WO2016188259A1 - 有机发光二极管基板及其制备方法 - Google Patents

有机发光二极管基板及其制备方法 Download PDF

Info

Publication number
WO2016188259A1
WO2016188259A1 PCT/CN2016/079263 CN2016079263W WO2016188259A1 WO 2016188259 A1 WO2016188259 A1 WO 2016188259A1 CN 2016079263 W CN2016079263 W CN 2016079263W WO 2016188259 A1 WO2016188259 A1 WO 2016188259A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting diode
organic light
light emitting
region
Prior art date
Application number
PCT/CN2016/079263
Other languages
English (en)
French (fr)
Inventor
宋莹莹
孙力
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/512,121 priority Critical patent/US10014470B2/en
Publication of WO2016188259A1 publication Critical patent/WO2016188259A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of organic light emitting diodes, and in particular relates to an organic light emitting diode substrate and a preparation method thereof.
  • An organic light emitting diode (OLED) display device mainly relies on an organic light emitting diode, and the organic light emitting diode includes a cathode, an anode, and a plurality of organic film layers sandwiched therebetween.
  • the organic film layer is mainly prepared by an evaporation method or a solution method.
  • the vapor deposition method has many defects in preparing a large-sized organic light-emitting diode substrate, such as a mask which is susceptible to high temperature, offset, deformation, and the like.
  • the solution method first forms an ink layer of an organic material on a substrate by inkjet printing, spin coating or the like, and the ink layer is cured to form a corresponding organic film layer, which is suitable for preparation of a large-sized organic light emitting diode substrate.
  • the organic light emitting diode substrate includes a display area 11 for display, and an edge area 12 outside the display area 11, and the organic light emitting diode is mainly located in the display area 11.
  • the edge region 12 is also printed with ink due to the process itself.
  • the cleaning method that can be used is plasma etching. , laser cleaning, etc.
  • the edge region 12 includes a cathode contact region 121.
  • the cathode contact region 121 functions to connect the organic light emitting diode cathode and the peripheral driving circuit to drive the cathode.
  • the cathode contact region 121 includes an indium tin oxide (ITO) layer 3 disposed in the same layer as the anode of the organic light emitting diode; in order to ensure the function of the cathode contact region, the deposition must be removed before the cathode (metal layer 5) is evaporated.
  • the organic film layer 4 on the indium tin oxide layer 3 is connected to the indium tin oxide layer 3 by the metal layer 5.
  • the passivation layer 2 under the indium tin oxide layer 3 of the cathode contact region 121 has a plurality of connection holes for the indium tin oxide layer 3 and the source/drain layer 6 under the passivation layer 2 (source leakage)
  • the electrode layer is connected to the driving circuit; the connection hole causes the surface of the indium tin oxide layer 3 to have a plurality of recesses 8.
  • the organic film layer 4 in the recesses 8 is difficult to remove. Plasma etching or laser cleaning methods are difficult to control during the cleaning process. When the energy is small, the organic film layer 4 may not be cleaned, especially the organic film layer 4 in the recess 8; in order to remove it, it is more demanding to use. Clearing conditions, such as increasing laser power or plasma energy, can easily damage other structures, and the residual organic film layer 4 can affect product quality.
  • the invention aims to solve the problem that the organic film layer in the edge region is difficult to be removed in the preparation process of the existing organic light emitting diode substrate, and provides an organic light emitting diode substrate with an organic film layer of an edge region which can be easily removed and a preparation method thereof.
  • the technical solution adopted to solve the technical problem of the present invention is an organic light emitting diode substrate comprising a display area and an edge area outside the display area, wherein the display area is provided with an organic film layer formed by curing of the ink layer, and the edge area includes no organic An exposed region of the film layer; the organic light emitting diode substrate further includes:
  • An occlusion structure is located in the edge region for preventing the ink layer from contacting the surface of the exposed region.
  • a first conductive layer is disposed in the exposed area; the blocking structure is located above the first conductive layer; and a second conductive layer above the blocking structure is further disposed in the exposed area.
  • the first conductive layer in the exposed region is at least partially in contact with the second conductive layer.
  • the ink layer is formed by inkjet printing;
  • the shielding structure comprises a plurality of spaced apart protrusions disposed in the exposed area, and the upper ends of the adjacent protrusions are spaced apart by 8-20 micrometers. between.
  • the protrusions are made of a material that is lyophobic with respect to the ink layer.
  • the protrusion is elongated and its length direction is perpendicular to the printing direction of the ink layer.
  • the method further includes an organic light emitting diode disposed in the display area.
  • the organic light emitting diode includes an anode, an organic film layer, and a cathode; the exposed region includes a cathode contact region; and the cathode contact region is provided with a first surface having a plurality of recesses in the same layer and spaced apart from the anode a conductive layer; the cathode and the second conductive layer are in the same layer and connected.
  • the protrusions are elongated and have a longitudinal direction perpendicular to a printing direction of the ink layer; the depressions are elongated and parallel to the protrusions.
  • the protrusion is provided at a position outside the recess.
  • the ink layer is formed by a spin coating method; and the shielding structure includes a retaining wall disposed outside the exposed area of the exposed area.
  • the occlusion structure further includes: a retaining wall disposed on two sides adjacent to a side of the exposed area adjacent to the display area.
  • the height of the retaining wall is between 0.5 and 2.0 um.
  • the OLED substrate further includes an organic light emitting diode disposed in the display region, the organic light emitting diode includes an anode, an organic film layer, and a cathode; the exposed region includes a cathode contact region, the cathode
  • the contact region is provided with a first conductive layer and a second conductive layer above the first conductive layer; the first conductive layer in the cathode contact region is in the same layer and spaced apart from the anode, and the surface of the first conductive layer is a recess; a second conductive layer in the cathode contact region is connected to the cathode in the same layer.
  • the OLED substrate further includes: a pixel defining layer, wherein the occlusion structure is disposed in the same layer as the pixel defining layer.
  • the technical solution adopted to solve the technical problem of the present invention is a method for preparing the above organic light emitting diode substrate, which includes:
  • the ink layer is formed such that the ink layer does not come into contact with the surface of the exposed region in the edge region of the organic light emitting diode substrate.
  • the organic light emitting diode substrate of the present invention has a shielding structure which can prevent the ink layer from contacting the surface of the exposed region, and therefore the organic film layer formed by curing the ink layer is not Contact with the surface of the exposed area prevents the residual of the organic film layer in the exposed area.
  • FIG. 1 is a schematic top plan view of a conventional organic light emitting diode substrate
  • FIG. 2 is a partial top plan view showing a cathode contact region of a conventional organic light emitting diode substrate
  • FIG. 3 is a schematic cross-sectional structural view of a cathode contact region after forming an organic film layer along the line AA' in FIG. 2;
  • Figure 4 is a cross-sectional structural view of the cathode contact region after forming a metal layer along the line AA' in Figure 2;
  • FIG. 5 is a schematic top plan view of an organic light emitting diode substrate according to an embodiment of the present invention.
