WO2016185971A1 - 潤滑油剤用の添加剤、及び潤滑油剤組成物 - Google Patents
潤滑油剤用の添加剤、及び潤滑油剤組成物 Download PDFInfo
- Publication number
- WO2016185971A1 WO2016185971A1 PCT/JP2016/064020 JP2016064020W WO2016185971A1 WO 2016185971 A1 WO2016185971 A1 WO 2016185971A1 JP 2016064020 W JP2016064020 W JP 2016064020W WO 2016185971 A1 WO2016185971 A1 WO 2016185971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lubricating oil
- oil
- additive
- friction
- carbon atoms
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/12—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/14—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33303—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
- C08G65/33306—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group acyclic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/26—Carboxylic acids; Salts thereof
- C10M129/28—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M129/38—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
- C10M129/40—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/54—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/06—Mixtures of thickeners and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/122—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/28—Amides; Imides
- C10M2215/285—Amides; Imides used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/071—Branched chain compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Form in which the lubricant is applied to the material being lubricated semi-solid; greasy
Definitions
- the present invention relates to a lubricating additive and a lubricating oil composition.
- it is used as a lubricant for internal combustion engines, drive system lubricants, hydraulic oils and greases, has both friction reduction performance and cleanliness, and does not contain elements such as sulfur and phosphorus and metals.
- the present invention relates to an agent and a lubricating oil composition.
- lubricating oil when lubricating oil is used in the lubricated part of the machine, it reduces friction (energy saving, improved lubrication, and reduced operating noise), and suppresses the formation and sludge generation performance of the entire machine system and cleanliness (on the metal surface).
- the present invention relates to an additive for a lubricating oil agent having suppression / removal performance of burnish or the like that adheres / generates, a lubricating oil agent containing the additive, and a lubricating oil composition.
- friction reduction performance is important for energy saving, noise reduction, smooth movement, lubrication performance improvement, and the like. Improvement of friction reduction performance will be a more important issue in the future, and many new chemical substances, compounds and formulations related to this issue have been created.
- organic molybdenum such as molybdenum dithiocarbamate is used worldwide (see, for example, Patent Document 1).
- organic molybdenum is very effective, sustainability is a problem. Moreover, since organic molybdenum contains sulfur, phosphorus, etc., the basic heat stability is poor and becomes a factor of sludge generation. Further, since decomposition and combustion contain phosphorus, sulfur and the like, there is a drawback that the performance of the exhaust gas purifying device and the like is deteriorated. In addition, because it contains metal, etc., there is a problem that deposits are solidified in exhaust gas circulator parts of the latest engine, which is known as downsized, which has a higher output by using a turbocharger etc. .
- organic molybdenum and the like contain many disadvantages in terms of environment because they contain phosphorus, sulfur, and heavy metals.
- the upper limit of phosphorus content in the API standard which is a general standard for engine oil, is as follows, and the amount that can be used in the future is expected to be more limited.
- SG No regulation SH / GF-1: 0.12% SJ / GF-2, SL / GF-3: 0.10% SM / GF-4, SN / GF-5: 0.08-0.06% (0.06% is the lower limit)
- JP 2006-348223 A Japanese Patent Laid-Open No. 9-13065 JP 2010-090243 A Japanese Patent No. 5426829
- organic molybdenum has a large effect of reducing friction, but has an environmental problem (PRTR), and when the entire system is viewed, the case where the negative side is large is conspicuous. For this reason, there is a demand for an additive technology that uses an organic compound that is more environmentally friendly and does not contain metal and does not contain phosphorus or sulfur.
- an EGR cooler for lowering the temperature of the exhaust gas circulated an EGR valve for controlling the amount, and the like are incorporated in the system.
- a part of the engine oil that is vaporized and burned goes to the EGR system together with the exhaust gas.
- the conventional engine oil generates deposits in the EGR cooler, and causes inaccurate control such as deterioration of the cooling effect and the EGR valve not being completely closed.
- the output is reduced. If the situation further deteriorates, the cross-sectional area of the EGR pipe immediately before the intake side duct becomes narrow, and exhaust gas does not rotate evenly to each cylinder, causing problems such as engine malfunction.
- This problem is an additive containing a sulfur content, a phosphorus content, a metal, and the like, and is considered to be mainly caused by the presence of a friction modifier.
- the conventional lubricants are required to have a friction reducing effect for reducing friction, but when the friction reducing effect is increased, deposits, sludges and burnishes are likely to occur. There is a trade-off relationship.
- the present invention is an ashless type that does not contain phosphorus, sulfur, or metals, which has a high friction reducing effect, suppresses the generation of deposits, sludge, etc., and can also exhibit a cleaning effect.
- fatty acids, aliphatic amines, fatty acid and fatty amine salts, or amidated additives are often found as additives that enhance the friction reducing effect.
- low temperature fluidity or low temperature solubility is insufficient.
- sludge and deposits are easily generated at high temperatures, and that low temperature fluidity / low temperature solubility and generation of deposits and the like are required.
- Another object of the present invention is to provide a new lubricant that can exhibit excellent performance in various environments at high temperatures.
- the carboxylic acid part R 1 is a hydrocarbon residue having 7 to 21 carbon atoms, and it does not matter whether it is a single substance or a mixture.
- the polyetheramine moiety having a base moiety is a compound represented by R 2 —O (AO) m—X
- R 2 is a hydrocarbon residue having 8 to 50 carbon atoms
- A is 2 to 6 carbon atoms.
- O oxygen
- m is an integer in the range of 10 to 50
- X is a hydrocarbon containing an amino group or a substituted amino group. Even if A is a single alkylene group in the molecule, X is (C 3 H 6 NH) nH regardless of whether it contains two or more types of alkylene groups, and n is 1 to 3 It should be an integer.
- R 2 and X may be a salt of in terms of a mixture of polyetheramine having different structures.
- a in (AO) is preferably an alkylene group having 2 to 4 carbon atoms, and the number of carbon atoms is preferably 3 to 4, and more preferably 4.
- R 3 —N (BO) aH (BO) bH (2) (Wherein R 3 represents an alkyl or alkenyl group having 6 to 24 carbon atoms, a and b represent an average degree of polymerization, and a + b is 2 to 10. B represents an alkylene having 2 to 4 carbon atoms.
- alkyl group or alkenyl group having 6 to 24 carbon atoms represented by R 3 examples include linear or branched alkyl groups such as hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl, tetradecyl Groups, hexadecyl, octadecyl, eicosyl and docosyl groups, including alkenyl groups such as myristolyl, palmitoleyl, oleyl and linoleyl.
- aliphatic hydrocarbon groups having 8 to 20 carbon atoms, and particularly preferred are decyl, dodecyl, tetradecyl, hexadecyl, octadecyl and oleyl groups.
- R 3 has 5 or less carbon atoms and 25 or more carbon atoms, the effect of reducing friction and increasing the cleaning performance cannot be obtained.
- Examples of the alkylene group of hydrocarbons 2 to 4 represented by B include an ethylene group, a propylene group, a butylene group, and a combination of two or more of these, for example, a combination of an ethylene group and a butylene group. Of these, the ethylene group is most preferred.
- a + b is less than 2 or exceeds 10, the effect of reducing friction and increasing the cleaning performance cannot be obtained.
- the additive of formula (2) does not have to be a single product, and it does not matter whether it is a mixture satisfying the above.
- polyoxyalkylene alkylamine represented by the general formula (2) examples include N, N-hydroxyethyllaurylamine, N, N-di (hydroxyethoxyethyl) laurylamine, N, N-dihydroxyethylmyristylamine, N , N-dihydroxyethyl stearylamine and N, N-dihydroxyethyl oleylamine.
- the polyetheramine carboxylate (1) formula may be used alone or in combination with the polyoxyalkylenealkylamine (2) formula depending on the purpose.
- the ratio and type of both can be selected arbitrarily according to each lubricant.
- the addition amount of the polyoxyalkylene alkylamine is 0.5 to 99.9 w / w%, more preferably 1 to 75 w / w%, still more preferably 5 to 50 w / w% with respect to the polyetheraminecarboxylate. .
- the oil to be diluted may be mineral oil, synthetic oil such as PAO or ester, or a mixture thereof.
- the range of use of the additive in the present invention is all lubricants, and the addition amount is 0.01 to 50 w / w%. More preferably, it is 0.05 to 10.0 w / w%, and still more preferably 0.5 to 10.0 w / w%.
- This additive is used for various lubricants.
- Additives detergents, dispersants, antiwear agents, antioxidants, oil agents, friction modifiers, rust preventive viscosity, degree index improvers, thickeners. Such types and combinations are not limited.
- the polyether amine carboxylate is more effective in lowering the friction in any lubricating oil formulation than, for example, a single fatty acid that is not a salt. Furthermore, many of carboxylic acids alone are solidified at a low temperature (around 5 ° C.), but polyetheramine carboxylates are not solidified and maintain fluidity even at ⁇ 20 ° C. For this reason, a high friction reducing effect can be obtained even in a low temperature lubricating oil. In addition, an oleate has the largest effect as a friction reduction effect among the said fatty acid salt (polyether amine carboxylate).
- the polyether amine carboxylate salt particularly the polyether amine fatty acid salt
- the polyether amine carboxylate salt can maintain the cleaning performance equivalent to that of the polyether amine alone while maintaining the metal surface. Friction can be reduced by adhering to.
- the conventional friction modifier gradually deteriorates, sludge, deposit, varnish, and the like are generated.
- the polyetheramine carboxylate has little adhesion thereof. That is, the polyetheramine carboxylate has a characteristic of exhibiting friction reduction performance and cleaning performance, which has not been considered with conventional friction reducing agents.
- this friction reduction effect is not greatly affected even when combined with other friction modifiers, amines, esters, amides, molybdenum disulfide (including organic molybdenum, etc.), fatty acids, fatty amine salts of fatty acids, etc. It has the characteristic of producing the effect of reducing friction stably.
- the fuel efficiency starts to improve by adding 0.1 w / w% or more of the polyetheramine carboxylate according to the present invention to the engine oil.
- This effect can be maintained for a long time.
- part of the effect is sustained.
- the conventional friction reducing agent when the oil not containing the conventional friction reducing agent is replaced, the friction reducing effect is not recognized.
- the present invention exhibits a different effect, and the effect reaches a level different from the conventional technology.
- combustion chamber deposit / intake valve deposit (caused by the refinement and vaporization of engine oil from the pipe connected from the crankcase to the intake duct to prevent the seals from being damaged due to an increase in engine internal pressure)
- Various problems such as a problem of clogging of the EGR pipe and a problem that the EGR valve is not completely closed have occurred.
