WO2016189762A1 - 透明導電性フィルム - Google Patents

透明導電性フィルム Download PDF

Info

Publication number
WO2016189762A1
WO2016189762A1 PCT/JP2015/080694 JP2015080694W WO2016189762A1 WO 2016189762 A1 WO2016189762 A1 WO 2016189762A1 JP 2015080694 W JP2015080694 W JP 2015080694W WO 2016189762 A1 WO2016189762 A1 WO 2016189762A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
conductive film
hard coat
thickness
Prior art date
Application number
PCT/JP2015/080694
Other languages
English (en)
French (fr)
Inventor
大貴 加藤
望 藤野
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015203740A external-priority patent/JP2016225270A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/575,686 priority Critical patent/US20180282857A1/en
Priority to KR1020177013635A priority patent/KR102530122B1/ko
Priority to CN201580078944.3A priority patent/CN107533880B/zh
Publication of WO2016189762A1 publication Critical patent/WO2016189762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a transparent conductive film.
  • a transparent conductive film obtained by laminating a transparent conductive layer on a transparent base film has been widely used for devices such as touch panels.
  • a transparent conductive layer is etched by photolithography etc. and a wiring pattern is formed.
  • the wiring pattern of the transparent conductive layer is miniaturized, there is a high possibility that even a slight scratch may cause a disconnection or a short circuit. Therefore, it is known that a hard coat layer is provided between the base film and the transparent conductive layer to increase the scratch resistance of the transparent conductive film (Patent Document 1, Patent No. 4214063).
  • an optical adjustment layer (IM layer: Index Matching Layer index matching layer) is provided between the transparent conductive layer and the hard coat layer It is known that the wiring pattern is less visible (Patent Document 2, Patent No. 5425351). Since the optical adjustment layer reduces the difference in reflectance between the portion with and without the wiring pattern, the wiring pattern is less visible.
  • the transparent conductive layer needs to be crystallized in order to reduce the resistance value of the transparent conductive layer, but the gas (for example, moisture) contained in the base film is released, and the gas (outgas) This may inhibit the crystallization of the transparent conductive layer.
  • the gas for example, moisture
  • the gas outgas
  • the conventional transparent conductive film has a problem that the scratch resistance is insufficient.
  • the crystallization of the transparent conductive layer is hindered. The speed became slow, and there was a problem that it was not possible to respond to crystallization in a short time necessary for mass production.
  • An object of the present invention is to realize a transparent conductive film having high scratch resistance and capable of completing crystallization of a transparent conductive layer in a short time.
  • the inventor of the present application when appropriately balancing the thickness of the hard coat layer and the thickness of the optical adjustment layer, increases the scratch resistance of the transparent conductive film and increases the crystallization speed of the transparent conductive layer. was completed in a short time, and the transparent conductive film of the present invention was completed.
  • the transparent conductive film of the present invention is a transparent conductive film in which at least a hard coat layer, an optical adjustment layer, and a transparent conductive layer are laminated in this order on a transparent base film (FIG. 1). .
  • the transparent conductive layer contains indium.
  • the thickness of the hard coat layer is 250 nm to 2000 nm.
  • the thickness of the optical adjustment layer is 2% to 10% of the thickness of the hard coat layer.
  • the optical adjustment layer contains a metal oxide.
  • the metal oxide contains silicon dioxide (SiO 2 ).
  • the hard coat layer is any one of zirconium oxide ZrO 2 , silicon dioxide SiO 2 , titanium oxide TiO 2 , tin oxide SnO 2 , aluminum oxide Al 2 O 3 , or two of them. Contains inorganic fine particles of more than seeds.
  • the refractive index of the hard coat layer is 1.60 to 1.70.
  • an anti-peeling layer is further laminated between the hard coat layer and the optical adjustment layer (FIG. 2).
  • the peel prevention layer contains an inorganic compound having a non-stoichiometric composition.
  • the peel prevention layer contains silicon atoms.
  • the peel preventing layer contains a silicon compound.
  • the peeling prevention layer contains silicon oxide.
  • the peel prevention layer has a region where the binding energy of Si2p bond is 98.0 eV or more and less than 103.0 eV.
  • the thickness of the peeling prevention layer is 1.5 nm to 8 nm.
  • a functional layer is further laminated on the main surface of the base film opposite to the transparent conductive layer (FIG. 3).
  • the functional layer is composed of an anti-blocking hard coat layer.
  • a transparent conductive film having high scratch resistance and completing the crystallization of the transparent conductive layer in a short time was realized. Crystallization of the transparent conductive layer is completed by, for example, heat treatment at 140 ° C. for 30 minutes.
  • FIG. 1 is a schematic view of a transparent conductive film 10 according to the first embodiment of the present invention.
  • a hard coat layer 12 In the transparent conductive film 10, a hard coat layer 12, an optical adjustment layer 13, and a transparent conductive layer 14 are laminated in this order on a transparent base film 11.
  • the thickness of the hard coat layer 12 is 250 nm to 2000 nm.
  • the thickness of the optical adjustment layer 13 is 2% to 10% of the thickness of the hard coat layer 12. Crystallization of the transparent conductive layer 14 is completed by, for example, heat treatment at 140 ° C. for 30 minutes.
  • the degree of change in the resistance value with respect to the heating time of the transparent conductive layer 14 is adopted as a criterion for determining the completion of the crystallization of the transparent conductive layer 14. For example, if the surface resistance value after the heat treatment at 140 ° C. for 30 minutes is 1.1 times or less the surface resistance value after the heat treatment at 140 ° C. for 90 minutes, the crystallization is completed.
  • FIG. 2 is a schematic view of a transparent conductive film 20 according to the second embodiment of the present invention.
  • the difference from the transparent conductive film 10 of FIG. 1 is that a peeling prevention layer 15 is further laminated between the hard coat layer 12 and the optical adjustment layer 13.
  • the peeling prevention layer 15 has a function of improving the adhesion between the hard coat layer 12 and the optical adjustment layer 13. As a result, the peeling prevention layer 15 improves the adhesion between the base film 11 and the optical adjustment layer 13. Details of the peeling preventing layer 15 will be described later.
  • FIG. 3 is a schematic view of a transparent conductive film 30 according to the third embodiment of the present invention.
  • the difference from the transparent conductive film 10 of FIG. 1 is that the functional layer 16 is laminated on the lower surface of the base film 11. Details of the functional layer 16 will be described later.
  • the base film 11 is, for example, a polyester film made of polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN) or the like, a polyethylene film, a polypropylene film, a cellophane film, a diacetylcellulose film, a triacetylcellulose film, or an acetylcellulose.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Butyrate film polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, polyether ether ketone film, polyether sulfone Film, polyetherimide film, polyimide film, fluororesin film, It consists of a plastic film such as a lyamide film, an acrylic resin film, a norbornene resin film, or a cycloolefin resin film.
  • the material of the base film 11 is not limited to these, polyethylene terephthalate excellent in transparency, heat resistance, and mechanical properties is particularly preferable.
  • the thickness of the base film 11 is preferably 20 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto. However, if the thickness of the base film 11 is less than 20 ⁇ m, handling may be difficult. Moreover, when the thickness of the base film 11 exceeds 300 ⁇ m, there is a possibility that the transparent conductive films 10, 20, 30 are too thick when mounted on a touch panel or the like.
  • the in-plane heat shrinkage rate of the base film 11 is preferably ⁇ 0.5% to + 1.5%, more preferably ⁇ 0.5% to + 1.0%, and ⁇ 0.5% to + 0.7%. Is more preferable, and -0.5% to + 0.5% is most preferable.
  • the heat shrinkage rate of the base film 11 exceeds 1.5%, for example, when heat is applied to the base film 11 as when the transparent conductive layer 14 is heated and crystallized, the base film 11 Is greatly contracted and an excessive compressive stress is applied to each layer, so that each layer may be easily peeled off.
  • the heat shrinkage rate of the transparent conductive films 10, 20, 30 is substantially the same as the heat shrinkage rate of the base film 11.
  • the surface temperature of the film-forming roll is preferably set at the time of sputtering in order not to excessively increase the thermal shrinkage of the base film 11. 20 ° C. to + 100 ° C., more preferably ⁇ 20 ° C. to + 50 ° C., and further preferably ⁇ 20 ° C. to 0 ° C.
  • the heat shrinkage rate of the base film 11 tends to increase.
  • the hard coat layer 12 has a function (scratch resistance) for preventing the wiring pattern formed on the transparent conductive layer 14 from being broken and short-circuited by scratching the transparent conductive film 10.
  • the hard coat layer 12 may contain inorganic fine particles 17. By dispersing the inorganic fine particles 17 in the hard coat layer 12, the refractive index of the hard coat layer 12 can be adjusted, the transmittance of the transparent conductive film 10 can be improved, or the reflection hue can be more neutral (achromatic color). ).
  • the hard coat layer 12 contains, for example, an organic resin, preferably contains an organic resin and inorganic fine particles 17, and more preferably consists essentially of the organic resin and inorganic fine particles 17.
  • the organic resin include a curable resin.
  • the curable resin include an active energy ray curable resin that is cured by irradiation with active energy rays (such as ultraviolet rays and electron beams), a thermosetting resin that is cured by heating, and preferably an active energy ray.
  • active energy ray curable resin that is cured by irradiation with active energy rays (such as ultraviolet rays and electron beams)
  • a thermosetting resin that is cured by heating
  • preferably an active energy ray A curable resin is mentioned.
  • Examples of the active energy ray-curable resin include a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule.
  • Examples of such a functional group include a vinyl group and a (meth) acryloyl group (methacryloyl group and / or acryloyl group).
  • Examples of the active energy ray-curable resin include (meth) acrylic resin (acrylic resin and / or methacrylic resin) containing a functional group in the side chain. These resins can be used alone or in combination of two or more.
  • the material and size of the inorganic fine particles 17 contained in the hard coat layer 12 are not particularly limited.
  • zirconium oxide ZrO 2 , silicon dioxide SiO 2 , titanium oxide TiO 2 , tin oxide SnO 2 , aluminum oxide Al Fine particles such as 2 O 3 are included. Two or more of these fine particles may be contained in the hard coat layer 12.
  • the particle size (average particle diameter) of the inorganic fine particles 17 is preferably 10 nm to 80 nm, and more preferably 20 nm to 40 nm. If the particle size is less than 10 nm, the particles may not be uniformly dispersed in the resin.
  • the hard coat layer 12 is formed by, for example, applying and drying an organic resin (for example, an acrylic resin) containing the inorganic fine particles 17 on the base film 11, but the material and the manufacturing method are not limited thereto. .
  • the content ratio of the inorganic fine particles 17 is, for example, 5 parts by weight or more and 100 parts by weight or less, preferably 10 parts by weight or more and 65 parts by weight or less with respect to 100 parts by weight of the resin.
  • the refractive index of the resin (hard coat layer 12) containing the inorganic fine particles 17 can be adjusted.
  • the thickness of the hard coat layer 12 is preferably 250 nm to 2000 nm. If the thickness of the hard coat layer 12 is less than 250 nm, the scratch resistance may be insufficient. Since the hard coat layer 12 uses an organic solvent or a water solvent, it contains a large amount of gas. Therefore, when the thickness of the hard coat layer 12 exceeds 2000 nm, the amount of gas (typically moisture) contained in the hard coat layer 12 becomes excessive, and the gas (outgas) released from the hard coat layer 12 is optically adjusted. Barriering with the layer 13 becomes difficult, and crystallization of the transparent conductive layer 14 may be hindered.
  • the refractive index of the hard coat layer 12 is not particularly limited, but is preferably 1.60 to 1.70. If the refractive index of the hard coat layer 12 deviates from this range (1.60 to 1.70), the wiring pattern formed on the transparent conductive layer 14 may be easily visible.
  • the refractive index of the hard coat layer 12 is measured by an Abbe refractometer.
  • the hard coat layer is applied by, for example, a phantom coat method, a die coat method, a spin coat method, a spray coat method, a gravure coat method, a roll coat method, a bar coat method, or the like. Specifically, first, a dilute solution obtained by diluting a resin component with a solvent is prepared, and then the dilute solution is applied to a substrate film and dried.
  • the solvent examples include an organic solvent and an aqueous solvent, and an organic solvent is preferable.
  • Organic solvents include alcohols such as ethanol and isopropyl alcohol, ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), esters such as ethyl acetate and butyl acetate, and aromatic compounds such as toluene and xylene. Etc., and preferably a mixed solvent thereof is used.
  • the resin component is diluted with a solvent so that the solid content concentration is, for example, 0.5 parts by weight or more and 5.0 parts by weight or less.
  • the drying temperature of the diluted solution applied to the base film is, for example, 60 ° C. or more and 250 ° C. or less, and more preferably 80 ° C. or more and 200 ° C. or less. If the drying temperature is too low, the solvent remains, which may lead to film quality deterioration of the transparent conductive layer. If the drying temperature is too high, wrinkles may enter the film, which may hinder the appearance.
  • the drying time is, for example, 1 minute to 60 minutes, and more preferably 2 minutes to 30 minutes. If the drying time is too short, the solvent remains, which may lead to film quality deterioration of the transparent conductive layer. If the drying time is too long, wrinkles may enter the film, which may hinder the appearance.
  • the optical adjustment layer 13 is a layer for adjusting the refractive index of the transparent conductive films 10, 20 and 30.
  • the optical adjustment layer 13 can optimize the optical characteristics (for example, reflection characteristics) of the transparent conductive films 10, 20, and 30.
  • the difference in reflectance between the portion with the wiring pattern of the transparent conductive layer 14 and the portion without the wiring pattern is reduced, so that the wiring pattern formed on the transparent conductive layer 14 is less visible. (The wiring pattern is preferably not visually recognized).
  • the optical adjustment layer 13 is formed by a dry method (dry process). Since the optical adjustment layer 13 formed by the dry method has high hardness, the scratch resistance of the transparent conductive film 10 is increased in combination with the function of the hard coat layer 12. Further, since the optical adjustment layer 13 formed by the dry method has a gas barrier property, the outgas generated from the base film 11 and the hard coat layer 12 is prevented from entering the transparent conductive layer 14, and the transparent conductive layer 14 is crystallized. Inhibition and film quality deterioration can be prevented.
  • the constituent material of the optical adjustment layer 13 is not particularly limited.
  • silicon monoxide (SiO), silicon dioxide (SiO 2 ), silicon oxide (SiOx: x is more than 1 and less than 2), aluminum oxide (Al 2 O 3 ), metal oxides such as zirconium oxide (ZrO 2 ) and titanium oxide (TiO 2 ) are preferred.
  • silicon dioxide (SiO 2 ) (usually called silicon oxide or silica) is particularly preferable as a constituent material of the optical adjustment layer 13.
  • the optical adjustment layer 13 may be a single metal oxide layer. Further, a stacked body of metal oxide layers in which a plurality of metal oxide layers having different metal atoms are stacked may be used.
  • the thickness of the optical adjustment layer 13 is preferably 2% to 10% of the thickness of the hard coat layer 12.
  • the gas barrier property of the optical adjustment layer 13 may be insufficient. If the gas barrier property of the optical adjustment layer 13 is insufficient, crystallization of the transparent conductive layer 14 may not be completed in a short time. If the thickness of the optical adjustment layer 13 exceeds 10% of the thickness of the hard coat layer 12, the bending resistance of the transparent conductive films 10, 20, and 30 may be deteriorated. Further, the productivity of the optical adjustment layer 13 may be reduced.
  • the reason why the thickness of the optical adjustment layer 13 is linked to the thickness of the hard coat layer 12 is that the outgas from the hard coat layer 12 increases as the thickness of the hard coat layer 12 increases, so that the outgas is shielded. This is because the thickness of the optical adjustment layer 13 must also be increased. On the contrary, when the thickness of the hard coat layer 12 is thin, the outgas from the hard coat layer 12 is reduced. Therefore, the thickness of the optical adjustment layer 13 for shielding the outgas may be thin.
  • the optical adjustment layer 13 is formed by a sputtering method, a vapor deposition method, a CVD method, or the like, but the manufacturing method is not limited to these.
  • the optical adjustment layer 13 is particularly preferably formed by sputtering.
  • a film formed by a sputtering method can stably obtain a particularly dense film among dry methods. Therefore, the optical adjustment layer 13 formed by a sputtering method has high scratch resistance.
  • the sputtering method has a higher film density than, for example, a vacuum deposition method, the optical adjustment layer 13 having excellent gas barrier properties can be obtained.
  • the pressure of the sputtering gas (typically argon gas) when forming the optical adjustment layer 13 is preferably 0.09 Pa to 0.5 Pa, more preferably 0.09 Pa to 0.3 Pa.
  • the pressure of the sputtering gas is preferably 0.09 Pa to 0.5 Pa, more preferably 0.09 Pa to 0.3 Pa.
  • the film formation can be efficiently performed by using the reactive sputtering method.
  • silicon (Si) is used as a sputtering target
  • argon gas is introduced as a sputtering gas
  • oxygen gas is introduced as a reactive gas in an amount of 10 to 50% by pressure with respect to the argon gas.
  • High silicon dioxide (SiO 2 ) film can be obtained.
  • the density of the power applied to the target is preferably 1.0 W / cm 2 to 6.0 W / cm 2 .
  • the power density exceeds 6.0 W / cm 2 , the surface roughness (for example, arithmetic average roughness Ra) of the optical adjustment layer 13 increases, and the surface resistance of the transparent conductive layer 14 may increase.
  • the power density is less than 1.0 W / cm 2 , the film formation rate is lowered, so that the productivity of the optical adjustment layer 13 may be lowered.
  • the transparent conductive layer 14 is a thin film layer mainly composed of a metal conductive oxide (for example, indium oxide), or a composite metal oxide containing a main metal (for example, indium) and one or more kinds of impurity metals (for example, tin). It is a transparent thin film layer mainly composed of an object.
  • the transparent conductive layer 14 is not particularly limited in its configuration and material as long as it has optical transparency in the visible light region and has conductivity.
  • Examples of the transparent conductive layer 14 include indium oxide, indium tin oxide (ITO: Indium Tin Oxide), indium zinc oxide (IZO: Indium Zinc Oxide), indium gallium zinc oxide (IGZO: Indium Gallium Zinc Oxide), etc.
  • Indium tin oxide (ITO) is preferred from the viewpoint of low specific resistance and transmission hue.
  • the transparent conductive layer 14 may further contain impurity metal elements such as titanium Ti, magnesium Mg, aluminum Al, gold Au, silver Ag, and copper Cu.
  • the transparent conductive layer 14 is formed by sputtering, vapor deposition, or the like, but the manufacturing method is not limited to this.
  • the amount of the impurity metal element (for example, tin Sn) in the transparent conductive layer 14 is 0.5% by weight to 15% by weight with respect to the total amount of indium oxide (In 2 O 3 ) and the impurity metal element (for example, tin Sn). %, Preferably 3 to 15% by weight, more preferably 5 to 13% by weight. If the tin oxide is less than 0.5% by weight, the surface resistance value of the transparent conductive layer 14 may be increased. If the tin oxide exceeds 15% by weight, the surface resistance value in the plane of the transparent conductive layer 14 may be reduced. Uniformity may be lost.
  • the impurity metal element for example, tin Sn
  • the transparent conductive layer 14 (for example, indium tin oxide layer) formed at a low temperature is amorphous, and can be converted from amorphous to crystalline by heat treatment. When the transparent conductive layer 14 is converted to crystalline, its surface resistance value is lowered.
  • the heat treatment conditions for converting the transparent conductive layer 14 to crystalline are preferably 140 ° C. and 30 minutes or less from the viewpoint of productivity.
  • the thickness of the hard coat layer 12 is as thin as 250 nm to 2000 nm, there is little outgas from the hard coat layer 12. Further, since the thickness of the optical adjustment layer 13 is 2% to 10% of the thickness of the hard coat layer 12, the gas barrier property of the optical adjustment layer 13 is high. Therefore, the crystallization of the transparent conductive layer 14 is hardly affected by the outgas from the base film 11 and the hard coat layer 12 and can be completed at 140 ° C. for 30 minutes or less.
  • the arithmetic surface roughness Ra of the transparent conductive layer 14 is preferably 0.1 nm or more and 1.6 nm or less. If the arithmetic surface roughness Ra exceeds 1.6 nm, the surface resistance value of the transparent conductive layer 14 may increase. When the arithmetic surface roughness Ra is less than 0.1 nm, when the transparent conductive layer 14 is patterned by photolithography to form a wiring, the adhesion between the photoresist and the transparent conductive layer 14 decreases, and the photoresist is peeled off. There is a risk of poor etching.
  • the thickness of the transparent conductive layer 14 is preferably 15 nm or more and 40 nm or less, and more preferably 15 nm or more and 35 nm or less. By setting the thickness of the transparent conductive layer 14 within the above range, the transparent conductive films 10, 20, and 30 can be suitably applied to a touch panel. If the thickness of the transparent conductive layer 14 is less than 15 nm, the surface resistance value of the transparent conductive layer 14 may increase. If the thickness of the transparent conductive layer 14 exceeds 40 nm, there is a concern that the light transmittance of the transparent conductive films 10, 20, and 30 may be reduced or cracks may be generated in the transparent conductive layer 14 due to an increase in internal stress.
  • the transparent conductive layer 14 may be a laminated film in which two or more transparent conductive films are laminated.
  • the peeling prevention layer 15 may be formed between the hard coat layer 12 and the optical adjustment layer 13.
  • the peeling preventing layer 15 between the hard coat layer 12 and the optical adjustment layer 13
  • the adhesion between the hard coat layer 12 and the optical adjustment layer 13 can be increased.
  • the adhesion of the optical adjustment layer 13 can be increased.
  • the anti-peeling layer 15 contains an inorganic atom, and is preferably formed from an inorganic substance such as an inorganic substance alone or an inorganic compound, more preferably from an inorganic compound.
  • inorganic atoms contained in the peeling prevention layer 15 include silicon (Si), niobium (Nb), palladium (Pd), titanium (Ti), indium (In), tin (Sn), cadmium (Cd), Zinc (Zn), antimony (Sb), aluminum (Al), tungsten (W), molybdenum (Mo), chromium (Cr), tantalum (Ta), nickel (Ni), platinum (Pt), gold (Au),
  • metal atoms such as silver (Ag) and copper (Cu), and preferably silicon (Si).
  • the peeling prevention layer 15 is formed of a silicon simple substance or a silicon compound, and preferably is formed of a silicon compound from the viewpoint of transparency.
  • the inorganic compound is preferably composed of an inorganic compound having a non-stoichiometric composition.
  • Examples of the inorganic compound having a non-stoichiometric composition include inorganic nitrides such as silicon nitride (for example, SiNx, 0.1 ⁇ x ⁇ 1.3), silicon carbide (for example, SiCx, 0.1 ⁇ x ⁇ 1.0) and the like, inorganic oxides such as silicon oxide (for example, SiOx, 0.1 ⁇ x ⁇ 2.0), and the like are preferable, and silicon oxide (for example, SiOx, 0.0. 1 ⁇ x ⁇ 2.0). These inorganic compounds may have a single composition or a mixture of a plurality of compositions.
  • inorganic nitrides such as silicon nitride (for example, SiNx, 0.1 ⁇ x ⁇ 1.3), silicon carbide (for example, SiCx, 0.1 ⁇ x ⁇ 1.0) and the like
  • inorganic oxides such as silicon oxide (for example, SiOx, 0.1 ⁇ x ⁇ 2.0), and the like are prefer
  • the anti-peeling layer 15 is made of a non-stoichiometric composition, for example, a silicon compound, by adjusting the binding energy of the Si2p orbit to an appropriate range,
  • the peeling prevention function can be improved from (for example, silicon dioxide SiO 2 ).
  • the element constituting the separation preventing layer 15 is preferably the same metal as the metal oxide contained in the optical adjustment layer 13 or a different metal. If the element constituting the peeling prevention layer 15 is the same metal as the metal oxide (for example, silicon dioxide SiO 2 ) contained in the optical adjustment layer 13 (silicon Si with respect to silicon dioxide SiO 2 ), the peeling prevention layer 15 and the optical Since the adhesion between the adjustment layers 13 is further improved, the same kind of metal is more preferable.
  • the thickness of the peeling prevention layer 15 is preferably 1.5 nm to 8 nm. By setting the thickness of the peeling prevention layer 15 to 1.5 nm to 8 nm, both good optical characteristics and high adhesion can be achieved. When the thickness of the peeling prevention layer 15 is less than 1.5 nm, the adhesion improvement by the peeling prevention layer 15 may be insufficient. When the thickness of the peeling prevention layer 15 exceeds 8 nm, light reflection / absorption by free electrons in the peeling prevention layer 15 occurs, the light transmittance of the transparent conductive film 20 becomes low, and the transparent conductive film 20 The display on the liquid crystal panel or the like underneath may be difficult to see.
  • the peeling prevention layer 15 is formed by sputtering method, vapor deposition method, CVD method, etc.
  • a manufacturing method is not limited to these.
  • the sputtering method is preferable from the viewpoint of film density and productivity.
  • a metal target is applied with a power density of 1.0 W / cm 2 in a vacuum atmosphere of 0.2 Pa to 0.5 Pa into which argon is introduced.
  • the anti-peeling layer 15 can be obtained by sputtering. At that time, it is preferable to form a film without introducing a reactive gas such as oxygen.
  • the thickness of the peeling prevention layer 15 can be measured using a transmission electron microscope (TEM) image taken in the cross-sectional direction.
  • TEM transmission electron microscope
  • a difference in contrast occurs between the peeling prevention layer 15 and the optical adjustment layer 13.
  • the difference in contrast may not be clear.
  • XPS X-ray Photoelectron Spectroscopy
  • ESCA Electron Spectroscopy for Chemical Analysis
  • the binding energy of the Si2p orbit obtained by X-ray photoelectron spectroscopy in the peeling prevention layer 15 is, for example, 98.0 eV or more, preferably 99.0 eV or more, More preferably, it is 100.0 eV or more, More preferably, it is 102.0 eV or more, for example, less than 104.0 eV, Preferably, it is less than 103.0 eV, More preferably, it is 102.8 eV or less.
  • the peel prevention layer 15 having a Si2p orbital bond energy within the above range, the adhesion of the peel prevention layer 15 can be improved.
  • the peeling prevention layer 15 when the bond energy in the peeling prevention layer 15 is 99.0 eV or more and less than 103.0 eV, the peeling prevention layer 15 contains a silicon compound having a non-stoichiometric composition. Adhesion can be more reliably improved while maintaining light transmittance. Note that the distribution of the binding energy in the thickness direction inside the peeling prevention layer 15 may have a gradient that gradually increases from the peeling prevention layer 15 side toward the optical adjustment layer 13 side.
  • the depth profile (measured pitch is 1 nm in terms of silicon dioxide SiO 2) by X-ray photoelectron spectroscopy. ) Is measured, and when the binding energy continuously changes, the binding energy value at a point 1 nm or more above the terminal film 11 side of the peeling prevention layer 15 (preferably a point 1 nm above) is adopted. It shall be.
  • the inorganic atoms constituting the peeling prevention layer 15 and the optical adjustment layer 13 are the same (for example, when the peeling prevention layer 15 is a silicon Si compound and the optical adjustment layer 13 is silicon dioxide SiO 2 ), the optical adjustment layer 13 is used.
  • the depth position where the element ratio of inorganic atoms (Si) becomes half the peak value is defined as the end portion of the peeling prevention layer 15.
  • the functional layer 16 may be formed on the surface of the base film 11 opposite to the transparent conductive layer 14.
  • the functional layer 16 is not particularly limited, and examples thereof include an anti-blocking hard coat layer and an optical adjustment layer.
  • the anti-blocking hard coat layer is a layer for preventing the transparent conductive film 30 adjacent in the radial direction from adhering (blocking) when the long transparent conductive film 30 is wound in a roll shape.
  • the optical adjustment layer 13 is a layer for improving the transmittance of the transparent conductive film 30 or making it difficult to visually recognize a pattern portion when the transparent conductive layer 14 is patterned.
  • Examples and Comparative Examples Although specific embodiment of the transparent conductive film of this invention is described comparing an Example and a comparative example, this invention is not limited to these Examples.
  • Example 1 has a layer structure shown in FIG.
  • the base film 11 is a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m.
  • the hard coat layer 12 is an acrylic resin layer having a thickness of 700 nm.
  • the hard coat layer 12 contains zirconium oxide (ZrO 2 ) fine particles (inorganic fine particles 17) having an average particle diameter of 20 nm.
  • the optical adjustment layer 13 is a silicon dioxide (SiO 2 ) layer having a thickness of 15 nm.
  • the thickness of the optical adjustment layer 13 is 2.1% of the thickness of the hard coat layer 12.
  • the transparent conductive layer 14 is an indium tin oxide (ITO) layer having a thickness of 20 nm.
  • the weight ratio of tin to the total of indium oxide and tin in the transparent conductive layer 14 is 10%.
  • UV curable resin composition containing acrylic resin and zirconium oxide (ZrO 2 ) fine particles (average particle size 20 nm) is methylisobutylketone (MIBK) so that the solid content concentration is 5% by weight.
  • MIBK methylisobutylketone
  • the obtained diluted composition was applied to one main surface of a base film 11 made of polyethylene terephthalate (PET) having a thickness of 100 ⁇ m (product name “Diafoil”, manufactured by Mitsubishi Plastics) and dried.
  • PET polyethylene terephthalate
  • the diluted composition was cured by irradiating ultraviolet rays to form a hard coat layer 12 having a thickness of 700 nm.
  • the base film 11 on which the hard coat layer 12 was formed was wound to produce a roll of the base film 11.
  • optical adjustment layer 13 (and a transparent conductive layer 14 described later) was formed using a roll-to-roll type sputtering apparatus.
  • the roll of the base film 11 on which the hard coat layer 12 was formed was placed in the supply unit of the sputtering apparatus and stored for 15 hours in a vacuum state of 1 ⁇ 10 ⁇ 4 Pa or less. Then, the base film 11 was drawn out from the supply part, the base film 11 was wound around the film-forming roll, and the optical adjustment layer 13 was formed into a film by sputtering method.
  • the film formation tank is set to an argon gas atmosphere of 0.2 Pa, an electric power density of 3.5 W / cm 2 is introduced while introducing oxygen gas by impedance control, and a silicon (Si) target (Sumitomo Metal Mining Co., Ltd.).
  • the optical adjustment layer 13 silicon dioxide (SiO 2 ) layer having a thickness of 15 nm was formed.
  • a transparent conductive layer 14 was formed following the optical adjustment layer 13.
  • the base film 11 on which the optical adjustment layer 13 was formed was wound around a film-forming roll, and a 20 nm thick transparent conductive layer 14 was formed by a sputtering method.
  • the argon gas Ar: oxygen gas O 2 pressure ratio is 99: 1
  • the total gas pressure is 0.3 Pa
  • the power density is 1.0 W / cm 2.
  • a transparent conductive layer 14 was formed by sputtering an indium tin oxide target made of a sintered body of tin oxide and 90 wt% indium oxide. Then, the base film 11 was wound up in a storage part, and the roll of the transparent conductive film 10 was completed.
  • Example 2 A transparent conductive film 10 of Example 2 was produced in the same manner as in Example 1 except that the thickness of the hard coat layer 12 was 300 nm and the thickness of the optical adjustment layer 13 was 12 nm. The thickness of the optical adjustment layer 13 is 4.0% of the thickness of the hard coat layer 12.
  • Example 3 A transparent conductive film 10 of Example 3 was produced in the same manner as in Example 1 except that the thickness of the hard coat layer 12 was 300 nm and the thickness of the optical adjustment layer 13 was 30 nm. The thickness of the optical adjustment layer 13 is 10.0% of the thickness of the hard coat layer 12.
  • Comparative Example 1 A transparent conductive film of Comparative Example 1 was produced in the same manner as in Example 1 except that the thickness of the hard coat layer was 1200 nm and the thickness of the optical adjustment layer was 12 nm. The thickness of the optical adjustment layer is 1.0% of the thickness of the hard coat layer.
  • Comparative Example 2 A transparent conductive film of Comparative Example 2 was produced in the same manner as in Example 1 except that the thickness of the hard coat layer was 1600 nm and the thickness of the optical adjustment layer was 12 nm. The thickness of the optical adjustment layer is 0.75% of the thickness of the hard coat layer.
  • Comparative Example 3 A transparent conductive film of Comparative Example 3 was produced in the same manner as in Example 1 except that the thickness of the hard coat layer was 200 nm and the thickness of the optical adjustment layer was 12 nm. The thickness of the optical adjustment layer is 6.0% of the thickness of the hard coat layer.
  • Table 1 shows the configurations and characteristics of Examples 1 to 3 and Comparative Examples 1 to 3 of the transparent conductive film of the present invention.
  • the crystallization of the transparent conductive layer is desirably completed by a heat treatment at 140 ° C. for 30 minutes from the viewpoint of productivity.
  • the transparent conductive layers of Examples 1 to 3 had no problem of productivity because crystallization was completed by a heat treatment at 140 ° C. for 30 minutes (circle mark).
  • the transparent conductive layers of Comparative Examples 1 and 2 had a problem in productivity because crystallization was not completed by a heat treatment at 140 ° C. for 30 minutes (X mark).
  • the reason for the slow crystallization of the transparent conductive layers of Comparative Examples 1 and 2 is that the thickness of the optical adjustment layer is less than 2% of the thickness of the hard coat layer, so that the outgas from the hard coat layer is sufficiently blocked by the optical adjustment layer. This is because it penetrated into the transparent conductive layer without inhibiting crystallization.
  • the transparent conductive layer of Comparative Example 3 had no problem with crystallization because crystallization was completed by heat treatment at 140 ° C. for 30 minutes (but Comparative Example 3 had a problem with scratch resistance).
  • a transparent conductive film heated at 140 ° C. for 90 minutes was cut into a rectangular shape having a length of 5 cm and a width of 11 cm, and a silver paste was applied to 5 mm portions at both ends on the long side, followed by natural drying for 48 hours.
  • the side of the transparent conductive film opposite to the transparent conductive layer was affixed to a glass plate with an adhesive to obtain a sample for evaluating scratch resistance.
  • a 10-line pen tester manufactured by MTM Co.
  • the surface of the transparent conductive layer of the sample for scratch resistance evaluation was rubbed with a length of 10 cm.
  • the resistance value (R0) of the sample for scuffing evaluation before rubbing and the resistance value (R20) of the sample for scuffing evaluation after rubbing are set to the central position (5.5 cm) on the long side of the sample for scuffing evaluation.
  • the position was measured by applying a tester to the silver paste portions at both ends, and the resistance change rate (R20 / R0) was determined to evaluate the scratch resistance.
  • a case where the resistance change rate was 1.5 or less was evaluated as “good scratch resistance” ( ⁇ ), and a case where the resistance change rate exceeded 1.5 was evaluated as “bad scratch resistance” (X).
  • Abrasion child Anticon Gold (manufactured by Contec) ⁇ Load: 127 g / cm 2 ⁇ Abrasion speed: 13 cm / sec (7.8 m / min) -Number of scratches: 20 times (10 round trips)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】耐擦傷性が高く、透明導電層の結晶化が短時間で完了する透明導電性フィルムを実現する。 【解決手段】透明な基材フィルム11上に、ハードコート層12と、光学調整層13と、透明導電層14がこの順に積層された透明導電性フィルム10。ハードコート層12の厚さが250nm~2000nmであり、光学調整層13の厚さがハードコート層の厚さの2%~10%である。透明導電層14の結晶化は、例えば、140℃、30分の熱処理により完了する。 

Description

透明導電性フィルム
 本発明は透明導電性フィルムに関する。
 従来から、透明な基材フィルムに透明導電層を積層した透明導電性フィルムが、タッチパネル等の機器に広く使用されている。透明導電性フィルムをタッチパネル等に使用する際、透明導電層をフォトリソグラフィ等によりエッチングして、配線パターンを形成する。近年、透明導電層の配線パターンが微細化するに従い、僅かの傷でも配線の断線やショートが発生するおそれが高くなっている。そのため基材フィルムと透明導電層の間にハードコート層を設けて、透明導電性フィルムの耐擦傷性を高くすることが知られている(特許文献1、特許第4214063号)。
 一方、タッチパネル等において、透明導電層の配線パターンが視認されることは望ましくないため、透明導電層とハードコート層の間に光学調整層(IM層 : Index Matching Layerインデックスマッチング層)を設けて、配線パターンを視認されにくくすることが知られている(特許文献2、特許第5425351号)。光学調整層により、配線パターンのある部分と無い部分の反射率の差が小さくなるため、配線パターンが視認されにくくなる。
 また、透明導電性フィルムにおいては、透明導電層の抵抗値を下げるため、透明導電層の結晶化が必要であるが、基材フィルムの含有ガス(例えば水分)が放出され、そのガス(アウトガス)により透明導電層の結晶化が阻害されることがある。それを防ぐため、ガスバリア性のある光学調整層を用いることが知られている(特許文献3、特許第5245893号)。
 しかし、近年、透明導電層内に形成される配線パターンの微細化が高度に進行したため、従来の透明導電性フィルムでは、耐擦傷性が不十分であるという問題が生じた。また、近年、生産性向上のため、透明導電層の結晶化時間の短縮が強く要求されるようになったが、従来の透明導電性フィルムでは、透明導電層の結晶化が阻害されて結晶化速度が遅くなり、量産の際に必要な短時間での結晶化に応えられないという問題が生じた。
特許第4214063号公報 特許第5425351号公報 特許第5245893号公報
 本発明の目的は、耐擦傷性が高く、しかも、透明導電層の結晶化が短時間で完了し得る透明導電性フィルムを実現することである。
 本願発明者は、ハードコート層の厚さと光学調整層の厚さを適切にバランスさせると、透明導電性フィルムの耐擦傷性が高くなるとともに、透明導電層の結晶化速度が速くなり、結晶化が短時間で完了することを見出し、本発明の透明導電性フィルムを完成した。
 (1)本発明の透明導電性フィルムは、透明な基材フィルム上に、少なくとも、ハードコート層、光学調整層および透明導電層がこの順に積層されてなる透明導電性フィルムである(図1)。透明導電層はインジウムを含む。ハードコート層の厚さは250nm~2000nmである。光学調整層の厚さはハードコート層の厚さの2%~10%である。
 (2)本発明の透明導電性フィルムにおいて、光学調整層は金属酸化物を含む。
 (3)本発明の透明導電性フィルムにおいて、金属酸化物は二酸化ケイ素(SiO2)を含む。
 (4)本発明の透明導電性フィルムにおいて、ハードコート層は酸化ジルコニウムZrO2、二酸化ケイ素SiO2、酸化チタンTiO2、酸化スズSnO2、酸化アルミニウムAl2O3のいずれか、あるいはそれらの2種以上の無機微粒子を含む。
 (5)本発明の透明導電性フィルムにおいて、ハードコート層の屈折率は1.60~1.70である。
 (6)本発明の透明導電性フィルムにおいては、ハードコート層と光学調整層の間に更に剥離防止層が積層されている(図2)。
 (7)本発明の透明導電性フィルムにおいて、剥離防止層は非化学量論的組成(non-stoichiometric)の無機化合物を含む。
 (8)本発明の透明導電性フィルムにおいて、剥離防止層はケイ素原子を含む。
 (9)本発明の透明導電性フィルムにおいて、剥離防止層はケイ素化合物を含む。
 (10)本発明の透明導電性フィルムにおいて、剥離防止層はケイ素酸化物を含む。
 (11)本発明の透明導電性フィルムにおいて、剥離防止層は、Si2p結合の結合エネルギーが98.0eV以上103.0eV未満の領域を有する。
 (12)本発明の透明導電性フィルムにおいて、剥離防止層の厚さは1.5nm~8nmである。
 (13)本発明の透明導電性フィルムにおいては、基材フィルムの、透明導電層とは反対側の主面に、更に機能層が積層されている(図3)。
 (14)本発明の透明導電性フィルムにおいて、機能層はアンチブロッキングハードコート層からなる。
 本発明により、耐擦傷性が高く、透明導電層の結晶化が短時間で完了する透明導電性フィルムが実現された。透明導電層の結晶化は、例えば、140℃、30分の熱処理により完了する。
本発明の透明導電性フィルムの第1の実施形態の模式図 本発明の透明導電性フィルムの第2の実施形態の模式図 本発明の透明導電性フィルムの第3の実施形態の模式図
 [透明導電性フィルム]
 図1は本発明の第1の実施形態に係る透明導電性フィルム10の模式図である。透明導電性フィルム10では、透明な基材フィルム11上に、ハードコート層12と、光学調整層13と、透明導電層14がこの順に積層されている。ハードコート層12の厚さは250nm~2000nmである。光学調整層13の厚さは、ハードコート層12の厚さの2%~10%である。透明導電層14の結晶化は、例えば、140℃、30分の熱処理により完了する。
 本明細書中では、透明導電層14の結晶化完了の判断基準として、透明導電層14の加熱時間に対する抵抗値変化の程度を採用する。例えば、140℃、30分加熱処理後の表面抵抗値が、140℃90分加熱処理後の表面抵抗値の、1.1倍以下であれば、結晶化が完了したものとする。
 図2は本発明の第2の実施形態に係る透明導電性フィルム20の模式図である。図1の透明導電性フィルム10との違いは、ハードコート層12と光学調整層13の間に更に剥離防止層15が積層されていることである。剥離防止層15はハードコート層12と光学調整層13の密着力を向上させる機能を有する。結果的に剥離防止層15により、基材フィルム11と光学調整層13の密着力が向上する。剥離防止層15の詳細は後述する。
 図3は本発明の第3の実施形態に係る透明導電性フィルム30の模式図である。図1の透明導電性フィルム10との違いは、基材フィルム11の下面に機能層16が積層されていることである。機能層16の詳細は後述する。
 [基材フィルム]
 基材フィルム11は、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等からなるポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファンフィルム、ジアセチルセルロースフィルム、トリアセチルセルロースフィルム、アセチルセルロースブチレートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリメチルペンテンフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッ素樹脂フィルム、ポリアミドフィルム、アクリル樹脂フィルム、ノルボルネン系樹脂フィルム、シクロオレフィン樹脂フィルム等のプラスチックフィルムからなる。基材フィルム11の材質がこれらに限定されることはないが、透明性、耐熱性、および機械特性に優れたポリエチレンテレフタレートが、特に好ましい。
 基材フィルム11の厚さは、好ましくは、20μm以上、300μm以下であるが、これに限定されることはない。但し基材フィルム11の厚さが20μm未満であると取り扱いが困難になるおそれがある。また基材フィルム11の厚さが300μmを超えると、タッチパネルなどに実装したときに、透明導電性フィルム10、20、30が厚過ぎるという問題が生じるおそれがある。
 基材フィルム11の面内の熱収縮率は、-0.5%~+1.5%が好ましく、-0.5%~+1.0%がより好ましく、-0.5%~+0.7%が更に好ましく、-0.5%~+0.5%が最も好ましい。基材フィルム11の熱収縮率が1.5%を超えると、例えば、透明導電層14を加熱・結晶化させた際のように、基材フィルム11に熱が加えられると、基材フィルム11が大きく収縮して、各層に過度な圧縮応力がかかることで、各層が剥がれやすくなる恐れがある。なお透明導電性フィルム10,20,30の熱収縮率は、基材フィルム11の熱収縮率と実質的には同じである。
 ロール・トゥ・ロール型スパッタリング装置で基材フィルム11を搬送する場合、基材フィルム11の熱収縮率を過度に上昇させないために、スパッタリングの際に、成膜ロールの表面温度を、好ましくは-20℃~+100℃、より好ましくは-20℃~+50℃、更に好ましくは-20℃~0℃とする。一般に、基材フィルム11を成膜ロールによって、加熱しながら引張り搬送すると、基材フィルム11の熱収縮率が高くなる傾向がある。基材フィルム11の熱収縮率を高くしないため、成膜ロールによって基材フィルム11を冷却しながらスパッタリングを行なうことが好ましい。
 [ハードコート層]
 ハードコート層12は透明導電性フィルム10に傷がついて透明導電層14に形成された配線パターンが断線、ショートすることを防ぐ機能(耐擦傷性)を有する。ハードコート層12には無機微粒子17が含有されていてもよい。ハードコート層12に無機微粒子17を分散させることにより、ハードコート層12の屈折率を調整することができ、透明導電性フィルム10の透過率を向上させること、あるいは反射色相をよりニュートラル(無彩色)に近付けることができる。
 ハードコート層12は、例えば有機樹脂を含有し、好ましくは有機樹脂と無機微粒子17を含有し、より好ましくは、実質的に有機樹脂と無機微粒子17のみからなる。有機樹脂としては、例えば硬化性樹脂が挙げられる。硬化性樹脂としては、例えば、活性エネルギー線(紫外線、電子線など)を照射することで硬化する活性エネルギー線硬化性樹脂、加熱により硬化する熱硬化性樹脂などが挙げられ、好ましくは活性エネルギー線硬化性樹脂が挙げられる。
 活性エネルギー線硬化性樹脂は、例えば、分子中に重合性炭素-炭素二重結合を有する官能基を有するポリマーが挙げられる。そのような官能基としては、例えば、ビニル基、(メタ)アクリロイル基(メタクリロイル基および/またはアクリロイル基)などが挙げられる。活性エネルギー線硬化性樹脂としては、例えば、側鎖に官能基を含有する(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)などが挙げられる。これらの樹脂は、単独で使用でき、また2種以上併用して使用することもできる。
 ハードコート層12に含有される無機微粒子17の材料、サイズは特に限定されることはないが、例えば、酸化ジルコニウムZrO2、二酸化ケイ素SiO2、酸化チタンTiO2、酸化スズSnO2、酸化アルミニウムAl2O3などの微粒子などが挙げられる。これらの微粒子の2種以上がハードコート層12に含有されてもよい。無機微粒子17の粒子サイズ(平均粒径)は10nm~80nmが好ましく、20nm~40nmがより好ましい。粒子サイズが10nmを下回ると、樹脂内に粒子が均一に分散しなくなる恐れがあり、80nmを上回ると、表面に凹凸が生じ、透明導電層14の表面抵抗値が上昇する恐れがある。ハードコート層12は、例えば、無機微粒子17を含有した有機樹脂(例えばアクリル樹脂)を基材フィルム11に塗工・乾燥して形成されるが、材料や製法がこれに限定されることはない。
 無機微粒子17の含有割合は、樹脂100重量部に対して、例えば5重量部以上100重量部以下であり、好ましくは10重量部以上、65重量部以下である。無機微粒子17の含有割合を調整することで、無機微粒子17を含有した樹脂(ハードコート層12)の屈折率を調整することができる。
 ハードコート層12の厚さは、好ましくは、250nm~2000nmである。ハードコート層12の厚さが250nm未満であると、耐擦傷性が不足するおそれがある。ハードコート層12は有機溶媒あるいは水溶媒を用いるため含有ガスが多量に含まれる。そのため、ハードコート層12の厚さが2000nmを超えると、ハードコート層12の含有ガス(代表的には水分)の量が過多となり、ハードコート層12から放出されたガス(アウトガス)を光学調整層13でバリアすることが難しくなり、透明導電層14の結晶化が阻害されるおそれがある。
 ハードコート層12の屈折率は特に限定されることはないが1.60~1.70であることが好ましい。ハードコート層12の屈折率がこの範囲(1.60~1.70)を逸脱すると、透明導電層14に形成された配線パターンが視認されやすくなるおそれがある。ハードコート層12の屈折率は、アッベ屈折率計により測定される。
 ハードコート層は例えばファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法などにより塗工される。具体的には、まず、樹脂成分を溶媒で希釈した希釈液を調整し、続いて希釈液を基材フィルムに塗布乾燥して形成する。
 溶媒としては、たとえば、有機溶媒、水系溶媒などが挙げられ、好ましくは有機溶媒が挙げられる。有機溶媒としては、エタノール、イソプロピルアルコールなどのアルコール系、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)などのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、トルエン、キシレンなどの芳香族化合物などが挙げられ、好ましくはこれらの混合溶媒が用いられる。樹脂成分は溶媒により、固形分濃度が例えば、0.5重量部以上、5.0重量部以下となるように希釈して用いる。
 基材フィルムに塗布された希釈液の乾燥温度は、例えば60℃以上250℃以下であり、より好ましくは80℃以上200℃以下である。乾燥温度が低すぎると、溶媒が残留することにより、透明導電層の膜質劣化に繋がるおそれがある。乾燥温度が高すぎると、フィルムに皺が入り、外観上支障をきたすおそれがある。乾燥時間は、例えば1分以上60分以下であり、より好ましくは2分以上30分以下である。乾燥時間が短すぎると、溶媒が残留することにより、透明導電層の膜質劣化に繋がるおそれがある。乾燥時間が長すぎると、フィルムに皺が入り、外観上支障をきたすおそれがある。
 [光学調整層]
 光学調整層13は、透明導電性フィルム10,20,30の屈折率の調整のための層である。光学調整層13により透明導電性フィルム10,20,30の光学特性(例えば反射特性)を最適化することができる。光学調整層13を設けることにより、透明導電層14の配線パターンのある部分と配線パターンのない部分の反射率の差が小さくなるため、透明導電層14に形成された配線パターンが視認されにくくなる(配線パターンは、視認されないことが望ましい)。
 光学調整層13は乾式工法(ドライプロセス)により形成される。乾式工法により形成された光学調整層13は硬度が高いため、ハードコート層12の機能と合わせて透明導電性フィルム10の耐擦傷性が高くなる。また乾式工法により形成された光学調整層13はガスバリア性があるため、基材フィルム11やハードコート層12から発生するアウトガスが透明導電層14に侵入することを防ぎ、透明導電層14の結晶化阻害や膜質劣化を防止することができる。
 光学調整層13の構成材料は特に限定されないが、例えば、一酸化ケイ素(SiO)、二酸化ケイ素(SiO2)、亜酸化ケイ素(SiOx:xは1を超え2未満)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)等の金属酸化物が好ましい。中でも光学調整層13の構成材料として、二酸化ケイ素(SiO2)(通常これを酸化ケイ素あるいはシリカという)が特に好ましい。光学調整層13は、単層の金属酸化物層でもよい。また金属原子の異なる金属酸化物層が複数積層された金属酸化物層の積層体でもよい。
 光学調整層13の厚さは、ハードコート層12の厚さの2%~10%が好ましい。光学調整層13の厚さがハードコート層12の厚さの2%未満であると、光学調整層13のガスバリア性が不足することがある。光学調整層13のガスバリア性が不足すると、透明導電層14の結晶化が短時間で完了しなくなるおそれがある。光学調整層13の厚さがハードコート層12の厚さの10%を超えると、透明導電性フィルム10、20、30の耐屈曲性が悪化するおそれがある。また光学調整層13の生産性が低下するおそれがある。
 光学調整層13の厚さがハードコート層12の厚さとリンクしている理由は、ハードコート層12の厚さが厚くなるほど、ハードコート層12からのアウトガスが多くなるため、アウトガスを遮蔽するための光学調整層13の厚さも厚くしなければならないためである。逆にハードコート層12の厚さが薄い場合は、ハードコート層12からのアウトガスは少なくなるため、アウトガスを遮蔽するための光学調整層13の厚さは薄くてもよい。
 光学調整層13は、スパッタリング法、蒸着法、CVD法などにより成膜されるが、製法がこれらに限定されることはない。光学調整層13はスパッタリング法で成膜されることが特に好ましい。一般にスパッタリング法で形成した膜は、乾式工法の中でも、特に緻密な膜を安定して得ることができるため、スパッタリング法で形成した光学調整層13は耐擦傷性が高い。また一般にスパッタリング法は、例えば真空蒸着法と比べて形成される膜の密度が高いため、ガスバリア性に優れた光学調整層13を得ることができる。
 光学調整層13を成膜する際のスパッタリングガス(代表的にはアルゴンガス)の圧力は0.09Pa~0.5Paが好ましく、0.09Pa~0.3Paがより好ましい。スパッタリングガスの圧力を上記範囲とすることで、より緻密な膜を形成することができ、良好な耐擦傷性、ガスバリア性を得やすくなる。スパッタリングガスの圧力が0.5Paを超えると、緻密な膜が得られなくなるおそれがある。スパッタリングガスの圧力が0.09Paを下回ると放電が安定しなくなり、膜に空隙ができるおそれがある。
 スパッタリング法で光学調整層13を成膜する場合、反応性スパッタリング法を採用すると成膜が効率よくできる。例えばスパッタリングターゲットにケイ素(Si)を用い、スパッタリングガスとしてアルゴンガスを導入し、反応性ガスとして酸素ガスをアルゴンガスに対して10圧力%~50圧力%導入することにより、耐擦傷性、ガスバリア性の高い二酸化ケイ素(SiO2)膜が得られる。
 光学調整層13をスパッタリング法で成膜するとき、ターゲットに印加する電力の密度は1.0W/cm2~6.0W/cm2とすることが好ましい。電力密度が6.0W/cm2を超えると、光学調整層13の表面粗さ(例えば算術平均粗さRa)が大きくなり、透明導電層14の表面抵抗が上昇するおそれがある。電力密度が1.0W/cm2を下回ると成膜レートが低下するため、光学調整層13の生産性が低下するおそれがある。
 [透明導電層]
 透明導電層14は、金属の導電性酸化物(例えばインジウム酸化物)を主成分とする薄膜層、または主金属(例えばインジウム)と1種以上の不純物金属(例えばスズ)を含有する複合金属酸化物を主成分とする透明薄膜層である。透明導電層14は、可視光域で光透過性を有し、かつ、導電性を有するものであれば、その構成および材料が特に限定されることはない。
 透明導電層14として、例えば、インジウム酸化物、インジウムスズ酸化物(ITO : Indium Tin Oxide) 、インジウム亜鉛酸化物(IZO : Indium Zinc Oxide)、インジウムガリウム亜鉛酸化物(IGZO : Indium Gallium Zinc Oxide)等が用いられるが、低比抵抗や透過色相の観点からインジウムスズ酸化物(ITO)が好ましい。
 透明導電層14には、更にチタンTi、マグネシウムMg、アルミニウムAl、金Au、銀Ag、銅Cuなどの不純物金属元素が含まれていてもよい。透明導電層14は、スパッタリング法、蒸着法などにより形成されるが、製法がこれに限定されることはない。
 透明導電層14中の不純物金属元素(例えばスズSn)の量は、酸化インジウム(In2O3)と当該不純物金属元素(例えばスズSn)の合計量に対して0.5重量%~15重量%であることが好ましく、3重量%~15重量%であることがより好ましく、5重量%~13重量%であることがさらに好ましい。酸化スズが0.5重量%未満であると、透明導電層14の表面抵抗値が高くなるおそれがあり、酸化スズが15重量%を超えると、透明導電層14の面内の表面抵抗値の均一性が失われるおそれがある。
 低温で形成された透明導電層14(例えばインジウムスズ酸化物層)は非晶質であり、これを加熱処理することにより非晶質から結晶質に転化させることができる。透明導電層14は結晶質に転化するとその表面抵抗値が低くなる。透明導電層14を結晶質に転化させる際の熱処理の条件は、生産性の観点から、140℃、30分以下が好ましい。
 ハードコート層12の厚さが250nm~2000nmと薄いためハードコート層12からのアウトガスが少ない。更に光学調整層13の厚さがハードコート層12の厚さの2%~10%であるため光学調整層13のガスバリア性が高い。そのため、透明導電層14の結晶化は、基材フィルム11およびハードコート層12からのアウトガスの影響を受けにくく、140℃、30分以下で完了することができる。
 透明導電層14の算術表面粗さRaは0.1nm以上1.6nm以下であることが好ましい。算術表面粗さRaが1.6nmを超えると、透明導電層14の表面抵抗値が上昇するおそれがある。算術表面粗さRaが0.1nm未満であると、透明導電層14をフォトリソグラフィでパターニングして配線を形成する際、フォトレジストと透明導電層14の密着性が低下し、フォトレジストの剥離によるエッチング不良を起こすおそれがある。
 透明導電層14の厚さは15nm以上40nm以下であることが好ましく、15nm以上35nm以下であることがより好ましい。透明導電層14の厚さを前記の範囲とすることで、透明導電性フィルム10、20,30をタッチパネルに好適に適用することができる。透明導電層14の厚さが15nmを下回ると、透明導電層14の表面抵抗値が上昇するおそれがある。透明導電層14の厚さが40nmを超えると、透明導電性フィルム10、20,30の光の透過率の低下や、内部応力の上昇による透明導電層14のクラック発生が懸念される。透明導電層14は2層以上の透明導電膜が積層された積層膜でもよい。
 [剥離防止層]
 図2の透明導電性フィルム20のように、ハードコート層12と光学調整層13の間に剥離防止層15が形成されていてもよい。剥離防止層15をハードコート層12と光学調整層13の間に形成することにより、ハードコート層12と光学調整層13の密着性を高くすることができ、結果的に、基材フィルム11と光学調整層13の密着性を高くすることができる。
 剥離防止層15は、無機原子を含有し、好ましくは、無機物単体、無機化合物などの無機物から形成され、さらに好ましくは、無機化合物から形成されている。剥離防止層15に含有される無機原子としては、例えば、ケイ素(Si)、ニオブ(Nb)、パラジウム(Pd)、チタン(Ti)、インジウム(In)、スズ(Sn)、カドミウム(Cd)、亜鉛(Zn)、アンチモン(Sb)、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、タンタル(Ta)、ニッケル(Ni)、白金(Pt)、金(Au)、銀(Ag)、銅(Cu)などの金属原子が挙げられ、好ましくはケイ素(Si)が挙げられる。
 具体的には、剥離防止層15は、ケイ素単体、または、ケイ素化合物から形成され、好ましくは、透明性の観点から、ケイ素化合物から形成されている。また、無機化合物は、好ましくは非化学量論的組成(non-stoichiometric)の無機化合物からなる。
 非化学量論的組成の無機化合物としては、例えば、ケイ素窒化物(例えば、SiNx、0.1≦x<1.3)などの無機窒化物、ケイ素炭化物(例えば、SiCx、0.1≦x<1.0)などの無機炭化物、ケイ素酸化物(例えば、SiOx、0.1≦x<2.0)などの無機酸化物などが挙げられ、好ましくはケイ素酸化物(例えば、SiOx、0.1≦x<2.0)からなる。これら無機化合物は、単一組成であってもよく、複数の組成の混合物であってもよい。
 剥離防止層15が非化学量論的組成(non-stoichiometric)の、例えば、ケイ素化合物からなる場合、Si2p軌道の結合エネルギーを適正範囲に調整することで、化学量論的組成(stoichiometric)のとき(例えば、二酸化ケイ素SiO2)より、剥離防止機能を向上させることができる。
 剥離防止層15を構成する元素は、光学調整層13に含まれる金属酸化物と同種の金属あるいは異種の金属が好ましい。剥離防止層15を構成する元素が光学調整層13に含まれる金属酸化物(例えば二酸化ケイ素SiO2)と同種の金属(二酸化ケイ素SiO2に対してケイ素Si)であれば剥離防止層15と光学調整層13の間の密着性が更に良好になるため、同種の金属がより好ましい。
 剥離防止層15の厚さは1.5nm~8nmであることが好ましい。剥離防止層15の厚さを1.5nm~8nmとすることにより、良好な光学特性と高い密着性が両立される。剥離防止層15の厚さが1.5nm未満であると、剥離防止層15による密着性向上が不十分となるおそれがある。剥離防止層15の厚さが8nmを超えると、剥離防止層15内の自由電子による光の反射・吸収が発生し、透明導電性フィルム20の光の透過率が低くなり、透明導電性フィルム20の下にある液晶パネルなどの表示が見難くなるおそれがある。
 剥離防止層15は、スパッタリング法、蒸着法、CVD法などにより形成されるが、製法がこれらに限定されることはない。しかし膜の緻密性や生産性の観点から、スパッタリング法が好ましい。スパッタリング法で剥離防止層15を成膜する場合は、例えば、アルゴンを導入した0.2Pa~0.5Paの真空雰囲気下で、例えば電力密度1.0W/cm2の電力を印加し、金属ターゲットをスパッタリングすることで剥離防止層15を得ることができる。その際、酸素などの反応性ガスを導入しないで成膜することが好ましい。
 剥離防止層15の厚さは、断面方向で撮影した透過型電子顕微鏡(TEM)像を用いて測定することができる。断面TEM像においては剥離防止層15と光学調整層13の間にコントラストの違いが生まれる。ただし剥離防止層15が薄い場合や、剥離防止層15と光学調整層13の元素を同種元素とした場合はコントラストの違いが明瞭でないことがある。
 そのような場合であっても、アルゴンガスによるスパッタエッチングを用いたX線光電子分光法(XPS : X-ray Photoelectron Spectroscopy、別名ESCA : Electron Spectroscopy for Chemical Analysis)により、元素の結合エネルギーのデプスプロファイルを行なうと、剥離防止層12と光学調整層13とで結合エネルギーに違いが生じ、これにより剥離防止層12の存在を確認することができる。
 剥離防止層15がケイ素原子(Si)を含有する場合、剥離防止層15におけるX線光電子分光法により求められるSi2p軌道の結合エネルギーが、例えば、98.0eV以上、好ましくは、99.0eV以上、より好ましくは、100.0eV以上、さらに好ましくは、102.0eV以上であり、また、例えば、104.0eV未満、好ましくは、103.0eV未満、より好ましくは、102.8eV以下である。Si2p軌道の結合エネルギーが上記範囲である剥離防止層15を選択することにより、剥離防止層15の密着性をより良好にすることができる。特に、剥離防止層15における結合エネルギーを99.0eV以上103.0eV未満にすると、剥離防止層15が非化学量論的組成(non-stoichiometric)のケイ素化合物を含有することになるため、良好な光透過率を維持しつつ、密着性をより確実に向上させることができる。なお、剥離防止層15内部の厚さ方向の結合エネルギーの分布は、剥離防止層15の側から光学調整層13の側へ向けて、徐々に高くなっていく勾配を有していてもよい。
 結合エネルギーの測定において、剥離防止層15の上に光学調整層13などの層が積層されている場合は、X線光電子分光法でデプスプロファイル(測定ピッチは二酸化ケイ素SiO換算で1nmごととする)を測定し、結合エネルギーが連続的に変化する場合は、剥離防止層15の基材フィルム11側の終端部から1nm以上上側の地点(好ましくは、1nm上側の地点)における結合エネルギー値を採用するものとする。なお、剥離防止層15と光学調整層13を構成する無機原子が同一の場合(例えば、剥離防止層15がケイ素Si化合物、光学調整層13が二酸化ケイ素SiO2の場合)は、光学調整層13を含めて、無機原子(Si)の元素比率が、ピーク値に対して半値となった深さ位置を剥離防止層15の終端部とする。
 [機能層]
 図3に示すように、基材フィルム11の、透明導電層14と反対側の面に、機能層16が形成されていてもよい。機能層16は特に限定されないが、例えばアンチブロッキングハードコート層や光学調整層などが挙げられる。アンチブロッキングハードコート層は、長尺の透明導電性フィルム30がロール状に巻回されたとき、半径方向に隣り合う透明導電性フィルム30が固着(ブロッキング)することを防止するための層である。光学調整層13は、透明導電性フィルム30の透過率を向上させる、あるいは、透明導電層14をパターニングした際のパターン部を視認しにくくするための層である。
 [実施例および比較例]
 本発明の透明導電性フィルムの具体的な実施形態について、実施例と比較例を対比しながら説明するが、本発明がこれらの実施例に限定されることはない。
 [実施例1]
 実施例1は図1に示す層構成である。基材フィルム11は厚さ100μmのポリエチレンテレフタレート(PET)フィルムである。ハードコート層12は厚さ700nmのアクリル樹脂層である。ハードコート層12は、平均粒径20nmの酸化ジルコニウム(ZrO2)微粒子(無機微粒子17)を含有する。光学調整層13は厚さ15nmの二酸化ケイ素(SiO2)層である。光学調整層13の厚さは、ハードコート層12の厚さの2.1%である。透明導電層14は厚さ20nmのインジウムスズ酸化物(ITO)層である。透明導電層14中の、スズの、酸化インジウムとスズの合計に対する重量比は10%である。
 [ハードコート層の形成]
 アクリル樹脂と酸化ジルコニウム(ZrO2)微粒子(平均粒径20nm)とが含まれている紫外線(UV)硬化型樹脂組成物を、固形分濃度が5重量%になるようにメチルイソブチルケトン(MIBK)で希釈した。得られた希釈組成物を、厚み100μmのポリエチレンテレフタレート(PET)製の基材フィルム11(三菱樹脂製、商品名「ダイアホイル」)の一方の主面に塗布し、乾燥した。次に希釈組成物に紫外線を照射して硬化させ、厚さ700nmのハードコート層12を形成した。ハードコート層12の形成された基材フィルム11を巻回し、基材フィルム11のロールを作製した。
 [光学調整層の形成]
 光学調整層13(及び後述の透明導電層14)はロール・トゥ・ロール型スパッタリング装置を用いて形成した。ハードコート層12の形成された基材フィルム11のロールをスパッタリング装置の供給部に設置し,1×10-4Pa以下の真空状態で15時間保管した。その後、供給部から基材フィルム11を繰出し、基材フィルム11を成膜ロールへ巻き付け、スパッタリング法により光学調整層13を成膜した。詳しくは、成膜槽を0.2Paのアルゴンガス雰囲気とし、インピーダンス制御によって酸素ガスを導入しながら電力密度3.5W/cm2の電力を投入して、ケイ素(Si)ターゲット(住友金属鉱山社製)をスパッタリングして、厚さ15nmの光学調整層13(二酸化ケイ素(SiO2)層)を形成した。
 [透明導電層の形成]
 光学調整層13に引き続き透明導電層14を成膜した。光学調整層13が形成された基材フィルム11を成膜ロールに巻き付け、スパッタリング法により、厚さ20nmの透明導電層14を形成した。このとき、アルゴンガスAr:酸素ガスO2の圧力比が99:1で、全ガス圧が0.3Paのスパッタリング雰囲気とし、電力密度1.0W/cm2の電力を投入して、10重量%の酸化スズと90重量%の酸化インジウムの焼結体から成るインジウムスズ酸化物ターゲットをスパッタリングして透明導電層14を形成した。その後、基材フィルム11を収納部に巻き取り、透明導電性フィルム10のロールを完成させた。
 [実施例2]
 ハードコート層12の厚さを300nm、光学調整層13の厚さを12nmとした以外は実施例1と同様にして、実施例2の透明導電性フィルム10を作製した。光学調整層13の厚さは、ハードコート層12の厚さの4.0%である。
 [実施例3]
 ハードコート層12の厚さを300nm、光学調整層13の厚さを30nmとした以外は実施例1と同様にして、実施例3の透明導電性フィルム10を作製した。光学調整層13の厚さは、ハードコート層12の厚さの10.0%である。
 [比較例1]
 ハードコート層の厚さを1200nm、光学調整層の厚さを12nmとした以外は実施例1と同様にして、比較例1の透明導電性フィルムを作製した。光学調整層の厚さは、ハードコート層の厚さの1.0%である。
 [比較例2]
 ハードコート層の厚さを1600nm、光学調整層の厚さを12nmとした以外は実施例1と同様にして、比較例2の透明導電性フィルムを作製した。光学調整層の厚さは、ハードコート層の厚さの0.75%である。
 [比較例3]
 ハードコート層の厚さを200nm、光学調整層の厚さを12nmとした以外は実施例1と同様にして、比較例3の透明導電性フィルムを作製した。光学調整層の厚さは、ハードコート層の厚さの6.0%である。
 表1に本発明の透明導電性フィルムの実施例1~3および比較例1~3の構成と特性を示す。
Figure JPOXMLDOC01-appb-T000001
 [透明導電層の結晶化]
 透明導電層の結晶化は、生産性の点から、140℃、30分の熱処理で完了することが望ましい。実施例1~3の透明導電層は、140℃、30分の熱処理で結晶化が完了していた(○印)ため生産性の問題はなかった。比較例1、2の透明導電層は、140℃、30分の熱処理で結晶化が完了していなかった(X印)ため、生産性に問題があった。比較例1、2の透明導電層の結晶化が遅い原因は、光学調整層の厚さがハードコート層の厚さの2%未満のため、ハードコート層からのアウトガスが光学調整層で十分遮断されずに透明導電層に侵入し、結晶化を阻害したためである。比較例3の透明導電層は、140℃、30分の熱処理で結晶化が完了していたので、結晶化については問題なかった(しかし比較例3は耐擦傷性に問題があった)。
 [耐擦傷性]
 実施例1~3、比較例1、2の透明導電性フィルムの耐擦傷性は問題なかった(○印)。比較例3の透明導電性フィルムの耐擦傷性は弱く問題であった(X印)。比較例3の透明導電性フィルムの耐擦傷性が不足した原因は、ハードコート層の厚さが250nm未満だったためである。
 [総合評価]
 透明導電層の結晶化速度と耐擦傷性を考慮した総合的な評価は、実施例1~3は良好(○印)であるが、比較例1~3は良くない(X印)と判断された。
 [測定方法]
 [厚さ]
 透過型電子顕微鏡(日立製作所製HF-2000)を用いて透明導電性フィルムの断面を観察し、光学調整層、透明導電層等の厚さを測定した。
 [結晶化]
 140℃、30分の熱処理後の表面抵抗値が、140℃、90分の熱処理後の表面抵抗値の1.1倍以下であるとき、結晶化が完了していると判断した。表面抵抗値はJIS K7194に準じて、4端子法を用いて測定した。
 [耐擦傷性]
 140℃で90分間加熱した透明導電性フィルムを縦5cm横11cmの長方形に切り出し、長辺側の両端部5mm部分に銀ペーストを塗着して、48時間自然乾燥させた。透明導電性フィルムの、透明導電層とは反対の側を、粘着剤付ガラス板に貼付し、擦傷性評価用サンプルを得た。10連式ペン試験機(エム・ティー・エム社製)を用いて、前記の擦傷性評価用サンプルの短辺側における中央位置(2.5cm位置)で、下記条件にて、長辺方向に10cmの長さで前記擦傷性評価用サンプルの透明導電層表面を擦った。
 擦る前の擦傷性評価用サンプルの抵抗値(R0)と、擦った後の擦傷性評価用サンプルの抵抗値(R20)とを、擦傷性評価用サンプルの長辺側における中央位置(5.5cm位置)で、両端部の銀ペースト部にテスターをあてて測定し、抵抗変化率(R20/R0)を求めて耐擦傷性を評価した。抵抗変化率が1.5以下であった場合を「耐擦傷性良好」(○)、1.5を超えた場合を「耐擦傷性不良」(X)として評価した。
・擦傷子:アンティコンゴールド(コンテック社製)
・荷重:127g/cm2
・擦傷速度:13cm/秒(7.8m/分)
・擦傷回数:20回(往復10回)
 本発明の透明導電性フィルムの用途に制限は無いが、特にタッチパネルに好適に用いられる。
10、20、30 透明導電性フィルム
11 基材フィルム
12 ハードコート層
13 光学調整層
14 透明導電層
15 剥離防止層
16 機能層
17 無機微粒子

Claims (14)

  1.  透明な基材フィルム上に、少なくとも、ハードコート層、光学調整層および透明導電層がこの順に積層されてなる透明導電性フィルムであって、
     前記透明導電層がインジウムを含み、
     前記ハードコート層の厚さが250nm~2000nmであり、
     前記光学調整層の厚さが前記ハードコート層の厚さの2%~10%であることを特徴とする透明導電性フィルム。
  2.  前記光学調整層が金属酸化物を含むことを特徴とする請求項1に記載の透明導電性フィルム。
  3.  前記金属酸化物が二酸化ケイ素(SiO2)を含むことを特徴とする請求項2に記載の透明導電性フィルム。
  4.  前記ハードコート層が酸化ジルコニウムZrO2、二酸化ケイ素SiO2、酸化チタンTiO2、酸化スズSnO2、酸化アルミニウムAl2O3のいずれか、あるいはそれらの2種以上の無機微粒子を含むことを特徴とする請求項1~3のいずれかに記載の透明導電性フィルム。
  5.  前記ハードコート層の屈折率が1.60~1.70であることを特徴とする請求項1~4のいずれかに記載の透明導電性フィルム。
  6.  前記ハードコート層と前記光学調整層の間に更に剥離防止層が積層されていることを特徴とする請求項1~5のいずれかに記載の透明導電性フィルム。
  7.  前記剥離防止層が非化学量論的組成(non-stoichiometric)の無機化合物を含むことを特徴とする請求項6に記載の透明導電性フィルム。
  8.  前記剥離防止層がケイ素原子を含むことを特徴とする請求項6または7に記載の透明導電性フィルム。
  9.  前記剥離防止層がケイ素化合物を含むことを特徴とする請求項6~8のいずれかに記載の透明導電性フィルム。
  10.  前記剥離防止層がケイ素酸化物を含むことを特徴とする請求項6~9のいずれかに記載の透明導電性フィルム。
  11.  前記剥離防止層が、Si2p結合の結合エネルギーが98.0eV以上103.0eV未満の領域を有することを特徴とする、請求項8~10のいずれかに記載の透明導電性フィルム。
  12.  前記剥離防止層の厚さが1.5nm~8nmであることを特徴とする請求項6~11のいずれかに記載の透明導電性フィルム。
  13.  前記基材フィルムの、前記透明導電層とは反対側の主面に、更に機能層が積層されてなることを特徴とする請求項1~12のいずれかに記載の透明導電性フィルム。
  14.  前記機能層がアンチブロッキングハードコート層からなる請求項13に記載の透明導電性フィルム。
PCT/JP2015/080694 2015-05-27 2015-10-30 透明導電性フィルム WO2016189762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/575,686 US20180282857A1 (en) 2015-05-27 2015-10-30 Transparent conductive film
KR1020177013635A KR102530122B1 (ko) 2015-05-27 2015-10-30 투명 도전성 필름
CN201580078944.3A CN107533880B (zh) 2015-05-27 2015-10-30 透明导电性薄膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015107003 2015-05-27
JP2015-107003 2015-05-27
JP2015203740A JP2016225270A (ja) 2015-05-27 2015-10-15 透明導電性フィルム
JP2015-203740 2015-10-15

Publications (1)

Publication Number Publication Date
WO2016189762A1 true WO2016189762A1 (ja) 2016-12-01

Family

ID=57393009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080694 WO2016189762A1 (ja) 2015-05-27 2015-10-30 透明導電性フィルム

Country Status (1)

Country Link
WO (1) WO2016189762A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326277A (zh) * 2018-12-17 2020-06-23 日东电工株式会社 导电性薄膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143754A (ja) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd 導電性繊維状中空シリカ微粒子分散質およびその製造方法
JP2013071380A (ja) * 2011-09-28 2013-04-22 Toppan Printing Co Ltd 透明導電性フィルム及びタッチパネル
JP2013211134A (ja) * 2012-03-30 2013-10-10 Teijin Ltd 透明導電性積層体
JP2014019038A (ja) * 2012-07-17 2014-02-03 Kaneka Corp 無機薄膜付き導電材用基板、透明電極付き基板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143754A (ja) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd 導電性繊維状中空シリカ微粒子分散質およびその製造方法
JP2013071380A (ja) * 2011-09-28 2013-04-22 Toppan Printing Co Ltd 透明導電性フィルム及びタッチパネル
JP2013211134A (ja) * 2012-03-30 2013-10-10 Teijin Ltd 透明導電性積層体
JP2014019038A (ja) * 2012-07-17 2014-02-03 Kaneka Corp 無機薄膜付き導電材用基板、透明電極付き基板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326277A (zh) * 2018-12-17 2020-06-23 日东电工株式会社 导电性薄膜
CN111326277B (zh) * 2018-12-17 2023-08-25 日东电工株式会社 导电性薄膜

Similar Documents

Publication Publication Date Title
KR102530122B1 (ko) 투명 도전성 필름
JP6688033B2 (ja) 透明導電性フィルム
JP6654865B2 (ja) 非晶質透明導電性フィルム、ならびに、結晶質透明導電性フィルムおよびその製造方法
WO2015166723A1 (ja) 透明導電性フィルム
CN106062888B (zh) 透明导电性薄膜
WO2015159798A1 (ja) 透明導電性フィルム
TWI754720B (zh) 導電性膜及觸控面板
WO2016189957A1 (ja) 透明導電性フィルム
CN109313964B (zh) 透明导电体
JP7341821B2 (ja) 透明導電性フィルムおよびその製造方法
WO2016189762A1 (ja) 透明導電性フィルム
JP7323293B2 (ja) 導電性フィルムおよびタッチパネル
JP2018022634A (ja) 透明導電体
WO2016080246A1 (ja) 保護フィルム付き透明導電性フィルム
WO2016189761A1 (ja) 透明導電性フィルム
JP6161763B2 (ja) 透明導電性フィルム
WO2019044444A1 (ja) 積層膜および積層膜の製造方法
JP7466269B2 (ja) 透明導電性フィルムおよび結晶性透明導電性フィルム
CN111145938A (zh) 导电性薄膜及触摸面板
WO2016104046A1 (ja) 透明導電性フィルム
JP2018075797A (ja) 遠赤外線反射基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177013635

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575686

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893394

Country of ref document: EP

Kind code of ref document: A1