  • FIG. 6 is a partial top plan view showing a cathode contact region of an organic light emitting diode substrate according to an embodiment of the present invention
  • Figure 7 is a cross-sectional structural view showing a cathode contact region after forming an organic film layer along the line AA' in Figure 6;
  • Figure 8 is a cross-sectional structural view of the cathode contact region after forming a metal layer along the line AA' in Figure 6;
  • FIG. 9 is a partial top plan view showing a cathode contact region of an OLED substrate according to another embodiment of the present invention.
  • Figure 10 is a cross-sectional structural view showing a cathode contact region after forming an organic film layer along the line AA' in Figure 9;
  • the reference numerals are: 11, display area; 12, edge area; 121, cathode contact area; 2, passivation layer; 3, indium tin oxide layer; 4, organic film layer; 5, metal layer; Leakage layer; 71, protrusion; 72, retaining wall; 8, recess; 9, base.
  • the embodiment provides an organic light emitting diode substrate including a display area 11 and an edge region 12 outside the display area 11.
  • the display area 11 is provided with an organic film formed by curing an ink layer.
  • Layer 4, edge region 12 includes an exposed region free of organic film layer 4.
  • the organic light emitting diode substrate has a display area 11 for display, and the display area 11 is provided with a plurality of organic light emitting diodes, each of which includes a cathode, an anode, and a plurality of organic layers sandwiched between the cathode and the anode.
  • An edge region 12 is provided in addition to the display area 11 of the organic light emitting diode substrate, and the edge region 12 is for connecting a driving chip, a frame as a display device, or the like. In the edge region 12, there are one or more exposed regions, and the organic film layer 4 is not present in the exposed regions to achieve various electrical connections. Of course, it is also possible if the organic film layer 4 is not present in the entire edge region 12.
  • the OLED substrate further includes a occlusion structure under the organic film layer 4 for preventing the ink layer from coming into contact with the surface of the exposed region.
  • the term "layer” as used in the present invention means that each structure in the organic light emitting diode substrate is formed of a certain material layer, and the order in which these material layers are formed is also the stacking order of the respective structures.
  • a structure is located below the layer where the B structure is located (or B structure is located above the layer where the A structure is located)" means that a material layer for forming the A structure is first fabricated, and then a material layer for forming the B structure is fabricated, but It does not mean that the A structure must be covered under the B structure, nor does it mean that there must be an A structure directly under the B structure.
  • “A structure and B structure in the same layer” means that the two structures are made of the same material layer. Formed, but does not mean that the distance between the two and the substrate 9 is equal.
  • the OLED substrate of the embodiment further has an occlusion structure, which prevents the ink layer from contacting the surface of the exposed region. Therefore, the occlusion structure is necessarily located below the organic film layer 4 formed by curing of the ink layer (ie, first Forming a occlusion structure, and then forming an organic film layer 4) through the ink layer; the ink layer is not in contact with the surface of the exposed region due to the function of the occlusion structure, so when the ink layer is cured, the surface in the exposed region
  • the organic film layer 4 is not formed on the surface, so that the organic film layer 4 can be easily removed, damage to other structures in the cleaning process is avoided, and the residual of the organic film layer 4 in the exposed region can be avoided, and the product quality can be improved.
  • a first conductive layer is disposed in the exposed region; the shielding structure is located above the first conductive layer; the second conductive layer above the first conductive layer is further disposed in the exposed region, and the first conductive layer in the exposed region is The second conductive layer is at least partially in contact.
  • the exposed region preferably includes two conductive layers at least partially adjacent to each other, and the organic film layer 4 is formed after the first conductive layer is formed and before the second conductive layer is formed. Therefore, if the organic film layer 4 Can not be cleaned, it will affect the connection between the two conductive layers, so in this structure, the above-mentioned shielding structure that avoids the contact of the ink layer with the surface of the exposed area is provided to avoid organic in the exposed area of the finally formed structure. Residue of the film layer 4.
  • the first conductive layer-shielding structure-organic material layer should be sequentially disposed in a direction away from the substrate 9. - a second electrically conductive layer.
  • the above exposed area includes a cathode contact area 121; the first conductive layer in the cathode contact area 121 is in the same layer and spaced apart from the anode of the organic light emitting diode, and the surface of the first conductive layer has a plurality of recesses 8 and the second The conductive layer is in the same layer and connected to the cathode of the organic light emitting diode.
  • an example of the exposed region may be the cathode contact region 121 described above.
  • the first conductive layer in the cathode contact region 121 is in the same layer and spaced apart from the anode of the organic light emitting diode, and may be an indium tin oxide layer 3 (hereinafter, the indium tin oxide layer 3 is exemplified as an example), indium oxide.
  • the tin layer 3 may be located on the passivation layer 2, and the passivation layer 2 has a plurality of connection holes, whereby the indium tin oxide layer 3 is connected to the source/drain layer 6 under the passivation layer 2 at the connection hole position, and the source and drain layers 6 are connected. Then connect the drive circuit.
  • the indium tin oxide layer 3 has recesses 8 corresponding to the position of the connection holes, and these recesses 8 may cause difficulty in removing the organic film layer 4.
  • the occlusion structure is located above the indium tin oxide layer 3 (eg, directly on the indium tin oxide layer 3), and the organic film layer 4 is located above the occlusion structure, whereby the occlusion structure prevents the ink layer from contacting the cathode contact region 121 when the ink layer is formed.
  • the indium tin oxide layer 3 is in contact, thereby ensuring that the surface of the indium tin oxide layer 3 in the cathode contact region 121 is free from the formation of the organic film layer 4.
  • the organic film layer 4 is a second conductive layer, which is connected to the cathode of the organic light emitting diode in the same layer, and may be a metal layer 5 of a metal such as aluminum (hereinafter, the metal layer 5 is exemplified as an example).
  • the metal layer 5 is also connected to the indium tin oxide layer 3 in the cathode contact region 121 (because there is no organic film layer 4 in the cathode contact region 121), so the driving signal can be first conducted to the source and drain layer 6, and then connected.
  • the holes are conducted into the indium tin oxide layer 3, then conducted to the metal layer 5, and finally conducted to the cathodes of the respective organic light emitting diodes to provide signals to the respective cathodes for cathode driving.
  • the ink layer is formed by an inkjet printing method.
  • the shielding structure includes a plurality of spaced apart protrusions 71 disposed in the cathode contact region 121, and the adjacent protrusions 71 The spacing between the upper ends is between 8 and 20 microns.
  • the above protrusions 71 are preferably made of a material that is liquid-repellent with respect to the ink layer.
  • the ink layer can be formed by an inkjet printing method (such as continuous inkjet printing); that is, a plurality of nozzles are arranged in a row, and the nozzles are synchronously operated to eject ink together. Thereby forming an ink layer.
  • an inkjet printing method such as continuous inkjet printing
  • the blocking structure is a plurality of protrusions 71 provided in the cathode contact region 121, and the upper ends of the protrusions 71 have a specific interval, and other portions are not limited. As shown in FIGS.
  • the organic film layer 4 (or the ink layer) at this time can be removed more easily, so that no damage is caused to other structures during the cleaning process, and there is no residual of the organic film layer 4 in the cathode contact region 121. Thereby improving product quality.
  • the protrusion 71 is preferably made of a lyophobic material, that is, does not infiltrate when the ink comes into contact therewith, but tends to condense into small droplets, whereby the ink is less likely to protrude from the protrusion 71.
  • the gap is flowing down.
  • the protrusions 71 can be made of an organic fluorochemical material.
  • the protrusion 71 is provided at a position outside the recess 8.
  • a plurality of recesses 8 are provided in the cathode contact region 121, and the projections 71 should preferably be provided in a flat portion without the recesses 8. This is to ensure that the upper ends of the respective projections 71 are in the same plane, so that the organic film layer 4 formed thereon is also flat and easily removed.
  • the protrusion 71 is elongated and its length direction is perpendicular to the printing direction of the ink layer.
  • the shape of the protrusions 71 is not limited.
  • the protrusions 71 may be a plurality of independent blocks.
  • the projection 71 should not be too small from the viewpoint of simplifying the process.
  • the protrusions 71 are elongated in a direction perpendicular to the printing direction (i.e., the advancing direction of the head) (the distance between the strips is the interval of the upper ends of the adjacent protrusions 71 above). 71 is not only simple in structure, but also achieves a better effect of blocking the ink layer.
  • the recess 8 has an elongated shape and its longitudinal direction is parallel to the longitudinal direction of the projection 71.
  • the recess 8 is caused by the connection hole in the passivation layer 2, so that the recess 8 is small.
  • the recess 8 is a strip-like structure parallel to the protrusion 71 (the connection hole in the corresponding passivation layer 2 becomes a connection groove), so that the exposed area can be better removed.
  • the shielding structure protrusion 71
  • the projection 71 in the finally formed structure is sandwiched between the indium tin oxide layer 3 and the metal layer 5.
  • the bumps 71 are spaced apart, the indium tin oxide layer 3 is in contact with the metal layer 5 at a position where the bumps 71 are absent.
  • the ink layer is formed by a spin coating method, and the shielding structure is disposed in the exposed region (hereinafter, the cathode contact region 121 is taken as an example) to be adjacent to the display region 11 . Retaining wall 72 on the side.
  • the ink layer can also be prepared by a spin coating method, and the shielding structure at this time is a retaining wall at least located on the side of the cathode contact region 121 near the display region 11 (left side in FIG. 9). 72.
  • the spin coating method is also called a homogenizing method. Specifically, the ink is applied to the middle of the display region 11 of the organic light emitting diode substrate, and then the organic light emitting diode substrate is rotated to diffuse the ink to form an ink layer by the action of centrifugal force.
  • the ink can be prevented from passing through the exposed region (the cathode contact region 121 in this embodiment), thereby preventing the ink layer from coming into contact with the cathode.
  • the surface of the region 121 is in contact.
  • the shielding structure further includes: a retaining wall 72 disposed on two sides adjacent to a side of the cathode contact region 121 adjacent to the display region 11 .
  • the retaining wall 72 is provided outside the side (the left side in FIG. 9) of the cathode contact region 121 close to the display region 11, on both sides adjacent to the side ( A retaining wall 72 is also provided in addition to the upper and lower sides of Fig. 9 to prevent ink from entering the cathode contact region 121 from both sides.
  • the height of the upper retaining wall 72 is 0.5 to 2.0 um, more preferably 0.8 to 1.3 um.
  • the retaining wall 72 is too short to block the ink, and too high will cause other problems, and the above thickness range is optional.
  • the OLED substrate further includes a pixel defining layer (PDL), and the occlusion structure is in the same layer as the pixel defining layer.
  • PDL pixel defining layer
  • the pixel defining layer is an existing structure in the organic light emitting diode substrate, and is disposed between each pixel (sub-pixel) to divide each pixel.
  • the pixel defining layer is usually located between the cathode and the organic film layer 4, and the position is also the position where the occlusion structure is located, so it is preferable to form the pixel defining layer and the occluding structure with the same material layer, thereby eliminating the need to add new steps for manufacturing the occluding structure.
  • the method of preparing the organic light emitting diode substrate of the present invention can be simplified without changing the existing preparation process.
  • the embodiment further provides a method for fabricating the above organic light emitting diode substrate, which includes:
  • the ink layer is formed such that the ink layer does not come into contact with the surface of the exposed region in the edge region of the organic light emitting diode substrate.
  • the above-described shielding structure may be formed in advance before the ink layer is formed, so that the ink layer does not come into contact with the surface of the exposed region when the ink layer is formed (the ink layer is formed on the shielding structure or does not enter the exposure at all).
  • the organic film layer 4 thus formed by the curing of the ink layer is also not in contact with the surface of the exposed region, so that it can be easily removed in a subsequent process (or the ink layer can be directly removed before curing), Avoid damage to other structures or avoid the presence of residual organic film layer 4 in the exposed areas.
  • the occlusion structure may be formed by a conventional patterning process, or may also be formed in synchronization with the pixel defining layer in the display area 11.
  • the patterning process typically includes one or more of the steps of forming a layer of material - coating photoresist - exposure - development - etching - photoresist stripping.
  • the ink layer can be formed by the above-described inkjet printing method or spin coating method, and an appropriate shielding structure is selected based on the above description of the present invention, depending on the ink layer forming method. After the ink layer is formed, it can be dried and solidified by heating baking to form the organic film layer 4.
  • the organic film layer 4 can be removed by conventional methods such as plasma etching, laser cleaning, wiping, etc., wherein at least the organic film layer 4 (or ink layer) in the exposed region is removed, and the usual practice is to place the edge region 12 All of the organic film layer 4 (or ink layer) is completely removed.
  • the process of preparing the organic light emitting diode substrate may further include many other known steps, such as the step of forming the passivation layer 2, forming a connection hole in the passivation layer 2, forming a thin film transistor (source, drain, gate) The steps of the gate, the gate insulating layer, and the active region), the steps of forming the leads (gate lines, data lines), the steps of forming the anode, and the like. Since other steps of preparing the organic light emitting diode substrate are known, they will not be described in detail herein.
  • the present invention has been described in the present embodiment with the cathode contact region 121 as an exposed region, the exposed region may be other regions in the edge region. Meanwhile, although the present invention has been described with the indium tin oxide layer 3 and the metal layer 5 as two conductive layers in this embodiment, the two conductive layers may be other materials.
  • the embodiment provides a display device including any one of the above organic light emitting diode substrates.
  • the display device can be any product or component having a display function, such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机发光二极管基板及其制备方法,属于有机发光二极管制备技术领域,其可解决现有的有机发光二极管基板制备过程中边缘区的有机膜层去除困难问题。上述有机发光二极管基板包括显示区(11)和位于显示区(11)外的边缘区(12),显示区(11)中设有由油墨层固化形成的有机膜层(4),边缘区(12)包括无有机膜层(4)的暴露区;所述有机发光二极管基板还包括:遮挡结构,其位于所述边缘区(12),用于阻止油墨层与暴露区的表面接触。

Description

有机发光二极管基板及其制备方法 技术领域
本发明属于有机发光二极管制备技术领域,具体涉及一种有机发光二极管基板及其制备方法。
背景技术
有机发光二极管(OLED)显示装置主要依靠有机发光二极管发光,有机发光二极管包括阴极、阳极和夹在二者间的多个有机膜层。有机膜层主要通过蒸镀法或溶液法制备。蒸镀法在制备大尺寸有机发光二极管基板时存在很多缺陷,如掩膜板易受高温影响而偏移、变形等。溶液法则先通过喷墨印刷、旋涂等方式在基底上形成有机材料的油墨层,油墨层再固化形成相应的有机膜层,其比较适于大尺寸有机发光二极管基板的制备。
如图1至图4所示,有机发光二极管基板包括用于进行显示的显示区11,以及位于显示区11外的边缘区12,有机发光二极管主要位于显示区11中。在连续喷墨印刷的制程中,由于制程本身的原因,边缘区12也会被印刷有墨水。但显示产品的后续制程中要求边缘区12中的很多位置不能被有机膜层4覆盖,故边缘区12中的有机膜层4需要被额外的制程清除掉,可使用的清除方法有等离子刻蚀、激光清洁等。边缘区12中包括阴极接触区121,阴极接触区121的作用是连接有机发光二极管阴极与外围驱动电路从而实现对阴极的驱动。阴极接触区121包括氧化铟锡(ITO)层3,其与有机发光二极管的阳极同层设置;为保证阴极接触区功能的实现,在蒸镀阴极(金属层5)之前,必须清除掉沉积在氧化铟锡层3上的有机膜层4以使金属层5与氧化铟锡层3相连。在现有设计中,阴极接触区121的氧化铟锡层3下的钝化层2中有许多连接孔,用于使氧化铟锡层3与钝化层2下的源漏层6(源漏电极所在层,其连接驱动电路)相连;连接孔导致氧化铟锡层3表面有许多凹陷8,如图4所示,这些凹陷8中的有机膜层4难以去除, 等离子刻蚀或激光清洁方法在清洁过程中难以控制,能量小的时候可能会无法清洁干净有机膜层4,尤其是凹陷8中的有机膜层4;为将其清除干净,需要使用更苛刻的清除条件,如加大激光功率或等离子能量,而这样容易对其他结构造成损伤,且残留的有机膜层4会影响产品质量。
发明内容
本发明针对现有的有机发光二极管基板制备过程中边缘区的有机膜层去除困难的问题,提供一种可容易地去除的边缘区的有机膜层的有机发光二极管基板及其制备方法。
解决本发明技术问题所采用的技术方案是一种有机发光二极管基板,包括显示区和位于显示区外的边缘区,显示区中设有由油墨层固化形成的有机膜层,边缘区包括无有机膜层的暴露区;所述有机发光二极管基板还包括:
遮挡结构,其位于所述边缘区,用于阻止油墨层与暴露区的表面接触。
可选的是,所述暴露区中设有第一导电层;所述遮挡结构位于所述第一导电层上方;所述暴露区中还设有位于所述遮挡结构上方的第二导电层,所述暴露区中的第一导电层与第二导电层至少部分接触。
可选的是,所述油墨层采用喷墨印刷法形成;所述遮挡结构包括多个设于暴露区内的间隔开的凸起,相邻所述凸起上端的间隔在8~20微米之间。
进一步可选的是,所述凸起由相对所述油墨层为疏液性的材料制成。
进一步可选的是,所述凸起为长条状,且其长度方向垂直于所述油墨层的印刷方向。
进一步可选的是,还包括设于显示区中的有机发光二极管, 所述有机发光二极管包括阳极、有机膜层、阴极;所述暴露区包括阴极接触区;所述阴极接触区中设有表面有多个凹陷的、与所述阳极同层且间隔开的第一导电层;所述阴极与第二导电层同层且相连。
进一步可选的是,所述凸起为长条状,且其长度方向垂直于所述油墨层的印刷方向;所述凹陷为长条状,且与所述凸起平行。
进一步可选的是,所述凸起设在所述凹陷外的位置处。
可选的是,所述油墨层采用旋涂法形成;所述遮挡结构包括设于所述暴露区靠近显示区一侧外的挡墙。
进一步可选的是,所述遮挡结构还包括:设于与所述暴露区靠近显示区一侧相邻的两侧外的挡墙。
进一步可选的是,所述挡墙的高度在0.5~2.0um。
进一步可选的是,所述有机发光二极管基板还包括设于显示区中的有机发光二极管,所述有机发光二极管包括阳极、有机膜层、阴极;所述暴露区包括阴极接触区,所述阴极接触区设有第一导电层和第一导电层上方的第二导电层;所述阴极接触区中的第一导电层与所述阳极同层且间隔开,且第一导电层的表面有多个凹陷;所述阴极接触区中的第二导电层与所述阴极同层且相连。
进一步可选的是,所述有机发光二极管基板还包括:像素界定层,所述遮挡结构与像素界定层同层设置。
解决本发明技术问题所采用的技术方案是一种上述有机发光二极管基板的制备方法,其包括:
形成所述遮挡结构;
形成所述油墨层,使得油墨层不会与有机发光二极管基板的边缘区中的暴露区的表面接触。
本发明的有机发光二极管基板中具有遮挡结构,其可阻止油墨层与暴露区表面接触,因此由油墨层固化形成的有机膜层也不 与暴露区表面接触,故可避免有机膜层在暴露区的残留。
附图说明
图1为现有的有机发光二极管基板的俯视结构示意图;
图2为现有的有机发光二极管基板的阴极接触区的局部俯视结构示意图;
图3为图2中沿AA’线的形成有机膜层后的阴极接触区的剖面结构示意图;
图4为图2中沿AA’线的形成金属层后的阴极接触区的剖面结构示意图;
图5为本发明的一个实施例的有机发光二极管基板的俯视结构示意图;
图6为本发明的实施例的一种有机发光二极管基板的阴极接触区的局部俯视结构示意图;
图7为图6中沿AA’线的形成有机膜层后的阴极接触区的剖面结构示意图;
图8为图6中沿AA’线的形成金属层后的阴极接触区的剖面结构示意图;
图9为本发明的另一个实施例的有机发光二极管基板的阴极接触区的局部俯视结构示意图;
图10为图9中沿AA’线的形成有机膜层后的阴极接触区的剖面结构示意图;
其中,附图标记为:11、显示区;12、边缘区;121、阴极接触区;2、钝化层;3、氧化铟锡层;4、有机膜层;5、金属层;6、源漏层;71、凸起;72、挡墙;8、凹陷;9、基底。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1:
如图5至图10所示,本实施例提供一种有机发光二极管基板,包括显示区11,以及位于显示区11外的边缘区12,显示区11中设有由油墨层固化形成的有机膜层4,边缘区12包括无有机膜层4的暴露区。
也就是说,有机发光二极管基板具有用于进行显示的显示区11,显示区11中设有多个有机发光二极管,每个有机发光二极管包括阴极、阳极、夹在阴极与阳极间的多个有机膜层4;其中,这些有机膜层4是通过溶液法形成的,即先在基底9上形成有机材料的油墨层,之后该油墨层干燥固化形成有机膜层4。在有机发光二极管基板的显示区11之外还设有边缘区12,该边缘区12用于连接驱动芯片、作为显示装置的边框等。在边缘区12中,有一个或多个暴露区,暴露区中不存在有机膜层4,以实现各种电连接。当然,若整个边缘区12中都不存在有机膜层4,也是可行的。
该有机发光二极管基板还包括:遮挡结构,其位于有机膜层4下方,用于阻止油墨层与暴露区的表面接触。
其中,本发明中所称的“层”是指,有机发光二极管基板中的各结构均是由一定的材料层形成的,故这些材料层的形成顺序也就是其中各结构的层叠顺序。例如,“A结构位于B结构所在层之下(或B结构位于A结构所在层之上)”表示先制造用于形成A结构的材料层,之后再制造用于形成B结构的材料层,但其并不表示A结构必然被覆盖在B结构之下,也不表示B结构正下方一定有A结构;同理,“A结构与B结构同层”表示这两个结构是由同一个材料层形成的,但并不表示二者与基底9间的距离相等。
本实施例的有机发光二极管基板中还具有遮挡结构,该遮挡结构可阻止油墨层与暴露区的表面相接触,因此,遮挡结构必然位于由油墨层固化形成的有机膜层4下方(即,先形成遮挡结构,然后通过油墨层形成有机膜层4);由于遮挡结构的作用,故油墨层不与暴露区的表面接触,因此当油墨层固化后,在暴露区的表 面也不会形成有机膜层4,从而有机膜层4可被容易的除去,避免清除工序中对其他结构的损伤,并可避免暴露区中有机膜层4的残留,提高产品质量。
可选的,暴露区中设有第一导电层;遮挡结构位于第一导电层上方;暴露区中还设有位于第一导电层上方的第二导电层,暴露区中的第一导电层与第二导电层至少部分接触。
也就是说,暴露区中优选包括两个至少部分上下相邻的导电层,而在形成第一导电层之后、形成第二导电层之前会形成有机膜层4,因此,若该有机膜层4不能被清除干净,则会影响两导电层之间的连接,故在这种结构中设置了上述的避免油墨层与暴露区的表面接触的遮挡结构,以避免最终形成的结构的暴露区中有机膜层4的残留。当然,为起到避免油墨层与第一导电层接触的作用,故在制备有机发光二极管基板的过程中,在远离基底9的方向上,应当依次设置第一导电层-遮挡结构-有机材料层-第二导电层。
可选的,以上暴露区包括阴极接触区121;阴极接触区121中的第一导电层与有机发光二极管的阳极同层且间隔,且第一导电层的表面有多个凹陷8,而第二导电层则与有机发光二极管的阴极同层且相连。
也就是说,暴露区的一个例子可为上述的阴极接触区121。具体的,阴极接触区121中的第一导电层与有机发光二极管的阳极同层且间隔开,其可为氧化铟锡层3(以下均以氧化铟锡层3为例进行说明),氧化铟锡层3可位于钝化层2上,钝化层2中有许多连接孔,由此在连接孔位置氧化铟锡层3与钝化层2下方的源漏层6相连,而源漏层6则连接驱动电路。显然,氧化铟锡层3对应连接孔的位置表面会具有凹陷8,这些凹陷8会给有机膜层4的清除带来困难。在此,之所以需要设置凹陷8(连接孔)而非将阴极接触区121的钝化层3整体去掉,主要是从工艺方面和可靠性方面考虑的。
遮挡结构位于氧化铟锡层3上方(如直接位于氧化铟锡层3上),有机膜层4位于遮挡结构上方,由此在形成油墨层时,遮挡结构可阻止油墨层与阴极接触区121中的氧化铟锡层3接触,从而保证阴极接触区121中的氧化铟锡层3表面无有机膜层4形成。
在有机膜层4之上为第二导电层,该第二导电层与有机发光二极管的阴极同层且相连,其可为铝等金属的金属层5(以下均以金属层5为例进行说明);该金属层5还与阴极接触区121中的氧化铟锡层3连接(因为阴极接触区121中无有机膜层4),故驱动信号可先传导到源漏层6中,再通过连接孔传导至氧化铟锡层3中,之后传导到金属层5上,最后传导到各有机发光二极管的阴极,为各阴极提供信号,实现阴极驱动。
可选的,作为本实施例的一种方式,以上油墨层采用喷墨印刷法形成,此时遮挡结构包括多个设于阴极接触区121内的间隔开的凸起71,相邻凸起71上端的间隔在8~20微米之间。可选的,以上凸起71优选由相对油墨层为疏液性的材料构成。
也就是说,如图6至图8所示,油墨层可采用喷墨印刷法(如连续喷墨印刷)形成;即,使多个喷头排成一排,各喷头同步运行,一起喷出油墨,从而形成一层油墨层。
当采用喷墨印刷法形成油墨层时,遮挡结构为多个设于阴极接触区121内的凸起71,且这些凸起71上端具有特定的间隔,而其他部分不做限定。如图7、图8所示,当油墨被喷到凸起71上时,由于凸起71间的间隔较小且为疏液性,故油墨并不能经由凸起71间的缝隙向下流,而是会保留在凸起71上方;这样,当油墨层固化为有机膜层4时,有机膜层4也位于凸起71上方,这样形成的有机膜层4不直接接触凹陷8,因此可被容易地去除;或者也可在油墨固化之前,就用擦拭的方法除去凸起71上方的油墨层。总之,此时的有机膜层4(或油墨层)可以被更容易地除去,故清除过程中不会对其他结构造成损伤,且阴极接触区121中也不会有有机膜层4的残留,从而可提高产品质量。
其中,凸起71优选是由疏液性的材料制成的,即当油墨与其接触时并不会发生浸润,而是倾向于凝成小液滴,由此,油墨更不容易从凸起71的间隙处向下流。例如,凸起71可由有机含氟化合物材料制成。
可选的,凸起71设在凹陷8外的位置处。
如前所述,阴极接触区121中设有许多凹陷8,而凸起71优选应设在无凹陷8的平坦处。这是为了保证各凸起71上端处在同一平面,从而在其上形成的有机膜层4也是平坦的,易于被去除。
可选的,凸起71为长条状,且其长度方向垂直于油墨层的印刷方向。
显然,只要保证相邻凸起71上端的间隔符合以上的条件即可,而对凸起71形状不做限定,例如凸起71可以为多个独立的块状物。但从简化工艺的角度考虑,凸起71并不应当太小。如图6所示,凸起71为与印刷方向(即喷头的前进方向)垂直的长条状(各条之间的距离即为以上的相邻凸起71上端的间隔),这种凸起71不仅结构简单,而且又可实现较好的阻挡油墨层的效果。
可选的,凹陷8为长条状,且其长度方向与凸起71的长度方向平行。
在现有的阴极接触区121中,凹陷8是由钝化层2中的连接孔造成的,故凹陷8是小块状的。如图6所示,在本实施例中,凹陷8为与凸起71平行的条状结构(相应的钝化层2中的连接孔变为连接槽),这样能更好地去除暴露区的有机膜层4。
当然,按照以上方式,由于遮挡结构(凸起71)设于阴极接触区121中,故最终形成的结构中凸起71会被夹在氧化铟锡层3和金属层5之间。当然,由于凸起71是间隔设置的,故在没有凸起71的位置氧化铟锡层3与金属层5接触。
可选的,作为本实施例的另一种优选方式,油墨层采用旋涂法形成,此时遮挡结构包括设于暴露区(以下均以阴极接触区121为例进行说明)靠近显示区11一侧外的挡墙72。
如图9、图10所示,油墨层也可由旋涂法制备,而此时的遮挡结构则为至少位于阴极接触区121靠近显示区11一侧(图9中的左侧)外的挡墙72。旋涂法也称匀胶法,具体为先在有机发光二极管基板的显示区11中部施加油墨,之后旋转有机发光二极管基板,通过离心力的作用使油墨扩散形成油墨层。为此,只要在阴极接触区121靠近显示区11的一侧外设置挡墙72,即可阻止油墨通过到达暴露区(在本实施例中为阴极接触区121),从而防止油墨层与阴极接触区121的表面接触。
可选的,遮挡结构还包括:设于与阴极接触区121靠近显示区11一侧相邻的两侧外的挡墙72。
也就是说,如图9所示,除了在阴极接触区121靠近显示区11的一侧(图9中的左侧)外设有挡墙72之外,在与该侧相邻的两侧(图9中的上下两侧)之外也设有挡墙72,从而可阻止油墨从两侧进入阴极接触区121。
可选的,以上挡墙72的高度在0.5~2.0um,更优选0.8~1.3um。
显然,挡墙72太矮无法挡住油墨,太高则会带来其他问题,而以上的厚度范围是可选的。
可选的,有机发光二极管基板中还包括像素界定层(PDL),而遮挡结构与像素界定层同层。
其中,像素界定层是有机发光二极管基板中的已有结构,其设在各像素(子像素)之间,从而划分出各像素。像素界定层通常位于阴极和有机膜层4之间,而该位置也是遮挡结构所在的位置,故优选可用同一个材料层形成像素界定层和遮挡结构,由此不必为制造遮挡结构增加新的步骤,也不用改变现有的制备流程,可以简化本发明的有机发光二极管基板的制备方法。
可选的,本实施例还提供一种上述有机发光二极管基板的制备方法,其包括:
形成遮挡结构;以及
形成油墨层,使得油墨层不会与有机发光二极管基板的边缘区中的暴露区的表面接触。
也就是说,可在形成油墨层之前,预先形成上述的遮挡结构,从而在形成油墨层时,该油墨层不会与暴露区的表面接触(油墨层形成在遮挡结构上,或根本不进入暴露区),这样由油墨层固化形成的有机膜层4也不会与暴露区的表面接触,从而其可在后续工艺中被容易地去除(或者也可在固化前即直接将油墨层去除),避免损伤其他结构或避免在暴露区中存在有机膜层4的残留。
其中,遮挡结构可通过常规的构图工艺形成,或者也可与显示区11中的像素界定层同步形成。构图工艺通常包括形成材料层-涂布光刻胶-曝光-显影-刻蚀-光刻胶剥离等步骤中的一步或多步。
油墨层则可通过上述的喷墨打印法或旋涂法形成,根据油墨层形成方法的不同,基于本发明的上述描述选择适当的遮挡结构。在形成油墨层后,可通过加热烘烤使其干燥固化形成有机膜层4。
有机膜层4的去除则可采用等离子刻蚀、激光清洁、擦拭等常规方法,其中至少要将暴露区中的有机膜层4(或油墨层)去除,而通常的做法是将边缘区12中的全部有机膜层4(或油墨层)全部去除。
在去除有机膜层4后,进行形成第二导电层(阴极)等其他已知结构的操作。制备有机发光二极管基板的过程中还可以包括许多其他的已知步骤,如形成钝化层2的步骤,在钝化层2中形成连接孔的步骤,形成薄膜晶体管(源极、漏极、栅极、栅绝缘层、有源区)的步骤,形成引线(栅极线、数据线)的步骤、形成阳极的步骤等。由于制备有机发光二极管基板的其他步骤是已知的,故在此不再详细描述。
应当理解,虽然本实施例中以阴极接触区121作为暴露区的例子对本发明进行了说明,但暴露区也可为边缘区中的其他区域。同时,虽然本实施例中以氧化铟锡层3和金属层5作为两导电层的例子对本发明进行了说明,但这两导电层可为其他的材料。
实施例2:
本实施例提供了一种显示装置,其包括上述任意一种有机发光二极管基板。
具体的,该显示装置可为电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种有机发光二极管基板,包括显示区和位于显示区外的边缘区,显示区中设有由油墨层固化形成的有机膜层,边缘区包括无有机膜层的暴露区,其中,所述有机发光二极管基板还包括:
    遮挡结构,其位于所述边缘区,用于阻止油墨层与暴露区的表面接触。
  2. 根据权利要求1所述的有机发光二极管基板,其中,
    所述暴露区中设有第一导电层;
    所述遮挡结构位于所述第一导电层上方;以及
    所述暴露区中还设有位于所述遮挡结构上方的第二导电层,所述暴露区中的第一导电层与第二导电层至少部分接触。
  3. 根据权利要求2所述的有机发光二极管基板,其中,所述油墨层采用喷墨印刷法形成;
    所述遮挡结构包括多个设于暴露区内的间隔开的凸起,相邻所述凸起上端的间隔在8~20微米之间。
  4. 根据权利要求3所述的有机发光二极管基板,其中,
    所述凸起由相对所述油墨层为疏液性的材料制成。
  5. 根据权利要求4所述的有机发光二极管基板,其中,
    所述凸起为长条状,且其长度方向垂直于所述油墨层的印刷方向。
  6. 根据权利要求2至5中任意一项权利要求所述的有机发光二极管基板,还包括设于显示区中的有机发光二极管,所述有机发光二极管包括阳极、有机膜层、阴极;
    所述暴露区包括阴极接触区;
    所述阴极接触区中设有表面有多个凹陷的、与所述阳极同层且间隔开的第一导电层;
    所述阴极与第二导电层同层且相连。
  7. 根据权利要求6所述的有机发光二极管基板,其中,
    所述凸起为长条状,且其长度方向垂直于所述油墨层的印刷方向;
    所述凹陷为长条状,且与所述凸起平行。
  8. 根据权利要求7所述的有机发光二极管基板,其中,
    所述凸起设在所述凹陷外的位置处。
  9. 根据权利要求1所述的有机发光二极管基板,其中,所述油墨层采用旋涂法形成;
    所述遮挡结构包括设于所述暴露区靠近显示区一侧外的挡墙。
  10. 根据权利要求9所述的有机发光二极管基板,其中,所述遮挡结构还包括:
    设于与所述暴露区靠近显示区一侧相邻的两侧外的挡墙。
  11. 根据权利要求10所述的有机发光二极管基板,其中,
    所述挡墙的高度在0.5~2.0um。
  12. 根据权利要求9至11中任意一项权利要求所述的有机发光二极管基板,还包括设于显示区中的有机发光二极管,所述有机发光二极管包括阳极、有机膜层、阴极;
    所述暴露区包括阴极接触区,所述阴极接触区设有第一导电层和第一导电层上方的第二导电层;
    所述阴极接触区中的第一导电层与所述阳极同层且间隔开,且第一导电层的表面有多个凹陷;以及
    所述阴极接触区中的第二导电层与所述阴极同层且相连。
  13. 根据权利要求1至12中任意一项所述的有机发光二极管基板,还包括:
    像素界定层,所述遮挡结构与像素界定层同层设置。
  14. 一种有机发光二极管基板的制备方法,其中,所述有机发光二极管基板为权利要求1至13中任意一项所述的有机发光二极管基板,所述有机发光二极管基板的制备方法包括:
    形成所述遮挡结构;
    形成所述油墨层,使得油墨层不会与有机发光二极管基板的边缘区中的暴露区的表面接触。
PCT/CN2016/079263 2015-05-26 2016-04-14 有机发光二极管基板及其制备方法 WO2016188259A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/512,121 US10014470B2 (en) 2015-05-26 2016-04-14 Organic light emitting diode substrate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510275095.2 2015-05-26
CN201510275095.2A CN104992958B (zh) 2015-05-26 2015-05-26 有机发光二极管基板及其制备方法

Publications (1)

Publication Number Publication Date
WO2016188259A1 true WO2016188259A1 (zh) 2016-12-01

Family

ID=54304747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079263 WO2016188259A1 (zh) 2015-05-26 2016-04-14 有机发光二极管基板及其制备方法

Country Status (3)

Country Link
US (1) US10014470B2 (zh)
CN (1) CN104992958B (zh)
WO (1) WO2016188259A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992958B (zh) 2015-05-26 2017-11-07 京东方科技集团股份有限公司 有机发光二极管基板及其制备方法
CN110265563B (zh) 2019-06-20 2021-11-16 京东方科技集团股份有限公司 用于在其上喷墨打印发光层的基板、发光器件、和用于制备基板的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367249A (zh) * 2013-05-22 2013-10-23 友达光电股份有限公司 制造一有机发光显示面板的方法及有机发光显示面板
US20140206119A1 (en) * 2013-01-18 2014-07-24 Samsung Display Co., Ltd. Method for fabricating organic light emitting display device and inkjet print device used therein
CN104992958A (zh) * 2015-05-26 2015-10-21 京东方科技集团股份有限公司 有机发光二极管基板及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528910B1 (ko) * 2003-01-22 2005-11-15 삼성에스디아이 주식회사 고분자 유기 전계 발광 소자
EP1729358B1 (en) * 2005-06-02 2016-03-02 Samsung SDI Germany GmbH Substrate for inkjet printing
KR20070053060A (ko) * 2005-11-19 2007-05-23 삼성전자주식회사 표시장치와 이의 제조방법
TWI509673B (zh) 2007-09-05 2015-11-21 尼康股份有限公司 A manufacturing method of a display element, a manufacturing apparatus for a display element, and a display device
US20090065499A1 (en) 2007-09-07 2009-03-12 Bose Corporation Induction cookware
KR101375334B1 (ko) * 2008-07-17 2014-03-20 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 그 제조 방법
JP2010080086A (ja) 2008-09-24 2010-04-08 Sumitomo Chemical Co Ltd パターン塗布用基板および有機el素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140206119A1 (en) * 2013-01-18 2014-07-24 Samsung Display Co., Ltd. Method for fabricating organic light emitting display device and inkjet print device used therein
CN103367249A (zh) * 2013-05-22 2013-10-23 友达光电股份有限公司 制造一有机发光显示面板的方法及有机发光显示面板
CN104992958A (zh) * 2015-05-26 2015-10-21 京东方科技集团股份有限公司 有机发光二极管基板及其制备方法

Also Published As

Publication number Publication date
CN104992958A (zh) 2015-10-21
CN104992958B (zh) 2017-11-07
US10014470B2 (en) 2018-07-03
US20170279047A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
EP3633746B1 (en) Manufacturing method of organic light emitting diode display panel
JP2020531882A (ja) Oled表示マザーボード及びその製造方法、oled表示パネルの製造方法及びそのoled表示装置
US7503823B2 (en) Method of producing an organic EL light-emitting device
JP6219696B2 (ja) 発光表示装置及び発光表示装置の製造方法
CN108054184B (zh) 一种阵列基板及制备方法、显示装置
US10372249B2 (en) Touch screen, fabrication method thereof, and display apparatus
KR100745332B1 (ko) 유기 발광표시장치 및 그 제조방법
US7724323B2 (en) Pattern-forming method for manufacturing device having partitioning layer formed on foundation layer with preliminary partitioning and residue fragment formed by removing part of partitioning layer
JP2008243773A (ja) 電気発光装置、その製造方法、電子機器、薄膜構造体、薄膜形成方法
WO2021249158A1 (zh) 显示基板、其制作方法及显示装置
WO2021244248A1 (zh) 显示面板及其制备方法、显示基板及其制备方法和显示装置
WO2020164317A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
KR100707601B1 (ko) 유기 발광표시장치 및 그 제조방법
US20210175313A1 (en) Organic light-emitting diode display panel
US20210399067A1 (en) Display Substrate and Manufacturing Method Thereof, Display Device, and Inkjet Printing Method
JP2008091071A (ja) 電気光学装置、およびその製造方法
WO2016188259A1 (zh) 有机发光二极管基板及其制备方法
WO2020143449A1 (zh) 显示基板及显示装置
JP2008208426A (ja) 成膜用マスクおよび成膜用マスクの製造方法
JP2006295116A (ja) 多層配線およびその作製方法、ならびにフラットパネルディスプレイおよびその作製方法
JP2021516842A (ja) 表示パネルとその製造方法、表示装置
KR102087193B1 (ko) 유기 발광 표시 장치의 제조 방법 및 터치 패널의 제조 방법
KR100646936B1 (ko) 유기 발광소자 및 그 제조방법
JP2009043499A (ja) 有機el素子用基板及びその製造方法
KR20170081052A (ko) 패드부 전극 구조 및 이를 갖는 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15512121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799148

Country of ref document: EP

Kind code of ref document: A1