- polyetheramine carboxylate By adding polyetheramine carboxylate to the engine oil formulation in an amount of 0.5 w / w% or more, more preferably 0.5 to 20 w / w%, an effect of preventing the occurrence of this deposit and solidification of the deposit is produced.
- the addition of 0.5 w / w% or more of polyetheramine carboxylate to the engine oil suppresses the deposit not only in the engine but also in the combustion chamber.
- the engine oil does not contain a conventional polyetheramine carboxylate, there is a problem that a carbon-like deposit adheres to the periphery of the EGR valve and solidifies.
- the present invention even if deposits are deposited, they do not solidify and do not affect the control of the valve. In this way, the entire engine system has the effect of preventing and suppressing the occurrence of defects due to deposits caused by engine oil.
- Lubricants with strong basic additives and lubricants formulated with basic metals for example, all amine oils, greases, gear oils, etc.
- basic metals over-base sulfonates and finates
- an acid salt When an acid salt is added, a metal salt or the like may be generated.
- an amine having a polyether structure in the molecule for example, polyoxyalkylamine
- the cleaning performance and the friction reducing effect can be further exhibited. I found it.
- the polyetheramine carboxylate is Polyoxyalkylene alkylamine represented by the general formula (2) R 3 —N (BO) aH (BO) bH (2) It is characterized by including.
- polyoxyethylene laurylamine is particularly effective for cleaning.
- the addition amount of the polyoxyalkylene alkylamine is 0.5 to 99.9 w / w%, more preferably 1 to 75 w / w%, still more preferably 5 to 50 w / w% with respect to the polyetheraminecarboxylate. .
- the formulation of adding polyoxyalkylene alkylamine to polyetheramine carboxylate is: Higher cleanliness dispersibility and friction reduction effect were confirmed than polyetheramine carboxylate alone.
- polyetheramine carboxylate for example, polyoxyethylene alkylamine
- polyoxyalkylene alkylamine for example, polyoxyethylene alkylamine
- detergents regardless of type and molecular structure
- amines, amides, esters, fatty acids, rust inhibitors and dispersants are further added to the above additives or lubricant compositions, and amines, amides, esters, fatty acids, rust inhibitors and dispersants as different friction modifiers. It does not limit the combination with other additives that can be used in lubricants, such as solubilizers.
- FIG. 1 is a diagram showing the configuration of a screw jack used for evaluating the friction characteristics of grease (Example 5).
- FIG. 2 is a view showing a configuration of a relief valve used for evaluation of sludge generation (Example 7).
- the solid includes powder crystals.
- Semi-solid means that the fluidity remains.
- CXX is the number of carbons excluding the carbon of the carboxylic acid group.
- PEA irriate is also a liquid at ⁇ 10 ° C.
- the carboxylic acid alone is solid at room temperature or low temperature
- the polyetheramine carboxylate (samples 8 to 13) is liquid or semi-solid at low temperature. It was confirmed that it can exist, and it was confirmed that the low temperature characteristic was high. As a result, it can be used at a high concentration without being precipitated or precipitated in oil even at low temperatures.
- the friction reducing effect is first prepared by simply adding zinc dithiophosphate (ZnDTP) to the viscosity of the base oil VG32 as the working oil. Add 2.0w / w% of each carboxylic acid, each polyetheramine single-unit and each polyetheramine carboxylate with the same amine value as the neutralization value of each carboxylic acid, and compare the force when the hydraulic cylinder starts to move. did.
- ZnDTP zinc dithiophosphate
- CXX is the number of carbons excluding carbon of the carboxylic acid group.
- GMO glycerol monooleate
- PEA oleate (containing fatty acid of 80% or more of oleic acid) as shown in Sample 6 over GMO, which is conventionally said to reduce the friction most, confirmed the effect of reducing the friction.
- the addition of 5.0 w / w% polyoxyethylene laurylamine to the polyetheramine oleate gave a synergistic effect and further reduced friction.
- PEA fatty acid containing 80% oleic acid, base oil (100% ester: Kao-Lube 262 plus viscosity index improver + ZnDTP: LZ135)
- the fuel consumption was measured by adding each PEA salt.
- the amount of addition is 1.0 w / w% of fatty acid alone, PEA having the same amine value as the neutralization value, and a complete salt made by the two.
- the test vehicle was two Hyundai PCX150 / 125 vehicles, and the same route was traveled 250 km, and the average value of four times was obtained. The measurement was performed at an outside air temperature of 20 to 25 ° C. so that the oil temperature of the engine oil did not change.
- Fatty acid containing 80% oleic acid and 98% stearic acid mixed in a one-to-one ratio is 1.0 w / w%, PEA having the same amine value as the neutralization value, and both What added complete salt was used.
- the amount added as PEA oleate is about 8.5 w / w%.
- VG32 General hydraulic oil not containing dispersant
- Hydraulic oil B (VG32) Contains dispersant.
- Dispersant is succinimide
- Fatty acid is fatty acid containing 80% oleic acid
- the amount of PEA oleate added is 4.2 w / w%.
- the relief valve as shown in FIG. 2 is set to a hydraulic pressure of 210 kg / cm 2 , and the hydraulic oil pump operates the relief valve to circulate 5 L of hydraulic oil and raise the oil temperature to 70 ° C. for one week.
- the relief valve in the relief valve was taken out and evaluated by observing the surface with a metal microscope. Sludge removal was evaluated in the same manner using 20 L of hydraulic oil whose oil temperature was suppressed to 50 ° C. and sludge generated under the same conditions.
- the piston ring upper circumference deposit: CCD, sludge evaluation, Subaru generator: engine oil Subaru genuine 5W-30 SJ was used, and after 100 hours test, the engine was disassembled and evaluated.
- the fatty acid is a commercial fatty acid containing 80% oleic acid.
- the addition amount is 0.5 w / w% of fatty acid
- PEA has the same amine value as the neutralization value of the fatty acid
- PEA fatty acid salt is a salt produced with both amounts.
- the addition amount as PEA oleate will be about 4.2 w / w% in said conditions.
- the addition amount is 20.0 w / w% with respect to PEA oleate.
- oil + POEAA alone cannot be evaluated because the engine oil gels.
- Engine oil stability test ⁇ Table 9: Engine oil stability test> The storage stability test was confirmed at 1 month after storage at 30-40 ° C.
- the engine oil contains all overbase metal sulfonate / finate and the like. For this reason, even if the carboxylic acid alone is naturally a polyetheramine carboxylate, precipitation occurs in the samples 2 and 3 added to the engine oil. However, it was confirmed that no precipitation occurred in Sample 4 in which POEAA was added to the polyetheramine carboxylate.
- each sample obtained by adding a carboxylate to polyetheramine exhibits different performance from that of a single product in all of the oil-based lubricants. It can be seen that an effect of suppressing the generation of sludge on the metal surface is produced. At the same time, it can be seen that when combined with polyoxyalkylene alkylamine, the cleaning performance and lubrication performance are improved.
- R 1 is a hydrocarbon residue having 7 to 21 carbon atoms
- the polyetheramine moiety having a base moiety is a compound represented by R 2 —O (AO) m—X
- R 2 is a hydrocarbon residue having 8 to 50 carbon atoms
- A is an alkylene group having 2 to 6 carbon atoms
- O is oxygen
- m is an integer of 10 to 50
- X is an amino group or a substituted group
- X is (C 3 H 6 NH) nH
- n is an integer of 1 to 3
- Additive for lubricants is
- R 3 represents an alkyl group or alkenyl group having 6 to 24 carbon atoms
- a and b represent the average degree of polymerization
- a and b are integers of 1 or more
- a + b is 1 to 30
- B is an alkylene group having 2 to 4 carbon atoms.
- R 3 is an aliphatic hydrocarbon group having 10 to 18 carbon atoms.
- a + b is 2-4.
- a lubricating oil composition comprising the above additive for lubricating oil, Engine oil for internal combustion engines, Transmission oil, Gear oil, Grease, Or it is set as the lubricating oil composition used as all lubricating oils, such as hydraulic oil.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Lubricants (AREA)
Abstract
【課題】摩擦低減効果が高く、かつ、デポジット・スラッジ等の発生を抑制し、さらに、清浄効果を呈することが可能なリン・硫黄や金属類を含まない無灰型の新規な潤滑油剤が求められていることを見出し、この要求に応えることが可能な新規な潤滑油剤を提供することを課題とするものである。また、低温・高温様々な環境においても摩擦低減効果・清浄効果等の性能を発揮することが求められていることも見出し、本願発明では、添加量を増やしても低温・高温様々な環境でも優れた性能を発揮できる新規な潤滑油剤を提供することも課題とするものである。 【解決手段】 一般式(1)で表わされるポリエーテルアミンカルボン酸塩、 [R1-COO-][R2-O(AO)m-XH+] (1) を含む事を特徴とする潤滑油・グリース用添加物、とする。ここで、上記カルボン酸は、炭素数R1=7~21のカルボン酸、好ましくは、炭素数R1=7~19、より好ましくはC17のオレイン酸である。R2は炭素数8~50の炭化水素基、Aは、炭素数2~6のアルキル基、Oは酸素、mは、10~50の整数、Xは、アミノ基あるいは置換アミノ基である。
Description
本発明は、潤滑用添加剤及び潤滑油組成物に関する。特に、内燃機関用潤滑油、駆動系潤滑油あるいは作動油・グリースとして用いられ、摩擦低減性能と清浄性能を合わせ持ち、硫黄、リン等の元素と金属類を含まない無灰性潤滑油剤用添加剤及び潤滑油組成物に関する。また、機械の潤滑部分に潤滑油剤が用いられる際において、摩擦低減性能(省エネ・潤滑性向上・作動音低減効果)と、機械システム全体のデポジット・スラッジの生成抑制性能及び清浄性能(金属表面に付着・生成するバーニッシュ等の抑制・除去性能)を有する潤滑油剤用添加剤と、それを含む潤滑油剤、及び、潤滑油組成物に関する。
近年、全ての機械部品に使用される潤滑油剤等において、摩擦低減性能は省エネ・騒音低下・スムーズな動き・潤滑性能向上等に重要である。摩擦低減性能の向上は、今後もより重要な課題であり、この課題に関連する多くの新規化学物質・化合物・処方が作り出されている。
例えばエンジンオイルでは、モリブデンジチオカーバメイト等の有機モリブデンが世界的に使われている(例えば、特許文献1参照)。
しかしながら、有機モリブデンは、非常に有効である一方、持続性が問題とされている。また、有機モリブデンは、硫黄・リン等を含む為、基本熱安定が悪くスラッジ生成の要因となる。また、分解・燃焼するとリン・硫黄等を含む為、排気ガス浄化装置等の性能を劣化させる欠点がある。また、金属他を含む為、排気量を下げ、過給機等を使い、高出力化した通称ダウンサイジング化された最新エンジンの排ガス循環装置部品では、デポジットが固化してしまう等の問題が生じる。
さらに、各種潤滑油剤に対する様々な要求を満たそうとすると、潤滑油剤本来の清浄性能を悪化させてしまう。そこでより清浄性能を上げる為に、様々な清浄剤と処方で、清浄性能を維持させる技術が紹介されている(例えば、特許文献2参照)。
この様に、有機モリブデン等は、リン・硫黄、そして重金属を含む為、環境面においてデメリットも多い。事実、エンジンオイルの一般的規格であるAPI規格のリン含有上限値は以下の通りであり、今後使用できる量は、より限られていくものと思われる。
SG:規制無し
SH/GF-1:0.12%
SJ/GF-2、
SL/GF-3:0.10%
SM/GF-4、
SN/GF-5:0.08-0.06%(0.06%は下限値)
SG:規制無し
SH/GF-1:0.12%
SJ/GF-2、
SL/GF-3:0.10%
SM/GF-4、
SN/GF-5:0.08-0.06%(0.06%は下限値)
また、例えば、一部の純正油や工場充填油では、有機モリブデンの使用を控え、他の摩擦低減剤への切り替えが知られている。即ち、摩擦調整剤として、エステル・脂肪酸・アミン・アミド・有機酸と脂肪族アミン等の塩等へシフトする方向性が現れ始めている。
省エネ効果と同様に、機械の潤滑に重要なものとして、各機構がよりスムーズに動くという基本的性能がある。しかし、金属表面にバーニッシュ・デポジット等が生成されると、動きがスムーズでなくなり、自励振動が生じることで、ビビリ音や振動が発生してしまう。例えば、等速ジョイントCVJ等では、この自励振動の防止や耐摩耗性能を向上する為に、多くの処方が紹介されている(例えば、特許文献3参照)。この様なグリースに使用されるモリブデン化合物の多くは、PRTR(Pollutant Release and Transfer Register)の規制物質である。このため、環境保護の観点からもモリブデン化合物の使用量低減が望まれており、その使用自体も問題視されている。
さらに、作動油・シリンダー油等においても、単にポンプの摩耗を抑えるだけに留まらず、摩擦低減による省エネ効果を高めることや、シリンダーの動きをよりスムーズにさせる事は重要で、様々な技術が紹介されている(例えば、特許文献4参照)。
様々な機械部品において、様々な潤滑油剤が使用されており、摩擦をより低く抑える効果が近年強く求められている。この対策として現在主には、有機モリブデン(モリブデンジチオカーバメイト、モリブデンジチオフォスフェート等)を使用することが好まれている。
しかし、上述のように、有機モリブデンは摩擦低減効果効果は大きいが、環境問題(PRTR)があり、またシステム全体で見るとマイナス面が大きい場合が目立ち始めている。このため、より環境に優しく、かつ金属を含まないものであって、さらに、リンや硫黄を含まない有機化合物による添加剤技術が求められている。
<エンジンオイルについて>
エンジンの分野では、近年ガソリンエンジン、ディーゼルエンジンともに、ダウンサイジング化の傾向が存在している。ガソリンエンジン、ディーゼルエンジンのいずれにおいても、従来以上に効率の良い過給機と、排ガス循環装置が求められている。これらの装置は、多量の排ガスを吸気側に送りこんで、燃焼温度を下げてNOxを減少させる工夫や、高圧縮化をした場合でもノッキング等が起こらないようにして、エンジン本来の効率をアップさせている工夫等がなされているため、無くてはならない機構である。
エンジンの分野では、近年ガソリンエンジン、ディーゼルエンジンともに、ダウンサイジング化の傾向が存在している。ガソリンエンジン、ディーゼルエンジンのいずれにおいても、従来以上に効率の良い過給機と、排ガス循環装置が求められている。これらの装置は、多量の排ガスを吸気側に送りこんで、燃焼温度を下げてNOxを減少させる工夫や、高圧縮化をした場合でもノッキング等が起こらないようにして、エンジン本来の効率をアップさせている工夫等がなされているため、無くてはならない機構である。
排ガス循環装置には、循環する排気ガス温度を下げる為のEGRクーラーや、その量をコントロールする為のEGRバルブ等がシステムの中に組み込まれている。しかし、エンジンオイルの一部が気化・燃焼したものが排ガスと共にEGRシステムに回ってしまう。この場合、従来のエンジンオイルでは、EGRクーラー内にデポジットを生成してしまい、冷却効果の悪化や、EGRバルブが完全に閉じない等の不正確な制御を引き起こしてしまう。特にEGRバルブが必要のない時に完全に閉じない場合には、出力低下を引き起こしてしまう。さらに状況が悪化すると、吸気側ダクト直前のEGR配管の断面積が狭くなり、各気筒に均等に排気ガスが回らなくなり、エンジンの不調を起こす等の問題が発生してしまう。この問題は、硫黄分やリン分、そして金属等を含有する添加剤であって、特に摩擦調整剤の存在が主な原因と考えられる。
従来のエンジンオイルでは、摩擦低減効果自体も、持続力が十分であるとは言い難い。このため、エンジンオイルの寿命の間に、より効果を発揮し続けられるものが求められている。最新のAPI-SN/RCでは、気化するリンの量や燃費性能まで規格化され始めている。しかし、摩擦を下げる効果を有するものの中には、触媒等には優しくとも、スラッジが発生し易いなど、上記EGRシステムにとって必ずしも好適なものではない。同時に、燃焼室内のデポジットの原因にもなっている。
<作動油について>
例えば、油圧シリンダー用の潤滑油等の一般的な作動油では、金属同士の潤滑性能ばかり重視してしまっており、油圧シリンダー内部の摩擦抵抗の存在により動き出しがスムーズでないものが多い。つまり、シリンダーが動く時には内部摩擦抵抗等で余計な圧力が必要となり、余計なエネルギーが必要となっる。この為、この内部摩擦抵抗を考慮するとより高い摩擦低減性能と潤滑性能が求められる。さらに油圧ポンプでは、その動作摩擦が大きい為、エネルギー損失が大きいだけでなく、作動油自体が発熱し、油温が上昇⇒油膜低下⇒潤滑不足という問題まで引き起こしてしまう。
例えば、油圧シリンダー用の潤滑油等の一般的な作動油では、金属同士の潤滑性能ばかり重視してしまっており、油圧シリンダー内部の摩擦抵抗の存在により動き出しがスムーズでないものが多い。つまり、シリンダーが動く時には内部摩擦抵抗等で余計な圧力が必要となり、余計なエネルギーが必要となっる。この為、この内部摩擦抵抗を考慮するとより高い摩擦低減性能と潤滑性能が求められる。さらに油圧ポンプでは、その動作摩擦が大きい為、エネルギー損失が大きいだけでなく、作動油自体が発熱し、油温が上昇⇒油膜低下⇒潤滑不足という問題まで引き起こしてしまう。
さらに、作動油の中には、潤滑不足等を起こす原因であるスラッジの発生やバーニッシュの生成を抑える為に、清浄分散剤を加えたものも多くみられる。しかし、これはあくまでバーニッシュ等の生成を抑えるだけで、清浄効果は十分とは言えない。つまり、清浄効果が低い為、一旦金属表面に生成したバーニッシュ等を十分に除去するには、分解・清掃等が必要になる。
以上のように、作動油についても、十分な摩擦低減性能、清浄性能を有し、また、スラッジ抑制効果を有するものが求められている。しかし、未だ十分な性能を発揮させることができる作動油の添加剤や作動油の処方は作り出せていない。
<ギヤ油について>
ギヤ油においても、省エネ性能が強く求められている。対策として一番多くみられるのが、ギヤが潤滑油剤を撹拌する際に生じる撹拌抵抗を抑える為に、粘度を下げるとともに潤滑性を確保することである。しかし、粘度を下げると高負荷時には油温上昇が発生して油膜低減につながり、ギヤの噛み合い音の上昇や、最悪潤滑不足につながりかねない。さらに、ウォームギヤ等では、より高い摩擦低減効果が求められる為、モリブデン化合物が使われがちである。ただし、環境面を考えると当然リン・硫黄・重金属を含まないものが必要になる。
ギヤ油においても、省エネ性能が強く求められている。対策として一番多くみられるのが、ギヤが潤滑油剤を撹拌する際に生じる撹拌抵抗を抑える為に、粘度を下げるとともに潤滑性を確保することである。しかし、粘度を下げると高負荷時には油温上昇が発生して油膜低減につながり、ギヤの噛み合い音の上昇や、最悪潤滑不足につながりかねない。さらに、ウォームギヤ等では、より高い摩擦低減効果が求められる為、モリブデン化合物が使われがちである。ただし、環境面を考えると当然リン・硫黄・重金属を含まないものが必要になる。
<グリースについて>
グリースは、多くの性能要求がある。その中でも特に車に使用される等速ジョイント(CVJ)においては、潤滑される等速ジョイント部分に極めて高い面圧が発生し、また、等速ジョイント部分は複雑なころがりすべり作用を受けるために、異常振動がしばしば発生する。この問題を解決する為に、通常モリブデン化合物、リン・硫黄含有物、オーバーベース金属スルフォネート等が使用される傾向がある。そして、摩擦特性を、よりよくする為に、油脂類を加えているものが登場してきている(例えば、特許文献4参照)。
グリースは、多くの性能要求がある。その中でも特に車に使用される等速ジョイント(CVJ)においては、潤滑される等速ジョイント部分に極めて高い面圧が発生し、また、等速ジョイント部分は複雑なころがりすべり作用を受けるために、異常振動がしばしば発生する。この問題を解決する為に、通常モリブデン化合物、リン・硫黄含有物、オーバーベース金属スルフォネート等が使用される傾向がある。そして、摩擦特性を、よりよくする為に、油脂類を加えているものが登場してきている(例えば、特許文献4参照)。
しかしながら、従来のグリースでは、十分な摩擦低減効果が得られているとは言い難く、同時に長期に渡り効果を発揮し続けるのは難しい。特に走行距離が延びると、金属表面に、スラッジ等が生成し、摩擦特性が変化してしまう等の問題がある。
以上の説明のように、従来の潤滑油剤においては、摩擦を低減する摩擦低減効果が求められる一方で、摩擦低減効果を高めるとデポジット・スラッジ・バーニッシュの発生が起こり易くなってしまうという、所謂トレードオフの関係がある。
本発明は以上の問題に鑑み、摩擦低減効果が高く、かつ、デポジット・スラッジ等の発生を抑制し、さらに、清浄効果を呈することが可能なリン・硫黄や金属類を含まない無灰型の新規な潤滑油剤が求められていることを見出した。この要求に応えられる新規な潤滑油剤を提供することが課題である。
他方、摩擦低減効果を高める添加剤として、脂肪酸、脂肪族アミン、脂肪酸と脂肪族アミンの塩、或いはアミド化したものが多くみられる。しかし、これらの特徴として、低温流動性、或いは、低温時の溶解性が不足することを見出した。さらに、高温でスラッジやデポジットを生成し易いものとなっており、より低温流動性・低温溶解性とよりデポジット等の発生が少ないものが求められていることも見出した。このように、発明者は、低温・高温様々な環境においても摩擦低減効果・清浄効果等の性能を発揮することが求められていることも見出し、本願発明では、添加量を増やしても低温・高温様々な環境でも優れた性能を発揮できる新規な潤滑油剤を提供することも課題とする。
以上の問題点を鑑み、誠意検討した結果、ポリエーテル結合を持つアミンの有機酸塩を含む新規な潤滑油剤用の添加剤、及び、潤滑油剤組成物を見いだした。
即ち、
一般式(1)で表わされるポリエーテルアミンカルボン酸塩、
[R1-COO-][R2-O(AO)m-XH+] (1)
を含む事を特徴とする潤滑油剤用の添加剤、とする。
ここで、上記カルボン酸は、炭素数R1=7~21のカルボン酸、好ましくは、炭素数R1=7~19、より好ましくはC17のオレイン酸である。
カルボン酸部R1は炭素数7~21の炭化水素残基であり、単独或いは混合物であるかは問わない。
一般式(1)で表わされるポリエーテルアミンカルボン酸塩、
[R1-COO-][R2-O(AO)m-XH+] (1)
を含む事を特徴とする潤滑油剤用の添加剤、とする。
ここで、上記カルボン酸は、炭素数R1=7~21のカルボン酸、好ましくは、炭素数R1=7~19、より好ましくはC17のオレイン酸である。
カルボン酸部R1は炭素数7~21の炭化水素残基であり、単独或いは混合物であるかは問わない。
また、塩基部を持つポリエーテルアミン部分は、R2-O(AO)m-Xで表わされる化合物であり、R2は炭素数8~50の炭化水素残基、Aは炭素数2~6のアルキレン基、Oは酸素で、mは10~50の整数範囲で、Xは、アミノ基或いは置換アミノ基を含む炭化水素である。
Aはその分子中において単一のアルキレン基であっても、2種類以上のアルキレン基を含むものであるかは問わず、Xは、(C3H6NH)nHであり、nは1から3の整数である事が望ましい。
Aはその分子中において単一のアルキレン基であっても、2種類以上のアルキレン基を含むものであるかは問わず、Xは、(C3H6NH)nHであり、nは1から3の整数である事が望ましい。
さらに、ポリエーテルとしての分子量分布がどの様な分布であるかは問わない。また、R2とXの構造が、異なる構造のポリエーテルアミンを混合した上での塩であってもかまわない。
ポリエーテルアミンの構造において、好ましくは(AO)のAは、炭素数2~4のアルキレン基であって、炭素数は好ましくは3~4、より好ましくは4である。
さらに、一般式、
R3-N(BO)aH(BO)bH (2)
(式中、R3は、炭素数6~24のアルキル基又はアルケニル基を示し、a、bは平均重合度を示し、a+bは2~10である。Bは、炭素数2~4のアルキレン基)で示されるアミンのオキシアルキレン化合物を(1)式と共に使用することで、ポリエーテルアミンカルボン酸塩が、他の添加剤からの影響を受け難くなり、貯蔵安定性が向上するだけでなく、摩擦低減・清浄性能を増す効果が得られる。
R3-N(BO)aH(BO)bH (2)
(式中、R3は、炭素数6~24のアルキル基又はアルケニル基を示し、a、bは平均重合度を示し、a+bは2~10である。Bは、炭素数2~4のアルキレン基)で示されるアミンのオキシアルキレン化合物を(1)式と共に使用することで、ポリエーテルアミンカルボン酸塩が、他の添加剤からの影響を受け難くなり、貯蔵安定性が向上するだけでなく、摩擦低減・清浄性能を増す効果が得られる。
R3で示される炭素数6~24のアルキル基又はアルケニル基としては、直鎖或いは分岐のアルキル基、たとえばヘシキル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデキル基、オクタデシル基、エイコシル基、およびドコシル基で、アルケニル基たとえばミリストレイル基、パルミトレイル基、オレイル基およびリノレイル基が挙げられる。これらのうち好ましいものは、炭素数8~20の脂肪族炭化水素基で、特に好ましいものは、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基およびオレイル基である。なお、R3の炭素数が5以下および25以上では、摩擦低減・清浄性能を増す効果が得られない。
Bで示される炭化水素2~4のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、およびこれらの2種以上の併用たとえばエチレン基とブチレン基との併用が挙げられる。このうち最も好ましいのはエチレン基である。
また、aおよびbは、各々1以上の整数で、a+b=2~10、好ましくは2~4であり、最も好ましいのは、それぞれ各1である。a+bが2未満の場合や、10を超えると、摩擦低減・清浄性能を増す効果が得られない。
なお、(2)式の添加剤は、単品である必要は無く、上記を満たすものの混合物であるかは問わない。
一般式(2)で示されるポリオキシアルキレンアルキルアミンの具体例として、N,N-ヒドロキシエチルラウリルアミン、N,N-ジ(ヒドロキシエトキシエチル)ラウリルアミン、N,N-ジヒドロキシエチルミリスチルアミン、N,N-ジヒドオキシエチルステアリルアミンおよびN,N-ジヒドロキシエチルオレイルアミンが挙げられる。
なお、(2)式の添加剤は、単品である必要は無く、上記を満たすものの混合物であるかは問わない。
一般式(2)で示されるポリオキシアルキレンアルキルアミンの具体例として、N,N-ヒドロキシエチルラウリルアミン、N,N-ジ(ヒドロキシエトキシエチル)ラウリルアミン、N,N-ジヒドロキシエチルミリスチルアミン、N,N-ジヒドオキシエチルステアリルアミンおよびN,N-ジヒドロキシエチルオレイルアミンが挙げられる。
本発明の添加剤において、ポリエーテルアミンカルボン酸塩(1)式は、目的に合わせ単品で使用しても、ポリオキアルキレンアルキルアミン(2)式と組み合わせてもよい。それぞれの潤滑油剤に合わせ、両者の割合や、種類は任意に選ぶ事が出来る。
ポリオキシアルキレンアルキルアミンの添加量は、ポリエーテルアミンカルボン酸塩対し、0.5~99.9w/w%、より好ましくは1~75w/w%、更に好ましくは5~50w/w%である。
さらに使う潤滑油剤・目的に合わせ、オイル他で希釈してもよい。希釈するオイルとしては、鉱物油でもPAOやエステル等の合成油であっても、それらの混合物であってもよい。
本発明における添加剤の使用範囲は、全ての潤滑油剤であり、その添加量は、0.01~50w/w%である。より好ましくは0.05~10.0w/w%であり、さらに好ましくは、0.5~10.0w/w%である。
本添加剤は、各種潤滑油剤に使用される、添加剤:清浄剤、分散剤・耐摩耗剤・酸化防止剤・油性剤、摩擦調整剤、防錆剤粘、度指数向上剤、増ちょう剤等それらの種類も組み合わせも制約するものではない。
<脂肪酸単独のものとの比較>
上記ポリエーテルアミンカルボン酸塩は、例えば、塩になっていない脂肪酸単独のものと比較し、どのような潤滑油剤の処方においても、より摩擦が下がるという効果が得られる。さらに、カルボン酸単独のものの多くは、低温(5℃前後)で固化してしまうが、ポリエーテルアミンカルボン酸塩は、-20℃であっても、固化せず流動性が保たれる。この為、低温の潤滑油剤中おいても高い摩擦低減効果が得られる。なお、摩擦低減効果は、上記脂肪酸塩(ポリエーテルアミンカルボン酸塩)の内、オレイン酸塩が最も大きい効果を呈する。
上記ポリエーテルアミンカルボン酸塩は、例えば、塩になっていない脂肪酸単独のものと比較し、どのような潤滑油剤の処方においても、より摩擦が下がるという効果が得られる。さらに、カルボン酸単独のものの多くは、低温(5℃前後)で固化してしまうが、ポリエーテルアミンカルボン酸塩は、-20℃であっても、固化せず流動性が保たれる。この為、低温の潤滑油剤中おいても高い摩擦低減効果が得られる。なお、摩擦低減効果は、上記脂肪酸塩(ポリエーテルアミンカルボン酸塩)の内、オレイン酸塩が最も大きい効果を呈する。
<ポリエーテルアミン単独のものとの比較>
また、ポリエーテルアミン単独のものと比較すると、ポリエーテルアミンカルボン酸塩、特にポリエーテルアミン脂肪酸塩は、塩でありながらポリエーテルアミン単独のものと同等の清浄性能を維持できるだけでなく、金属表面に付着することで摩擦を低減できる。ここで、従来の摩擦調整剤が次第に劣化するとスラッジやデポジット・バーニッシュ等を生成してしまうが、ポリエーテルアミンカルボン酸塩は、摩擦が低減しても、これらの付着が少ない。即ち、ポリエーテルアミンカルボン酸塩は、従来の摩擦低減剤では考えられなかった摩擦低減性能と清浄性能を発揮する特性を持つ。
また、ポリエーテルアミン単独のものと比較すると、ポリエーテルアミンカルボン酸塩、特にポリエーテルアミン脂肪酸塩は、塩でありながらポリエーテルアミン単独のものと同等の清浄性能を維持できるだけでなく、金属表面に付着することで摩擦を低減できる。ここで、従来の摩擦調整剤が次第に劣化するとスラッジやデポジット・バーニッシュ等を生成してしまうが、ポリエーテルアミンカルボン酸塩は、摩擦が低減しても、これらの付着が少ない。即ち、ポリエーテルアミンカルボン酸塩は、従来の摩擦低減剤では考えられなかった摩擦低減性能と清浄性能を発揮する特性を持つ。
また、この摩擦低減効果は、他の摩擦調整剤、アミン、エステル、アミド・二硫化モリブデン(有機モリブデン等含む)・脂肪酸や脂肪酸の脂肪族アミン塩等と組み合わせても大きく影響する事が無く、安定的に摩擦を下げる効果を生み出す特性を持つ。
<内燃機関用エンジンオイルへの適用>
例えば、エンジンオイルに、本願発明に係るポリエーテルアミンカルボン酸塩を0.1w/w%以上添加することで、燃費が向上し始める。この効果は長期間維持できる。そればかりか、エンジンオイルをポリエーテルアミンカルボン酸塩を含まないものに交換しても、その効果の一部が持続する。つまり、従来の摩擦低減剤では、従来の摩擦低減剤を含まないオイルを交換すると摩擦低減効果が認められない。このように従来と比較すると、本願発明は異質の効果を呈するものであり、その効果は、従来とは次元の異なるレベルに達している。
例えば、エンジンオイルに、本願発明に係るポリエーテルアミンカルボン酸塩を0.1w/w%以上添加することで、燃費が向上し始める。この効果は長期間維持できる。そればかりか、エンジンオイルをポリエーテルアミンカルボン酸塩を含まないものに交換しても、その効果の一部が持続する。つまり、従来の摩擦低減剤では、従来の摩擦低減剤を含まないオイルを交換すると摩擦低減効果が認められない。このように従来と比較すると、本願発明は異質の効果を呈するものであり、その効果は、従来とは次元の異なるレベルに達している。
また、エンジン内部において、エンジンオイルに浸かっている部分だけでなく、燃焼室やピストンリング上の円周部分のデポジットが大幅に減少される。従来は、エンジンオイルが微細な霧となり、或いは気化してエンジントラブルの原因となっていたデポジットの問題があった。例えば、燃焼室デポジット・吸気バルブデポジット(エンジン内圧上昇でシール類が破損する事を防ぐ為、クランクケースから吸気ダクトに繋いだ配管からエンジンオイルが微細化・気化したものが回って生じる)の問題や、EGR配管の詰りの問題や、EGRバルブが完全に閉じない問題等の各種問題が発生していた。ポリエーテルアミンカルボン酸塩をエンジンオイル処方に0.5w/w%以上、より好ましくは0.5~20w/w%添加することで、このデポジットの発生や、デポジットの固化を防ぐ効果が生まれる。
つまるところ、エンジンオイルに、0.5w/w%以上のポリエーテルアミンカルボン酸塩を添加する事により、エンジン内部だけでなく燃焼室でのデポジットが抑制される。更にEGRシステムでは、従来のポリエーテルアミンカルボン酸塩を含まないエンジンオイルであると、EGRバルブ周辺にカーボン状のデポジットが付着し固化する等の問題が発生していた。しかし、本願発明によれば、例えデポジットが付着しても、固化する事が無くバルブの制御に影響を与える事が無い。このように、エンジンシステム全体でエンジンオイルに起因するデポジットによる不具合の発生を防止抑制する効果が生まれる。
<グリースへの適用>
グリースの処方にポリエーテルアミンカルボン酸塩を0.5w/w%、以上、好ましくは、1~30w/w%加えると摩擦が大幅に下がる。特に従来から自励振動等が問題となっていたCVJ等では、この発生を抑える事が出来る。本願発明では、摩擦低減だけに留まらず、金属表面に発生する金属表面の変色物質(バーニッシュ他)の発生を抑えることができ、同時に除去する効果も得られる。
グリースの処方にポリエーテルアミンカルボン酸塩を0.5w/w%、以上、好ましくは、1~30w/w%加えると摩擦が大幅に下がる。特に従来から自励振動等が問題となっていたCVJ等では、この発生を抑える事が出来る。本願発明では、摩擦低減だけに留まらず、金属表面に発生する金属表面の変色物質(バーニッシュ他)の発生を抑えることができ、同時に除去する効果も得られる。
<作動油への適用>
作動油において、ポリエーテルアミンカルボン酸塩を0.05w/w%以上、好ましくは0.05~10%w/w添加することで、作動油で潤滑する部分の摩擦を大幅に下がる。これにより、スクリューコンプレッサー等の効率アップ等が期待できる。油圧シリンダー等では、シリンダーの動きがよりスムーズになり、動きだし等のショックが軽減される等の効果が生まれる。また、金属表面のスラッジ・バーニッシュ等の生成が抑えられ、さらに除去効果も発揮される。
作動油において、ポリエーテルアミンカルボン酸塩を0.05w/w%以上、好ましくは0.05~10%w/w添加することで、作動油で潤滑する部分の摩擦を大幅に下がる。これにより、スクリューコンプレッサー等の効率アップ等が期待できる。油圧シリンダー等では、シリンダーの動きがよりスムーズになり、動きだし等のショックが軽減される等の効果が生まれる。また、金属表面のスラッジ・バーニッシュ等の生成が抑えられ、さらに除去効果も発揮される。
<ポリオキシアルキレンアルキルアミンとの併用>
強塩基性添加剤が存在する潤滑剤や塩基性金属(オーバーベーススルフォネート・フィネート)を使った処方の潤滑剤に関し、例えば、全てのエンジンオイルやグリース・ギヤ油等に、ポリエーテルアミンカルボン酸塩を加えると、金属塩等が生成されてしまう場合がある。すると、濁ったり、摩擦低減効果と清浄性能を悪化するケースがある。この様な場合に、上記ポリエーテルアミンカルボン酸塩に、ポリエーテル構造を分子中に持つアミン、例えば、ポリオキシアルキルアミン等を加えることで、より清浄性能と摩擦低減効果が発揮される事を見いだした。
強塩基性添加剤が存在する潤滑剤や塩基性金属(オーバーベーススルフォネート・フィネート)を使った処方の潤滑剤に関し、例えば、全てのエンジンオイルやグリース・ギヤ油等に、ポリエーテルアミンカルボン酸塩を加えると、金属塩等が生成されてしまう場合がある。すると、濁ったり、摩擦低減効果と清浄性能を悪化するケースがある。この様な場合に、上記ポリエーテルアミンカルボン酸塩に、ポリエーテル構造を分子中に持つアミン、例えば、ポリオキシアルキルアミン等を加えることで、より清浄性能と摩擦低減効果が発揮される事を見いだした。
即ち、ポリエーテルアミンカルボン酸塩が、
一般式(2)で表わされるポリオキシアルキレンアルキルアミン
R3-N(BO)aH(BO)bH (2)
を含む事を特徴とする。
上記ポリオキシアルキレンアルキルアミンの内でも、特にポリオキシエチレンラウリルアミンがより清浄効果が高い。
一般式(2)で表わされるポリオキシアルキレンアルキルアミン
R3-N(BO)aH(BO)bH (2)
を含む事を特徴とする。
上記ポリオキシアルキレンアルキルアミンの内でも、特にポリオキシエチレンラウリルアミンがより清浄効果が高い。
上記ポリエーテルアミンカルボン酸塩とポリオキシアルキレンアルキルアミンを含むものは、特にオーバーベース金属スルフォネート/フィネート類含有の潤滑油剤について適用した場合に、従来の清浄性能をはるかに上回る清浄性能と分散性能を発揮する。同時に摩擦低減効果については、ポリエーテルアミンカルボン酸塩を単独で添加したものと比較してより持続する効果を発揮する。
ポリオキシアルキレンアルキルアミンの添加量は、ポリエーテルアミンカルボン酸塩対し、0.5~99.9w/w%、より好ましくは1~75w/w%、更に好ましくは5~50w/w%である。
<ポリオキシアルキレンアルキルアミンを単独で添加した場合の不具合>
ポリオキシアルキレンアルキルアミン(例えば、ポリオキシエチレンアルキルアミン)のみを単独で添加した場合にもかなりの清浄性能及びスラッジ溶解性分散性能が得られる。例えば、市販のエンジンオイルにポリオキシエチレンアルキルアミン(ポリオキシアルキレンアルキルアミン)を単体で添加するとエンジンオイルのカムカバー等に生じるカーボン状スラッジを分解・溶解させるのが顕著に認められる。しかし、従来のエンジンオイルに添加した場合、エンジンオイルがゲル化し、オイルが循環出来なくなり、最悪エンジンが焼き付いてしまうことが確認された。これに対し、ポリエーテルアミンカルボン酸塩と共に使用すると、このゲル化を防ぐ事ができ、清浄性能も大幅に向上させる事が出来ることを見出した。
ポリオキシアルキレンアルキルアミン(例えば、ポリオキシエチレンアルキルアミン)のみを単独で添加した場合にもかなりの清浄性能及びスラッジ溶解性分散性能が得られる。例えば、市販のエンジンオイルにポリオキシエチレンアルキルアミン(ポリオキシアルキレンアルキルアミン)を単体で添加するとエンジンオイルのカムカバー等に生じるカーボン状スラッジを分解・溶解させるのが顕著に認められる。しかし、従来のエンジンオイルに添加した場合、エンジンオイルがゲル化し、オイルが循環出来なくなり、最悪エンジンが焼き付いてしまうことが確認された。これに対し、ポリエーテルアミンカルボン酸塩と共に使用すると、このゲル化を防ぐ事ができ、清浄性能も大幅に向上させる事が出来ることを見出した。
上記の性能を見いだした上で、オーバーベース金属スルフォネート/フィネート類を含まない作動油・ギヤ油等に用いて確認したところ、ポリエーテルアミンカルボン酸塩にポリオキシアルキレンアルキルアミンを加えた処方は、ポリエーテルアミンカルボン酸塩単独以上に高い清浄性分散性・摩擦低減効果が確認された。
以上から明らかなように、ポリエーテルアミンカルボン酸塩とポリオキシアルキレンアルキルアミン(例えば、ポリオキシエチレンアルキルアミン)の組み合わせによれば、塩基性金属オーバーベーススルフォネートの有無に係わらず、より高い清浄・分散性を与えることを見出した。
なお、上記の添加剤或いは潤滑油剤組成物に、更に清浄剤(種類・分子構造を問わない)を加えたり、異なる摩擦調整剤としてアミン、アミド、エステル、脂肪酸、更に、防錆剤、分散剤、可溶化剤等、潤滑油剤に使用できる他の添加剤との組み合わせを制約するのではない。
以下では、本発明の好適な実施形態について、実施例を用いて説明をする。
なお、以下の全ての実施例は、主に効果の高いポリエーテルアミンカルボン酸塩とポリオキシエチレンアルキルアミンの組み合わせで行った。
各々の組み合わせの分子構造を変えても、同様の性能を示すこと、特にポリエーテルアミンカルボン酸塩は、塩を造る際、日本分光のFT-IRを用い、反応により吸光の変化を確認した。
全ての塩を作成する際には、ポリエーテルアミンにカルボン酸を加え撹拌すると、徐々に塩が生成されるに従って、カルボン酸特有のC=Oの結合による1720~1700cm-1の吸光が顕著に消滅・シフトする行く事を確認し、さらに、しっかりとポリエーテルアミンカルボン酸塩の生成を確認した上で、評価を行った。
表1において固体とは、粉体結晶を含む。半固体とは流動性が残っているものである。
CXXは、カルボン酸基のカーボンを除いたカーボン数である。
PEAは、R2=13、A=4、m=20、Xはn=1を使用。なお、R2=8、A=2、Xは、n=2等に変えても同じ結果が得られた。なお、PEAヘベン酸塩も、-10℃の時は液体である。
また、PEAにつき、R2=13(炭素数13)のものは、オキソ法で合成した分岐したトリデカノール=(CH3CH(CH3)((CH2CH(CH3))2CH(CH3)(CH2)2OH)由来のものである。
なお、PEAとしては、以下の構造式を有するものとなる。
また、PEAにつき、R2=8(炭素数8)のものは、オクタノール=n-オクタノール(CH3(CH2)7OH)と2-エチルヘキサノール(CH3(CH2)3CH(C2H5)CH2OH)を含むPEAを使用した。
CXXは、カルボン酸基のカーボンを除いたカーボン数である。
PEAは、R2=13、A=4、m=20、Xはn=1を使用。なお、R2=8、A=2、Xは、n=2等に変えても同じ結果が得られた。なお、PEAヘベン酸塩も、-10℃の時は液体である。
また、PEAにつき、R2=13(炭素数13)のものは、オキソ法で合成した分岐したトリデカノール=(CH3CH(CH3)((CH2CH(CH3))2CH(CH3)(CH2)2OH)由来のものである。
なお、PEAとしては、以下の構造式を有するものとなる。
また、PEAにつき、R2=8(炭素数8)のものは、オクタノール=n-オクタノール(CH3(CH2)7OH)と2-エチルヘキサノール(CH3(CH2)3CH(C2H5)CH2OH)を含むPEAを使用した。
上記表1からも明らかなように、カルボン酸単独では、常温や低温で固体であるが、ポリエーテルアミンカルボン酸塩(試料8~13)は、低温においても液体、或いは、半固体の状態で存在することができることが確認され、低温特性が高いことが確認された。これにより、低温でもオイル中で析出したり、沈殿する事が無く、高濃度で使用することが可能となる。
<摩擦低減効果の評価>
作動油:
摩擦低減効果を、他の添加剤からの影響を受けないように、まず、作動油としてベースオイルVG32の粘度のものにジンクジチオフォスフェート(ZnDTP)だけを加えた単純なものを調合する。これにカルボン酸各2.0w/w%、各カルボン酸の中和価と同じアミン価のポリエーテルアミン各単体と各々のポリエーテルアミンカルボン酸塩を加え、油圧シリンダーの動き出す時の力を比較した。
ベースとなるZnDTPを含む場合のフリクションを100とし、この100を基準として必要とされる力を数値で表す。
<表2>作動油への適用における摩擦特性評価
作動油:
摩擦低減効果を、他の添加剤からの影響を受けないように、まず、作動油としてベースオイルVG32の粘度のものにジンクジチオフォスフェート(ZnDTP)だけを加えた単純なものを調合する。これにカルボン酸各2.0w/w%、各カルボン酸の中和価と同じアミン価のポリエーテルアミン各単体と各々のポリエーテルアミンカルボン酸塩を加え、油圧シリンダーの動き出す時の力を比較した。
ベースとなるZnDTPを含む場合のフリクションを100とし、この100を基準として必要とされる力を数値で表す。
<表2>作動油への適用における摩擦特性評価
表2において、CXXは、カルボン酸基のカーボンを除いたカーボン数である。
表2の試料10のように、一般的な摩擦調整剤であるグリセロールモノオレエート(GMO)単独2.0w/w%をポリエーテルアミン単体と組み合わせたものも評価した。PEAとの組み合わせによる相乗効果は見られない一方で、試料4、6、8ではカルボン酸単独以上にポリエーテルカルボン酸塩は摩擦低減効果を有することが確認できた。このことから、ポリエーテルアミンカルボン酸塩自体に摩擦低減効果がある事が判る。
同時に、従来最も摩擦を下げると言われるGMO以上に、試料6に示すようにPEAオレイン酸塩(オレイン酸80%以上含有脂肪酸)を添加したものは、摩擦を下げる効果が確認された。なお、PEAは、R2=13、A=4、m=20、Xはn=1を、ZnDTPは、ルーブリゾール社製LZ1375、ベースオイルは、鉱物油VG32の粘度のものを使用した。
さらに、ポリエーテルアミンオレイン酸塩に対し、試料11に示すように、5.0w/w%のポリオキシエチレンラウリルアミンを加えると相乗効果でさらに摩擦低減効果が得られた。
表2の試料10のように、一般的な摩擦調整剤であるグリセロールモノオレエート(GMO)単独2.0w/w%をポリエーテルアミン単体と組み合わせたものも評価した。PEAとの組み合わせによる相乗効果は見られない一方で、試料4、6、8ではカルボン酸単独以上にポリエーテルカルボン酸塩は摩擦低減効果を有することが確認できた。このことから、ポリエーテルアミンカルボン酸塩自体に摩擦低減効果がある事が判る。
同時に、従来最も摩擦を下げると言われるGMO以上に、試料6に示すようにPEAオレイン酸塩(オレイン酸80%以上含有脂肪酸)を添加したものは、摩擦を下げる効果が確認された。なお、PEAは、R2=13、A=4、m=20、Xはn=1を、ZnDTPは、ルーブリゾール社製LZ1375、ベースオイルは、鉱物油VG32の粘度のものを使用した。
さらに、ポリエーテルアミンオレイン酸塩に対し、試料11に示すように、5.0w/w%のポリオキシエチレンラウリルアミンを加えると相乗効果でさらに摩擦低減効果が得られた。
<エンジンオイルへの適用における省燃費効果>
エンジンオイルにおいても他の添加剤の影響が出ないよう、ベースオイル(エステル100%:カオ―ルーブ262に粘度指数向上剤+ZnDTP:LZ1375だけを加えたもの)に、PEA、オレイン酸80%含有脂肪酸、同PEA塩、それぞれを加え燃費測定を行った。添加量は、脂肪酸単体1.0w/w%、その中和価と同じアミン価のPEA、及び2者で完全塩を造ったものである。
PEAは、R2=13、A=4、m=20、Xはn=1のものを使用した。
テスト車両は、ホンダPCX150・125の2車両、同じルートを往復250kmし、4回の平均値を求めた。
エンジンオイルの油温に変化が無いよう外気温20~25℃で測定した。
エンジンオイルにおいても他の添加剤の影響が出ないよう、ベースオイル(エステル100%:カオ―ルーブ262に粘度指数向上剤+ZnDTP:LZ1375だけを加えたもの)に、PEA、オレイン酸80%含有脂肪酸、同PEA塩、それぞれを加え燃費測定を行った。添加量は、脂肪酸単体1.0w/w%、その中和価と同じアミン価のPEA、及び2者で完全塩を造ったものである。
PEAは、R2=13、A=4、m=20、Xはn=1のものを使用した。
テスト車両は、ホンダPCX150・125の2車両、同じルートを往復250kmし、4回の平均値を求めた。
エンジンオイルの油温に変化が無いよう外気温20~25℃で測定した。
表3から明らかなように、試料4のPEA塩を添加したエンジンオイルを用いた場合に、最も高い燃費向上率が得られることが確認された。また、試料4は、試料3のようにオレイン酸を添加したものよりも高い燃費向上率が得られることが確認された。
<ギヤ油への適用における摩擦低減効果>
<表4>L型スパイラルギヤの駆動トルク低減
ギヤ油においては、その摩擦特性を一般のギヤから測ることが困難であり、同時に撹拌抵抗等の影響を無くす為、ギヤの滑り(摩擦抵抗)がより判り易いように、L型スパイラルギヤを用いて、最大耐荷重=許容トルクの90%の荷重を与えた状態で駆動するトルクにて測定を行った。
<表4>L型スパイラルギヤの駆動トルク低減
ギヤ油においては、その摩擦特性を一般のギヤから測ることが困難であり、同時に撹拌抵抗等の影響を無くす為、ギヤの滑り(摩擦抵抗)がより判り易いように、L型スパイラルギヤを用いて、最大耐荷重=許容トルクの90%の荷重を与えた状態で駆動するトルクにて測定を行った。
<テストギヤデータ>
精度等級:JIS N9級 (JIS B 1702-1:1998)
歯車基準断面:歯直角
歯形:並歯
歯直角圧力角:20°
ねじれ角:45°
モジュールm:4
許容トルクN・m:25.1
スパイラルギヤ自体は、歯面で滑りを生じる為、より摩擦特性が鮮明に出る。
精度等級:JIS N9級 (JIS B 1702-1:1998)
歯車基準断面:歯直角
歯形:並歯
歯直角圧力角:20°
ねじれ角:45°
モジュールm:4
許容トルクN・m:25.1
スパイラルギヤ自体は、歯面で滑りを生じる為、より摩擦特性が鮮明に出る。
ギヤ油は、GL-4:80番を使用し、PEAは、R2=13、A=3、m=20、Xはn=1を使用した。脂肪酸には、オレイン酸80%含有のものにステアリン酸を98%含有のもを1対1で混ぜたものを1.0w/w%、その中和価と同じアミン価のPEA、及び両者の完全塩を加えたものを使用した。PEAオレイン酸塩としての添加量は、約8.5w/w%である。
この表4から明らかなように、試料4のPEAオレイン酸塩を添加したものが、最も高い摩擦低減効果が得られることが確認された。
グリスは、モリブデン入り#2の市販品を使用した。脂肪酸は、C14~C20:10%、C14F1~C18F2:90%の粗オレイン酸3%、粗オレイン酸の中和価と等価のアミン価となるPEA、及び両者の塩を添加し評価した。なお、PEAは、R2=13、A=4、m=20、Xはn=1のものを使用した。
添加のないグリス単体の場合の摩擦の値を100%とし、それとの比較で数値化して表現する。PEAオレイン酸塩としての添加量は、5.0w/w%である。
添加のないグリス単体の場合の摩擦の値を100%とし、それとの比較で数値化して表現する。PEAオレイン酸塩としての添加量は、5.0w/w%である。
この表5から明らかなように、試料4のPEAオレイン酸塩を添加したものが、最も高い摩擦低減効果が得られることが確認された。
凡例:×=ビビリが顕著 △=ビビリが確認できる ○=ビビリがほとんど確認できない ◎=ビビリがまったく確認できない
※グリースA:純正CVジョイントグリース
※グリースB:一般二硫化モリブデン入りグリース
※脂肪酸:オレイン酸80%含有
※PEA:PEAは、R2=13、A=4、m=20、Xはn=1のものを使用。
※PEA脂肪酸塩は、他と同様に完全塩となる割合のもの。
※テストは、ダイハツミラターボを用い、後輪軸をロックさせ、前輪がロックするまでハンドルを切った状態で、一気に駆動力を与え、等速ジョイント(CVJ)に生じる振動を確認した。評価には、正常な等速ジョイント(CVJ)と、摩耗したジョイント(CVJ)の両方を用いて行った。
※PEAオレイン酸塩の添加量は、4.2w/w%である。
※グリースA:純正CVジョイントグリース
※グリースB:一般二硫化モリブデン入りグリース
※脂肪酸:オレイン酸80%含有
※PEA:PEAは、R2=13、A=4、m=20、Xはn=1のものを使用。
※PEA脂肪酸塩は、他と同様に完全塩となる割合のもの。
※テストは、ダイハツミラターボを用い、後輪軸をロックさせ、前輪がロックするまでハンドルを切った状態で、一気に駆動力を与え、等速ジョイント(CVJ)に生じる振動を確認した。評価には、正常な等速ジョイント(CVJ)と、摩耗したジョイント(CVJ)の両方を用いて行った。
※PEAオレイン酸塩の添加量は、4.2w/w%である。
この表6から明らかなように、試料4のPEAオレイン酸塩を添加したものが、ビビリ発生に対して最良の結果が確認された。また、等速ジョイント(CVJ)については、正常のものだけでなく、摩耗したものについても摩擦低減が図られることが確認された為、メンテナンス時に試料4を用いるといった運用に適するともいえる。
※作動油A:(VG32) 分散剤を含まない一般作動油
※作動油B:(VG32) 分散剤を含むもの。分散剤は、コハク酸イミド系
※脂肪酸は、オレイン酸80%を含む脂肪酸
※PEAは、R2=13、A=4、m=20、Xはn=1
※添加量は、脂肪酸が0.5w/w%で、PEAは脂肪酸の中和価と同じアミン価、PEA脂肪酸塩は、この両者の量で塩を造った。
※PEAオレイン酸塩としての添加量は、4.2w/w%である。
※作動油B:(VG32) 分散剤を含むもの。分散剤は、コハク酸イミド系
※脂肪酸は、オレイン酸80%を含む脂肪酸
※PEAは、R2=13、A=4、m=20、Xはn=1
※添加量は、脂肪酸が0.5w/w%で、PEAは脂肪酸の中和価と同じアミン価、PEA脂肪酸塩は、この両者の量で塩を造った。
※PEAオレイン酸塩としての添加量は、4.2w/w%である。
スラッジ発生試験は、図2のようなリリーフ弁を油圧210kg/cm2に設定、油圧ポンプでリリーフ弁が作動するようにして、作動油5Lを循環させ、油温を70℃にあげて1週間運転し、リリーフ弁中のリリーフ弁を取り出し、金属顕微鏡で表面を観察して評価した。
スラッジ除去は、油温を50℃に抑えた作動油20Lで、同じ条件でスラッジを発生させたものを使い、同様に評価したものである。
スラッジ除去は、油温を50℃に抑えた作動油20Lで、同じ条件でスラッジを発生させたものを使い、同様に評価したものである。
この表7から明らかなように、PEAオレイン酸塩を用いた試料4、8において、スラッジの発生が抑制され、また、スラッジ除去も可能であることが確認された。
EGR配管の評価:×=乾燥したデポジット発生 ○=やや柔らかいデポジット、◎=簡単に拭き取れる柔らかい汚れでデポジット化していない。
CCDの評価:XX=ピストン上部全面にやや厚めのデポジット発生、X=ピストン上部全面にデポジット発生、△=ピストン中心部にデポジット発生、円周付近には、僅かに発生、○=中心部周辺に僅かなデポジット、◎=デポジット発生無し
スラッジの評価=ピストン裏側のバーニッシュ量:×=茶色のバーニッシュ、△=黄色のバーニッシュ、○=僅かな色が見られる、◎=金属色でバーニッシュ無し。
CCDの評価:XX=ピストン上部全面にやや厚めのデポジット発生、X=ピストン上部全面にデポジット発生、△=ピストン中心部にデポジット発生、円周付近には、僅かに発生、○=中心部周辺に僅かなデポジット、◎=デポジット発生無し
スラッジの評価=ピストン裏側のバーニッシュ量:×=茶色のバーニッシュ、△=黄色のバーニッシュ、○=僅かな色が見られる、◎=金属色でバーニッシュ無し。
EGR配管の汚れは、プジョーDW10コモンレールディーゼルエンジン:エンジンオイル=トタールQUARTS INEO ECS 5W-30、マツダデミオ1.3L直噴:エンジンオイル=マツダ純正GOLDEN ECO 0W-20 SN、を用いた実車による走行テストの総合評価である。
ピストンリング上部円周部のデポジット:CCD,スラッジ評価は、スバル発電機:エンジンオイル=スバル純正5W-30 SJを使用し、100時間テスト後エンジンを分解し評価した。
脂肪酸は、オレイン酸80%を含む市販脂肪酸である。
PEAは、R2=13、A=4、m=20、Xはn=1である。
ピストンリング上部円周部のデポジット:CCD,スラッジ評価は、スバル発電機:エンジンオイル=スバル純正5W-30 SJを使用し、100時間テスト後エンジンを分解し評価した。
脂肪酸は、オレイン酸80%を含む市販脂肪酸である。
PEAは、R2=13、A=4、m=20、Xはn=1である。
添加量は、脂肪酸が0.5w/w%で、PEAは脂肪酸の中和価と同じアミン価、PEA脂肪酸塩は、この両者の量で塩を造ったものである。
なお、PEAオレイン酸塩としての添加量は、上記の条件の場合、約4.2w/w%となる。
なお、PEAオレイン酸塩としての添加量は、上記の条件の場合、約4.2w/w%となる。
POEAAは、ポリオキシエチレンアルキルアミンで、a+b=2、R3=C8:8%、C10:7%、C12:48%、C14:18%、C18:9%の混合物である。添加量は、PEAオレイン酸塩に対し20.0w/w%である。
なお、オイル+POEAA単独は、エンジンオイルがゲル化してしまい評価できない。
なお、オイル+POEAA単独は、エンジンオイルがゲル化してしまい評価できない。
以上の表8から明らかなように、PEAオレイン酸塩を用いた試料4、5において、デポジットやスラッジ(バーニッシュ量)の発生が抑制されることが確認された。
各種ガソリン純正オイルAPI-SNグレードオイル:マツダ純正GOLDEN ECO 0W-20、ホンダ純正S910W-30、ディーゼル油:ACEA C2・A5/B5 トタールQUARTS INEO ECS 5W-30 各オイルで同じ結果が得られた。なお、評価においては、上記エンジンオイルデポジット試験と同じ添加物を同じ添加量で添加して評価した。
表9から明らかなように、エンジンオイル中には、全てオーバーベース金属スルフォネート/フィネート等が含まれている。この為、カルボン酸単独は当然、ポリエーテルアミンカルボン酸塩にしてあっても、エンジンオイルに添加した試料2・3では沈殿が生じてしまう。しかし、POEAAをポリエーテルアミンカルボン酸塩に加えた試料4については、沈殿が生じないことが確認された。
他方、POEAA単独をエンジンオイルに添加した場合にはエンジンオイルがゲル化してしまい、最悪エンジンの焼き付けを起こしてしまうことが知られている。しかし今回行った貯蔵安定性試験においてPOEAA単独をエンジンオイルに添加した場合にはこのゲル化の減少が確認された。この点、試料4のように、POEEAのみならずポリエーテルカルボン酸塩を組み合わせたものは、このゲル化が起こす事が無いのが確認できた。
以上の各実施例から明らかなように、ポリエーテルアミンにカルボン酸塩を添加した各試料については、オイルベースの潤滑剤全てにおいて、それぞれ単品のものとは異なる性能を示し、清浄性能、潤滑性能、金属表面にスラッジが生成されることを抑制する効果を生み出すことがわかる。同時に、ポリオキシアルキレンアルキルアミンと組み合わせることで、清浄性能と潤滑性能を向上させることがわかる。
以上のようにして、本発明を実施できる。
即ち、
以下の一般式(1)で表わされるポリエーテルアミンカルボン酸塩を含む、潤滑油剤用の添加剤であって、
[R1-COO-][R2-O(AO)m-XH+](1)
R1は、炭素数7~21の炭化水素残基であり、
塩基部を持つポリエーテルアミン部分は、R2-O(AO)m-Xで表わされる化合物であり、
式(1)中、R2は炭素数8~50の炭化水素残基、Aは炭素数2~6のアルキレン基、Oは酸素で、mは10~50の整数、Xはアミノ基或いは置換アミノ基を含む炭化水素であり、
Xは、(C3H6NH)nHであり、
nは、1~3の整数である、
潤滑油剤用の添加剤とする。
即ち、
以下の一般式(1)で表わされるポリエーテルアミンカルボン酸塩を含む、潤滑油剤用の添加剤であって、
[R1-COO-][R2-O(AO)m-XH+](1)
R1は、炭素数7~21の炭化水素残基であり、
塩基部を持つポリエーテルアミン部分は、R2-O(AO)m-Xで表わされる化合物であり、
式(1)中、R2は炭素数8~50の炭化水素残基、Aは炭素数2~6のアルキレン基、Oは酸素で、mは10~50の整数、Xはアミノ基或いは置換アミノ基を含む炭化水素であり、
Xは、(C3H6NH)nHであり、
nは、1~3の整数である、
潤滑油剤用の添加剤とする。
また、上記一般式(1)で表わされるポリエーテルアミンカルボン酸塩に、以下の一般式(2)で表わされるポリオキシアルキレンアルキルアミンを含む、潤滑油剤用の添加剤とする。
R3-N(BO)aH(BO)bH (2)
式(2)中、R3は、炭素数6~24のアルキル基又はアルケニル基を示し、
a、bは平均重合度を示し、a、bは1以上の整数であり、a+bは1~30であり、
Bは、炭素数2~4のアルキレン基である。
R3-N(BO)aH(BO)bH (2)
式(2)中、R3は、炭素数6~24のアルキル基又はアルケニル基を示し、
a、bは平均重合度を示し、a、bは1以上の整数であり、a+bは1~30であり、
Bは、炭素数2~4のアルキレン基である。
また、Xが、n=1である。
また、R3が、炭素数10~18の脂肪族炭化水素基である。
また、a+bが2~4である。
また、上記の潤滑油剤用の添加剤を含む潤滑油剤組成物であって、
内燃機関用エンジンオイル、
トランスミッションオイル、
ギヤ油、
グリース、
又は、作動油等全ての潤滑油として用いられる、潤滑油剤組成物とする。
内燃機関用エンジンオイル、
トランスミッションオイル、
ギヤ油、
グリース、
又は、作動油等全ての潤滑油として用いられる、潤滑油剤組成物とする。
Claims (6)
- 以下の一般式(1)で表わされるポリエーテルアミンカルボン酸塩を含む、潤滑油剤用の添加剤であって、
[R1-COO-][R2-O(AO)m-XH+](1)
R1は、炭素数7~21の炭化水素残基であり、
塩基部を持つポリエーテルアミン部分は、R2-O(AO)m-Xで表わされる化合物であり、
式(1)中、R2は炭素数8~50の炭化水素残基、Aは炭素数2~6のアルキレン基、Oは酸素で、mは10~50の整数、Xはアミノ基或いは置換アミノ基を含む炭化水素であり、
Xは、(C3H6NH)nHであり、
nは、1~3の整数である、
潤滑油剤用の添加剤。 - 以下の一般式(2)で表わされるポリオキシアルキレンアルキルアミンを含む、請求項1に記載の潤滑油剤用の添加剤。
R3-N(BO)aH(BO)bH (2)
式(2)中、R3は、炭素数6~24のアルキル基又はアルケニル基を示し、
a、bは平均重合度を示し、a、bは1以上の整数であり、a+bは1~30であり、
Bは、炭素数2~4のアルキレン基である。 - Xが、n=1である、
ことを特徴とする請求項1又は請求項2に記載の潤滑油剤用の添加剤。 - R3が、炭素数10~18の脂肪族炭化水素基である、
ことを特徴とする請求項2又は請求項3に記載の潤滑油剤用の添加剤。 - a+bが2~4である、
ことを特徴とする請求項2乃至請求項4のいずれか一項に記載の潤滑油剤用の添加剤。 - 請求項1乃至請求項5のいずれか一項に記載の潤滑油剤用の添加剤を含む潤滑油剤組成物であって、
内燃機関用エンジンオイル、
トランスミッションオイル、
ギヤ油、
グリース、
又は、作動油等全ての潤滑油として用いられる、潤滑油剤組成物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680027768.5A CN107614665A (zh) | 2015-05-16 | 2016-05-11 | 润滑油剂用的添加剂以及润滑油剂组合物 |
US15/573,472 US20180119047A1 (en) | 2015-05-16 | 2016-05-11 | Additive for lubricating oil, and lubiricating oil composition |
EP16796364.4A EP3299443A4 (en) | 2015-05-16 | 2016-05-11 | Additive for lubricating oil, and lubricating oil composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-100604 | 2015-05-16 | ||
JP2015100604A JP5807833B1 (ja) | 2015-05-16 | 2015-05-16 | 潤滑油剤用の添加剤、及び潤滑油剤組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185971A1 true WO2016185971A1 (ja) | 2016-11-24 |
Family
ID=54545792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064020 WO2016185971A1 (ja) | 2015-05-16 | 2016-05-11 | 潤滑油剤用の添加剤、及び潤滑油剤組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180119047A1 (ja) |
EP (1) | EP3299443A4 (ja) |
JP (1) | JP5807833B1 (ja) |
CN (1) | CN107614665A (ja) |
WO (1) | WO2016185971A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016152540A1 (ja) * | 2015-03-23 | 2018-01-18 | 出光興産株式会社 | 内燃機関用潤滑油組成物及びガソリンエンジンの摩擦低減方法 |
CN109575265B (zh) * | 2018-12-26 | 2021-02-02 | 诺泰生物科技(合肥)有限公司 | 一种具有消泡、润滑功能的水溶性聚醚酰胺羧酸盐及其合成方法 |
CN113574144B (zh) * | 2019-03-14 | 2022-12-13 | 日油株式会社 | 润滑油用添加剂、润滑油用添加剂组合物及含有该添加剂或添加剂组合物的润滑油组合物 |
WO2022113239A1 (ja) * | 2020-11-26 | 2022-06-02 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
CN113149831B (zh) * | 2021-04-28 | 2023-11-17 | 中国矿业大学 | 一种硬脂酸镧改性润滑油的制备方法及其在矿井提升钢丝绳上的应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01502910A (ja) * | 1986-07-03 | 1989-10-05 | ザ ルブリゾル コーポレーション | カルボン酸塩を含有する水性組成物 |
JPH0527679B2 (ja) * | 1983-10-31 | 1993-04-21 | Chevron Res | |
JPH06503116A (ja) * | 1991-01-16 | 1994-04-07 | エコラブ・インコーポレイテッド | 合成プラスチック容器に適合したコンベヤー潤滑剤 |
JPH10195476A (ja) * | 1996-11-15 | 1998-07-28 | Lion Corp | 水性媒体用低泡性摩擦抵抗低減剤及び該低減剤を用いた水性媒体の摩擦抵抗低減方法 |
JP2000063861A (ja) * | 1998-08-20 | 2000-02-29 | Nof Corp | 潤滑剤組成物 |
JP2003064391A (ja) * | 2001-08-23 | 2003-03-05 | Asahi Denka Kogyo Kk | 水系潤滑剤 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3826608A1 (de) * | 1988-08-05 | 1990-02-08 | Basf Ag | Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren |
EP0638117A1 (en) * | 1992-04-15 | 1995-02-15 | Exxon Chemical Patents Inc. | Lubricant composition containing mixed friction modifiers |
US6077455A (en) * | 1995-07-17 | 2000-06-20 | Exxon Chemical Patents Inc | Automatic transmission fluid of improved viscometric properties |
US6224642B1 (en) * | 1999-11-23 | 2001-05-01 | The Lubrizol Corporation | Additive composition |
EP2726583A1 (en) * | 2011-06-30 | 2014-05-07 | ExxonMobil Research and Engineering Company | Lubricating compositions containing polyetheramines |
JP5737730B1 (ja) * | 2014-11-07 | 2015-06-17 | 有限会社タービュランス・リミテッド | 内燃機関用の燃料の添加剤、及び、燃料組成物 |
-
2015
- 2015-05-16 JP JP2015100604A patent/JP5807833B1/ja active Active
-
2016
- 2016-05-11 CN CN201680027768.5A patent/CN107614665A/zh active Pending
- 2016-05-11 WO PCT/JP2016/064020 patent/WO2016185971A1/ja active Application Filing
- 2016-05-11 EP EP16796364.4A patent/EP3299443A4/en not_active Withdrawn
- 2016-05-11 US US15/573,472 patent/US20180119047A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0527679B2 (ja) * | 1983-10-31 | 1993-04-21 | Chevron Res | |
JPH01502910A (ja) * | 1986-07-03 | 1989-10-05 | ザ ルブリゾル コーポレーション | カルボン酸塩を含有する水性組成物 |
JPH06503116A (ja) * | 1991-01-16 | 1994-04-07 | エコラブ・インコーポレイテッド | 合成プラスチック容器に適合したコンベヤー潤滑剤 |
JPH10195476A (ja) * | 1996-11-15 | 1998-07-28 | Lion Corp | 水性媒体用低泡性摩擦抵抗低減剤及び該低減剤を用いた水性媒体の摩擦抵抗低減方法 |
JP2000063861A (ja) * | 1998-08-20 | 2000-02-29 | Nof Corp | 潤滑剤組成物 |
JP2003064391A (ja) * | 2001-08-23 | 2003-03-05 | Asahi Denka Kogyo Kk | 水系潤滑剤 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3299443A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN107614665A (zh) | 2018-01-19 |
US20180119047A1 (en) | 2018-05-03 |
EP3299443A4 (en) | 2018-05-23 |
JP5807833B1 (ja) | 2015-11-10 |
EP3299443A1 (en) | 2018-03-28 |
JP2016216551A (ja) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3927724B2 (ja) | 内燃機関用潤滑油組成物 | |
JP6300686B2 (ja) | 潤滑油組成物 | |
WO2016185971A1 (ja) | 潤滑油剤用の添加剤、及び潤滑油剤組成物 | |
KR20200014352A (ko) | 폴리아민, 산성 및 붕소 작용기를 포함하는 화합물 및 이의 윤활 첨가제로서의 사용 | |
JP2000186293A (ja) | ディーゼルエンジン用潤滑油組成物 | |
JP7009213B2 (ja) | 潤滑剤組成物中のアルコキシル化アミド、エステル、および摩耗防止剤 | |
CN101445761B (zh) | 用于改良抗氧化性质的添加剂和润滑剂制剂 | |
US9321979B2 (en) | Friction modifier composition for lubricants | |
KR101766000B1 (ko) | 연비 향상용 무회 타입 엔진오일 조성물 | |
JP2016506996A (ja) | アミン化合物をベースとする潤滑剤組成物 | |
KR20150099556A (ko) | 폴리글리세롤 에테르로 제조된 윤활유 조성물 | |
JP2000290677A (ja) | ディーゼルエンジン用潤滑油組成物 | |
JP6134852B2 (ja) | 潤滑油組成物 | |
US9994789B2 (en) | Friction modifier composition for lubricants | |
JP2008169366A (ja) | 油類用添加剤およびこれを含有する潤滑油 | |
JP7168342B2 (ja) | モリブデンジチオカルバメート組成物及びモリブデンジチオカルバメートの製造方法 | |
KR101906555B1 (ko) | 윤활유 첨가제 조성물 | |
JP2009007440A (ja) | 油類用添加剤およびこれを含有する潤滑油 | |
KR20080041870A (ko) | 내연기관용 윤활유 조성물 | |
JPH1150079A (ja) | 潤滑油組成物 | |
JP2022512950A (ja) | ポリアミン官能基、カルボン酸塩官能基、およびホウ素官能基を含む化合物とその潤滑剤添加剤としての使用 | |
JP7541836B2 (ja) | モリブデンジチオカルバメートおよびそれを含有する潤滑剤組成物 | |
JP2008280374A (ja) | 油類用添加剤およびこれを含有する潤滑油 | |
JPH06220475A (ja) | ギヤ油組成物 | |
JPH07258674A (ja) | 自動車用ギヤ油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796364 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15573472 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |