術が開示されているが、そのバランス調整は組電池の容量学習とは無関係に実施されており、組電池の容量学習時に組電池の各電池パックがどのような状態になっているかを確定することができないものであった。
 本発明は、上記の状況に鑑み、充放電可能な電池パックが複数直列接続されて構成される組電池の容量学習の精度向上を図ることができる組電池の制御システム及びそれを備える電力供給システムを提供することを目的とする。
 上記目的を達成するために本発明に係る組電池の制御システムは、充放電可能な電池パックが複数直列接続されて構成される組電池と、前記組電池を制御する制御部とを備える組電池の制御システムであって、前記電池パックは放電部を有しており、前記制御部が、前記組電池を満充電にしてから前記組電池内の前記電池パックそれぞれの開放電圧を確認し、前記組電池内の前記電池パックそれぞれの開放電圧の確認結果を基にターゲット電圧を決定し、前記組電池内の開放電圧が前記ターゲット電圧よりも大きかった前記電池パックを対象として、開放電圧が前記ターゲット電圧になる迄前記放電部による放電を行わせ、前記組電池を再び満充電にしてから前記組電池を第1所定レベル迄放電し、前記組電池内の前記電池パックそれぞれの容量学習を実行する構成とする。尚、前記制御部の少なくとも一部が、前記組電池の内部に組み込まれていてもよい。
 上記目的を達成するために本発明に係る電力供給システムは、上記の構成の組電池の制御システムを備え、前記組電池の制御システムが有する組電池を複数備え、複数の前記組電池が並列に接続される構成とする。尚、複数の前記組電池において、前記組電池の制御システムが有する制御部の一部を共用するようにしてもよい。
 本発明に係る組電池の制御システム及びそれを備える電力供給システムによると、組電池内の開放電圧が前記ターゲット電圧よりも大きかった電池パックを対象として、開放電圧がターゲット電圧になる迄前記放電部による放電を行わせる処理を行うことにより、電池パックの蓄電量のバラツキを低減した状態で容量学習を実施することができるので、充放電可能な電池パックが複数直列接続されて構成される組電池の容量学習の精度向上を図ることができる。
系統電力を利用する利用者の電力需要の典型例を示す図である。 本発明の一実施形態に係る電力供給システムの概略構成を示す図である。 組電池内の電池パックの構成例を示す図である。 BMUの構成例を示す図である。 BMUと組電池の光回線を用いた通信の一実施例を示す図である。 BMUと組電池の光回線を用いた通信の一実施例におけるアドレス割り当て処理の一例を示す図である。 図2に示す本発明の一実施形態に係る電力供給システムが実行する組電池毎の容量学習処理のフローチャートである 図7の容量学習処理が開始されるまでの開始シーケンスの第1パターンを示す図である。 図7の容量学習処理が開始されるまでの開始シーケンスの第1パターンにおける許可待ちのシーケンスを示す図である。 図7の容量学習処理が開始されるまでの開始シーケンスの第2パターンを示す図である。 通常シーケンスを示す図である。 終了シーケンスを示す図である。 エラーシーケンスを示す図である。 中止シーケンスの第1パターンを示す図である。 中止シーケンスの第1パターンにおける許可待ちのシーケンスを示す図である。 中止シーケンスの第2パターンを示す図である。
 本発明の実施形態について図面を参照して以下に説明する。なお、本発明は後述する実施形態に限られず、本発明の趣旨の範囲内であれば、実施形態は種々変更可能である。
 図2は、本発明の一実施形態に係る電力供給システムの概略構成を示すブロック図である。但し、図2において、各ブロック間をつなぐ太線は電力線を示しており、各ブロック間をつなぐ細線は通信線を示している。尚、本実施形態では、各通信線は信頼性を重視する観点から有線通信で実現しているが、無線通信で実現することも可能である。また、通信は例えばTCP(Transmission Control Protocol)/IP(Internet Protocol)やUDP(User Datagram Protocol)/IP(Internet Protocol)によって行うとよい。
 図2に示す本発明の一実施形態に係る電力供給システムは、マスタコントローラ1と、PCS(Power Conditioning System)2と、PCS管理制御部3と、BSU(Battery Switching Unit)4と、BMU(Battery Management Unit)5と、マスタBMU6と、組電池7とを備えている。図2に示す本発明の一実施形態に係る電力供給システムでは、PCS2、PCS管理制御部3、BSU4、BMU5、及び組電池7によって構成される系列が複数設けられており、各系列の組電池7が並列に接続されるようにマスタコントローラ1に各系列が接続されている。
<マスタコントローラの概要>
 マスタコントローラ1は、外部の負荷100及び電力系統200に接続されている。負荷100はAC電源入力端子を有する負荷であり、電力系統200はAC電力を供給する電力系統である。マスタコントローラ1は、各系列のPCS管理制御部3を統合的に監視・制御する。すなわち、マスタコントローラ1は、通常時には系列毎に充放電量を決定しその決定に応じた充放電制御指令を各系列のPCS管理制御部3にそれぞれ送信し、異常時には異常が発生した系列のPCS管理制御部3に対してPCS2の停止指令、PCS2の待機指令、又はPCS2側に設置されているブレーカ(不図示)の遮断指令を送信する。
<PCSの概要>
 PCS2は、双方向AC/DC電力変換器であり、充電時に電力系統200からマスタコントローラ1を経由して供給されるAC電力をDC電力に変換し、放電時に同一系列に属する組電池7から同一系列に属するBSU4を経由して供給されるDC電力をAC電力に変換する。尚、本実施形態とは異なり、マスタコントローラ1が外部のDC負荷(DC電源入力端子を有する負荷)及びDC電源(例えば太陽電池)に接続される場合には、PCS2を双方向DC/DC電力変換器に変更すればよい。
<PCS管理制御部の概要>
 PCS管理制御部3は、マスタコントローラ1から送られてくる充放電制御指令に基づいて同一系列に属するPCS2の動作を制御するとともに、同一系列に属するPCS2の状態を監視している。また、PCS管理制御部3は、異常時には同一系列に属するPCS2の停止、同一系列に属するPCS2の待機、又は同一系列に属するPCS2側に設置されているブレーカ(不図示)の遮断を実行する。
 さらに、PCS管理制御部3は、BMU5と周期的に通信することでBMU5の異常を検知する。BMU5の異常を検知した場合も、上記の異常時に含まれるので、PCS管理制御部3は、同一系列に属するPCS2の停止、同一系列に属するPCS2の待機、又は同一系列に属するPCS2側に設置されているブレーカ(不図示)の遮断を実行する。
<BSUの概要>
 BSU4は、同一系列に属するPCS2と同一系列に属する組電池7との電気的接続をON/OFFするスイッチであり、同一系列に属するBMU5によって制御される。本実施形態では、BSU4は、パワーFET(Field Effect Transistor)、コンタクタ、及びブレーカが直列接続されている構成である。PCS2と組電池7との電気的接続をONからOFFに切り替える際には、まず電気スイッチであるパワーFETをONからOFFに切り替え、その後機械スイッチであるコンタクタ及びブレーカをONからOFFに切り替えるようにする。一方、PCS2と組電池7との電気的接続をOFFからONに切り替える際には、まず機械スイッチであるコンタクタ及びブレーカをOFFからONに切り替え、その後電気スイッチであるパワーFETをOFFからONに切り替えるようにする。
<BMUの概要>
 BMU5は、同一系列に属するBSU4を制御するとともに、同一系列に属するBSU4の状態及び同一系列に属する組電池7の状態を監視している。
 また、BMU5は、同一系列に属する組電池7の状態、同一系列に属するBSU4の状態、自己(BMU5)の状態、及び同一系列に属するPCS2の状態などに関するログ情報をマスタBMU6に送信する。なお、BMU5は、同一系列に属するPCS2の状態を直接取得することができないので、上述したPCS管理制御部3との周期的な通信によって、同一系列に属するPCS2の状態を取得する。
 また、BMU5は、上記状態監視により異常を検知した時にはBSU4内のパワーFET、コンタクタ、及びブレーカをOFFにする指令を同一系列に属するBSU4に送信する。
 さらに、BMU5は、PCS管理制御部3と周期的に通信することでPCS管理制御部3の異常を検知する。PCS管理制御部3の異常を検知した場合も、上記の異常時に含まれるので、BMU5は、BSU4内のパワーFET、コンタクタ、及びブレーカをOFFにする指令を同一系列に属するBSU4に送信する。
<マスタBMUの概要>
 マスタBMU6は、各系列の組電池7、BSU4、及びBMU5を統合的に監視・制御する。すなわち、マスタBMU6は、各系列のBMU5から送られてくる組電池7の状態、BSU4の状態、BMU5の状態、及びPCS2の状態などに関するログ情報を収集して保存するとともに、必要に応じて任意のBMU5に向けて、その任意のBMU5と同一系列に属するBSU4内のパワーFET、コンタクタ、及びブレーカをOFFにする指令を送信する。例えば、マスタBMU6は、上記のログ情報に基づいて、異常が発生している系列が所定数以上あると判断した場合に、安全のため異常が発生していない系列の各BMU5に向けて、その各BMU5と同一系列に属するBSU4内のパワーFET、コンタクタ、及びブレーカをOFFにする指令を送信することが考えられる。
 また、マスタBMU6は、マスタコントローラ1が各組電池7の劣化状態(state of health:SOH)を考慮して系列毎の充放電量を割り当てることができるように、充放電量割り当て関連情報を各系列のBMU5に送信する。
<組電池の概要>
 組電池7は、電池パックが14個直列接続されて構成されている。本実施形態では電池パックの直列接続数は14個であるが、それ以外の個数であっても構わない。
<BMUと組電池の光回線を用いた通信>
 ここで、BMU5と組電池7の光回線を用いた通信について図3~図6を参照して説明する。組電池7の電圧が200V~600Vである電力供給システムでは、絶縁通信回路にフォトカプラを使用することは可能である。しかしながら、組電池7の電圧が600V以上である電力供給システムを構築する場合、グローバルの安全規格に準拠させるためにはフォトカプラによる絶縁は限界となってしまう。そこで、本実施形態では、BMU5と組電池7の通信に光回線を用いている。
 組電池7内の電池パック700の構成例を図3に示す。電池パック700は、複数の蓄電池セル701と、電池状態検出部702と、制御部703と、光通信部704と、放電部705とを備えている。リチウムイオン電池等の複数の蓄電池セル701は、並列および直列に接続される。例えば、蓄電池セル701を24個並列に接続し、並列接続された各段を13個直列に接続する。なお、電池パック700は、蓄電池セル701が並列接続された一つの単位のみを有してもよいし、単一の蓄電池セル701のみを有するようにしてもよい。
 電池状態検出部702は、蓄電池セル701が並列接続されている各段の電圧値を検出すると共に、電池パック700の+-電極間の電流値および電圧値、電池パック700のSOC、電池パック700の温度を検出し、それらの検出データを制御部703に出力する。電池パック700のSOCは、電池パック700に流れる充放電電流の積算値から求められる他、予め決定された電池パック700の開放電圧(OCV:Open Circuit Voltage)とSOCとの関係を示す計算式或いはテーブルを参照することにより求めることができる。制御部703は、電池状態検出部702から取得した検出データを電池データとして光通信部704を介して送信する。光通信部704は、光送信モジュールと光受信モジュールとから成る。放電部705は、互いに直列接続されている抵抗とスイッチとを有する構成であり、電池パック700の+-電極間に配置され、放電部705内のスイッチがON状態のときに放電部705内の抵抗によって蓄電池セル701を放電させる。
 また、絶縁のため光通信部704を用いる場合は、メタルによる通信の場合のように通信部の駆動電力をBMU5側から与えることができないため、光通信部704の駆動電力は蓄電池セル701から供給するようにしている。したがって、本実施形態のようにBMU5と組電池7の通信に光回線を用いた場合は、後述の光回線を用いた通信構成を工夫したとしても、電池パック700間の、光送信モジュールのLED点灯時間のバラツキ等により、メタルによる通信の場合に比べて、組電池7の満充電を試みたときの、満充電になった前記組電池内の1つの電池パック700と、満充電に達しなかった前記組電池内の他の電池パック700との間で蓄電量差が大きくなる。
 続いて、BMU5の構成例を図4に示す。BMU5は、制御部601と、光通信部602と、通信インタフェース603とを備えている。光通信部602は、光送信モジュールと光受信モジュールとから成る。制御部601は、光通信部602を介して電池データ要求コマンドを組電池7に送信し、電池データを組電池7から取得する。また、制御部601は、BSU4を接続状態または開放状態に制御すると共に、通信インタフェース603を介してPCS管理制御部3及びマスタBMU6(図2参照)と通信を行う。
 BMU5と組電池7の光回線を用いた通信の一実施例を図5に示す。図5に示す実施例では、電池データ要求の通信用にBMU5と各電池パック700を光ファイバによりデイジーチェーン接続し、電池データの通信用に各電池パック700の光送信モジュールTxとBMU5が有する14個の光受信モジュールRxとを1対1に光ファイバにより接続する。
 通信方法については、まず、BMU5は自身の光送信モジュールTxからブロードキャスト用のアドレスを指定して電池データ要求コマンドを送信する。電池データ要求コマンドを受信した電池パック700は、ブロードキャスト用のアドレスから自身宛と判断し、電池データを自身の光送信モジュールTxからBMU5に対して送信すると共に、隣り合う次の電池パック700へ電池データ要求コマンドを転送する。これにより、14個目から2個目までの電池パック700が電池データを順次BMU5に送信し、電池データ要求コマンドを転送された1個目の電池パック700は、電池データを自身の光送信モジュールTxからBMU5に対して送信すると共に、BMU5へ電池データ要求コマンドを転送する。
 電池データ要求コマンドを受信したBMU5は、電池データ要求コマンドを確認することでデータ化けがないか、光回線の断線がないか等を判断できる。なお、1個目の電池パック700からBMU5への電池データ要求コマンドを転送するための光回線は必須ではない(このような光回線がない接続形態もデイジーチェーン接続に含まれる)。
 本実施例によれば、デイジーチェーン接続と1対1接続とを組み合わせることで、BMU5における通信ポートの増加をなるべく抑えることができる。さらに、電池データ要求コマンドをブロードキャストすること、および1対1接続による電池データ送信により、電池パック700間のLED点灯時間のばらつきを抑えて電池パック700間の蓄電量差を低減できると共に、LED点灯による電力消費を抑えることもできる。
 また、本実施例では、どの電池パック700からの電池データなのかは接続ポートによって一意に識別可能であるが、配線ミスがあった場合でも正しく電池パック700を識別できるように下記のようなアドレス割り当て処理を行ってもよい。アドレス割り当て処理は、通信開始時に下記のように実施される(図6を参照、図6中の×はdisableを示す)。
 (ステップ1)まず、BMU5は、アドレス設定用コマンドを各電池パック700に対してブロードキャストする。
 (ステップ2)各電池パック700は、デイジーチェーン接続している自身の光送信モジュールTxをdisable(無効)とする。
 (ステップ3)BMU5は、初期値のID番号(例えば「#1」)を発行する。
 (ステップ4)電池パック700は、自身の光送信モジュールTxがdisableの場合、受信したID番号を自身のID番号に設定し、BMU5に対して電池データ送信用の光回線を介して応答し、光送信モジュールTxをenable(有効)とする。そして、電池パック700は、隣り合う次の電池パック700に対して自己のID番号に1を足したID番号を発行する。
 (ステップ5)1個目の電池パック700は、自身の光送信モジュールTxがdisableの場合、受信したID番号を自身のID番号に設定し、BMU5に対して電池データ送信用の光回線を介して応答し、光送信モジュールTxをenableとする。そして、1個目の電池パック700は、BMU5に対して自己のID番号に1を足したID番号(=初期値+14)をデイジーチェーン接続の光回線を介して発行する。BMU5が1個目の電池パック700により発行されたID番号を受信すると、アドレス割り当て処理が終了する。
 このようにアドレス割り当て処理を行えば、電池データ送信時に電池パック700が自身のID番号をBMU5に対して送信するようにすることで、BMU5はどの電池パック700からの電池データかを、14個の各光送信モジュールTxと、BMU5が有する14個の各光受信モジュールRxとの1対1の配線に依らず正しく識別できるようになる。また、電池データ要求通信用の配線は、直列接続における隣り合う電池パック700をデイジーチェーン接続することで行われるので、配線ミスの可能性は低く、アドレス割り当て処理は有効に作用する。
<組電池の容量学習>
 図7は、図2に示す本発明の一実施形態に係る電力供給システムが実行する組電池7毎の容量学習処理のフローチャートである。なお、図7に示すフローチャートは、例えば、各系列の組電池7に対して順番に実施するようにするとよい。
 まず、マスタBMU6は、容量学習処理の対象となる組電池7内の電池パック電圧差(容量学習処理の対象となる組電池7内の各電池パック電圧の最大値と最小値との差)が予め定めている閾値以上であるか否かを判定する(ステップS10)。容量学習処理の対象となる組電池7内の電池パック電圧差が予め定めている閾値以上であれば(ステップS10のYES)、マスタBMU6は容量学習処理の対象となる組電池7に対応するBMU5に容量学習要求指令を送信する。これにより、後述するステップS50に移行する。
 容量学習処理の対象となる組電池7内の電池パック電圧差が予め定めている閾値以上でなければ(ステップS10のNO)、マスタBMU6は、容量学習処理の対象となる組電池7の最新の(直近の)容量学習の実行完了時点からの充放電量が予め定めている閾値以上であるか否かを判定する(ステップS20)。容量学習処理の対象となる組電池7の最新の(直近の)容量学習の実行完了時点からの充放電量が予め定めている閾値以上であれば(ステップS20のYES)、マスタBMU6は容量学習処理の対象となる組電池7に対応するBMU5に容量学習要求指令を送信する。これにより、後述するステップS50に移行する。
 容量学習処理の対象となる組電池7の最新の(直近の)容量学習の実行完了時点からの充放電量が予め定めている閾値以上でなければ(ステップS20のNO)、マスタBMU6は、容量学習処理の対象となる組電池7の最新の(直近の)容量学習の実行完了時点からの経過時間が予め定めている閾値以上であるか否かを判定する(ステップS30)。容量学習処理の対象となる組電池7の最新の(直近の)容量学習の実行完了時点からの経過時間が予め定めている閾値以上であれば(ステップS30のYES)、マスタBMU6は容量学習処理の対象となる組電池7に対応するBMU5に容量学習要求指令を送信する。これにより、後述するステップS50に移行する。
 容量学習処理の対象となる組電池7の最新の(直近の)容量学習の実行完了時点からの経過時間が予め定めている閾値以上でなければ(ステップS30のNO)、容量学習を行わずにフロー動作を終了する。
 また、マスタBMU6は、PCS管理制御部3からBMU5を介して容量学習要求指令が送られてきたか否かを監視する(ステップS40)。PCS管理制御部3からBMU5を介して容量学習要求指令が送られてくると(ステップS40のYES)、後述するステップS50に移行する。
 ステップS50において、容量学習処理の対象となる組電池7に対応するBMU5は、PCS管理制御部3を介して、容量学習処理の対象となる組電池7に対応するPCS2を制御して、容量学習処理の対象となる組電池7を満充電する。ここで、容量学習処理の対象となる組電池7内の各電池パック間の蓄電量に差があると、容量学習処理の対象となる組電池7内の1つの電池パックのみが満充電になり、容量学習処理の対象となる組電池7内の他の電池パックは満充電になっていない。
 ステップS50に続くステップS60において、容量学習処理の対象となる組電池7に対応するBMU5は、容量学習処理の対象となる組電池7内の各電池パックの開放電圧を確認する。
 ステップS60に続くステップS70において、容量学習処理の対象となる組電池7に対応するBMU5は、ステップS60での確認結果を基にターゲット電圧を決定する。例えば、容量学習処理の対象となる組電池7内の各電池パックの開放電圧の最小値をターゲット電圧にすると、組電池の容量学習の精度を最も向上させることができる。しかしながら、ターゲット電圧を小さくするほど、後述するステップS80の処理時間がかかることになるので、組電池の容量学習の精度を多少犠牲にして、容量学習処理の対象となる組電池7内の各電池パックの開放電圧の最大値と最小値の中間値(例えば、各電池パックの開放電圧の平均値)をターゲット電圧にしてもよい。また、例えば、容量学習処理の対象となる組電池7内の各電池パックの開放電圧の最大値と最小値の差が所定値以下の場合は、容量学習処理の対象となる組電池7内の各電池パックの開放電圧の最小値をターゲット電圧にし、容量学習処理の対象となる組電池7内の各電池パックの開放電圧の最大値と最小値の差が所定値より大きい場合は、容量学習処理の対象となる組電池7内の各電池パックの開放電圧の最大値と最小値の中間値(例えば、各電池パックの開放電圧の平均値)をターゲット電圧にしてもよい。
 ステップS70に続くステップS80において、容量学習処理の対象となる組電池7に対応するBMU5は、容量学習処理の対象となる組電池7を制御して、容量学習処理の対象となる組電池7内の開放電圧がターゲット電圧よりも大きかった電池パックを対象として、開放電圧がターゲット電圧になる迄放電部705(図3参照)による放電を行わせる。このとき、容量学習処理の対象となる組電池7に対応するBMU5は、容量学習処理の対象となる組電池7内の開放電圧がターゲット電圧よりも大きかった電池パックのみに放電指令を送信するのではなく、容量学習処理の対象となる組電池7内の全ての電池パックにブロードキャストでターゲット電圧と放電指令を送信する。そして、各電池パックは、放電部705(図3参照)による放電状態(ブロック放電状態と定義し放電実行の有無を示す)をBMU5に送信し、ターゲット電圧まで放電すると、ブロック放電状態をON(放電実行あり)からOFF(放電実行なし)に変更し、その状態をBMU5に送信する。尚、放電部705(図3参照)による放電は、放電による温度上昇を抑えるために単位時間当たりの放電量が非常に小さい値に設定されている。
 ステップS80に続くステップS90において、容量学習処理の対象となる組電池7に対応するBMU5は、PCS管理制御部3を介して、容量学習処理の対象となる組電池7に対応するPCS2を制御して、容量学習処理の対象となる組電池7を再び満充電する。ここで、容量学習処理の対象となる組電池7内の1つの電池パックが満充電になると、充電を停止するので、容量学習処理の対象となる組電池7内の他の電池パックは満充電にならないが、容量学習処理の対象となる組電池7に対応するBMU5は、容量学習処理の対象となる組電池7内の他の電池パックに対しても、電池パックが満充電になった旨の通知(後述する満充電設定要求)を行う。
 ステップS90での満充電はステップS80の処理後に実行されるので、容量学習処理の対象となる組電池7内の各電池パックの蓄電量のバラツキは、ステップS50での満充電終了時に比べてステップS90での満充電終了時の方が小さくなる。
 ステップS90に続くステップS100では、容量学習処理の対象となる組電池7に対応するBMU5は、PCS管理制御部3を介して、容量学習処理の対象となる組電池7に対応するPCS2を制御して、容量学習処理の対象となる組電池7を第1所定レベル迄放電する。すなわち、容量学習処理の対象となる組電池7内の1つ以上の電池パックが或る所定レベル(第1所定レベルに対応するレベル)になる迄放電が行われる。このとき、容量学習処理の対象となる組電池7に対応するBMU5、あるいは、容量学習処理の対象となる組電池7内の各電池パックが、各電池パックの満充電からの放電容量を積算し、その積算結果を基に各電池パックの満充電容量を演算して、容量学習処理の対象となる組電池7内の各電池パックの満充電容量を更新する。第1所定レベルとしては、本来的には完全放電に相当するレベルにすべきであるが、本実施形態では、電池パックの光通信部704(図3参照)の駆動電力は蓄電池セル701(図3参照)から供給するようにしているので、完全放電してしまうと、BMU5と組電池7の通信が不通になってしまうので、若干電荷が残っている状態(例えばSOC8%)を第1所定レベルにしている。
 ステップS100に続くステップS110では、容量学習処理の対象であった組電池7に対応するBMU5は、PCS管理制御部3を介して、容量学習処理の対象であった組電池7に対応するPCS2を制御して、容量学習処理の対象であった組電池7を第2所定レベル迄充電し、フロー動作を終了する。尚、第2所定レベルは第1所定レベルに比べて、組電池7が電荷を多く蓄えている状態である。このように、容量学習処理の対象であった組電池7を第2所定レベル迄充電しておくことで、その後、容量学習処理の対象であった組電池7を通常の充放電モードに戻した場合に、容量学習処理の対象であった組電池7が問題なく放電を行える。
<組電池の容量学習での通信シーケンス>
 次に、組電池7の容量学習での通信シーケンスについて図8~図16を参照して説明する。
 図8は、図7の容量学習処理が開始されるまでの開始シーケンスの第1パターンを示している。図8に示す開始シーケンスでは、まず、マスタBMU6が、容量学習要求指令を或るBMU5に送信する。或るBMU5は、マスタBMU6から容量学習要求指令を受け取ると、肯定応答信号ACKを返信すると共に、或るBMU5と通信可能なPCS管理制御部3に容量学習許可指令を送信する。或るBMU5と通信可能なPCS管理制御部3は、或るBMU5から容量学習許可指令を受け取ると、肯定応答信号ACKを返信する。
 或るBMU5は、或るBMU5と通信可能なPCS管理制御部3から肯定応答信号ACKを受け取ると、容量学習要求受諾メッセージをマスタBMU6に送信する。
 マスタBMU6は、或るBMU5から容量学習要求受諾メッセージを受け取ると、肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6から肯定応答信号ACKを受け取ると、図7の容量学習処理を開始すると共に、或るBMU5と通信可能なPCS管理制御部3に容量学習開始メッセージを送信する。
 或るBMU5と通信可能なPCS管理制御部3は、或るBMU5から容量学習開始メッセージを受け取ると、或るBMU5と対応しているPCS2の予備充電及び或るBMU5に対応している組電池7と電力ラインとの接続を行ってから、肯定応答信号ACKを或るBMU5に返信する。
 或るBMU5が、容量学習開始メッセージの送信後に、或るBMU5と通信可能なPCS管理制御部3から肯定応答信号ACKを受け取ると、開始シーケンスが終了する。
 ここで、図7の容量学習処理が開始されるまでの開始シーケンスの第1パターンにおける許可待ちのシーケンスを図9に示す。
 図9に示す開始シーケンスでは、まず、マスタBMU6が、容量学習要求指令を或るBMU5に送信する。或るBMU5は、マスタBMU6から容量学習要求指令を受け取ると、肯定応答信号ACKを返信すると共に、或るBMU5と通信可能なPCS管理制御部3に容量学習許可指令を送信する。或るBMU5と通信可能なPCS管理制御部3は、或るBMU5から容量学習許可指令を受け取ると、或るBMU5に対応する組電池7を通常の充放電モードから容量学習を実行するモードに切り替えることに不都合がある場合に、否定応答信号NACKを返信する。
 或るBMU5は、或るBMU5と通信可能なPCS管理制御部3から否定応答信号NACKを受け取ると、容量学習要求不受諾メッセージをマスタBMU6に送信する。
 マスタBMU6は、或るBMU5から容量学習要求不受諾メッセージを受け取ると、肯定応答信号ACKを返信し、その後、所定の期間が経過すると、再度、容量学習要求指令を或るBMU5に送信する。
 上記の動作は、或るBMU5と通信可能なPCS管理制御部3が、或るBMU5から送られてくる容量学習許可指令に対して肯定応答信号ACKを返信するまで繰り返される。或るBMU5と通信可能なPCS管理制御部3が、或るBMU5から送られてくる容量学習許可指令に対して肯定応答信号ACKを返信すると、それ以後は図8と同様のシーケンス動作となる。
 次に、図7の容量学習処理が開始されるまでの開始シーケンスの第2パターンについて説明する。図10は、図7の容量学習処理が開始されるまでの開始シーケンスの第2パターンを示している。図10に示す開始シーケンスでは、まず、PCS管理制御部3が、容量学習要求指令をPCS管理制御部3と通信可能な或るBMU5に送信する。或るBMU5は、PCS管理制御部3から容量学習要求指令を受け取ると、肯定応答信号ACKを返信すると共に、マスタBMU6に容量学習受諾メッセージを送信する。マスタBMU6は、或るBMU5から容量学習受諾メッセージを受け取ると、肯定応答信号ACKを返信する。
 或るBMU5は、マスタBMU6から肯定応答信号ACKを受け取ると、図7に示す容量学習処理を開始すると共に、PCS管理制御部3に容量学習開始メッセージを送信する。
 PCS管理制御部3は、或るBMU5から容量学習開始メッセージを受け取ると、或るBMU5と対応しているPCS2の予備充電及び或るBMU5に対応している組電池7と電力ラインとの接続を行ってから、肯定応答信号ACKを或るBMU5に返信する。
 或るBMU5が、PCS管理制御部3から肯定応答信号ACKを受け取ると、開始シーケンスが終了する。
 上述した開始シーケンスの終了後の通常シーケンスでは、図7の容量学習処理が開始される。図11は、通常シーケンスを示している。図11に示す通常シーケンスでは、まず、或るBMU5は、或るBMU5に対応する組電池7を定電流(例えば、7.68A)で充電する旨の定電流充電指令を、或るBMU5と通信可能なPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から定電流充電指令を受け取ると、或るBMU5からの定電流充電指令に対する肯定応答信号ACKを或るBMU5に返信する。
 その後、或るBMU5に対応する組電池7の直列電圧、あるいは、或るBMU5に対応する組電池7内の各電池パック電圧の最大値が或る電圧閾値になると、或るBMU5は、或るBMU5に対応する組電池7を定電圧で充電する旨の定電圧充電指令を、或るBMU5と通信可能なPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から定電圧充電指令を受け取ると、或るBMU5からの定電圧充電指令に対する肯定応答信号ACKを或るBMU5に返信する。
 そして、或るBMU5は、或るBMU5に対応する組電池7内のどれか1つ以上の電池パックから満充電フラグ受け取ると、或るBMU5に対応する組電池7が満充電になったと判断し、充電停止指令をPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から充電停止指令を受け取ると、或るBMU5からの充電停止指令に対する肯定応答信号ACKを或るBMU5に返信する。ここまでの動作によって、図7に示すフローチャートのステップS50の処理が終了する。
 次に、或るBMU5は、或るBMU5に対応する組電池7が電力ラインから切り離されるように或るBMU5に対応するPCS2の状態を制御することを要求するターン・オフ指令を、PCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5からターン・オフ指令を受け取ると、或るBMU5に対応する組電池7が電力ラインから切り離されるように或るBMU5に対応するPCS2の状態を制御した後、或るBMU5に肯定応答信号ACKを返信する。或るBMU5は、ターン・オフ指令に対する肯定応答信号ACKをPCS管理制御部3から受け取ると、図7に示すフローチャートのステップS60及びステップS70の処理を行い、その後、或るBMU5に対応する組電池7内の全ての電池パックにブロードキャストでターゲット電圧の情報と放電指令を送信する。或るBMU5に対応する組電池7内の各電池パックは、或るBMU5からブロードキャストでターゲット電圧の情報と放電指令を受け取ると、ブロック放電状態を或るBMU5に返信する。そして、或るBMU5に対応する組電池7内の各電池パックは、ターゲット電圧までの放電を完了すると、ブロック放電状態OFFを或るBMU5に送信する。或るBMU5が、或るBMU5に対応する組電池7内の全ての電池パックからブロック放電状態OFFを受け取ると、図7に示すフローチャートのステップS80の処理が終了する。
 次に、或るBMU5は、或るBMU5に対応する組電池7と電力ラインとが接続されるように或るBMU5に対応するPCS2の状態を制御することを要求するターン・オン指令を、PCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5からターン・オン指令を受け取ると、或るBMU5と対応しているPCS2の予備充電及び或るBMU5に対応している組電池7と電力ラインとの接続を或るBMU5に対応するPCS2に行わせた後、或るBMU5に肯定応答信号ACKを返信する。
 或るBMU5は、ターン・オン指令に対する肯定応答信号ACKをPCS管理制御部3から受け取ると、或るBMU5に対応する組電池7を定電流(例えば、7.68A)で充電する旨の定電流充電指令を、或るBMU5と通信可能なPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から定電流充電指令を受け取ると、或るBMU5からの定電流充電指令に対する肯定応答信号ACKを或るBMU5に返信する。
 その後、或るBMU5に対応する組電池7の直列電圧、あるいは、或るBMU5に対応する組電池7内の各電池パック電圧の最大値が或る電圧閾値になると、或るBMU5は、或るBMU5に対応する組電池7を定電圧で充電する旨の定電圧充電指令を、或るBMU5と通信可能なPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から定電圧充電指令を受け取ると、或るBMU5からの定電圧充電指令に対する肯定応答信号ACKを或るBMU5に返信する。
 そして、或るBMU5は、或るBMU5に対応する組電池7内のどれか1つ以上の電池パックから満充電フラグ受け取ると、或るBMU5に対応する組電池7が満充電になったと判断し、充電停止指令をPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から充電停止指令を受け取ると、或るBMU5からの充電停止指令に対する肯定応答信号ACKを或るBMU5に返信する。或るBMU5は、充電停止指令に対する肯定応答信号ACKを受け取ると、各電池パックを満充電に設定するための要求を各電池パックに送信する。或るBMU5に対応する組電池7内の各電池パックは、満充電に設定するための要求を或るBMU5から受け取ると、満充電の設定を行い、満充電フラグを或るBMU5に返信する。或るBMU5が、或るBMU5に対応する組電池7の全ての電池パックから満充電フラグを受け取ると、図7に示すフローチャートのステップS90の処理が終了する。
 次に、或るBMU5は、或るBMU5に対応する組電池7を定電流(例えば、19.2A)で放電する旨の放電指令を、PCS管理制御部3に送信する。PCS管理制御部3は、放電指令に対する肯定応答信号ACKを或るBMU5に返信する。
 或るBMU5は、或るBMU5に対応する組電池7内のどれか1つ以上の電池パックから残容量少フラグ(SOCが8%になったことを示すフラグ)を受け取ると、或るBMU5に対応する組電池7が第1所定レベル迄放電されたと判断し、放電停止指令をPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から放電停止指令を受け取ると、或るBMU5に肯定応答信号ACKを返信する。尚、本実施形態では、残容量少フラグを、SOCが8%になったことを示すフラグとしたが、8%は例示であるので他の値であってもよい。また、或るBMU5は、或るBMU5に対応する組電池7内のどれか1つ以上の電池パックから残容量少フラグ(SOCが8%になったことを示すフラグ)を受け取ると、放電停止指令をPCS管理制御部3に送信するのではなく、或るBMU5に対応する組電池7内のどれか1つ以上の電池パックから放電終止フラグ(SOCが0%になったことを示すフラグ)を受け取ると、放電停止指令をPCS管理制御部3に送信するようにしてもよい。
 或るBMU5は、放電停止指令に対する肯定応答信号ACKをPCS管理制御部3から受け取ると、容量学習要求を各電池パックにブロードキャストで送信する。各電池パックは、容量学習要求を或るBMU5から受け取ると、放電容量の積算結果から満充電容量を更新すると共に残容量少フラグを或るBMU5に送信する。尚、ここでも残容量少フラグの代わりに放電終止フラグを用いることが可能である。ここまでの動作により、図7に示すフローチャートのステップS100の処理が終了する。
 次に、或るBMU5は、或るBMU5に対応する組電池7を定電流(例えば、7.68A)で充電する旨の定電流充電指令を、或るBMU5と通信可能なPCS管理制御部3に送信する。PCS管理制御部3は、或るBMU5から定電流充電指令を受け取ると、或るBMU5からの定電流充電指令に対する肯定応答信号ACKを或るBMU5に返信する。
 その後、或るBMU5は、所定のSOCまたは所定の電圧まで充電されたことを検知すると、或るBMU5に対応する組電池7が第2所定レベル迄充電されたと判断し、充電停止指令を、或るBMU5と通信可能なPCS管理制御部3に送信する。
 ここで、所定のSOCまで充電されたことを検知する場合、或るBMU5に対応する組電池7内の各電池パックで計算されるSOCを用いてもよく、或るBMU5で計算されるSOCを用いてもよい。或るBMU5に対応する組電池7内の各電池パックで計算されるSOCを用いるのであれば、例えば、或るBMU5に対応する組電池7内のどれか1つ以上の電池パックが所定のSOCになると、所定のSOCまで充電されたことを検知するようにしてもよく、また例えば、或るBMU5に対応する組電池7内の各電池パックの平均SOCが所定のSOCになると、所定のSOCまで充電されたことを検知するようにしてもよい。また、所定の電圧まで充電されたことを検知する場合、或るBMU5に対応する組電池7内の各電池パックで検出される電池パック電圧を用いてもよく、或るBMU5で検出される組電池7の直列電圧を用いてもよい。或るBMU5に対応する組電池7内の各電池パックで検出される電池パック電圧を用いるのであれば、或るBMU5に対応する組電池7内の各電池パックで検出される電池パック電圧のどれか1つ以上が所定の電圧になると、所定の電圧まで充電されたことを検知するようにすればよい。
 PCS管理制御部3は、或るBMU5から充電停止指令を受け取ると、或るBMU5からの充電停止指令に対する肯定応答信号ACKを或るBMU5に返信する。ここまでの動作により、図7に示すフローチャートのステップS110の処理が終了する。
 尚、通常シーケンス中、PCS管理制御部3は、通信可能なBMU5に対して、BMU5の状態を周期的に報告させるために、BMU状態取得指令を周期的に送信する。
 また、通常シーケンス中、BMU5は、PCS管理制御部3に対して、自己の状態を周期的に報告するために、BMU状態応答(上記BMU状態取得指令の応答信号)を周期的に送信する。
 また、通常シーケンスにおいて、定電流充電が実施できない場合には、定電流充電の代わりに定電力充電を実施するようにする。例えば、定電流値が7.68Aである場合、定電力値を5.17kWにするとよい。この計算は組電池7を14直列の電池パックで構成し、各電池パックの公称電圧48.1Vを想定した場合である。尚、定電流値の7.68A、定電力値の5.17kWは例示であるので、それぞれ他の値であってもよい。
 また、通常シーケンスにおいて、定電流放電が実施できない場合には、定電流放電の代わりに定電力放電を実施するようにする。例えば、定電流値が19.2Aである場合、定電力値を12.93kWにするとよい。この計算は組電池7を14直列の電池パックで構成し、各電池パックの公称電圧48.1Vを想定した場合である。尚、定電流値の19.2A、定電力値の12.93kWは例示であるので、それぞれ他の値であってもよい。
 上述した通常シーケンスが正常に終了すると、終了シーケンスが実行される。図12は、終了シーケンスを示している。図12に示す終了シーケンスでは、或るBMU5は、容量学習完了メッセージをマスタBMU6に送信すると共に、容量学習完了メッセージを或るBMU5と通信可能なPCS管理制御部3にも送信する。マスタBMU6とPCS管理制御部3はそれぞれ或るBMU5に肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6とPCS管理制御部3から肯定応答信号ACKを受け取ると、通常の充放電モードに戻る。
 上述した通常シーケンスが正常に終了しなかった場合、エラーシーケンスが実行される。図13は、エラーシーケンスを示している。図13に示すエラーシーケンスでは、或るBMU5は、容量学習失敗メッセージをマスタBMU6に送信すると共に、容量学習失敗メッセージを或るBMU5と通信可能なPCS管理制御部3にも送信する。マスタBMU6とPCS管理制御部3はそれぞれ或るBMU5に肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6とPCS管理制御部3から肯定応答信号ACKを受け取ると、通常の充放電モードに戻る。
 上述した通常シーケンスの実行中に諸事情によって、マスタBMU6又はPCS管理制御部3から容量学習の中止が要求される場合がある。このような場合に実行される中止シーケンスについて説明する。
 図14は、中止シーケンスの第1パターンを示している。図14に示す中止シーケンスでは、まず、マスタBMU6が、容量学習中止要求指令を或るBMU5に送信する。或るBMU5は、マスタBMU6から容量学習中止要求指令を受け取ると、肯定応答信号ACKを返信すると共に、或るBMU5と通信可能なPCS管理制御部3に容量学習中止許可指令を送信する。或るBMU5と通信可能なPCS管理制御部3は、或るBMU5から容量学習中止許可指令を受け取ると、肯定応答信号ACKを返信する。或るBMU5は、或るBMU5と通信可能なPCS管理制御部3から肯定応答信号ACKを受け取ると、容量学習中止要求受諾メッセージをマスタBMU6に送信する。マスタBMU6は、或るBMU5から容量学習中止要求受諾メッセージを受け取ると、肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6から容量学習中止要求受諾メッセージに対する肯定応答信号ACKを受け取ると、容量学習失敗メッセージをマスタBMU6に送信すると共に、容量学習失敗メッセージを或るBMU5と通信可能なPCS管理制御部3にも送信する。マスタBMU6とPCS管理制御部3はそれぞれ或るBMU5に肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6とPCS管理制御部3から肯定応答信号ACKを受け取ると、通常の充放電モードに戻る。
 ここで、図14の中止シーケンスの第1パターンにおける許可待ちのシーケンスを図15に示す。
 図15に示す中止シーケンスでは、まず、マスタBMU6が、容量学習中止要求指令を或るBMU5に送信する。或るBMU5は、マスタBMU6から容量学習中止要求指令を受け取ると、肯定応答信号ACKを返信すると共に、或るBMU5と通信可能なPCS管理制御部3に容量学習中止許可指令を送信する。或るBMU5と通信可能なPCS管理制御部3は、或るBMU5から容量学習中止許可指令を受け取ると、容量学習を中止することに不都合がある場合に、否定応答信号NACKを返信する。
 或るBMU5は、或るBMU5と通信可能なPCS管理制御部3から否定応答信号NACKを受け取ると、容量学習中止要求不受諾メッセージをマスタBMU6に送信する。
 マスタBMU6は、或るBMU5から容量学習中止要求不受諾メッセージを受け取ると、肯定応答信号ACKを返信し、その後、所定の期間が経過すると、再度、容量学習中止要求指令を或るBMU5に送信する。
 上記の動作は、或るBMU5と通信可能なPCS管理制御部3が、或るBMU5から送られてくる容量学習中止許可指令に対して肯定応答信号ACKを返信するまで繰り返される。或るBMU5と通信可能なPCS管理制御部3が、或るBMU5から送られてくる容量学習中止許可指令に対して肯定応答信号ACKを返信すると、それ以後は図14と同様のシーケンス動作となる。
 図16は、中止シーケンスの第2パターンを示している。図16に示す中止シーケンスでは、まず、或るBMU5と通信可能なPCS管理制御部3が、容量学習中止要求指令を或るBMU5に送信する。或るBMU5は、或るBMU5と通信可能なPCS管理制御部3から容量学習中止要求指令を受け取ると、肯定応答信号ACKを返信すると共に、マスタBMU6に容量学習中止要求受諾メッセージを送信する。マスタBMU6は、或るBMU5から容量学習中止要求受諾メッセージを受け取ると、肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6から容量学習中止要求受諾メッセージに対する肯定応答信号ACKを受け取ると、容量学習失敗メッセージをマスタBMU6に送信すると共に、容量学習失敗メッセージを或るBMU5と通信可能なPCS管理制御部3にも送信する。マスタBMU6とPCS管理制御部3はそれぞれ或るBMU5に肯定応答信号ACKを返信する。或るBMU5は、マスタBMU6とPCS管理制御部3から肯定応答信号ACKを受け取ると、通常の充放電モードに戻る。
 尚、上述した実施形態では、図7のステップS10~S30の各判定の判定主体がマスタBMU6であるが、本発明はこれに限定されることはなく、マスタコントローラ1が、図7のステップS10~S30の各判定を行うようにしてもよい。
 マスタコントローラ1が図7のステップS10~S30の各判定を行う場合、マスタコントローラ1が、容量学習の対象となる組電池7に対応するBMU5と通信可能なPCS管理制御部3を介して、容量学習の対象となる組電池7に対応するBMU5に容量学習要求指令を送信するようにすればよい。
   1 マスタコントローラ
   2 PCS
   3 PCS管理制御部
   4 BSU
   5 BMU
   6 マスタBMU
   7 組電池
   100 負荷
   200 電力系統
   601 制御部
   602 光通信部
   603 通信インタフェース
   700 電池パック
   701 蓄電池セル
   702 電池状態検出部
   703 制御部
   704 光通信部
   705 放電部

Claims (7)

  1.  充放電可能な電池パックが複数直列接続されて構成される組電池と、前記組電池を制御する制御部とを備える組電池の制御システムであって、
     前記電池パックは放電部を有しており、
     前記制御部が、
     前記組電池を満充電にしてから前記組電池内の前記電池パックそれぞれの開放電圧を確認し、
     前記組電池内の前記電池パックそれぞれの開放電圧の確認結果を基にターゲット電圧を決定し、
     前記組電池内の開放電圧が前記ターゲット電圧よりも大きかった前記電池パックを対象として、開放電圧が前記ターゲット電圧になる迄前記放電部による放電を行わせ、
     前記組電池を再び満充電にしてから前記組電池を第1所定レベル迄放電し、前記組電池内の前記電池パックそれぞれの容量学習を実行することを特徴とする組電池の制御システム。
  2.  前記ターゲット電圧が、前記組電池内の前記電池パックの開放電圧の最大値未満、前記組電池内の前記電池パックの開放電圧の最小値以上に設定されることを特徴とする請求項1に記載の組電池の制御システム。
  3.  前記ターゲット電圧が、前記組電池内の前記電池パックの開放電圧の最小値に設定されることを特徴とする請求項2に記載の組電池の制御システム。
  4.  前記組電池と前記制御部間の通信を光回線を用いて行うことを特徴とする請求項1~3のいずれか1項に記載の組電池の制御システム。
  5.  前記制御部は、
     前記組電池内の開放電圧が前記ターゲット電圧よりも大きかった前記電池パックを対象として、開放電圧が前記ターゲット電圧になる迄前記放電部による放電を行わせる期間中、前記組電池を電力ラインから切り離すことを特徴とする請求項1~4のいずれか1項に記載の組電池の制御システム。
  6.  前記制御部が、
     前記組電池内の前記電池パックそれぞれの容量学習を実行した後、前記組電池を第1所定レベルよりも電荷の蓄積量が多い第2所定レベル迄充電する請求項1~5のいずれか1項に記載の組電池の制御システム。
  7.  請求項1~6のいずれか1項に記載の組電池の制御システムを備え、前記組電池の制御システムが有する組電池を複数備え、
     複数の前記組電池が並列に接続されることを特徴とする電力供給システム。
PCT/JP2012/064317 2011-06-03 2012-06-01 組電池の制御システム及びそれを備える電力供給システム WO2012165629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12792646.7A EP2717422A4 (en) 2011-06-03 2012-06-01 CONTROL SYSTEM FOR MOUNTED CELLS AND POWER SUPPLY SYSTEM THEREWITH
JP2013518194A JP5967378B2 (ja) 2011-06-03 2012-06-01 組電池の制御システム及びそれを備える電力供給システム
US14/036,051 US9093864B2 (en) 2011-06-03 2013-09-25 Assembled cell control system and power supply system comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011125508 2011-06-03
JP2011-125508 2011-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/036,051 Continuation US9093864B2 (en) 2011-06-03 2013-09-25 Assembled cell control system and power supply system comprising same

Publications (1)

Publication Number Publication Date
WO2012165629A1 true WO2012165629A1 (ja) 2012-12-06

Family

ID=47259477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064317 WO2012165629A1 (ja) 2011-06-03 2012-06-01 組電池の制御システム及びそれを備える電力供給システム

Country Status (4)

Country Link
US (1) US9093864B2 (ja)
EP (1) EP2717422A4 (ja)
JP (1) JP5967378B2 (ja)
WO (1) WO2012165629A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019373A (ja) * 2013-07-10 2015-01-29 ダタン・エヌエックスピー・セミコンダクターズ・カンパニー・リミテッドDatang NXP Semiconductors Co., Ltd. デイジーチェーン通信バスおよびプロトコル
JP2015065056A (ja) * 2013-09-25 2015-04-09 株式会社デンソー 電池システム
JP2017173071A (ja) * 2016-03-23 2017-09-28 日産自動車株式会社 セル電圧計測装置
CN109617101A (zh) * 2018-11-14 2019-04-12 国电南京自动化股份有限公司 一种储能变流器充放电模式自动切换控制方法
WO2019135300A1 (ja) * 2018-01-05 2019-07-11 株式会社カネカ 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
JP2019125482A (ja) * 2018-01-16 2019-07-25 株式会社Gsユアサ 監視装置、監視方法及びコンピュータプログラム
WO2019142711A1 (ja) * 2018-01-16 2019-07-25 株式会社Gsユアサ 監視装置、監視方法、コンピュータプログラム、劣化判定方法、劣化判定装置、及び劣化判定システム
WO2020137914A1 (ja) * 2018-12-28 2020-07-02 株式会社Gsユアサ データ処理装置、データ処理方法、及びコンピュータプログラム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406301B2 (en) 2002-07-15 2013-03-26 Thomson Licensing Adaptive weighting of reference pictures in video encoding
JP5925755B2 (ja) * 2013-12-20 2016-05-25 プライムアースEvエナジー株式会社 電池モジュールの調整方法及び電池モジュールの調整装置
US20150280465A1 (en) * 2014-03-25 2015-10-01 Go-Tech Energy Co., Ltd. Battery sharing system
US9469350B2 (en) 2015-03-16 2016-10-18 Thunder Power Hong Kong Ltd. Underbody manufacturing method and vehicle underbody
US10173687B2 (en) 2015-03-16 2019-01-08 Wellen Sham Method for recognizing vehicle driver and determining whether driver can start vehicle
US9550406B2 (en) 2015-03-16 2017-01-24 Thunder Power Hong Kong Ltd. Thermal dissipation system of an electric vehicle
US9533551B2 (en) 2015-03-16 2017-01-03 Thunder Power Hong Kong Ltd. Electric vehicle thermal management system with series and parallel structure
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US10703211B2 (en) 2015-03-16 2020-07-07 Thunder Power New Energy Vehicle Development Company Limited Battery pack, battery charging station, and charging method
US9499067B2 (en) * 2015-03-16 2016-11-22 Thunder Power Hong Kong Ltd. Power management in electric vehicles
TWI581542B (zh) 2016-03-01 2017-05-01 財團法人工業技術研究院 電池管理系統及應用其之電池系統
KR20190089401A (ko) * 2018-01-22 2019-07-31 삼성전자주식회사 광 신호를 이용하여 배터리 셀을 관리하기 위한 데이터를 송수신하는 배터리 관리 시스템
US11095564B2 (en) 2018-10-22 2021-08-17 Sami Saleh ALWAKEEL Multiple-attributes classifiers-based broadcast scheme for vehicular ad-hoc networks
JP7096193B2 (ja) * 2019-04-04 2022-07-05 矢崎総業株式会社 電池制御ユニット及び電池システム
WO2020215154A1 (en) 2019-04-23 2020-10-29 Dpm Technologies Inc. Fault tolerant rotating electric machine
JP7244635B2 (ja) * 2020-03-27 2023-03-22 東莞新能安科技有限公司 並列接続電池セットの充放電管理方法、電子装置及び電気システム
WO2022188053A1 (zh) * 2021-03-10 2022-09-15 华为数字能源技术有限公司 分布式供电系统和控制方法
EP4305721A1 (en) * 2021-04-14 2024-01-17 Hitachi Energy Ltd Control platform architecture for grid integration of large-scale grid energy storage system
CA3217299A1 (en) * 2021-05-04 2022-11-10 Tung Nguyen Battery control systems and methods
CN117337545A (zh) 2021-05-13 2024-01-02 Exro技术公司 驱动多相电机的线圈的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050517A (ja) * 1998-07-29 2000-02-18 Toyota Central Res & Dev Lab Inc 組電池の充電装置
JP2007325451A (ja) 2006-06-02 2007-12-13 Nec Tokin Corp 複数のリチウムイオン二次電池を直列接続した組電池の電圧バランス調整法
JP2009159794A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 充電状態均等化装置及びこれを具えた組電池システム
JP2009178040A (ja) 2006-03-10 2009-08-06 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
JP2010272219A (ja) 2009-05-19 2010-12-02 Ntt Facilities Inc リチウムイオン組電池用充電制御装置およびリチウムイオン組電池システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0958632A4 (en) * 1996-07-17 2002-03-06 Duracell Inc SYSTEM FOR CONTROLLING THE OPERATION OF A BATTERY
KR100333771B1 (ko) * 1998-06-15 2002-08-27 삼성전자 주식회사 충전가능한배터리의용량캘리브레이팅방법
JP3709766B2 (ja) * 2000-06-28 2005-10-26 日産自動車株式会社 組電池の容量調整方法
JP3624800B2 (ja) * 2000-06-28 2005-03-02 日産自動車株式会社 組電池の容量調整方法
US6417648B2 (en) * 2000-06-28 2002-07-09 Nissan Motor Co., Ltd. Method of and apparatus for implementing capacity adjustment in battery pack
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
CN101119036B (zh) * 2007-07-23 2011-01-19 柏禄帕迅能源科技有限公司 用于电动汽车的电池管理系统
JP5529402B2 (ja) * 2008-08-13 2014-06-25 三菱重工業株式会社 蓄電システム
KR101552903B1 (ko) * 2008-12-01 2015-09-15 삼성에스디아이 주식회사 배터리 관리 시스템 및 방법
CN101882699B (zh) * 2010-06-28 2012-12-05 惠州市亿能电子有限公司 动力电池组充放电均衡控制方法
JP5598914B2 (ja) * 2010-08-05 2014-10-01 三洋電機株式会社 電力供給システム
US8749201B2 (en) * 2010-10-05 2014-06-10 GM Global Technology Operations LLC Battery pack capacity learn algorithm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050517A (ja) * 1998-07-29 2000-02-18 Toyota Central Res & Dev Lab Inc 組電池の充電装置
JP2009178040A (ja) 2006-03-10 2009-08-06 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
JP2007325451A (ja) 2006-06-02 2007-12-13 Nec Tokin Corp 複数のリチウムイオン二次電池を直列接続した組電池の電圧バランス調整法
JP2009159794A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 充電状態均等化装置及びこれを具えた組電池システム
JP2010272219A (ja) 2009-05-19 2010-12-02 Ntt Facilities Inc リチウムイオン組電池用充電制御装置およびリチウムイオン組電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717422A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019373A (ja) * 2013-07-10 2015-01-29 ダタン・エヌエックスピー・セミコンダクターズ・カンパニー・リミテッドDatang NXP Semiconductors Co., Ltd. デイジーチェーン通信バスおよびプロトコル
JP2015065056A (ja) * 2013-09-25 2015-04-09 株式会社デンソー 電池システム
JP2017173071A (ja) * 2016-03-23 2017-09-28 日産自動車株式会社 セル電圧計測装置
JPWO2019135300A1 (ja) * 2018-01-05 2020-12-03 株式会社カネカ 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
US11588343B2 (en) 2018-01-05 2023-02-21 Kaneka Corporation Power storage device, power storage system, power supply system, and control method for power storage device
WO2019135300A1 (ja) * 2018-01-05 2019-07-11 株式会社カネカ 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
JP6991247B2 (ja) 2018-01-05 2022-01-12 株式会社カネカ 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
WO2019142711A1 (ja) * 2018-01-16 2019-07-25 株式会社Gsユアサ 監視装置、監視方法、コンピュータプログラム、劣化判定方法、劣化判定装置、及び劣化判定システム
JP2019125482A (ja) * 2018-01-16 2019-07-25 株式会社Gsユアサ 監視装置、監視方法及びコンピュータプログラム
US11677253B2 (en) 2018-01-16 2023-06-13 Gs Yuasa International Ltd. Monitoring device, monitoring method, computer program, deterioration determination method, deterioration determination device, and deterioration determination system
CN109617101B (zh) * 2018-11-14 2022-04-22 国电南京自动化股份有限公司 一种储能变流器充放电模式自动切换控制方法
CN109617101A (zh) * 2018-11-14 2019-04-12 国电南京自动化股份有限公司 一种储能变流器充放电模式自动切换控制方法
WO2020137914A1 (ja) * 2018-12-28 2020-07-02 株式会社Gsユアサ データ処理装置、データ処理方法、及びコンピュータプログラム
JP7390310B2 (ja) 2018-12-28 2023-12-01 株式会社Gsユアサ データ処理装置、データ処理方法、及びコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2012165629A1 (ja) 2015-02-23
EP2717422A1 (en) 2014-04-09
US20140021924A1 (en) 2014-01-23
JP5967378B2 (ja) 2016-08-10
US9093864B2 (en) 2015-07-28
EP2717422A4 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5967378B2 (ja) 組電池の制御システム及びそれを備える電力供給システム
US9088052B2 (en) Battery multi-series system and communication method thereof
JP5734370B2 (ja) 電池制御回路
US8742762B2 (en) Accumulator control device and method and system for auxiliary electrical power supply
US9045047B2 (en) Storage battery
US8763413B2 (en) Storage type air conditioning system, and operation method and control program for storage type air conditioning system
JP6007385B2 (ja) 蓄電装置およびその制御方法ならびに電源装置
US20130193925A1 (en) Communication system and storage battery system
WO2013127150A1 (zh) 一种供电方法、供电设备及基站
WO2012157475A1 (ja) 電源システム及び電源システムの識別情報設定方法並びに電池ユニット
US20140001866A1 (en) Communication system and rechargeable battery system
JP2013051820A (ja) 組電池の制御システム及びそれを備える電力供給システム
KR20090092890A (ko) 배터리 시스템의 배터리 균등 충전장치
US9921597B2 (en) Power control apparatus, power control system, and control method
KR101439233B1 (ko) 보조 전원을 구비한 배터리 관리 시스템
KR20210044028A (ko) 개별 팩간 에너지 차이를 이용한 병렬 전지팩 충전방법 및 시스템
EP3072207A1 (en) Charging bus
CN110571897A (zh) 电池充电器、电池系统
CN220896363U (zh) 配电设备及配电系统
CN110809845B (zh) 蓄电池组件
KR20220152875A (ko) 다수의 배터리 모듈을 병렬로 적층한 에너지 저장장치의 충전 및 방전 방법
JP2005287178A (ja) 電子機器
CN113043908A (zh) 电动车的充电管理系统和电动车的充电管理方法
KR20180109564A (ko) 전력 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012792646

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE