WO2016189749A1 - パッケージの磁気検査装置、及びパッケージの包装機 - Google Patents
パッケージの磁気検査装置、及びパッケージの包装機 Download PDFInfo
- Publication number
- WO2016189749A1 WO2016189749A1 PCT/JP2015/065479 JP2015065479W WO2016189749A1 WO 2016189749 A1 WO2016189749 A1 WO 2016189749A1 JP 2015065479 W JP2015065479 W JP 2015065479W WO 2016189749 A1 WO2016189749 A1 WO 2016189749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- region
- package
- inspection
- output
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
Definitions
- the present invention relates to an inspection apparatus for determining the suitability of magnetic distribution in a magnetic region formed in a package, and a package packaging machine including the inspection apparatus.
- lid-type packages have been adopted as cigarette packages.
- the lid type package has a lid part hinged to the main body side, so that the filter cigarette inside the main body side can be well protected from the outside, and if the lid part is closed, the dust that has fallen into the package can be removed. Is prevented from spilling outside. Therefore, in the lid type package, it is desirable to provide a lid portion locking mechanism in order to prevent the lid portion from being inadvertently opened.
- a magnetic member is used for a locking mechanism between the lid portion and the main body side.
- Patent Document 2 discloses a technique relating to detection of magnetic distribution in a print pattern using magnetic ink. In this technique, the magnetic distribution is detected using the peak value of the detected magnetic field of the magnetoresistive element used.
- a linear N-pole region and an S-pole region may be alternately formed on the magnetic member.
- the lid portion of the package and the main body side can be suitably locked, and the locked state can be easily detached, and the user can easily Convenience increases.
- the lid portion and the main body side are displaced in the locked state, so that suitable protection inside the package cannot be achieved.
- the present invention has been made in view of the above-described problems, and realizes inspection of magnetic distribution in a magnetic region in which N-pole regions and S-pole regions are alternately formed on a package as quickly as possible.
- An object is to provide an apparatus.
- the magnetic sensor used for the inspection and the package are relatively moved to correspond to the N-pole region and the S-pole region formed alternately on the package.
- a configuration for acquiring a periodic signal was adopted. With this configuration, it is possible to accurately and promptly grasp the distribution state of the N pole region and the S pole region.
- the present invention relates to a package for accommodating an object in which a first magnetic region is formed by a magnetizing device so that N-pole regions and S-pole regions extending in a predetermined direction are alternately arranged. And a first magnetic sensor for outputting an electric signal corresponding to the magnitude of the magnetic force, and the first magnetic sensor along an inspection direction intersecting the predetermined direction at a predetermined angle.
- An acquisition means for acquiring a periodic signal of magnetic output from the first magnetic sensor by moving the magnetic sensor relative to the first magnetic region, and a period of the magnetic output acquired by the acquisition means
- Determination means for determining the appropriateness of the magnetic distribution in the first magnetic region based on a target signal.
- the magnetic inspection apparatus for a package inspects the magnetic distribution in the first magnetic region formed in the package blank.
- N-pole regions and S-pole regions extending in a predetermined direction are alternately arranged, and are formed by a magnetizing device at a stage before the inspection process by the magnetic inspection device.
- the magnetizing process by this magnetizing apparatus that is, the process of forming the N-pole region and the S-pole region may be immediately before the inspection process, or another manufacturing process is included between the inspection process and the magnetization process. May be.
- the predetermined direction in which the N-pole region and the S-pole region extend in the first magnetic region is not limited to a specific direction, and the N-pole region is such that a periodic signal can be acquired by the acquisition unit.
- the S pole region may extend in any direction.
- the acquisition means moves the first magnetic sensor relative to the first magnetic region along the inspection direction that intersects the predetermined direction at a predetermined angle.
- the first magnetic sensor may be moved, the blank in which the first magnetic region is formed may be moved, or both may be moved.
- the magnetic field due to the N pole region and the magnetic field due to the S pole region act alternately on the first magnetic sensor.
- a periodic signal is acquired.
- the periodic signal reflects the magnetic distribution by the N pole region and the S pole region. That is, what kind of magnetism is detected by the first magnetic sensor based on the attributes of the periodic signal, such as how the periodic signal is repeated and how strong the signal is? That is, it is possible to determine how the magnetic distribution is formed by the N-pole region and the S-pole region. Therefore, in the present invention, the determination means determines whether or not the magnetic distribution is appropriate based on the periodic signal of the magnetic output from the first magnetic sensor.
- the periodic signal for determining the appropriateness of the magnetic distribution in the first magnetic region is obtained by relatively moving the first magnetic sensor and the first magnetic region. To be acquired. Therefore, the time required to acquire the periodic signal can be shortened, and by using the periodic signal, the N-pole region and the S-pole region are appropriately alternately arranged in the first magnetic region. It is possible to determine whether it is arranged.
- the first magnetic sensor is fixed to the magnetic inspection apparatus side of the package.
- the blank is conveyed in the inspection direction.
- the first magnetic region may be attached to the first magnetic region while the package is being transported in the same magnetizing transport direction as the predetermined direction before the acquisition unit acquires the magnetic output. It may be formed by being magnetized by a magnetic device. And the said acquisition means may acquire the periodic signal of the said magnetic output by the said blank being conveyed in the said test
- the first magnetic region is formed by making the transport direction during magnetization for forming the first magnetic region different from the transport direction, which is the inspection direction for acquiring a periodic signal, by a predetermined angle on the plane. Both the formation of the region and the acquisition of the periodic signal can be realized in the blank conveyance state, so that the magnetic inspection time can be shortened including the magnetization step.
- the predetermined angle is 90 degrees.
- the predetermined angle may be an angle other than 90 degrees.
- the determination unit determines whether or not the width of the N-pole region and the width of the S-pole region formed in the first magnetic region is appropriate based on the period of the periodic signal of the magnetic output. May be.
- the period of the periodic signal reflects a repetitive element of the magnetic distribution, and examples of the repetitive element include the width of the N-pole region and the magnetization width of the S-pole region. If the magnetization width in these regions is not appropriate, it is difficult to form a suitable locking mechanism in the package, so that the usefulness that is the object of determining the suitability of the magnetic distribution by the judging means is great.
- the determination unit may determine whether or not the magnetic force of the magnetic distribution formed in the first magnetic region is appropriate based on the amplitude of the periodic signal of the magnetic output.
- the amplitude of the periodic signal reflects the strength of the magnetic distribution, and examples of the strength include the magnetic force of the first magnetic region due to the N-pole region and the S-pole region. If this magnetic force is not appropriate, it is difficult to form a suitable locking mechanism in the package, so that the usefulness that is the object of determining the suitability of the magnetic distribution by the judging means is great.
- the apparatus further comprises detection means for detecting that the package has been transported to an inspection area where acquisition of magnetic output by the acquisition means is performed. Whether or not the position of the first magnetic region in the package is appropriate is determined based on a period from when the detection means detects the arrival of the package to the inspection region until the periodic signal of the magnetic output starts to be acquired. You may judge.
- the period from when the arrival of the package to the inspection region is detected until the periodic signal starts to be acquired reflects the location of the first magnetic region in the package. If this arrangement location is not appropriate, it is difficult to form a suitable locking mechanism in the package, so that the usefulness that is the object of the determination of the suitability of the magnetic distribution by the determination means is great.
- a magnetic sensor that outputs an electrical signal corresponding to the magnitude of the magnetic force, and is arranged so as not to overlap the first magnetic sensor in the inspection direction.
- the acquisition means moves the first magnetic sensor and the second magnetic sensor relative to the first magnetic region along the inspection direction, and the period of the magnetic output of each magnetic sensor.
- the determination means obtains a first output signal that is a periodic signal of the magnetic output from the first magnetic sensor and a first signal that is a periodic signal of the magnetic output from the second magnetic sensor. Based on the two output signals, the suitability of the magnetic distribution in the first magnetic region is determined.
- the suitability of the magnetic distribution in the first magnetic region is determined using the first magnetic sensor and the second magnetic sensor. For this reason, the accuracy of determining the suitability of the magnetic distribution is improved, or it is possible to determine the suitability of the magnetic distribution that could not be realized when only the first magnetic sensor is used.
- the determining means may determine the magnetic distribution of the N-pole region and the S-pole region along the predetermined direction in the first magnetic region based on the phase difference between the first output signal and the second output signal. It is possible to determine the suitability of the parallelism.
- phase difference is a predetermined value (for example, the phase difference is zero) and the magnetic distribution in the N-pole region and the S-pole region is in a suitable parallel state
- the phase difference deviates from the predetermined value, It can be considered that the parallelism of the magnetic distributions in the N-pole region and the S-pole region is lowered, and therefore it is possible to determine whether or not the parallelism is appropriate.
- the blank is a magnetic region different from the first magnetic region, and an N-pole region and an S-pole region are alternately arranged along the same direction as the predetermined direction.
- a second magnetic region formed by the magnetizing device may be formed so as to extend in the vertical direction.
- the acquisition means also moves the first magnetic sensor and the second magnetic sensor relative to the second magnetic region along the inspection direction for the second magnetic region, A periodic signal of the magnetic output of each magnetic sensor is obtained, and the determination means is provided in the first output signal and the second output signal corresponding to the first magnetic region, and in the second magnetic region. Based on the corresponding first output signal and the second output signal, whether or not the coincidence of the magnetic attraction force between the first magnetic region and the second magnetic region is appropriate is determined.
- the second magnetic region is in a locked state with the first magnetic region via a magnetic attractive force.
- the magnetic attraction forces of the first magnetic region and the second magnetic region need to coincide with each other.
- the magnetizing apparatus rotates a plurality of magnet disks formed of permanent magnets and magnetic disks formed of magnetic bodies alternately on the support shaft. It may be a magnetizing roller configured to be supported.
- the magnetic distribution in which the N-pole region and the S-pole region in the first magnetic region alternately extend in the predetermined direction is such that the magnetizing roller contacts a non-magnetized magnet sheet disposed on the blank. It is formed by doing.
- the magnetizing roller in this way, the first magnetic region can be easily formed on the magnet sheet.
- the magnetization process itself can be simplified because the magnetizing roller only needs to maintain a state in contact with the magnet sheet.
- the diameter of the magnetic disk may be greater than or equal to the diameter of the magnet disk.
- the magnetic distribution disk can be suitably formed in the corresponding magnetic region by making the diameter of the magnetic disk the same as or larger than the diameter of the corresponding magnet disk. I found out that I can do it.
- the diameter of the magnetic disk is made larger than the diameter of the magnet disk, the difference in the diameters may be appropriately determined in consideration of the magnetic force of the magnetic distribution formed in the magnetic region.
- the invention of the present application can also be grasped from the side of a packaging machine of a package provided with the above-described magnetic inspection device and the magnetizing device in a certain device.
- the formation of the first magnetic region by the magnetizing device is performed before the inspection of the first magnetic region by the magnetic inspection device of the package.
- a magnetic inspection device is arranged.
- an inspection apparatus that realizes inspection of magnetic distribution in a magnetic region in which N-pole regions and S-pole regions are alternately formed on a package as quickly as possible.
- FIG. 1 It is a figure which shows roughly the tan grid type package manufactured with the packaging machine of this invention. It is a figure which shows the package blank which expand
- FIG. 1 discloses a so-called tan grid type package (hereinafter simply referred to as “package”) 30 for accommodating a cigarette bundle, and the package 30 shown in FIG. Is in a closed state.
- 2 shows a package blank BL in which the package 30 is developed.
- the package 30 can open and close the opening of the accommodation space in the package main body 31 by hinge coupling of the tan grid portion 32 to the package main body 31.
- the package body 31 forms an accommodation space by a front wall 31a positioned on the front surface of the package, a side wall 31b positioned on the side surface, a bottom wall 31c positioned on the bottom surface, and the like.
- the tongue grid portion 32 includes a lid 35 that is hinged to the package body 31 and a tongue 38 that is hinged to the lid 35.
- the lid 35 is the bottom of the package body 31.
- the tongue 38 is located on the front wall 31 a of the package main body 31.
- the package 30 is provided with magnetic regions 33 and 37 as a locking mechanism for the tongue grid portion 32 (particularly the tongue 38) to the package body 31.
- the magnetic regions 33 and 37 are formed by applying a magnetic material including a ferrite-based magnetic material, and the magnetic regions 33 and 37 are magnetized in the closed state of the package 30 shown in FIG.
- the tongue 38 and the package main body 31 are locked by the magnetic attractive force acting between the two regions.
- a neodymium magnetic material may be used for the magnetic regions 33 and 37.
- the magnetic region 33 is formed as an elongated region extending to the side of the package below a notch (not shown) of the front wall 31a included in the package body 31.
- the magnetic region 37 is formed as an elongated region extending near the side of the package, similar to the magnetic region 33, near the tip of the tongue 38. The relative relationship between the position of the magnetic region 33 in the package body 31 and the position of the magnetic region 37 in the tongue 38 is determined so as to face each other in the closed state.
- the magnetic force acting between the two magnetic regions is affected.
- the tongue 38 that is flange-coupled is attracted toward the package body 31 by the attractive force, and the magnetic region 37 comes into contact with the magnetic region 33, so that a contact sound indicating the contact is generated.
- the contact state is maintained by the magnetic attractive force between the two magnetic regions.
- the magnetic attraction force is a force larger than a necessary resistance force, and a force lower than a predetermined force so that the force when the user intentionally opens the tan grid part 32 is not excessively large. It is required to be. In this invention, it is test
- the package blank BL is composed of a blank portion corresponding to the package body 31 and a blank portion corresponding to the tan grid portion 32.
- a blank part is a structure which forms a part of package blank BL.
- the magnetic region 37 formed on the tan grid portion 32 side is arranged on a blank portion corresponding to the tongue 38
- the magnetic region 33 formed on the package body 31 side is a blank corresponding to the front wall 31a. Arranged on the part.
- the vertical direction in FIG. 2 that is, the direction from one magnetic region to the other magnetic region is defined as the vertical direction
- a direction perpendicular to the vertical direction on the surface where BL is developed is defined as a horizontal direction.
- the packaging machine shown in FIG. 3 includes a cigarette hopper 2, and a cigarette filling mechanism 6 for filling 20 pockets of cigarettes from the hopper 2 into a three-tiered state in each pocket 4 below the hopper 2. Is provided.
- the cigarette bundle is transferred to a vertical first wheel 8 indicated by a one-dot chain line on the transfer line. As the first wheel 8 rotates, it receives 20 cigarette bundles from the pocket 4, and the cigarette bundle is encased in the bucket 12 of the vertical second wheel 10 indicated by a one-dot chain line from the first wheel 8 as an inner packaging material.
- the aluminum foil sheet S is pushed in. At this time, the aluminum foil sheet S is folded around the cigarette bundle.
- the aluminum foil sheet S is obtained by cutting the aluminum foil web AW fed out from the aluminum foil roll AR at predetermined lengths, and is sequentially supplied between the first wheel 8 and the second wheel 10.
- a similar aluminum foil roll (not shown) is disposed in the vicinity of the aluminum foil roll AR, and this aluminum foil roll is a standby roll. Thereafter, with the rotation of the second wheel 10, the aluminum foil sheet S after the body fold is subjected to the ear fold and the side flap fold sequentially with respect to the cigarette bundle in the bucket 12, thereby forming an inner body of the cigarette bundle. .
- the second wheel 10 is provided with a horizontal third wheel 16 adjacent to the opposite side of the first wheel 8, and the third wheel 16 sequentially encloses cigarette bundles from the second wheel 10 in the bucket. Receiving and transferring the inclusion body with its rotation. Further, a fourth wheel 18 that is also horizontally horizontal is adjacent to the third wheel 16 on the opposite side of the second wheel 10. The fourth wheel 18 is located below the third wheel 16 and receives the inclusion body IB from the third wheel 16.
- the fourth wheel 18 is supplied with the package blank BL shown in FIG. 2 from the blank supply system 22, and this package blank BL is bonded to the upper surface of the inclusion body IB.
- the blank supply system 22 has two supply lines 22a and 22b that connect between the hopper 24 and the fourth wheel 18, and in the supply line 22a, the package blank BL is located laterally.
- the supply line 22b vertical conveyance in which the package blank BL is conveyed in the vertical direction is performed.
- the package blanks BL taken out one by one from the hopper 24 are sequentially conveyed on the supply lines 22 a and 22 b and transferred to the fourth wheel 18.
- the magnetic material is already applied and dried on each package blank BL, and the magnetic regions 33 and 37 are formed.
- the magnetization of each magnetic region is performed. Has not been done yet.
- a vertical fifth wheel 20 is disposed immediately above the supply position of the package blank BL as seen in the circumferential direction of the fourth wheel 18, and the fifth wheel 20 has the package blank BL adhered in its bucket.
- the package blank BL is sequentially folded along with the rotation of the fifth wheel 20 and the package 30 is manufactured. Thereafter, the package 30 is transferred to a horizontal seventh wheel 28 via a horizontal sixth wheel 26 adjacent to the fifth wheel 20.
- the glued portion of the package 30 is dried and then sent to the delivery line through the vertical eighth wheel 29.
- the delivery line sequentially supplies the package 30 toward an outer packaging machine (not shown), and the package 30 is further packaged by a film sheet in this outer packaging machine.
- the magnetic regions 33 and 37 formed therein are magnetized.
- the magnetic regions 33 and 37 are not magnetized at the stage of being stored in the hopper 24, and the magnetic regions 33 and 37 are magnetized in the conveying process. Is stacked in the hopper 24, the adjacent package blanks BL are attracted by the magnetic attraction force of the magnetic material, making it difficult to handle the package blanks BL.
- the magnetic regions 33 and 37 are magnetized.
- FIG. 4 shows a configuration related to the magnetizing process in a state where the package blank BL is conveyed sideways on the supply line 22a.
- the package blank BL is horizontally conveyed by the conveyance device 50 in the horizontal direction indicated by the white arrow in FIG. Therefore, at the time of the horizontal conveyance, the magnetic region 37 and the magnetic region 33 are located on both sides of the center portion of the package blank BL in the direction perpendicular to the conveyance direction.
- a plurality of pushers 52 are arranged on a conveyor 51 that forms a transport surface so that a plurality of package blanks BL can be laterally transported.
- the pusher 52 is a rectangular parallelepiped member having a predetermined height, and its longitudinal direction is along the width direction of the conveyor 51. And between the adjacent pushers 52, the arrangement
- deployment state is formed.
- a blank portion corresponding to the front wall 31a in which the magnetic region 33 is formed and a blank portion corresponding to the tongue 38 in which the magnetic region 37 is formed are formed by magnetizing rollers 55 and 59 described later. A state where it is developed on the transport surface so as to be magnetized. In the present embodiment shown in FIG. 4, the entire package blank BL including both blank portions is in a developed state.
- the package blank BL In the arrangement of the package blank BL in the arrangement section on the conveyor 51, the package blank BL is dropped from the hopper 24 toward the arrangement space. Therefore, the interval between the adjacent pushers 52 is set slightly longer than the lateral width of the package blank BL so that the package blank BL fits smoothly in the arrangement space.
- the pusher 52 functions as a regulating member that regulates the movement of the package blank BL in order to store the package blank BL in the arrangement space.
- the magnetic regions 33 and 37 on the package blank BL come to positions protruding from the end of the pusher 52 to the outside of the arrangement space.
- the magnetic regions 33 and 37 are formed to be elongated in the lateral direction of the package blank BL, so that the magnetic regions 33 and 37 protruding to the outside of the arrangement space 52 a are respectively in the longitudinal direction. (Direction extending in a long and narrow direction) and the transport direction of the package blank BL are substantially coincident.
- magnetizing rollers 55 and 59 are arranged on both sides in the conveying direction of the conveyor 51 at positions where they can come into contact with the protruding magnetic regions 33 and 37, respectively.
- a support shaft 58 is attached to a vertical wall 57 provided on the left side in the transport direction of the conveyor 51 from which the magnetic region 33 protrudes so as to extend in a direction that is horizontal and perpendicular to the transport direction.
- a magnetizing roller 59 is attached to the support shaft 58 so as to be rotatable.
- a support shaft 54 is attached to a vertical wall 53 provided on the right side in the transport direction of the conveyor 51 from which the magnetic region 37 protrudes so as to extend in a direction that is horizontal and perpendicular to the transport direction.
- a magnetizing roller 55 is attached to the shaft 54 so as to be rotatable.
- the vertical walls 53 and 57 are being fixed to the base part of the supply line 22a, they remain in a fixed position irrespective of the conveyance of the conveyor 51. Therefore, the magnetizing rollers 59 and 55 are respectively arranged above the magnetic regions 33 and 37 of the package blank BL that is horizontally conveyed by the conveyor 51.
- a counter roller 56 is disposed below the magnetizing roller 55 so as to face the magnetizing roller 55, and a counter is provided below the magnetizing roller 59 so as to face the magnetizing roller 59.
- a roller 60 is disposed.
- the counter rollers 56 and 60 are also rotatably supported on a support shaft (not shown). Then, the package blank BL is laterally conveyed in the gap between the magnetizing roller 55 and the counter roller 56 and the gap between the magnetizing roller 59 and the counter roller 60, so that the magnetic region 37 and the magnetic region on the package blank BL are transferred.
- the package blank BL is conveyed to the downstream side of the magnetizing rollers 55 and 59 while 33 is in contact with the magnetizing rollers 55 and 59, respectively.
- the magnetizing roller 55 is formed by alternately inserting a magnet disk 55a formed of a neodymium magnet and an iron disk 55b formed of iron, which is a magnetic body, into the support shaft 54 so as to be rotatable. .
- the magnet disks 55a adjacent to each other with the iron disk 55b interposed therebetween are attached so that the magnetic poles at the end faces in the axial direction of the support shaft 54 are reversed.
- the thickness of the magnet disc 55a is 1 mm, for example, and the thickness of the iron disc 55b is 0.5 mm.
- the diameter of the iron disk 55b is slightly larger than the diameter of the magnet disk 55a.
- a magnetic distribution in which N poles and S poles are alternately arranged is formed on the surface (the roller surface in contact with the magnetic material 45), and the magnet disk 55a and iron are formed.
- a magnetic distribution having a relatively strong magnetic force is formed by the correlation with the size of the disk 55b, that is, the correlation between the diameter and the thickness.
- the counter roller 56 facing the magnetizing roller 55 is a non-magnetic resin-made roller as described above. Therefore, the presence of the counter roller 56 does not disturb the magnetic distribution formed on the surface of the magnetizing roller 55.
- the magnetic region 37 is efficiently applied to the surface of the magnetizing roller 55 due to the presence of the counter roller 56. For contact, the magnetic region 37 is magnetized according to the magnetic distribution on the surface of the magnetizing roller 55.
- the strip-shaped N-pole region 37n and the S-pole region 37s are formed along the longitudinal direction of the magnetic region 37. (See also FIG. 7 to be described later).
- the magnetizing roller 59 is also composed of a magnet disc having the same shape as the magnet disc 55 a and an iron disc having the same shape as the iron disc 55 b alternately on the support shaft 58. It is formed by being inserted so as to be rotatable. That is, also in the magnetizing roller 59, the correlation between the magnitudes of the magnet disk and the iron disk is equivalent to the correlation between the magnitudes of the magnet disk 55a and the iron disk 55b in the magnetizing roller 55. Thereby, also in the magnetic region 33, strip-shaped N-pole regions and S-pole regions are suitably formed along the longitudinal direction.
- the belt-like magnetic distribution on the magnetic region 37 and the belt-like magnetic distribution on the magnetic region 33 correspond to each other.
- the band-shaped region magnetized to the north pole on the magnetic region 37 is opposed to the band-shaped region magnetized to the south pole on the magnetic region 33, and on the magnetic region 37.
- the arrangement of the magnet disk and the iron disk in the magnetizing rollers 55 and 59 is adjusted so that the band-shaped region magnetized to the N-pole on the magnetic region 33 is opposed to the band-shaped region magnetized to the S pole. .
- the magnetic regions 33 and 37 are magnetized by the magnetizing rollers 55 and 59 configured as described above in the process in which the package blank BL is conveyed sideways.
- the contact state between each magnetic region and each magnetizing roller is maintained, so that a desired magnetic distribution can be reliably formed in each magnetic region.
- the magnetizing rollers 55 and 59 are magnetized, the package blank BL is in a state of being laterally transported by the transporter 50, so that the magnetization timings of the magnetic regions 33 and 37 are substantially the same period. Part of the periods overlap, so that the magnetization of the magnetic region can be performed as quickly as possible.
- FIG. 6 shows the package blank BL flowing through the supply line 22a and the supply line 22b in the packaging machine shown in FIG.
- the magnetic regions 33 and 37 are magnetized in the package blank BL by the magnetizing rollers 55 and 59.
- the magnetic distribution in which the N-pole region and the S-pole region are alternately repeated in a strip shape is formed in each magnetic region by the alternating arrangement of the N-pole and the S-pole formed on each magnetizing roller.
- the blank package BL moves from the supply line 22a to the supply line 22b.
- the supply line 22b is located on the same plane as the supply line 22a, but its conveyance direction is orthogonal to the conveyance direction of the supply line 22a. Therefore, the conveyance direction of the package blank BL on the supply line 22b is vertical conveyance.
- a region R0 for inspecting the appropriateness of the magnetic distribution of the magnetized regions 33 and 37 is set at a position crossing the supply line 22b. Then, the package blank BL is vertically conveyed to the region R0 so as to enter from the tongue 38 side.
- the magnetized region 37 of the tongue 38 band-shaped N-pole regions and S-pole regions are formed in the magnetized region by the above-described magnetization process, and the extending direction of each region is the lateral width direction of the tongue 38. (That is, the horizontal direction in FIG. 7).
- FIG. 7 illustrates a belt-like N-pole region 37n and S-pole region 37s formed in the magnetic region 37 immediately before entering the region R0, and the entering direction (conveying direction) is outlined. Shown with an arrow.
- the magnetic sensors 61a and 61b are sensors that can obtain an electrical output corresponding to the strength of the magnetic field to which the detection unit of the sensor is exposed. Therefore, the two magnetic sensors are symmetrical with respect to the longitudinal direction of the package blank BL in the width direction of the package blank BL, and when the package blank BL passes through the region R0, the two magnetic sensors are separated from the magnetic region. It arrange
- the infrared sensor 62 is a sensor that senses the approach of an object that is blocked when the infrared ray is blocked.
- the infrared sensor 62 is arrange
- the positional relationship in the transport direction between the infrared sensor 62 and the magnetic sensors 61a and 61b is not necessarily the same, but when the package blank BL enters the region R0, the tip of the tongue 38 is infrared first.
- the positional relationship between the two is determined so that the sensor 62 can detect the magnetic distribution and the magnetic distribution can be detected by both the magnetic sensors after a predetermined time has elapsed.
- the predetermined time is determined based on the positional relationship between the infrared sensor 62 and the magnetic sensors 61a and 61b, the position of the tip of the tongue 38 in the package blank BL, the position of the magnetic region 37, and the vertical conveyance speed.
- the infrared sensor 62 and the magnetic sensors 61a and 61b are fixed and arranged on the main body side of the packaging machine in the region R0. Therefore, sensing by each sensor is performed while the package blank BL is being conveyed by the supply line 22b under each fixed sensor. That is, the package blank BL is vertically conveyed so that each sensor is relatively orthogonal to the extending direction of the N-pole region 37n and the S-pole region 37s formed in a strip shape on the magnetic region 37. become. Therefore, special processing such as positioning processing of the package blank BL is not required for sensing by each sensor.
- the sensor outputs from the infrared sensor 62 and the magnetic sensors 61a and 61b are delivered to the processing apparatus 100.
- the processing device 100 is a so-called computer, and includes an arithmetic processing device, a memory, and the like. In this embodiment, various processing such as magnetization inspection processing described later is performed using sensor outputs acquired from each sensor. Execute.
- the N-pole region 37n and the S-pole region 37s are formed as desired, that is, so that the tongue 38 and the package body 31 are locked in the package 30 shown in FIG.
- the output of the magnetic sensor 61a is shown in the upper part (a) of FIG. 8
- the output of the magnetic sensor 61b is shown in the lower part (b) of FIG.
- the outputs of the magnetic sensors 61a and 61b are substantially the same.
- the magnetic region 37 is formed with the band-shaped N-pole region 37n and the S-pole region 37s, and the package blank BL is conveyed vertically, so that the magnetic sensors 61a and 61b are relatively moved. Move across the area. As a result, the detection units of the magnetic sensors 61a and 61b are alternately opposed to the N-pole region 37n and the S-pole region 37s. As a result, the sensor outputs of the magnetic sensors 61a and 61b are as shown in FIG. It becomes a periodic signal as shown in a) and (b).
- the timing T ⁇ b> 0 a shown in FIG. 8A is the time when the tip of the tongue 38 is detected by the infrared sensor 62.
- the timing T0b shown in FIG. 8B is the same as the timing T0a.
- the detection of the magnetic sensors 61a and 61b is started at the timings T1a and T1b when the predetermined time described above has elapsed.
- the time from when the tip of the tongue 38 is detected by the infrared sensor 62 until the detection of the magnetic sensors 61a and 61b is started is defined as ⁇ T1a and ⁇ T1b.
- the detection start times ⁇ T1a and ⁇ T1b are times corresponding to the predetermined time, in other words, are parameters that relatively represent the position of the magnetized region in the magnetic region 37 in the package blank BL.
- the sensor outputs of the magnetic sensors 61a and 61b are periodic signals as shown in FIG. This is due to the arrangement of the N-pole region 37n and the S-pole region 37s that are traversed by each magnetic sensor. Considering this point, the time ⁇ T2a and ⁇ T2b corresponding to the period of the periodic signal can be said to be a parameter corresponding to the magnetization width of each region in the arrangement of the N-pole region 37n and the S-pole region 37s. Further, ⁇ L1a and ⁇ L1b corresponding to the amplitudes of the periodic signals from the magnetic sensors 61a and 61b are parameters corresponding to the magnetic field strength in the N-pole region 37n and the magnetic field strength in the S-pole region 37s. Therefore, as the amplitudes ⁇ L1a and ⁇ L1b increase, the magnetic attractive force in the magnetic region 37 increases.
- the periodic signal detected based on the infrared sensor 62 and the magnetic sensors 61a and 61b reflects the magnetic distribution by the N-pole region 37n and the S-pole region 37s formed in the magnetic region 37. Therefore, in this embodiment, using this periodic signal, an inspection process is performed to determine whether an appropriate magnetic distribution is formed in order to form a locking mechanism in the magnetic region 37.
- the magnetization inspection process shown in FIG. 9 is realized by executing a predetermined program in the processing apparatus 100. This magnetization inspection process is repeatedly executed at a predetermined time interval shorter than the interval in which the package blank BL is vertically conveyed in the supply line 22b.
- S101 it is determined whether or not the tip of the tongue 38 of the package blank BL has been detected. Specifically, the determination is performed based on the detection signal of the infrared sensor 62 as described above. If an affirmative determination is made in S101, the process proceeds to S102, and if a negative determination is made, the process ends.
- S102 the periodic signals described above are acquired by the magnetic sensors 61a and 61b. In the present process, the magnetic region 37 and the magnetic region 33 in the package blank BL sequentially pass through the region R0 by the supply line 22b, so that a periodic signal corresponding to each magnetic region is acquired. .
- the processes of S103 and S104 are sequentially performed.
- the magnetic distribution of the magnetic region 37 on the lid side of the package 30 is inspected.
- the magnetic distribution of the magnetic region 33 on the main body side of the package 30 is inspected. Since both inspections are substantially the same inspection, the inspection of the magnetic region 37 will be representatively described. In the present embodiment, the inspection is performed based on the above-described three parameters related to the periodic signal acquired in S102, which are the detection start time, the period, the amplitude, and the parallelism described later.
- FIG. 10A shows a periodic signal (that is, the same as the periodic signal shown in FIG. 8A) by the magnetic sensor 61a when the magnetic distribution in the magnetic region 37 is normal in the upper stage (a), and the lower stage (b). Shows an example of a periodic signal acquired from the actual package blank BL to be inspected through the magnetic sensor 61a.
- the detection start time ⁇ T1a ′ in the inspection object is longer than the detection start time ⁇ T1a in the normal case serving as a reference. This means that the magnetization start position on the magnetic region 37 is not located at a relatively normal place when the tip of the tongue 38 is used as a reference.
- the suitability degree of the magnetization start position in the magnetic region 37 is calculated according to the following equation using the detection start time.
- Suitability of magnetization start position (%) 100 ⁇
- FIG. 10B shows a periodic signal from the magnetic sensor 61a when the magnetic distribution in the magnetic region 37 is normal as in FIG. 10A, and the lower part (b) shows the package blank BL to be actually inspected.
- An example of the periodic signal acquired from the magnetic field through the magnetic sensor 61a is shown.
- the period ⁇ T2a ′ in the inspection object is longer than the period ⁇ T2a in the normal case serving as a reference.
- This means that the magnetization widths of the N-pole region 37n and the S-pole region 37s in the magnetic region 37 are deviated from the reference width.
- Such a deviation of the magnetization width is attached in a state where the magnet disk 55a and the iron disk 55b forming the magnetization roller 55 shown in FIG. Another reason is that the attachment is inclined with respect to the support shaft 54.
- the suitability degree of the magnetization width in the magnetic region 37 is calculated according to the following formula using the period.
- Suitability of magnetization width (%) 100 ⁇
- FIG. 10C shows a periodic signal from the magnetic sensor 61a when the magnetic distribution in the magnetic region 37 is normal as in FIG. 10A, and the lower part (b) shows the package blank BL to be actually inspected.
- An example of the periodic signal acquired from the magnetic field through the magnetic sensor 61a is shown.
- the amplitude ⁇ L1a ′ in the inspection object is smaller than the normal amplitude ⁇ L1a as a reference. This means that the magnetic field strength of the N pole region 37n and the S pole region 37s in the magnetic region 37 is weakened. Such a decrease in the magnetic field strength can be attributed to poor contact between the magnetized roller 55 shown in FIG. 5 and the magnetic region 37 in a non-magnetized state.
- the suitability degree of the magnetization intensity in the magnetic region 37 is calculated according to the following formula using the amplitude.
- Suitability of magnetization strength (%) 100 ⁇
- FIG. 10D shows an example of periodic signals respectively acquired from the package blank BL to be actually inspected through the magnetic sensors 61a and 61b in the upper stage (a) and the middle stage (b). Further, the lower part (c) schematically shows a state in which the extending directions of the N-pole region 37n and the S-pole region 37s formed in the magnetic region 37 are inclined to some extent with respect to the reference direction. Is defined as parallelism.
- Parallelism (%) 100 ⁇ T / maximum time shift
- the maximum time shift is a maximum value assumed due to the inclination in the extending direction of the N-pole region 37 n and the S-pole region 37 s in the magnetic region 37.
- S105 based on the inspection results in S103 and S104, comprehensive suitability determination of the magnetic distribution formed in the magnetic regions 37 and 33 in the package 30 is performed. In this way, a comprehensive judgment is made on the package because the proper locking force between the tongue 38 and the main body side is a combination of the parameters of the above-mentioned magnetization start position, magnetization width, magnetization strength, and parallelism. This is because it is formed by being related to each other. Therefore, the comprehensive determination in S105 will be specifically described based on FIGS. 11A and 11B.
- the suitability degree of the magnetization start position, the suitability degree of the magnetization width, the suitability degree of the magnetization strength, corresponding to each of the magnetic regions 37 and 33 calculated according to the above formula When the parallelism is equal to or higher than the reference threshold A, it is determined that the magnetization process in the package blank BL has been performed satisfactorily (see FIG. 11A (a)). Therefore, if any one of these parameters falls below the threshold A, it is determined that the magnetization process in the package blank BL has not been performed well (see FIG. 11A (b)).
- the suitability degree of the magnetization start position, the suitability degree of the magnetization width, and the magnetization corresponding to each of the magnetic regions 37 and 33 calculated according to the above formulas.
- the judgment criteria are set twice because even if one of the four parameters falls below the reference value, the magnetic attraction force between the two magnetic regions is ensured by all the parameters being related comprehensively. It is taken into consideration that there are cases where it is possible.
- the threshold value B it is determined that the magnetization process in the package blank BL has not been performed satisfactorily (see FIG. 11B (b)).
- threshold values A and B are values set so that the magnetic distributions in the magnetic regions 37 and 33 when they are formed as the package 30 coincide with each other in order to work as a good locking mechanism. Therefore, in the package blank in which the magnetic distribution is determined to be appropriate based on the thresholds A and B, the magnetic attraction force sufficient as a locking mechanism between the magnetic regions 37 and 33 when formed as the package 30. Is guaranteed to work. As described above, according to the magnetization inspection process according to the present invention, it is possible to quickly inspect the magnetic distribution by the N-pole region and the S-pole region formed alternately in the magnetic regions 37 and 33 in a strip shape.
- the extending direction of the N-pole region and the S-pole region is the lateral width direction of the package blank BL
- sensing is performed by the magnetic sensors 61a and 61b while transporting the package blank BL in the vertical direction. . Therefore, each magnetic sensor performs sensing while moving so as to be relatively orthogonal to the extending directions of the N-pole region and the S-pole region. Instead of such a relative movement mode, sensing may be performed so that each magnetic sensor relatively moves in a direction intersecting at a predetermined angle with respect to the extending direction of the N-pole region and the S-pole region.
- the sensing distance and sensing timing by the magnetic sensor 61a may differ from the sensing distance and sensing timing by the magnetic sensor 61b, the suitability degree and the magnetization width of the magnetization start position described above are taken into consideration.
- the suitability of the magnetic distribution may be determined based on the suitability, the suitability of the magnetization strength, and the parallelism.
- the package blank BL is moved (conveyed) in a state where the magnetic sensor is fixed.
- the package blank BL is fixed when acquiring the periodic signal.
- the magnetic sensor side may be moved in the state, or both may be moved.
- FIG. 12 discloses a so-called hinge lid type package (hereinafter simply referred to as “package”) 40 for accommodating a cigarette bundle.
- the package 40 is capable of opening and closing the opening of the accommodation space (the space in which the cigarette bundle is accommodated) in the package body 41 by the lid portion 42 being hinged to the package body 41 via the hinge portion 46.
- the package 40 is provided with magnetic regions 44 and 45 as a mechanism for locking the lid portion 42 to the package body 41.
- the magnetic regions 44 and 45 are formed by applying a magnetic material including a ferrite-based magnetic material.
- the magnetic regions 44 and 45 are magnetized.
- the lid portion 42 and the package main body 41 are locked by the magnetic attractive force acting between the two regions.
- a neodymium magnetic material may be used for the magnetic regions 44 and 45.
- the magnetic region 45 is formed as an elongated region extending to the side of the package below the cutout portion 43b of the inner frame front surface 43a of the inner frame 43 included in the package body 41.
- the magnetic region 44 is formed in the inner flap 42 a superimposed on the inner surface of the front panel of the lid portion 42 as an elongated region extending to the side of the package in the same manner as the magnetic region 45.
- the relative relationship between the position of the magnetic region 45 on the inner frame front surface 43a and the position of the magnetic region 44 on the inner flap 42a is determined so that the lid portion 41 faces in a state where the opening of the accommodation space is closed. Yes.
- the magnetic attraction acting between the two magnetic regions is affected. Due to the force, the flange-coupled lid portion 42 is sucked toward the package body 41 (inner frame 43), and the magnetic region 44 contacts the magnetic region 45, thereby generating a contact sound indicating the contact. The contact state is maintained by the magnetic attractive force between the two magnetic regions. Therefore, the magnetic attraction force is required to be greater than the restoring force at which the lid portion 42 tends to be separated from the package body 41 by the hinge coupling of the hinge portion 46.
- the magnetic attraction force is a force larger than a necessary resistance force, and a force lower than a predetermined force so that the force when the user intentionally opens the lid portion 42 does not become excessively large. It is required to be.
- FIG. 13 shows a package blank BL in which the package 40 shown in FIG. 12 is developed.
- the package blank BL includes a blank portion corresponding to the package body 41 including the inner frame 43 and a blank portion corresponding to the lid portion 42. Further, the magnetic region 44 formed on the lid portion 42 side is disposed on the blank portion corresponding to the inner flap 42a, and the magnetic region 45 formed on the package body 41 side corresponds to the inner frame front surface 43a. It is arranged on the blank part.
- the magnetic region 44 is disposed on the lid portion 42, while the magnetic region 45 is disposed on the inner frame 43.
- the lid portion 42 is connected to the package body 41 and is a separate member from the inner frame 43. Therefore, regarding the magnetization of the magnetic regions 44 and 45 in the package 40, as shown in FIG. 13, when the inner frame 43 is bonded to the package body 41 to form the package blank BL as shown in FIG. As described above, the magnetic regions 44 and 45 can be magnetized by the magnetizing rollers 55 and 59 at substantially the same timing. Further, before the inner frame 43 is bonded to the package body 41 and the package blank BL is formed, the magnetic region 45 on the inner frame 43 and the magnetic region 44 on the lid portion 42 are at different timings in the respective transport processes. It may be magnetized by a corresponding magnetizing roller. In that case, both are bonded after each is magnetized.
- the integrated package blank BL is as described above. Applied. Further, when the magnetic region 45 on the inner frame 43 and the magnetic region 44 on the lid portion 42 are magnetized separately, the above-described magnetization inspection process is performed on each of the inner frame 43 and the lid portion 42. May be applied individually.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
所定方向に延在するN極領域とS極領域が交互に配置されるように着磁装置により第1の磁性領域が形成された、収容物を収容するパッケージのブランクにおける該第1の磁性領域の検査装置であって、磁力の大きさに応じた電気信号を出力する第1磁気センサと、所定方向に所定角度で交わる検査方向に沿って第1磁気センサを第1の磁性領域に対して相対的に移動させて、該第1磁気センサによる磁気出力の周期的信号を取得する取得手段と、取得手段によって取得された磁気出力の周期的信号に基づいて、第1の磁性領域における磁気分布の適否を判断する判断手段と、を備える。これにより、磁性領域における磁気分布の検査を可及的速やかに行い得る。
Description
本発明は、パッケージに形成された磁性領域における磁気分布の適否を判断するための検査装置、及び当該検査装置を含むパッケージの包装機に関する。
近年、シガレットのパッケージとしては、リッド型パッケージが多く採用されている。リッド型パッケージは、その本体側にリッド部がヒンジ結合されることで、本体側内部のフィルタシガレットを外部から良好に保護でき、また、リッド部を閉じておけばパッケージ内に脱落している屑が外部にこぼれ落ちてしまうことが抑制される。そのため、リッド型パッケージにあっては、そのリッド部が不用意に開くのを防止するためリッド部の係止機構を備えているのが望ましい。例えば、特許文献1に開示のリッドパッケージにおいては、リッド部と本体側との係止機構に磁性部材が利用されている。具体的には、インナーフラップ上の磁性材料と、リッド部側の磁性材料による磁気吸引力で、リッド部の不用意な開きが防止される程度にリッド部が本体側に係止された状態となる。なお、特許文献1においては、これらの磁性部材は、パッケージの製造中に着磁されると言及されている。
このような磁性部材を利用した係止機構は、磁気吸引力を利用するためユーザがリッド部と本体側を厳密に位置決めする必要がなく、利便性が高い。一方で、磁性部材における磁気分布が適切に形成されていなければ、本体側に対してリッド部が適切な位置に保持されず、パッケージ内部の十分な保護を図ることが困難となる。そこで、磁性部材における磁気分布を適切に測定し、検査する必要性がある。例えば、特許文献2には、磁気インクを使用した印刷パターンにおける磁気分布の検出に関する技術が開示されている。当該技術では、使用される磁気抵抗素子の検出磁界のピーク値を利用して、磁気分布の検出が行われる。
パッケージにおいて係止機構を形成するために磁性部材を利用する場合、当該磁性部材に、ライン状のN極領域とS極領域とが交互に形成される場合がある。このような磁気分布が磁性部材に形成されることで、例えば、パッケージのリッド部と本体側とを好適に係止することが可能となるとともに、その係止状態の離脱も容易となり、ユーザの利便性は高まる。一方で、このようなN極領域とS極領域の分布が適切に形成されなければ、係止状態においてリッド部と本体側がずれてしまい、パッケージ内部の好適な保護が図れない。
ここで、従来技術では、このようなN極領域とS極領域とが交互に形成される磁性領域における磁気分布の検査に関する十分な考察は行われていない。特に、製造ラインでの製造過程においては磁気分布の検査時間を短縮することが求められるが、そのような観点からの考察は、やはり従来技術では十分ではない。
本発明は、上記した問題点に鑑みてなされたものであり、パッケージ上にN極領域とS極領域とが交互に形成される磁性領域における磁気分布の検査を可及的速やかに実現する検査装置を提供することを目的とする。
本発明の包装機において、上記課題を解決するために、検査に使用する磁気センサとパッケージとを相対的に移動させて、パッケージ上に交互に形成されたN極領域とS極領域に対応する周期的信号を取得する構成を採用することとした。この構成により、N極領域とS極領域の分布状態を正確に且つ、速やかに把握することが可能となる。
具体的には、本発明は、所定方向に延在するN極領域とS極領域が交互に配置されるように着磁装置により第1の磁性領域が形成された、収容物を収容するパッケージのブランクにおける該第1の磁性領域の検査装置であって、磁力の大きさに応じた電気信号を出力する第1磁気センサと、前記所定方向に所定角度で交わる検査方向に沿って前記第1磁気センサを前記第1の磁性領域に対して相対的に移動させて、該第1磁気センサによる磁気出力の周期的信号を取得する取得手段と、前記取得手段によって取得された前記磁気出力の周期的信号に基づいて、前記第1の磁性領域における磁気分布の適否を判断する判断手段と、を備える。
本発明に係るパッケージの磁気検査装置は、パッケージのブランクに形成された第1の磁性領域における磁気分布の検査が行われる。この第1の磁性領域には所定方向に延在するN極領域とS極領域が交互に配置されており、磁気検査装置による検査工程の前の段階において着磁装置により形成される。この着磁装置による着磁工程、すなわちN極領域とS極領域の形成工程は、検査工程の直前であってもよく、又は、検査工程と着磁工程の間に他の製造工程が含まれてもよい。なお、第1の磁性領域におけるN極領域とS極領域が延在する所定方向は、特定の方向に限定されるものではなく、取得手段により周期的信号の取得が可能な程度にN極領域とS極領域とが延在する方向であればよい。
ここで、取得手段は、所定方向に所定角度で交わる検査方向に沿って第1磁気センサを第1の磁性領域に対して相対的に移動させる。この相対的移動において、第1磁気センサのみを移動させてもよく、または第1の磁性領域が形成されているブランクを移動させてもよく、または両者を移動させてもよい。要するに、両者の相対的な移動の結果、第1磁気センサが、所定方向に所定角度となるように第1の磁性領域を横切ればよい。このように第1磁気センサと第1の磁性領域との間の移動が行われる結果、第1磁気センサに対しては、N極領域による磁界とS極領域による磁界とが交互に作用することになり、以て周期的信号が取得されることになる。
そして、当該周期的信号には、N極領域とS極領域による磁気分布が反映されている。すなわち、周期的信号がどのように繰り返される信号であるか、またその信号強度がどの程度であるのか等、周期的信号の属性に基づくことで、第1磁気センサが検出した磁気がどのようなものであるか、すなわち、N極領域とS極領域による磁気分布がどのように形成されているかを判断することが可能となる。そこで、本願発明では、判断手段により、第1磁気センサによる磁気出力の周期的信号に基づいた、磁気分布の適否判断が行われる。
このように本願発明に係る磁気検査装置では、第1の磁性領域における磁気分布の適否判断のための周期的信号は、第1磁気センサと第1の磁性領域とを相対的に移動させることで取得される。そのため、当該周期的信号を取得するために要する時間の短縮を図ることができるとともに、周期的信号を利用することで、第1の磁性領域に、N極領域とS極領域が適切に交互に配置されているかを判断することが可能となる。
そして、周期的信号を取得するために要する時間を可及的に短縮するためには、前記取得手段による取得が行われるとき、前記第1磁気センサは前記パッケージの磁気検査装置側に固定された状態で、前記ブランクが前記検査方向に搬送されるのが好ましい。このようにブランクの搬送方向に検査方向を合わせることで、ブランクを搬送しながら周期的信号の取得が可能となり、効果的な検査時間の短縮が期待される。
また、上記の磁気検査装置において、前記第1の磁性領域は、前記取得手段による磁気出力の取得が行われる前に、前記パッケージが前記所定方向と同じ着磁時搬送方向に搬送されながら前記着磁装置によって着磁されることで形成されてもよい。そして、前記取得手段は、前記ブランクが前記着磁時搬送方向に対して前記所定角度で交わる前記検査方向に搬送されることで、前記磁気出力の周期的信号を取得してもよい。このように第1の磁性領域を形成するための着磁時搬送方向と、周期的信号を取得するための検査方向である搬送方向を、平面上で所定角度異ならせることで、第1の磁性領域の形成及び周期的信号の取得をともにブランクの搬送状態において実現でき、以て、着磁工程を含めて磁気検査時間の短縮化を図ることが可能となる。
なお、上述までの磁気検査装置において、上記所定角度として90度が挙げられる。しかし、所定角度としては、90度以外の角度であってもよい。
ここで、上述までの磁気検査装置において、判断手段による磁気分布の適否判断の具体的な態様について説明する。第1の態様としては、前記判断手段は、前記磁気出力の周期的信号の周期に基づいて、前記第1の磁性領域に形成されたN極領域の幅とS極領域の幅の適否を判断してもよい。周期的信号の周期は、磁気分布の繰り返し要素を反映するものであり、当該繰り返し要素として、N極領域の幅とS極領域の着磁幅が例示できる。これらの領域における着磁幅が適正でなければ、パッケージにおいて好適な係止機構を形成することは困難となるため、判断手段による磁気分布の適性判断の対象とされる有用性は大きい。
次に、第2の態様としては、前記判断手段は、前記磁気出力の周期的信号の振幅に基づいて、前記第1の磁性領域に形成された磁気分布の磁力の適否を判断してもよい。周期的信号の振幅は、磁気分布の強さを反映するものであり、当該強さとして、N極領域やS極領域による第1の磁性領域の磁力が例示できる。この磁力が適正でなければ、パッケージにおいて好適な係止機構を形成することは困難となるため、判断手段による磁気分布の適性判断の対象とされる有用性は大きい。
次に、第3の態様としては、前記取得手段による磁気出力の取得が行われる検査領域に前記パッケージが搬送されてきたことを検知する検知手段を、更に備え、その場合、前記判断手段は、前記検知手段により前記パッケージの前記検査領域への到達が検知されてから前記磁気出力の周期的信号が取得され始めるまでの期間に基づいて、前記パッケージにおける前記第1の磁性領域の位置の適否を判断してもよい。ここで、パッケージの検査領域への到達が検知されてから周期的信号が取得され始めるまでの期間は、パッケージにおける第1の磁性領域の配置場所を反映するものである。この配置場所が適正でなければ、パッケージにおいて好適な係止機構を形成することは困難となるため、判断手段による磁気分布の適性判断の対象とされる有用性は大きい。
ここで、上述までの磁気検査装置において、磁力の大きさに応じた電気信号を出力する磁気センサであって、前記検査方向において前記第1磁気センサと重ならないように配置された第2磁気センサを、更に備えてもよい。その場合、前記取得手段は、前記検査方向に沿って前記第1磁気センサ及び前記第2磁気センサを前記第1の磁性領域に対して相対的に移動させて、各磁気センサの磁気出力の周期的信号を取得し、そして、前記判断手段は、前記第1磁気センサによる前記磁気出力の周期的信号である第1出力信号と、前記第2磁気センサによる前記磁気出力の周期的信号である第2出力信号とに基づいて、前記第1の磁性領域における磁気分布の適否を判断する。
このような構成によれば、第1磁気センサと第2磁気センサを利用して、第1の磁性領域における磁気分布の適否が判断される。そのため、当該磁気分布の適否判断の精度が向上され、又は、第1磁気センサのみを利用する場合では実現できなかった磁気分布の適否判断が可能となる。例えば、前記判断手段は、前記第1出力信号と前記第2出力信号との位相差に基づいて、前記第1の磁性領域での前記所定方向に沿ったN極領域とS極領域の磁気分布の平行性の適否を判断することができる。位相差が所定値(例えば、位相差が零)の場合に、N極領域とS極領域の磁気分布が好適な平行状態にあるときに、当該位相差が所定値からずれた場合には、N極領域とS極領域の磁気分布の平行性が低下していると考えることができ、以て、平行性の適否判断が可能となる。
また、上述までの磁気検査装置においては、前記ブランクには、前記第1の磁性領域とは別の磁性領域であって、前記所定方向と同じ方向に沿ってN極領域とS極領域が交互に延在するように前記着磁装置により形成された第2の磁性領域が形成されてもよい。そして、前記取得手段は、前記第2の磁性領域についても、前記検査方向に沿って前記第1磁気センサ及び前記第2磁気センサを該第2の磁性領域に対して相対的に移動させて、各磁気センサの磁気出力の周期的信号を取得し、そして、前記判断手段は、前記第1の磁性領域に対応する前記第1出力信号と前記第2出力信号、及び前記第2の磁性領域に対応する該第1出力信号と該第2出力信号に基づいて、該第1の磁性領域と該第2の磁性領域との磁気吸引力に関する一致性の適否について判断する。すなわち、第2の磁性領域は、第1の磁性領域と磁気吸引力を介して係止状態となる関係にある。そして、その係止状態を好適に形成得るためには、第1の磁性領域と第2の磁性領域との磁気吸引力が一致する必要があるので、上記判断手段は、当該磁気吸引力に関する一致性の適否判断を行うことで、パッケージにおける両磁性領域による係止機構が適正に形成されるか否かを判断することができる。
ここで、上述までの磁気検査装置においては、前記着磁装置は、永久磁石で形成される磁石円板と磁性体で形成される磁性体円板を交互にそれぞれ複数ずつ、支持軸に回動可能に支持することで構成された着磁ローラであってもよい。そして、前記第1の磁性領域におけるN極領域とS極領域が交互に前記所定方向に延在する磁気分布は、前記ブランク上に配置された非着磁のマグネットシートに前記着磁ローラが接触することで形成される。このように着磁ローラを用いることで、容易にマグネットシート上に第1の磁性領域を形成することが可能となる。特に、着磁時搬送方向に沿ってマグネットシートを含むブランクが搬送される場合、着磁ローラはマグネットシートに対して接触した状態を維持すればよいため、着磁工程そのものを簡略化できる。
更には、前記磁性体円板の直径は、前記磁石円板の直径以上であってもよい。本願の発明者の鋭意努力により、磁性体円板の直径を、対応する磁石円板の直径と同径かそれより大きくすることで、対応する磁性領域での磁気分布形成を好適に行うことができることを見出した。なお、磁性体円板の直径を磁石円板の直径より大きくする場合、その直径の相違量は磁性領域で形成される磁気分布の磁力等を考慮して適宜決定すればよい。
ここで、本願発明を、上述までの磁気検査装置と、前記着磁装置と、を一定の装置内に備えるパッケージの包装機の側面から捉えることもできる。その場合、前記着磁装置による前記第1の磁性領域の形成は、前記パッケージの磁気検査装置による前記第1の磁性領域の検査の前に実行されるように、該着磁装置と該パッケージの磁気検査装置が配置される。
本発明によれば、パッケージ上にN極領域とS極領域とが交互に形成される磁性領域における磁気分布の検査を可及的速やかに実現する検査装置を提供することが可能となる。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1には、シガレット束を収容するための、いわゆるタングリッド型パッケージ(以下、単に「パッケージ」という)30が開示されており、図1に示すパッケージ30は、その内部の収容空間(シガレット束が収容されている空間)が閉じられた閉状態にある。また、図2には、パッケージ30が展開されたパッケージブランクBLが示されている。パッケージ30は、パッケージ本体31に、タングリッド部32がヒンジ結合されることで、パッケージ本体31内の収容空間の開口を開閉可能とする。パッケージ本体31は、パッケージの前面に位置する前壁31aと側面に位置する側壁31bと底面に位置する底壁31c等により、収容空間を形成している。また、タングリッド部32は、パッケージ本体31にヒンジ接続するリッド35及び当該リッド35にヒンジ接続するタング38を有しており、図1に示す閉状態では、リッド35は、パッケージ本体31の底壁31cに対向するように位置し、また、タング38は、パッケージ本体31の前壁31a上に位置する。
そして、パッケージ30には、パッケージ本体31へのタングリッド部32(特に、タング38)の係止機構としての磁性領域33、37が設けられている。磁性領域33、37は、フェライト系の磁性材料を含む磁性材料が塗布されることで形成され、且つ、図1に示すパッケージ30の閉状態では、磁性領域33、37は着磁されており、両領域の間に作用する磁気吸引力によってタング38とパッケージ本体31とが係止された状態となる。なお、磁性領域33、37には、ネオジウム系の磁性材料を利用してもよい。
具体的には、磁性領域33は、パッケージ本体31に含まれる前壁31aの図示しない切り欠き部の下方において、パッケージ側方に延びる細長い領域として形成される。一方で、磁性領域37は、タング38の先端部分近くに、磁性領域33と同じようにパッケージ側方に延びる細長い領域として形成される。そして、パッケージ本体31における磁性領域33の位置と、タング38における磁性領域37の位置との相対関係は、上記閉状態において対向するように決定されている。
このように構成されるパッケージ30においては、図1に示す状態からユーザによりタングリッド部32が閉じられ、磁性領域37が磁性領域33にある程度近接した状態となると、両磁性領域間に作用する磁気吸引力によって、フランジ結合されているタング38がパッケージ本体31側に吸い寄せられ、磁性領域37が磁性領域33に接触することで、その接触を示す接触音が発生する。そして、その接触状態は、両磁性領域間の磁気吸引力により維持されることになる。
また、両磁性領域の接触によりタングリッド部32が収容空間の開口を閉じている状態からタングリッド部32が開かれるときには、ユーザは、両磁性領域間の磁気吸引力より大きい力をタングリッド部32に作用させ回転させる必要がある。したがって、閉じた状態にあるタングリッド部32に対して当該磁気吸引力より小さい力が作用している限りは、その閉じた状態が維持されることになるから、当該磁気吸引力は、タングリッド部32が不用意に開いてしまわないようにするための抵抗力とも言える。したがって、当該磁気吸引力は、必要な抵抗力よりも大きい力であり、且つ、ユーザがタングリッド部32を意図的に開く場合の力がいたずらに過大とならないように所定の力よりも低い力であることが求められる。本願発明においては、この磁気吸引力が適切に形成されているかに否かについて、後述する検査装置によって検査される。
そして、図2に示すように、パッケージブランクBLは、パッケージ本体31に対応するブランク部分と、タングリッド部32に対応するブランク部分とからなっている。なお、ブランク部分とは、パッケージブランクBLの一部を形成する構成物である。更に、タングリッド部32側に形成された磁性領域37は、タング38に対応するブランク部分上に配置されており、パッケージ本体31側に形成された磁性領域33は、前壁31aに対応するブランク部分上に配置されている。なお、本明細書においてパッケージブランクBLの向きに関しては、図2の上下方向、すなわち、一方の磁性領域から他方の磁性領域に向かう方向を縦方向と定義し、図2の左右方向、すなわちパッケージブランクBLが展開されている面上において縦方向に垂直な方向を横方向と定義する。
また、図2から分かるように、パッケージブランクBLにおいて、タング38に対応するブランク部分の横には、特定のブランク部分は配置されていない。一方で、前壁31aに対応するブランク部分の横には、パッケージ本体31の側壁31bに対応するブランク部分が配置されている。なお、パッケージ30の組立のためのパッケージブランクBLにおける折り込み線の形成自体に関しては公知であるため、その説明は省略する。
次に、パッケージ30を製造する包装機について、図3に基づいて説明する。図3に示す包装機は、シガレットのホッパ2を備え、ホッパ2の下側にはホッパ2から20本のシガレットを3段の俵積み状態にして各ポケット4内に充填するシガレット充填機構6が設けられている。シガレット束は移送ライン上を1点鎖線で示す垂直な第1ホイール8まで移送される。第1ホイール8はその回転にともないポケット4から20本のシガレット束を受取り、そして、シガレット束は第1ホイール8から1点鎖線で示す垂直な第2ホイール10のバケット12内に、内包材としてのアルミ箔シートSとともに押し込まれる。この際、アルミ箔シートSはシガレット束の回りに沿って胴折りされる。
アルミ箔シートSは、アルミ箔ロールARから繰り出されるアルミ箔ウエブAWを所定の長さ毎に切断して得られ、第1ホイール8と第2ホイール10との間に順次供給される。なお、アルミ箔ロールARの近傍には、図示されていない同様のアルミ箔ロールが配置されており、このアルミ箔ロールは待機ロールである。この後、第2ホイール10の回転にともない、バケット12内のシガレット束に対して胴折り後におけるアルミ箔シートSの耳折りやサイドフラップ折りが順次行われ、シガレット束の内包体が形成される。
第2ホイール10には第1ホイール8の反対側に水平な第3ホイール16が隣接して配置されており、第3ホイール16はそのバケット内に第2ホイール10からシガレット束の内包体を順次受取り、その回転とともに内包体を移送する。更に、第3ホイール16には第2ホイール10の反対側に同じく水平な第4ホイール18が隣接して配置されている。第4ホイール18は第3ホイール16の下側に位置し、第3ホイール16から内包体IBを受け取る。
次に、第4ホイール18はブランク供給系22から図2に示すパッケージブランクBLの供給を受け、このパッケージブランクBLは内包体IBの上面に接着される。図3に示すように、ブランク供給系22は、ホッパ24と第4ホイール18との間を接続する2つの供給ライン22aと供給ライン22bを有し、供給ライン22aでは、パッケージブランクBLがその横方向に搬送される横搬送が行われ、一方で、供給ライン22bでは、パッケージブランクBLが縦方向に搬送される縦搬送が行われる。ホッパ24から一枚ずつ取り出されたパッケージブランクBLは、供給ライン22a、22b上を順次搬送され、第4ホイール18に移送される。ここで、各パッケージブランクBLには、既に磁性材料が塗布、乾燥されて、上記の磁性領域33、37が形成されているが、ホッパ24に格納されている状態では、各磁性領域の着磁はまだ行われていない。
そして、第4ホイール18の周方向でみてパッケージブランクBLの供給位置の直上には、垂直な第5ホイール20が配置されており、第5ホイール20は、そのバケット内にパッケージブランクBLが接着された内包体IBを受け取り、その後、第5ホイール20での回転にともないパッケージブランクBLが順次折り込まれ、パッケージ30が製造される。この後、パッケージ30は、第5ホイール20に隣接した水平な第6ホイール26を介して同じく水平な第7ホイール28に乗り移る。第7ホイール28の回転にともないパッケージ30が移送される過程にて、そのパッケージ30は糊付け部分が乾燥され、その後、垂直な第8ホイール29を介して送出ラインに送出される。送出ラインはパッケージ30を外包機(図示しない)に向けて順次供給し、この外包機にてパッケージ30はフィルムシートにより更に包装される。
<着磁処理>
ここで、図3に示す包装機では、パッケージブランクBLの搬送過程で、そこに形成されている磁性領域33、37の着磁処理が行われる。このようにホッパ24に格納されている段階では磁性領域33、37を未着磁状態とし、その搬送過程で磁性領域33、37の着磁処理を行うのは、着磁がされたパッケージブランクBLがホッパ24内で積層されると、隣接するパッケージブランクBL同士が磁性材料による磁気吸引力で吸引されてしまうため、パッケージブランクBLの取扱いが困難となるからである。具体的には、ブランク供給系22を形成する供給ライン22aにおいて、磁性領域33、37の着磁処理が行われる。
ここで、図3に示す包装機では、パッケージブランクBLの搬送過程で、そこに形成されている磁性領域33、37の着磁処理が行われる。このようにホッパ24に格納されている段階では磁性領域33、37を未着磁状態とし、その搬送過程で磁性領域33、37の着磁処理を行うのは、着磁がされたパッケージブランクBLがホッパ24内で積層されると、隣接するパッケージブランクBL同士が磁性材料による磁気吸引力で吸引されてしまうため、パッケージブランクBLの取扱いが困難となるからである。具体的には、ブランク供給系22を形成する供給ライン22aにおいて、磁性領域33、37の着磁処理が行われる。
<横搬送過程での着磁処理>
供給ライン22aでの着磁処理について図4に基づいて説明する。図4は、供給ライン22aでパッケージブランクBLが横搬送されている状態での着磁処理に関する構成を示す。上述の通り、供給ライン22aでは、パッケージブランクBLは、図4の白抜き矢印に示す横方向に搬送機50によって横搬送されている。したがって、その横搬送時には、搬送方向に垂直な方向においてパッケージブランクBLの中心部分を挟んだ両側のそれぞれに、磁性領域37と磁性領域33が位置する状態となる。
供給ライン22aでの着磁処理について図4に基づいて説明する。図4は、供給ライン22aでパッケージブランクBLが横搬送されている状態での着磁処理に関する構成を示す。上述の通り、供給ライン22aでは、パッケージブランクBLは、図4の白抜き矢印に示す横方向に搬送機50によって横搬送されている。したがって、その横搬送時には、搬送方向に垂直な方向においてパッケージブランクBLの中心部分を挟んだ両側のそれぞれに、磁性領域37と磁性領域33が位置する状態となる。
ここで、搬送機50は、複数のパッケージブランクBLを横搬送できるように搬送面を形成するコンベア51上にプッシャ52が複数配置されている。プッシャ52は、所定の高さを有する直方体の部材であり、その長手方向がコンベア51の幅方向に沿っている。そして、隣り合うプッシャ52同士の間には、横搬送されるパッケージブランクBLが所定の展開状態で配置可能となる配置空間が形成されている。この所定の展開状態は、磁性領域33が形成された前壁31aに対応するブランク部分と、磁性領域37が形成されたタング38に対応するブランク部分とが、後述する着磁ローラ55、59によって着磁可能となるように搬送面上に展開された状態をいう。なお、図4に示す本実施例では、両ブランク部分を含むパッケージブランクBL全体が展開された状態となっている。
コンベア51上の配置区間へのパッケージブランクBLの配置は、ホッパ24からパッケージブランクBLが配置空間に向けて投下される。そこで、パッケージブランクBLが配置空間に円滑に収まるように、隣り合うプッシャ52同士の間隔は、パッケージブランクBLの横方向の幅よりも若干長く設定されている。そして、このプッシャ52は、配置空間内にパッケージブランクBLを収めるためにパッケージブランクBLの動きを規制する規制部材として機能する。
ここで、プッシャ52によって画定される配置空間にパッケージブランクBLが配置されると、パッケージブランクBL上の磁性領域33、37が、それぞれプッシャ52の端部より配置空間の外側に飛び出した位置に来る。そして、図2に示すように、磁性領域33、37は、それぞれパッケージブランクBLの横方向に細長く形成されているため、配置空間52aの外側に飛び出した磁性領域33、37は、それぞれの長手方向(細長く延在する方向)とパッケージブランクBLの搬送方向が概ね一致した状態となる。
そして、コンベア51の搬送方向の両側方には、飛び出した磁性領域33、37と接触可能な位置に、それぞれ着磁ローラ55、59が配置されている。具体的には、磁性領域33が飛び出しているコンベア51の搬送方向の左側方に設けられた垂直壁57に、水平且つ搬送方向に垂直となる方向に延在するように支持軸58が取り付けられるとともに、支持軸58に回動可能に着磁ローラ59が取り付けられる。更に、磁性領域37が飛び出しているコンベア51の搬送方向の右側方に設けられた垂直壁53に、水平且つ搬送方向に垂直となる方向に延在するように支持軸54が取り付けられるとともに、支持軸54に回動可能に着磁ローラ55が取り付けられている。なお、垂直壁53、57は、供給ライン22aの基礎部分に固定されているため、コンベア51の搬送にかかわらず一定の位置に留まっている。したがって、コンベア51によって横搬送されてくるパッケージブランクBLの各磁性領域33、37の上方に、着磁ローラ59、55がそれぞれ配置されることになる。
また、着磁ローラ55の下方であって該着磁ローラ55と対向するようにカウンターローラ56が配置されるとともに、着磁ローラ59の下方であって該着磁ローラ59と対向するようにカウンターローラ60が配置される。カウンターローラ56、60も着磁ローラ55、59と同じように、図示しない支持軸に回動可能に支持されている。そして、着磁ローラ55とカウンターローラ56との間隙、及び着磁ローラ59とカウンターローラ60との間隙にパッケージブランクBLが横搬送されてくることで、パッケージブランクBL上の磁性領域37と磁性領域33がそれぞれ着磁ローラ55、59と接触しながら、パッケージブランクBLが着磁ローラ55、59の下流側へと搬送されることになる。
ここで、着磁ローラ55の具体的な構成について、図5に基づいて説明する。着磁ローラ55は、ネオジウム磁石で形成された磁石円板55aと、磁性体である鉄で形成された鉄円板55bとが、交互に支持軸54に回動可能に挿入されて形成される。このとき、鉄円板55bを挟んで隣り合う磁石円板55aは、支持軸54の軸方向における端面での磁極が逆になるように取り付けられる。そして、磁石円板55aの厚さは、例えば1mmであり、鉄円板55bの厚さは0.5mmである。また、鉄円板55bの直径は磁石円板55aの直径より僅かに大きい。このように構成される着磁ローラ55では、その表面(磁性材料45に接触するローラ表面)にN極とS極が交互に配列された磁気分布が形成され、且つ、磁石円板55aと鉄円板55bとの大きさの相関、すなわち直径及び厚さの相関により比較的磁力の強い磁気分布が形成される。
また、着磁ローラ55に対向するカウンターローラ56は、上記の通り非磁性体である樹脂製のローラである。そのため、カウンターローラ56の存在によって、着磁ローラ55の表面に形成されている磁気分布が乱れることはない。そして、横搬送によってパッケージブランクBLが着磁ローラ55とカウンターローラ56との間の間隙に送り込まれてくると、カウンターローラ56の存在により磁性領域37が着磁ローラ55の上記表面に効率的に接触するため、磁性領域37が、着磁ローラ55の表面における磁気分布に応じて着磁される。具体的には、磁性領域37の長手方向とパッケージブランクBLの搬送方向が概ね一致した状態であることを踏まえると、磁性領域37の長手方向に沿って帯状のN極領域37nとS極領域37sが形成されることになる(後述の図7も参照)。
また、着磁ローラ59も、着磁ローラ55と同じく図5に示すように、磁石円板55aと同形の磁石円板と鉄円板55bと同形の鉄円板が、交互に支持軸58に回動可能に挿入されて形成される。すなわち、着磁ローラ59においても、磁石円板と鉄円板との大きさの相関は、着磁ローラ55における磁石円板55aと鉄円板55bとの大きさの相関と同等とされる。これにより、磁性領域33においても、その長手方向に沿って帯状のN極領域とS極領域が好適に形成されることになる。なお、タングリッド部32が閉じられて形成される磁性領域37と磁性領域33とが対向した状態において、磁性領域37上の帯状の磁気分布と磁性領域33上の帯状の磁気分布とが対応した状態となるように、すなわち、例えば、磁性領域37上のN極に磁化した帯状の領域に、磁性領域33上のS極に磁化した帯状の領域が対向するように、且つ、磁性領域37上のS極に磁化した帯状の領域に、磁性領域33上のN極に磁化した帯状の領域が対向するように、着磁ローラ55、59における磁石円板及び鉄円板の配置が調整される。
以上より、図3に示す包装機では、パッケージブランクBLが横搬送されている過程において、上記のように構成される着磁ローラ55、59により磁性領域33、37が着磁される。その着磁過程では、各磁性領域と各着磁ローラとの接触状態が保たれているため、各磁性領域において所望の磁気分布を確実に形成することができる。更に、着磁ローラ55、59による着磁時には、パッケージブランクBLは搬送機50によって横搬送されている状態であるため、磁性領域33、37の着磁タイミングは概ね同時期であり、その着磁期間の一部が重なっており、磁性領域の着磁を可及的速やかに実行することが可能となる。
<縦搬送過程での着磁検査処理>
次に、上記着磁工程の後で実施される着磁検査処理について説明する。図6は、図3に示す包装機内の供給ライン22a及び供給ライン22bを流れるパッケージブランクBLを表している。上記の通り、供給ライン22aでは、パッケージブランクBLは着磁ローラ55、59によって磁性領域33、37が着磁される。この結果、各着磁ローラ上に形成されているN極とS極の交互配置により、各磁性領域においてN極領域及びS極領域が帯状に交互に繰り返された磁気分布が形成されることになる。この着磁処理が終了すると、ブランクパッケージBLは、供給ライン22aから供給ライン22bへと移る。供給ライン22bは、供給ライン22aと同一平面上に位置しているが、その搬送方向は供給ライン22aの搬送方向に対して直交している。そのため、供給ライン22bでのパッケージブランクBLの搬送方向は、縦搬送となる。
次に、上記着磁工程の後で実施される着磁検査処理について説明する。図6は、図3に示す包装機内の供給ライン22a及び供給ライン22bを流れるパッケージブランクBLを表している。上記の通り、供給ライン22aでは、パッケージブランクBLは着磁ローラ55、59によって磁性領域33、37が着磁される。この結果、各着磁ローラ上に形成されているN極とS極の交互配置により、各磁性領域においてN極領域及びS極領域が帯状に交互に繰り返された磁気分布が形成されることになる。この着磁処理が終了すると、ブランクパッケージBLは、供給ライン22aから供給ライン22bへと移る。供給ライン22bは、供給ライン22aと同一平面上に位置しているが、その搬送方向は供給ライン22aの搬送方向に対して直交している。そのため、供給ライン22bでのパッケージブランクBLの搬送方向は、縦搬送となる。
また、図6に示すように、供給ライン22bを横切る位置に、着磁領域33、37の磁気分布の適否を検査するための領域R0が設定されている。そして、この領域R0には、パッケージブランクBLがタング38の方から進入するように、縦搬送されてくる。このタング38の着磁領域37には、上記の着磁処理によって、着磁領域に帯状のN極領域とS極領域が形成されており、各領域の延在方向は、タング38の横幅方向(すなわち、図7における左右方向)となる。なお、図7には、領域R0に進入する直前の、磁性領域37に形成されている帯状のN極領域37nとS極領域37sが例示されており、その進入方向(搬送方向)が白抜き矢印で示されている。
ここで、図7に示すように、領域R0には、磁性領域の検査のための磁気センサ61a、61b及び赤外線センサ62が配置されている。磁気センサ61a、61bは、センサの検出部が晒される磁界の強さに応じた電気出力を得られるセンサである。そこで、両磁気センサは、パッケージブランクBLの幅方向にパッケージブランクBLの縦中心を挟んで対称となる位置であって、パッケージブランクBLが領域R0を通過するときに、両磁気センサが磁性領域と対向した状態となるように配置されている。また、赤外線センサ62は、赤外線が遮断されたときに遮断した物体の接近を感知するセンサである。そして、赤外線センサ62は、パッケージブランクBLのタング38の先端部が通過する位置、すなわちパッケージブランクBLの縦中心上に重なるように配置される。なお、赤外線センサ62と、磁気センサ61a、61bとの搬送方向における位置関係は、必ずしも一致する必要は無いが、パッケージブランクBLが領域R0に進入した際に、タング38の先端部が先に赤外線センサ62によって検出可能となり、所定時間経過後に、両磁気センサによる磁気分布の検出が可能となるように両者の位置関係が決定されている。当該所定時間は、赤外線センサ62、磁気センサ61a、61bの位置関係、及びパッケージブランクBLにおけるタング38の先端部の位置、磁性領域37の位置、縦搬送速度に基づいて決定される。
そして、赤外線センサ62及び磁気センサ61a、61bは、領域R0において、包装機の本体側に固定されて配置されている。したがって、固定された各センサの下を供給ライン22bによってパッケージブランクBLが搬送される途中において、各センサによるセンシングが行われる。すなわち、磁性領域37上に帯状に形成されているN極領域37nとS極領域37sの延在方向に対して、各センサが相対的に直交するように、パッケージブランクBLが縦搬送されることになる。そのため、各センサによるセンシングのために、パッケージブランクBLの位置決め処理等、特段の処理は必要とされない。
そして、赤外線センサ62及び磁気センサ61a、61bによるセンサ出力は、処理装置100に引き渡される。処理装置100は、いわばコンピュータであり、演算処理装置やメモリ等を有しており、本実施例においては、各センサから取得したセンサ出力を用いて、後述する着磁検査処理等の各種処理を実行する。
ここで、磁性領域37において、N極領域37nとS極領域37sが所望の通りに、すなわち、図1に示すパッケージ30においてタング38とパッケージ本体31とが係止された状態となるように形成された場合の、磁気センサ61aの出力を図8の上段(a)に示し、磁気センサ61bの出力を図8の下段(b)に示している。なお、図8に示すケースでは、磁性領域37には適切に磁気分布が形成されているため、磁気センサ61a、61bの出力は、実質的には同一となる。
上述までのように、磁性領域37には帯状のN極領域37nとS極領域37sが形成されており、パッケージブランクBLが縦搬送されることで、磁気センサ61a、61bが相対的にこの各領域を横切るよう移動する。その結果、磁気センサ61a、61bの検出部が、N極領域37nとS極領域37sに対して交互に対向することになるため、結果として、磁気センサ61a、61bのセンサ出力は、図8(a)、(b)に示すような周期的信号となる。ここで、図8(a)に示すタイミングT0aは、赤外線センサ62によってタング38の先端部が検出された時刻である。したがって、図8(b)に示すタイミングT0bはタイミングT0aと同一である。その後、上述した所定時間が経過したタイミングT1a、T1bにおいて、磁気センサ61a、61bの検出が開始されることになる。ここで、赤外線センサ62によってタング38の先端部が検出されてから、磁気センサ61a、61bの検出が開始されるまでの時間は、ΔT1a、ΔT1bと定義される。この検出開始時間ΔT1a、ΔT1bは、上記の所定時間に対応する時間であり、換言すれば、パッケージブランクBLにおける磁性領域37において着磁された領域の位置を相対的に表すパラメータでもある。
ここで、磁気センサ61a、61bのセンサ出力は、図8に示すように周期的信号となる。これは、相対的に各磁気センサが横切るN極領域37n、S極領域37sの配置による。その点を考慮すると、この周期的信号の周期に相当する時間ΔT2a、ΔT2bは、N極領域37n、S極領域37sの配置における各領域の着磁幅に対応するパラメータと言うことができる。また、磁気センサ61a、61bによる周期的信号の振幅に相当するΔL1a、ΔL1bは、N極領域37nにおける磁界の強さとS極領域37sにおける磁界の強さに相当するパラメータである。そのため、当該振幅ΔL1a、ΔL1bが大きくなるほど、磁性領域37における磁気吸引力が大きくなることになる。
このように赤外線センサ62及び磁気センサ61a、61bに基づいて検出される周期的信号には、磁性領域37に形成されたN極領域37n、S極領域37sによる磁気分布が反映されている。そこで、本実施例では、この周期的信号を利用して、磁性領域37において係止機構を形成するために適切な磁気分布が形成されているか否かの検査処理が行われる。具体的には、図9に示す着磁検査処理が、処理装置100において所定のプログラムが実行されることで実現される。この着磁検査処理は、供給ライン22bにおいてパッケージブランクBLが、縦搬送されてくる間隔よりも短い所定の時間間隔で繰り返し実行される。
先ず、S101では、パッケージブランクBLのタング38の先端部を検出したか否かが判定される。具体的には、上記の通り赤外線センサ62の検出信号に基づいて、当該判定が行われる。S101で肯定判定されるとS102へ進み、否定判定されると本処理を終了する。次に、S102では、磁気センサ61a、61bにより上述した周期的信号の取得が行われる。なお、本処理では、供給ライン22bによって領域R0を、パッケージブランクBLにおける磁性領域37及び磁性領域33が順次通過していくことで、各磁性領域に対して対応する周期的信号の取得が行われる。S102の処理が終了すると、S103、S104の処理が順次行われる。
S103では、パッケージ30のリッド側の磁性領域37の磁気分布の検査が行われ、S104では、パッケージ30の本体側の磁性領域33の磁気分布の検査が行われる。両検査は、実質的に同一の検査であるから、磁性領域37の検査について代表的に説明する。本実施例では、S102で取得された周期的信号に関連する上述した3つのパラメータである、検出開始時間、周期、振幅、及び後述の平行度に基づいた検査が行われる。
先ず、図10Aに基づいて、検出開始時間に基づいた検査について説明する。図10Aは、上段(a)に磁性領域37における磁気分布が正常な場合の磁気センサ61aによる周期的信号(すなわち、図8(a)に示す周期的信号と同一)を示し、下段(b)には、実際の検査対象のパッケージブランクBLから磁気センサ61aを通して取得された周期的信号の一例を示す。図10Aを見ると、検査対象における検出開始時間ΔT1a’は、基準となる正常な場合の検出開始時間ΔT1aよりも長くなっているのが理解できる。これは、磁性領域37上の着磁開始位置が、タング38の先端部を基準としたときに、相対的に正常な場所に位置していないことを意味する。
そこで、当該検出開始時間を用いて、磁性領域37における着磁開始位置の適性度を以下の式に従って算出する。
着磁開始位置の適性度(%)=100-|ΔT1a’-ΔT1a|/ΔT1a
なお、図10AにおけるΔT1a’の記載は、基準となるΔT1aとの相違が明確となるように誇張して記載されている。
着磁開始位置の適性度(%)=100-|ΔT1a’-ΔT1a|/ΔT1a
なお、図10AにおけるΔT1a’の記載は、基準となるΔT1aとの相違が明確となるように誇張して記載されている。
第2に、図10Bに基づいて、周期に基づいた検査について説明する。図10Bは、上段(a)に図10Aと同様に磁性領域37における磁気分布が正常な場合の磁気センサ61aによる周期的信号を示し、下段(b)には、実際の検査対象のパッケージブランクBLから磁気センサ61aを通して取得された周期的信号の一例を示す。図10Bを見ると、検査対象における周期ΔT2a’は、基準となる正常な場合の周期ΔT2aよりも長くなっているのが理解できる。これは、磁性領域37におけるN極領域37n、S極領域37sの着磁幅が、基準の幅からずれていることを意味する。このような着磁幅のずれは、図5に示した着磁ローラ55等を形成する磁石円板55aと鉄円板55bが、支持軸54に対してがたつきが存在した状態で取り付けられたり、その取り付けが支持軸54に対して傾いていたりしたことが要因として挙げられる。
そこで、当該周期を用いて、磁性領域37における着磁幅の適性度を以下の式に従って算出する。
着磁幅の適性度(%)=100-|ΔT2a’-ΔT2a|/ΔT2a
なお、図10BにおけるΔT2a’の記載は、基準となるΔT2aとの相違が明確となるように誇張して記載されている。
着磁幅の適性度(%)=100-|ΔT2a’-ΔT2a|/ΔT2a
なお、図10BにおけるΔT2a’の記載は、基準となるΔT2aとの相違が明確となるように誇張して記載されている。
第3に、図10Cに基づいて、振幅に基づいた検査について説明する。図10Cは、上段(a)に図10Aと同様に磁性領域37における磁気分布が正常な場合の磁気センサ61aによる周期的信号を示し、下段(b)には、実際の検査対象のパッケージブランクBLから磁気センサ61aを通して取得された周期的信号の一例を示す。図10Cを見ると、検査対象における振幅ΔL1a’は、基準となる正常な場合の振幅ΔL1aよりも小さくなっているのが理解できる。これは、磁性領域37におけるN極領域37n、S極領域37sの磁界強さが弱まっていることを意味する。このような磁界強さの低下は、図5に示した着磁ローラ55と、非着磁状態であって磁性領域37との接触不良等が要因として挙げられる。
そこで、当該振幅を用いて、磁性領域37における着磁強度の適性度を以下の式に従って算出する。
着磁強度の適性度(%)=100-|ΔL1a-ΔL1a’|/ΔL1a
なお、図10CにおけるΔL1a’の記載は、基準となるΔL1aとの相違が明確となるように誇張して記載されている。
着磁強度の適性度(%)=100-|ΔL1a-ΔL1a’|/ΔL1a
なお、図10CにおけるΔL1a’の記載は、基準となるΔL1aとの相違が明確となるように誇張して記載されている。
第4に、図10Dに基づいて、磁性領域37に形成されたN極領域37nとS極領域37sの延在方向が、本来あるべき基準方向からどの程度ずれているか、各領域の延在方向に関する平行度の検査について説明する。なお、この基準方向は、搬送方向に垂直な方向、すなわちパッケージブランクBLの横幅方向とされる。図10Dは、上段(a)、中段(b)には、実際の検査対象のパッケージブランクBLから磁気センサ61a、61bを通してそれぞれ取得された周期的信号の一例を示す。更に、下段(c)には、磁性領域37に形成されたN極領域37nとS極領域37sの延在方向が、基準方向に対してある程度傾いた状態を概略的に示しており、この傾いてずれた状態を平行度と定義する。
図10D(c)に示すように、磁性領域37において、N極領域37nとS極領域37sの延在方向が、基準方向に対してある程度傾くと、パッケージブランクBLが領域R0に搬送されたときに、磁気センサ61aによる磁界の検出タイミングと、磁気センサ61bによる磁界の検出タイミングに時間的なずれが生じる。図10D(c)に示す状態では、パッケージブランクBLが搬送されてくると、先に磁気センサ61aによる磁界の検出が始まり、遅れて磁気センサ61bによる磁界の検出が始まる。この時間のずれΔTが、図10D(a)、(b)に示す各周期的信号における時間のずれとして現れてくる。そこで、磁気センサ61a、61bによる検出開始時期T1aとT1bとの時間のずれや、センサ出力が最大ピーク値となる検出時間T2aとT2bとの時間のずれや、検出時間T3aとT3bとの時間のずれに基づいて、傾きに起因した時間のずれΔTが算出される。
そして、当該時間のずれΔTを用いて、磁性領域37におけるN極領域37nとS極領域37sの延在方向に関する平行度を、以下の式に従って算出する。
平行度(%)=100-ΔT/最大時間ずれ
上記最大時間ずれは、磁性領域37におけるN極領域37nとS極領域37sの延在方向の傾きに起因して想定される最大値である。
平行度(%)=100-ΔT/最大時間ずれ
上記最大時間ずれは、磁性領域37におけるN極領域37nとS極領域37sの延在方向の傾きに起因して想定される最大値である。
なお、上述までの検査に関する説明は、S103での磁性領域37に関するものであるが、S104でも実質的に同様の検査に関する処理が、磁性領域33に対しても行われる。
S104の処理が終了すると、S105へ進む。S105では、S103及びS104での検査結果に基づいて、パッケージ30における磁性領域37、33に形成されている磁気分布の総合的な適否判断が行われる。このようにパッケージにおいて総合的な判断を行うのは、タング38と本体側との適切な係止力は、上記の着磁開始位置、着磁幅、着磁強度、平行度の各パラメータが複合的に関連し合うことで形成されていることを考慮したものである。そこで、図11A及び図11Bに基づいて、S105における総合判断について具体的に説明する。
先ず、図11Aに示す判断形態では、上記の式に従って算出された磁性領域37、33のそれぞれに対応する、着磁開始位置の適性度、着磁幅の適性度、着磁強度の適性度、平行度が、いずれも基準となる閾値A以上となったときに、そのパッケージブランクBLにおける着磁処理が良好に行われたと判断される(図11A(a)を参照)。したがって、これらのパラメータのうち何れか1つでも閾値Aを下回ると、そのパッケージブランクBLにおける着磁処理は良好に行われなかったと判断されることになる(図11A(b)を参照)。
次に、別法として、図11Bに示す判断形態では、上記の式に従って算出された磁性領域37、33のそれぞれに対応する、着磁開始位置の適性度、着磁幅の適性度、着磁強度の適性度、平行度の全てが、基準となる閾値A以上となったときには、そのパッケージブランクBLにおける着磁処理が良好に行われたと判断される。更に、仮に4つのパラメータのうち、1つのパラメータが閾値Aを下回ったとしても、その値が閾値Aより小さい閾値Bを超えていれば、そのパッケージブランクBLも着磁処理が良好に行われたと判断される(図11B(a)を参照)。このように判断基準を二重に設定するのは、4つのパラメータのうち1つが基準値を下回ったとしても、全パラメータが総合的に関連し合うことで両磁性領域間の磁気吸引力が担保し得る場合があることを考慮したものである。なお、少なくとも1つのパラメータが閾値Bを下回ると、そのパッケージブランクBLにおける着磁処理は良好に行われなかったと判断されることになる(図11B(b)を参照)。
これらの閾値A、Bについては、パッケージ30として形成されたときに磁性領域37、33における磁気分布が、良好な係止機構として働くために両者が一致するように設定された値である。従って、閾値A、Bに基づいて磁性分布が適切であると判定されたパッケージブランクでは、パッケージ30として形成されたときに、磁性領域37と33との間に係止機構として十分な磁気吸引力が作用し得ることが担保されることになる。このように本発明にかかる着磁検査処理によれば、磁性領域37、33に帯状に交互に形成されたN極領域とS極領域による磁気分布の検査を速やかに行うことが可能となる。
<変形例1>
上記の実施例では、N極領域及びS極領域の延在方向が、パッケージブランクBLの横幅方向であり、そのパッケージブランクBLを縦方向に搬送しながら、磁気センサ61a、61bによるセンシングが行われる。そのため、各磁気センサは、N極領域及びS極領域の延在方向に対して相対的に直交するように移動しながらセンシングを行うことになる。このような相対移動の態様に代えて、各磁気センサが、N極領域及びS極領域の延在方向に対して所定角度で交わる方向に相対移動するようにセンシングを行ってもよい。この場合、磁気センサ61aによるセンシング距離やセンシングタイミングと磁気センサ61bによるセンシング距離やセンシングタイミングが異なる場合もあるので、その異なる点を考慮して、上述した着磁開始位置の適性度、着磁幅の適性度、着磁強度の適性度、平行度に基づいた磁気分布の適否判断を行えばよい。
上記の実施例では、N極領域及びS極領域の延在方向が、パッケージブランクBLの横幅方向であり、そのパッケージブランクBLを縦方向に搬送しながら、磁気センサ61a、61bによるセンシングが行われる。そのため、各磁気センサは、N極領域及びS極領域の延在方向に対して相対的に直交するように移動しながらセンシングを行うことになる。このような相対移動の態様に代えて、各磁気センサが、N極領域及びS極領域の延在方向に対して所定角度で交わる方向に相対移動するようにセンシングを行ってもよい。この場合、磁気センサ61aによるセンシング距離やセンシングタイミングと磁気センサ61bによるセンシング距離やセンシングタイミングが異なる場合もあるので、その異なる点を考慮して、上述した着磁開始位置の適性度、着磁幅の適性度、着磁強度の適性度、平行度に基づいた磁気分布の適否判断を行えばよい。
また、磁気センサによるセンシングにおいて、上記の実施例では、磁気センサを固定した状態でパッケージブランクBLを移動(搬送)させたが、その態様に代えて周期的信号の取得に際してパッケージブランクBLを固定した状態で磁気センサ側を移動させてもよく、又は両者を移動させてもよい。
<変形例2>
上述までの実施例では、タングリッド型パッケージの製造過程、特に、磁性領域33、37の着磁過程について説明したが、当該パッケージに代えて、いわゆるヒンジリッド型パッケージの製造過程においても、本発明に係る着磁処理の検査に関する技術思想を適用することができる。図12には、シガレット束を収容するための、いわゆるヒンジリッド型パッケージ(以下、単に「パッケージ」という)40が開示されている。パッケージ40は、パッケージ本体41に、リッド部42がヒンジ部46を介してヒンジ結合されることで、パッケージ本体41内に収容空間(シガレット束が収容されている空間)の開口を開閉可能とする。そして、パッケージ40には、パッケージ本体41へのリッド部42の係止機構としての磁性領域44、45が設けられている。磁性領域44、45は、フェライト系の磁性材料を含む磁性材料が塗布されることで形成され、且つ、図12に示すパッケージ40の完成状態では、磁性領域44、45は着磁されており、両領域の間に作用する磁気吸引力によってリッド部42とパッケージ本体41とが係止された状態となる。なお、磁性領域44、45には、ネオジウム系の磁性材料を利用してもよい。
上述までの実施例では、タングリッド型パッケージの製造過程、特に、磁性領域33、37の着磁過程について説明したが、当該パッケージに代えて、いわゆるヒンジリッド型パッケージの製造過程においても、本発明に係る着磁処理の検査に関する技術思想を適用することができる。図12には、シガレット束を収容するための、いわゆるヒンジリッド型パッケージ(以下、単に「パッケージ」という)40が開示されている。パッケージ40は、パッケージ本体41に、リッド部42がヒンジ部46を介してヒンジ結合されることで、パッケージ本体41内に収容空間(シガレット束が収容されている空間)の開口を開閉可能とする。そして、パッケージ40には、パッケージ本体41へのリッド部42の係止機構としての磁性領域44、45が設けられている。磁性領域44、45は、フェライト系の磁性材料を含む磁性材料が塗布されることで形成され、且つ、図12に示すパッケージ40の完成状態では、磁性領域44、45は着磁されており、両領域の間に作用する磁気吸引力によってリッド部42とパッケージ本体41とが係止された状態となる。なお、磁性領域44、45には、ネオジウム系の磁性材料を利用してもよい。
具体的には、磁性領域45は、パッケージ本体41に含まれるインナーフレーム43のインナーフレーム前面43aの切り欠き部43bの下方において、パッケージ側方に延びる細長い領域として形成される。一方で、磁性領域44は、リッド部42のフロントパネルの内面に重ね合わしたインナーフラップ42aに、磁性領域45と同じようにパッケージ側方に延びる細長い領域として形成される。そして、インナーフレーム前面43aにおける磁性領域45の位置と、インナーフラップ42aにおける磁性領域44の位置との相対関係は、リッド部41が上記収容空間の開口を閉ざした状態で対向するように決定されている。
このように構成されるパッケージ40においては、図12に示す状態からユーザによりリッド部42が閉じられ、磁性領域44が磁性領域45にある程度近接した状態となると、両磁性領域間に作用する磁気吸引力によって、フランジ結合されているリッド部42がパッケージ本体41(インナーフレーム43)側に吸い寄せられ、磁性領域44が磁性領域45に接触することで、その接触を示す接触音が発生する。そして、その接触状態は、両磁性領域間の磁気吸引力により維持されることになる。したがって、当該磁気吸引力は、ヒンジ部46のヒンジ結合によってリッド部42がパッケージ本体41から離間しようとする復元力より大きい力であることが求められる。
また、両磁性領域の接触によりリッド部42が収容空間の開口を閉じている状態からリッド部42が開かれるときには、ユーザは、両磁性領域間の磁気吸引力より大きい力をリッド部42に作用させ回転させる必要がある。したがって、閉じた状態にあるリッド部に対して当該磁気吸引力より小さい力が作用している限りは、その閉じた状態が維持されることになるから、当該磁気吸引力は、リッド部42が不用意に開いてしまわないようにするための抵抗力とも言える。したがって、当該磁気吸引力は、必要な抵抗力よりも大きい力であり、且つ、ユーザがリッド部42を意図的に開く場合の力がいたずらに過大とならないように所定の力よりも低い力であることが求められる。
そして、図13には、図12に示すパッケージ40が展開されたパッケージブランクBLが示されている。パッケージブランクBLは、インナーフレーム43を含むパッケージ本体41に対応するブランク部分と、リッド部42に対応するブランク部分とからなっている。更に、リッド部42側に形成された磁性領域44は、インナーフラップ42aに対応するブランク部分上に配置されており、パッケージ本体41側に形成された磁性領域45は、インナーフレーム前面43aに対応するブランク部分上に配置されている。
このように構成されるパッケージ40は、磁性領域44はリッド部42上に配置され、一方で、磁性領域45はインナーフレーム43上に配置される。リッド部42はパッケージ本体41と接続されており、インナーフレーム43とは別部材である。そこで、パッケージ40における磁性領域44、45の着磁については、図13に示すようにインナーフレーム43がパッケージ本体41に接着され一体となってパッケージブランクBLを形成する場合には、上記で図4に基づいて説明したように、磁性領域44、45を概ね同じタイミングで着磁ローラ55、59によって着磁することができる。また、インナーフレーム43がパッケージ本体41に接着されパッケージブランクBLが形成される前に、インナーフレーム43上の磁性領域45と、リッド部42上の磁性領域44は、それぞれの搬送過程において異なるタイミングで対応する着磁ローラによって着磁されてもよい。その場合、それぞれが着磁された後に両者の接着が行われることになる。
そして、図9に示す着磁検査処理は、インナーフレーム43がパッケージ本体41に接着され一体となった状態で着磁された場合には、その一体となったパッケージブランクBLに対して上記の通り適用される。また、インナーフレーム43上の磁性領域45と、リッド部42上の磁性領域44が、別々に着磁された場合には、インナーフレーム43とリッド部42のそれぞれに対して上記の着磁検査処理が個別に適用されればよい。
22・・・・ブランク供給系
22a、22b・・・・供給ライン
30、40・・・・パッケージ
31、41・・・・パッケージ本体
32・・・・タングリッド部
42・・・・リッド部
33、37、44、45・・・・磁性領域
37n・・・・N極領域
37s・・・・S極領域
55、59・・・・着磁ローラ
55a・・・・磁石円板
55b・・・・鉄円板
56、60・・・・カウンターローラ
61a、61b・・・・磁気センサ
62・・・・赤外線センサ
100・・・・処理装置
22a、22b・・・・供給ライン
30、40・・・・パッケージ
31、41・・・・パッケージ本体
32・・・・タングリッド部
42・・・・リッド部
33、37、44、45・・・・磁性領域
37n・・・・N極領域
37s・・・・S極領域
55、59・・・・着磁ローラ
55a・・・・磁石円板
55b・・・・鉄円板
56、60・・・・カウンターローラ
61a、61b・・・・磁気センサ
62・・・・赤外線センサ
100・・・・処理装置
Claims (13)
- 所定方向に延在するN極領域とS極領域が交互に配置されるように着磁装置により第1の磁性領域が形成された、収容物を収容するパッケージのブランクにおける該第1の磁性領域の検査装置であって、
磁力の大きさに応じた電気信号を出力する第1磁気センサと、
前記所定方向に所定角度で交わる検査方向に沿って前記第1磁気センサを前記第1の磁性領域に対して相対的に移動させて、該第1磁気センサによる磁気出力の周期的信号を取得する取得手段と、
前記取得手段によって取得された前記磁気出力の周期的信号に基づいて、前記第1の磁性領域における磁気分布の適否を判断する判断手段と、
を備える、パッケージの磁気検査装置。 - 前記取得手段による磁気出力の取得が行われるとき、前記第1磁気センサは前記パッケージの磁気検査装置側に固定された状態で、前記ブランクが前記検査方向に搬送される、
請求項1に記載のパッケージの磁気検査装置。 - 前記第1の磁性領域は、前記取得手段による磁気出力の取得が行われる前に、前記パッケージが前記所定方向と同じ着磁時搬送方向に搬送されながら前記着磁装置によって着磁されることで形成され、
前記取得手段は、前記ブランクが前記着磁時搬送方向に対して前記所定角度で交わる前記検査方向に搬送されることで、前記磁気出力の周期的信号を取得する、
請求項2に記載のパッケージの磁気検査装置。 - 前記所定角度は、90度である、
請求項1又は請求項2に記載のパッケージの磁気検査装置。 - 前記判断手段は、前記磁気出力の周期的信号の周期に基づいて、前記第1の磁性領域に形成されたN極領域の幅とS極領域の幅の適否を判断する、
請求項1から請求項4の何れか1項に記載のパッケージの磁気検査装置。 - 前記判断手段は、前記磁気出力の周期的信号の振幅に基づいて、前記第1の磁性領域に形成された磁気分布の磁力の適否を判断する、
請求項1から請求項4の何れか1項に記載のパッケージの磁気検査装置。 - 前記取得手段による磁気出力の取得が行われる検査領域に前記パッケージが搬送されてきたことを検知する検知手段を、更に備え、
前記判断手段は、前記検知手段により前記パッケージの前記検査領域への到達が検知されてから前記磁気出力の周期的信号が取得され始めるまでの期間に基づいて、前記パッケージにおける前記第1の磁性領域の位置の適否を判断する、
請求項1から請求項4の何れか1項に記載のパッケージの磁気検査装置。 - 磁力の大きさに応じた電気信号を出力する磁気センサであって、前記検査方向において前記第1磁気センサと重ならないように配置された第2磁気センサを、更に備え、
前記取得手段は、前記検査方向に沿って前記第1磁気センサ及び前記第2磁気センサを前記第1の磁性領域に対して相対的に移動させて、各磁気センサの磁気出力の周期的信号を取得し、
前記判断手段は、前記第1磁気センサによる前記磁気出力の周期的信号である第1出力信号と、前記第2磁気センサによる前記磁気出力の周期的信号である第2出力信号とに基づいて、前記第1の磁性領域における磁気分布の適否を判断する、
請求項1から請求項7の何れか1項に記載のパッケージの磁気検査装置。 - 前記判断手段は、前記第1出力信号と前記第2出力信号との位相差に基づいて、前記第1の磁性領域での前記所定方向に沿ったN極領域とS極領域の磁気分布の平行性の適否を判断する、
請求項8に記載のパッケージの磁気検査装置。 - 前記ブランクには、前記第1の磁性領域とは別の磁性領域であって、前記所定方向と同じ方向に沿ってN極領域とS極領域が交互に延在するように前記着磁装置により形成された第2の磁性領域が形成され、
前記取得手段は、前記第2の磁性領域についても、前記検査方向に沿って前記第1磁気センサ及び前記第2磁気センサを該第2の磁性領域に対して相対的に移動させて、各磁気センサの磁気出力の周期的信号を取得し、
前記判断手段は、前記第1の磁性領域に対応する前記第1出力信号と前記第2出力信号、及び前記第2の磁性領域に対応する該第1出力信号と該第2出力信号に基づいて、該第1の磁性領域と該第2の磁性領域との磁気吸引力に関する一致性の適否について判断する、
請求項8又は請求項9に記載のパッケージの磁気検査装置。 - 前記着磁装置は、永久磁石で形成される磁石円板と磁性体で形成される磁性体円板を交互にそれぞれ複数ずつ、支持軸に回動可能に支持することで構成された着磁ローラであって、
前記第1の磁性領域におけるN極領域とS極領域が交互に前記所定方向に延在する磁気分布は、前記ブランク上に配置された非着磁のマグネットシートに前記着磁ローラが接触することで形成される、
請求項1から請求項10の何れか1項に記載のパッケージの磁気検査装置。 - 前記磁性体円板の直径は、前記磁石円板の直径以上である、
請求項11に記載のパッケージの磁気検査装置。 - 請求項1から請求項12の何れか1項に記載のパッケージの磁気検査装置と、前記着磁装置と、を一定の装置内に備えるパッケージの包装機であって、
前記着磁装置による前記第1の磁性領域の形成は、前記パッケージの磁気検査装置による前記第1の磁性領域の検査の前に実行されるように、該着磁装置と該パッケージの磁気検査装置が配置される、
パッケージの包装機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/065479 WO2016189749A1 (ja) | 2015-05-28 | 2015-05-28 | パッケージの磁気検査装置、及びパッケージの包装機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/065479 WO2016189749A1 (ja) | 2015-05-28 | 2015-05-28 | パッケージの磁気検査装置、及びパッケージの包装機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016189749A1 true WO2016189749A1 (ja) | 2016-12-01 |
Family
ID=57393890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065479 WO2016189749A1 (ja) | 2015-05-28 | 2015-05-28 | パッケージの磁気検査装置、及びパッケージの包装機 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016189749A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06163260A (ja) * | 1992-11-18 | 1994-06-10 | Sony Corp | リニア多極磁石着磁装置 |
JPH10282197A (ja) * | 1997-04-03 | 1998-10-23 | D M T:Kk | 磁石解析装置 |
JP2000019237A (ja) * | 1998-07-03 | 2000-01-21 | D M T:Kk | 着磁測定装置 |
JP2001230118A (ja) * | 2000-02-17 | 2001-08-24 | Dainippon Ink & Chem Inc | 着磁装置およびプリンタ |
JP2009099852A (ja) * | 2007-10-18 | 2009-05-07 | Seiko Epson Corp | 着磁装置及び着磁方法 |
JP2013544722A (ja) * | 2010-10-27 | 2013-12-19 | インターコンチネンタル グレート ブランズ エルエルシー | 磁気的に閉鎖可能な製品収容パッケージ |
WO2014096427A1 (en) * | 2012-12-21 | 2014-06-26 | Philip Morris Products S.A. | Container with magnetic closure |
-
2015
- 2015-05-28 WO PCT/JP2015/065479 patent/WO2016189749A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06163260A (ja) * | 1992-11-18 | 1994-06-10 | Sony Corp | リニア多極磁石着磁装置 |
JPH10282197A (ja) * | 1997-04-03 | 1998-10-23 | D M T:Kk | 磁石解析装置 |
JP2000019237A (ja) * | 1998-07-03 | 2000-01-21 | D M T:Kk | 着磁測定装置 |
JP2001230118A (ja) * | 2000-02-17 | 2001-08-24 | Dainippon Ink & Chem Inc | 着磁装置およびプリンタ |
JP2009099852A (ja) * | 2007-10-18 | 2009-05-07 | Seiko Epson Corp | 着磁装置及び着磁方法 |
JP2013544722A (ja) * | 2010-10-27 | 2013-12-19 | インターコンチネンタル グレート ブランズ エルエルシー | 磁気的に閉鎖可能な製品収容パッケージ |
WO2014096427A1 (en) * | 2012-12-21 | 2014-06-26 | Philip Morris Products S.A. | Container with magnetic closure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5484566B2 (ja) | 磁化可能部分を有する包装材料 | |
KR101871024B1 (ko) | 검사 유닛 및 검사 유닛을 검정하기 위한 방법 | |
JP6300908B2 (ja) | 磁気センサ装置 | |
KR20140113411A (ko) | 자기 각도 위치 센서 | |
WO2006057409A1 (ja) | 金属検知装置の電磁誘導センサ及び金属探知方法 | |
JP2012528053A5 (ja) | ||
JP6149542B2 (ja) | 磁気検査装置および磁気検査方法 | |
WO2016189749A1 (ja) | パッケージの磁気検査装置、及びパッケージの包装機 | |
JP5240834B2 (ja) | シートフラップの状態検査装置 | |
JP6157304B2 (ja) | 脱酸素剤の検出装置 | |
JP2008024401A (ja) | 位置決め手段付き搬送装置 | |
JP2004067250A5 (ja) | ||
CN109218549A (zh) | 图像读取装置 | |
JP5069162B2 (ja) | 金属検出機 | |
JP6377173B2 (ja) | パッケージの包装機、及びその包装方法 | |
JP5352300B2 (ja) | 帳票体 | |
WO2014155866A1 (ja) | 異物検出装置および異物検出方法 | |
JP2009059023A (ja) | 帳票体 | |
JP2010071821A (ja) | 印刷物の判別装置 | |
JP5171510B2 (ja) | マーク検知システム | |
JP2009263115A (ja) | 配送体 | |
JP2009113349A (ja) | 磁性体マークを備える帳票体 | |
RU2815471C1 (ru) | Система проверки для упаковочной машины с распознанием перекрученных стиков | |
JP2006143231A (ja) | シュリンクフィルム及び物品、並びに、それらに関連する処理装置、検査方法及び製造方法、 | |
JP4859792B2 (ja) | マーク検知システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15893383 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15893383 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |