WO2016185752A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2016185752A1
WO2016185752A1 PCT/JP2016/055366 JP2016055366W WO2016185752A1 WO 2016185752 A1 WO2016185752 A1 WO 2016185752A1 JP 2016055366 W JP2016055366 W JP 2016055366W WO 2016185752 A1 WO2016185752 A1 WO 2016185752A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous semiconductor
semiconductor layer
type amorphous
photoelectric conversion
type
Prior art date
Application number
PCT/JP2016/055366
Other languages
English (en)
French (fr)
Inventor
真臣 原田
東 賢一
神川 剛
敏彦 酒井
督章 國吉
和也 辻埜
柳民 鄒
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680028567.7A priority Critical patent/CN107667435B/zh
Priority to US15/574,994 priority patent/US10355145B2/en
Priority to JP2017519037A priority patent/JPWO2016185752A1/ja
Publication of WO2016185752A1 publication Critical patent/WO2016185752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device.
  • Japanese Patent Application Laid-Open No. 2010-283406 discloses a back electrode type solar cell.
  • an amorphous silicon layer is formed on the back surface of a single crystal silicon substrate, and n-type amorphous semiconductor layers and p-type amorphous semiconductor layers are alternately formed thereon. Electrodes are formed on the n-type amorphous semiconductor layer and the p-type amorphous semiconductor layer, respectively.
  • the n-type amorphous semiconductor layer is composed of two island-like n-type amorphous semiconductor layers arranged apart from each other, and the p-type amorphous semiconductor layer is a continuous semiconductor layer. Consists of.
  • an amorphous silicon layer is formed between adjacent island-shaped n-type amorphous semiconductor layers or between the n-type amorphous semiconductor layer and the p-type amorphous semiconductor layer. It becomes the outermost surface. Therefore, moisture, organic matter, and the like are likely to enter the amorphous silicon layer from the outside, the passivation property is reduced, and the photoelectric conversion device is deteriorated.
  • An object of the present invention is to provide a technique capable of suppressing deterioration of a photoelectric conversion device.
  • a photoelectric conversion device is disposed on a semiconductor substrate, an intrinsic amorphous semiconductor layer formed so as to be in contact with one surface of the semiconductor substrate, and the intrinsic amorphous semiconductor layer.
  • the first amorphous semiconductor layer having the first conductivity type and the intrinsic amorphous semiconductor layer are spaced apart from each other and are arranged on the first amorphous semiconductor layer in the in-plane direction of the semiconductor substrate.
  • a second amorphous semiconductor layer formed adjacently and having a second conductivity type opposite to the first conductivity type, and between the adjacent first amorphous semiconductor layers and adjacent second amorphous semiconductor layers.
  • a protective layer formed to be in contact with the intrinsic amorphous semiconductor layer between the crystalline semiconductor layers.
  • FIG. 1 is a schematic diagram illustrating a plane of the photoelectric conversion device according to the first embodiment.
  • FIG. 2A is a schematic diagram illustrating an AA cross section of the photoelectric conversion device illustrated in FIG.
  • FIG. 2B is a schematic view showing a BB cross section of the photoelectric conversion device shown in FIG.
  • FIG. 3A is a schematic view illustrating the cross-sectional structure of a p-type amorphous semiconductor layer.
  • FIG. 3B is a schematic view illustrating another cross-sectional structure of the p-type amorphous semiconductor layer.
  • FIG. 3C is a schematic view illustrating another cross-sectional structure of the p-type amorphous semiconductor layer.
  • FIG. 1 is a schematic diagram illustrating a plane of the photoelectric conversion device according to the first embodiment.
  • FIG. 2A is a schematic diagram illustrating an AA cross section of the photoelectric conversion device illustrated in FIG.
  • FIG. 2B is a schematic view showing a BB cross section of the photo
  • FIG. 3D is a schematic diagram showing the result of measuring the film thickness from the interface between the i-type amorphous semiconductor layer and the surface of the silicon substrate to the surface of the amorphous semiconductor layer.
  • FIG. 3D (b) is a schematic diagram showing the result of re-plotting the film thickness shown in FIG. 3D (a).
  • FIG. 4 is a schematic diagram illustrating a plane of the wiring sheet in the first embodiment.
  • FIG. 5A is a diagram for explaining a manufacturing process of the photoelectric conversion device shown in FIG. 1 and is a cross-sectional view in a state where a texture is formed on a silicon substrate.
  • FIG. 5B is a cross-sectional view showing a state in which an antireflection film is formed on the light receiving surface of the silicon substrate shown in FIG. 5A.
  • FIG. 5C is a cross-sectional view showing a state where an i-type amorphous semiconductor layer and a p-type amorphous semiconductor layer are formed on the back surface of the silicon substrate shown in FIG. 5B.
  • FIG. 5D is a cross-sectional view showing a state where an n-type amorphous semiconductor layer is formed on the back surface of the silicon substrate shown in FIG. 5C.
  • FIG. 5E is a cross-sectional view showing a state where electrodes are formed on the p-type amorphous semiconductor layer and the n-type amorphous semiconductor layer shown in FIG.
  • FIG. 5D is a cross-sectional view showing a state where an insulating layer is formed on the back surface of the silicon substrate shown in FIG. 5E.
  • FIG. 6 is a schematic view showing a plane of a metal mask used when forming a p-type amorphous semiconductor layer in the step of FIG. 5C.
  • FIG. 7 is a schematic diagram showing a plane of a metal mask used when an n-type amorphous semiconductor layer is formed in the step of FIG. 5C.
  • FIG. 8 is a schematic diagram showing a plane of a metal mask used when forming an electrode in the step of FIG. 5D.
  • FIG. 9A is a schematic diagram showing a plane of a metal mask used when forming an insulating layer in the step of FIG.
  • FIG. 9B is a schematic diagram showing a plane of a metal mask used when forming an insulating layer in the step of FIG. 5E.
  • FIG. 10 is a schematic view showing a state in which an insulating layer is formed on the back surface of the silicon substrate using the metal mask of FIGS. 9A and 9B.
  • FIG. 11 is a diagram illustrating deterioration rates of the photoelectric conversion device of the first embodiment and the comparative example.
  • FIG. 12 is a schematic diagram illustrating a plane of a photoelectric conversion device according to Modification 1 of the first embodiment.
  • FIG. 13 is a schematic diagram illustrating a plane of a photoelectric conversion device according to Modification 2 of the first embodiment.
  • FIG. 14A is a schematic diagram illustrating a cross section taken along the line AA of the photoelectric conversion device illustrated in FIG.
  • FIG. 14B is a schematic diagram illustrating a BB cross section of the photoelectric conversion device illustrated in FIG. 13.
  • FIG. 15A is a schematic diagram showing a plane of a metal mask used when forming an insulating layer in Modification 3 of the first embodiment.
  • FIG. 15B is a schematic diagram showing a cross section of the metal mask shown in FIG.
  • FIG. 16 is a schematic diagram illustrating a plane of a photoelectric conversion device according to the second embodiment.
  • 17A is a schematic diagram illustrating a CC cross section of the photoelectric conversion device illustrated in FIG. FIG.
  • FIG. 17B is a schematic diagram illustrating a DD cross section of the photoelectric conversion device illustrated in FIG. 16.
  • FIG. 18 is a schematic diagram showing a plane of a metal mask used when forming an insulating layer in the second embodiment.
  • FIG. 19 is a schematic diagram illustrating a plane of a photoelectric conversion device according to the third embodiment.
  • 20A is a schematic diagram illustrating a cross section taken along line EE of the photoelectric conversion device illustrated in FIG. 20B is a schematic diagram illustrating a cross section taken along line FF of the photoelectric conversion device illustrated in FIG.
  • FIG. 21 is a schematic diagram showing a plane of a metal mask used when forming the electrode shown in FIG.
  • FIG. 22 is a schematic diagram illustrating a plane of a photoelectric conversion device according to the fourth embodiment.
  • FIG. 23A is a schematic diagram illustrating a GG section of the photoelectric conversion device illustrated in FIG.
  • FIG. 23B is a schematic diagram illustrating an HH cross section of the photoelectric conversion device illustrated in FIG. 24 is a schematic diagram showing a plane of a metal mask used when forming the electrode shown in FIG.
  • FIG. 25 is a schematic diagram illustrating a plane of a photoelectric conversion device according to the fifth embodiment.
  • 26A is a schematic diagram illustrating a II cross section of the photoelectric conversion device illustrated in FIG.
  • FIG. 26B is a schematic diagram illustrating a JJ cross section of the photoelectric conversion device illustrated in FIG. 25.
  • FIG. 27A shows a state where an n-type amorphous semiconductor layer is formed on an i-type amorphous semiconductor layer and an n-type electrode is formed on the n-type amorphous semiconductor layer in the fifth embodiment. It is sectional drawing.
  • FIG. 27B is a cross-sectional view showing a state where an insulating layer covering the n-type electrode and the n-type amorphous semiconductor layer shown in FIG. 27A is formed.
  • FIG. 27C is a cross section showing a state in which a p-type amorphous semiconductor layer is formed on the i-type amorphous semiconductor layer shown in FIG. 27B and a p-type electrode is formed on the p-type amorphous semiconductor layer.
  • FIG. 27D is a cross-sectional view showing a state where an insulating layer is formed on the i-type amorphous semiconductor layer shown in FIG. 27C.
  • FIG. 28A is a schematic diagram showing a plane of a metal mask used when forming an n-electrode in the step of FIG. 27A.
  • FIG. 28B is a schematic diagram illustrating a plane of a metal mask used when forming an insulating layer in the step of FIG. 27A.
  • FIG. 28C is a schematic diagram showing a plane of a metal mask used when forming a p-type amorphous semiconductor layer in the step of FIG. 27C.
  • FIG. 28A is a schematic diagram showing a plane of a metal mask used when forming an n-electrode in the step of FIG. 27A.
  • FIG. 28B is a schematic diagram illustrating a plane of a metal mask used when forming an insulating layer in the step of FIG. 27A.
  • FIG. 28C
  • FIG. 28D is a schematic diagram showing a plane of a metal mask used when forming a p-electrode in the step of FIG. 27C.
  • FIG. 29 is a schematic diagram illustrating a configuration of a photoelectric conversion module according to the sixth embodiment.
  • FIG. 30A is a schematic diagram illustrating a configuration of a photovoltaic power generation system including the photoelectric conversion device according to the sixth embodiment.
  • FIG. 30B is a schematic diagram illustrating another configuration example of the photovoltaic power generation system illustrated in FIG. 30A.
  • FIG. 31 is a schematic diagram showing the configuration of the photoelectric conversion module array shown in FIG. 30A.
  • FIG. 32A is a schematic diagram illustrating a configuration of a photovoltaic power generation system including the photoelectric conversion device according to the seventh embodiment.
  • FIG. 32B is a schematic diagram illustrating another configuration example of the photovoltaic power generation system illustrated in FIG. 32A.
  • FIG. 33 is a schematic diagram illustrating a cross section of a
  • a photoelectric conversion device includes a semiconductor substrate, an intrinsic amorphous semiconductor layer formed in contact with one surface of the semiconductor substrate, and a space above the intrinsic amorphous semiconductor layer.
  • the first amorphous semiconductor layer having the first conductivity type and the first amorphous semiconductor layer, the first amorphous semiconductor layer being spaced apart from the intrinsic amorphous semiconductor layer, and in the in-plane direction of the semiconductor substrate
  • a second amorphous semiconductor layer formed adjacent to the crystalline semiconductor layer and having a second conductivity type opposite to the first conductivity type; and between and adjacent to the adjacent first amorphous semiconductor layer.
  • a protective layer formed in contact with the intrinsic amorphous semiconductor layer between the second amorphous semiconductor layers (first configuration).
  • the first amorphous semiconductor layers arranged apart from each other are arranged apart from each other.
  • a space between the second amorphous semiconductor layers is covered with a protective layer. Therefore, moisture, organic matter, etc. are externally applied to the intrinsic amorphous semiconductor layer between the first amorphous semiconductor layers arranged apart from each other and between the second amorphous semiconductor layers arranged apart from each other. It is difficult to enter and the deterioration of the photoelectric conversion device can be suppressed.
  • the protective layer in the first configuration, may include an insulating film.
  • the intrinsic amorphous semiconductor layers between the first amorphous semiconductor layers arranged apart from each other and between the second amorphous semiconductor layers arranged apart from each other are externally connected. It is possible to prevent moisture, organic substances, etc. from being mixed.
  • the protective layer is an electrode further in contact with each of the first amorphous semiconductor layer and the second amorphous semiconductor layer. It is good also as including.
  • the intrinsic amorphous semiconductor layer between the first amorphous semiconductor layers arranged apart from each other and the second amorphous semiconductor layer arranged apart from each other is externally It is possible to prevent moisture, organic substances, etc. from being mixed.
  • the insulating film is further provided between the adjacent first amorphous semiconductor layer and the second amorphous semiconductor layer. It may be formed so as to be in contact with the intrinsic amorphous semiconductor layer.
  • the intrinsic amorphous semiconductor layer between the adjacent first amorphous semiconductor layer and the second amorphous semiconductor layer is covered with the insulating film. Therefore, it is possible to prevent a short circuit between the first amorphous semiconductor layer and the second amorphous semiconductor layer and to suppress mixing of moisture, organic substances, and the like from the outside.
  • the photoelectric conversion device according to the fifth configuration may be configured such that, in the fourth configuration, the insulating film is formed so as to overlap with the vicinity of the end of the electrode.
  • the insulating film overlaps in the vicinity of the end portion of the electrode. Therefore, the adhesion between the electrode and the first amorphous semiconductor layer and the second amorphous semiconductor layer is improved by the insulating film. As a result, even if stress is generated in the semiconductor substrate, it is possible to make it difficult for the electrode to peel off from the semiconductor substrate.
  • each of the first amorphous semiconductor layer and the second amorphous semiconductor layer has a substantially rectangular shape.
  • the positions of the short sides of the first amorphous semiconductor layer and the second amorphous semiconductor layer adjacent to each other are in the long side direction of the first amorphous semiconductor layer and the second amorphous semiconductor layer. It is good also as having shifted
  • the carrier collection efficiency can be improved as compared with the case where the positions of the short sides of the adjacent first amorphous semiconductor layer and second amorphous semiconductor layer are aligned. .
  • the photoelectric conversion device is the first point that the film thickness is the maximum in one thin film formed on the semiconductor substrate in any one of the first to sixth configurations. And the point at which the reduction rate of the thickness of the thin film changes from the first reduction rate to a second reduction rate larger than the first reduction rate in the in-plane direction of the one thin film, or the one thin film
  • the second point is the point at which the sign of the rate of change of the film thickness of the one thin film changes from negative to positive in the in-plane direction of the first thin film.
  • the region up to this point is defined as a film thickness reduction region, at least one of the first amorphous semiconductor layer and the second amorphous semiconductor layer may have the film thickness reduction region.
  • At least one of the first amorphous semiconductor layer and the second amorphous semiconductor layer has a thickness reduction region.
  • the thickness of the reduced thickness region is smaller than the thickness at the first point of the semiconductor layer. Therefore, compared with the case where an amorphous semiconductor layer having a uniform film thickness is provided, the series resistance component in the semiconductor layer having the film thickness reduction region can be reduced.
  • the insulating film in the seventh configuration, may include the film thickness reduction region.
  • the stress of the insulating film increases with the increase of the film thickness of the insulating film, the stress of the insulating film can be reduced by having the film thickness decreasing region. As a result, warpage of the semiconductor substrate due to the stress of the insulating film can be reduced.
  • the film thickness of the intrinsic amorphous semiconductor layer may be 10 nm or less.
  • the ninth configuration it is possible to reduce the series resistance component while suppressing deterioration of the photoelectric conversion device.
  • the photoelectric conversion device includes a photoelectric conversion element, a photoelectric conversion module using the photoelectric conversion element, and a solar cell power generation system including the photoelectric conversion module.
  • the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
  • FIG. 1 is a schematic view showing a plane of the photoelectric conversion device according to the first embodiment of the present invention.
  • FIG. 2A is a schematic diagram showing an AA cross section of the photoelectric conversion device 1 shown in FIG. 2B is a schematic diagram showing a BB cross section of the photoelectric conversion device 1 shown in FIG.
  • the photoelectric conversion device 1 includes a silicon substrate 101, an i-type amorphous silicon layer 102i, an n-type amorphous semiconductor layer 102n, a p-type amorphous semiconductor layer 102p, An electrode 103, an antireflection film 104, and an insulating layer 105 are provided.
  • the silicon substrate 101 is, for example, an n-type single crystal silicon substrate.
  • the thickness of the silicon substrate 101 is, for example, 100 to 150 ⁇ m.
  • an antireflection film 104 is formed so as to cover one surface (Z-axis negative direction side) of the silicon substrate 101.
  • the antireflection film 104 is formed by, for example, laminating a silicon oxide film having a thickness of about 20 nm and a silicon nitride film having a thickness of about 60 nm in this order.
  • the antireflection film 104 decreases the surface reflectance of the silicon substrate 101 and increases the short circuit current.
  • the surface on which the antireflection film 104 is formed is referred to as a light receiving surface, and the other surface (Z-axis positive direction side) is referred to as a back surface.
  • an i-type amorphous semiconductor layer 102 i is formed on the back surface of the silicon substrate 101.
  • the i-type amorphous semiconductor layer 102i is a film of an amorphous semiconductor that is substantially intrinsic and contains hydrogen.
  • the i-type amorphous semiconductor layer 102i includes, for example, i-type amorphous silicon, i-type amorphous silicon germanium, i-type amorphous germanium, i-type amorphous silicon carbide, i-type amorphous silicon nitride. , I-type amorphous silicon oxide, i-type amorphous silicon carbon oxide, and the like.
  • the i-type amorphous semiconductor layer 102i has a thickness of 10 nm or less, for example.
  • the thickness of the i-type amorphous semiconductor layer 102i is less than 10 nm, the passivation property is lowered.
  • the thickness of the i-type amorphous semiconductor layer 102i is increased, the series resistance component is increased. Therefore, in consideration of passivation properties and series resistance components, the film thickness of the i-type amorphous semiconductor layer 102i is desirably 10 nm or less.
  • a p-type amorphous semiconductor layer 102p and an n-type amorphous semiconductor layer 102n are formed on the i-type amorphous semiconductor layer 102i.
  • the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n have a substantially rectangular shape.
  • the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n are alternately arranged on the silicon substrate 101 in the Y-axis direction.
  • the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n are arranged separately from each other in the X-axis direction. That is, a plurality of p-type amorphous semiconductor layers 102p are arranged in the X-axis direction on the back surface of the silicon substrate 101, and a plurality of n-type amorphous semiconductor layers 102n are arranged.
  • the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n disposed in the vicinity of the edge parallel to the Y axis of the silicon substrate 101 are not p-type non-crystalline.
  • the n-type amorphous semiconductor layer 102n is disposed so that the end portion of the n-type amorphous semiconductor layer 102n is located inside the silicon substrate 101 rather than the crystalline semiconductor layer 102p. Further, as shown in FIG.
  • the position between the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n, the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor The position between the semiconductor layers 102p is shifted.
  • the distance between adjacent n-type amorphous semiconductor layers 102n and the distance between adjacent p-type amorphous semiconductor layers 102p is about 2 mm or less, and carriers (electrons and holes generated in the silicon substrate 101). ) Is shorter than the diffusion length (for example, about 2 mm). Therefore, by configuring in this way, carrier recombination can be suppressed and carrier collection efficiency can be improved.
  • the n-type amorphous semiconductor layer 102n is an n-type amorphous semiconductor layer containing hydrogen.
  • the n-type amorphous semiconductor layer 102n includes, for example, phosphorus (P) as an impurity, n-type amorphous silicon, n-type amorphous silicon germanium, n-type amorphous germanium, n-type amorphous silicon carbide.
  • P phosphorus
  • N-type amorphous silicon nitride, n-type amorphous silicon oxide, n-type amorphous silicon oxynitride, n-type amorphous silicon carbon oxide, and the like may be used.
  • the thickness of the n-type amorphous semiconductor layer 102n is, for example, 5 to 20 nm.
  • the p-type amorphous semiconductor layer 102p is a p-type amorphous semiconductor layer containing hydrogen.
  • the p-type amorphous semiconductor layer 102p includes, for example, p-type amorphous silicon, p-type amorphous silicon germanium, p-type amorphous germanium, and p-type amorphous silicon carbide containing boron (B) as an impurity.
  • B boron
  • the thickness of the p-type amorphous semiconductor layer 102p is, for example, 5 to 20 nm.
  • the amorphous semiconductor may contain a microcrystalline phase.
  • the microcrystalline phase includes crystals having an average particle size of 1 to 50 nm.
  • an electrode 103 is formed on each of the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n.
  • the electrode 103 has a substantially rectangular shape and is connected along the longitudinal direction (X-axis direction) of the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n. Is formed. That is, the i-type amorphous semiconductor layer 102i between the p-type amorphous semiconductor layers 102p arranged apart from each other and the n-type amorphous semiconductor layers 102n arranged apart from each other is in contact with the protection.
  • An electrode 103 is formed as an example of the layer.
  • the p-type electrode 103p and the n-type electrode are used. This is represented as an electrode 103n.
  • the n-type electrode 103n and the p-type electrode 103p are formed with a distance L therebetween.
  • the n-type electrode 103n and the p-type electrode 103p are, for example, Ag (silver), Ni (nickel), Al (aluminum), Cu (copper), Sn (tin), Pt (platinum), Au (gold), Ti ( A metal such as titanium), an oxide conductor film such as ITO, an alloy of these metals, or a laminated film of these metals.
  • the n-type electrode 103n and the p-type electrode 103p are preferably made of a metal having high conductivity.
  • the thickness of the n-type electrode 103n and the p-type electrode 103p is, for example, about 50 nm to 1 ⁇ m.
  • the p-type amorphous semiconductor layer 102p may have the cross-sectional structure shown in FIG. 3A.
  • this cross-sectional structure will be specifically described.
  • the p-type amorphous semiconductor layer 102p has a flat region FT and a film thickness reduction region TD in the in-plane direction (width direction) of the p-type amorphous semiconductor layer 102p.
  • the flat region FT is a portion of the p-type amorphous semiconductor layer 102p that has the thickest film thickness and has a substantially constant film thickness.
  • the film thickness The decrease region TD is a region from point A to point B in the in-plane direction of the p-type amorphous semiconductor layer 102p.
  • the film thickness reduction regions TD are arranged on both sides of the flat region FT in the in-plane direction of the p-type amorphous semiconductor layer 102p.
  • the reason why the p-type amorphous semiconductor layer 102p has the film thickness reduction region TD is that the p-type amorphous semiconductor layer 102p is formed by a plasma CVD method using a metal mask. Since the film thickness reduction region TD has a thinner film thickness than the flat region FT, the dopant concentration of the film thickness reduction region TD is higher than the dopant concentration of the flat region FT.
  • the electrode 103p is disposed in contact with the entire flat region FT of the p-type amorphous semiconductor layer 102p and a part of the film thickness reduction region TD.
  • 3A illustrates the p-type amorphous semiconductor layer 102p, but in the embodiment of the present invention, at least one of the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n is a film. What is necessary is just to have a thickness reduction
  • the n-type amorphous semiconductor layer 102n has a structure similar to that shown in FIG. 3A, the n-type electrode 103n is formed on the entire flat region FT of the n-type amorphous semiconductor layer 102n and a part of the film thickness reduction region TD. Arranged in contact.
  • the resistance when carriers (electrons) reach the p-type electrode 103p through the p-type amorphous semiconductor layer 102p has a constant film thickness in the in-plane direction of the i-type amorphous semiconductor layer 102i.
  • the resistance is lower than when the p-type amorphous semiconductor layer 102p is formed.
  • the resistance when carriers (holes) reach the n-type electrode 103n through the n-type amorphous semiconductor layer 102n has a constant film thickness in the in-plane direction of the i-type amorphous semiconductor layer 102i.
  • the resistance is lower than when the n-type amorphous semiconductor layer 102n is formed. Therefore, the conversion efficiency of the photoelectric conversion device 1 can be improved.
  • the p-type electrode 103p may be in contact with the entire thickness reduction region TD of the p-type amorphous semiconductor layer 102p, and the n-type electrode 103n is a thickness reduction region of the n-type amorphous semiconductor layer 102n. It may be in contact with the entire TD.
  • the p-type amorphous semiconductor layer 102p may have, for example, the cross-sectional structure shown in FIG. 3B instead of the cross-sectional structure shown in FIG. 3A.
  • the photoelectric conversion device 1 includes a p-type amorphous semiconductor layer 1021p instead of the p-type amorphous semiconductor layer 102p, and includes a p-type electrode 1031p instead of the p-type electrode 103p. May be.
  • the point at which the film thickness is maximum is C point, and the film thickness decrease rate changes from the first rate of decrease to the second rate of decrease which is larger than the first rate of decrease.
  • the point be point D.
  • the film thickness reduction region TD is a region from the point C to the point D in the in-plane direction of the p-type amorphous semiconductor layer 1021p.
  • the p-type amorphous semiconductor layer 1021p has two film thickness reduction regions TD in the in-plane direction of the p-type amorphous semiconductor layer 1021p.
  • the two film thickness reduction regions TD are arranged in contact with each other in the in-plane direction of the p-type amorphous semiconductor layer 1021p.
  • the p-type electrode 1031p is disposed in contact with a part of one film thickness reduction area TD and a part of the other film thickness reduction area TD among the two film thickness reduction areas TD.
  • the photoelectric conversion device 1 may include an n-type amorphous semiconductor layer having the same structure as the p-type amorphous semiconductor layer 1021p shown in FIG. 3B instead of the n-type amorphous semiconductor layer 102n. .
  • the resistance when carriers (electrons) reach the p-type electrode 1031p via the p-type amorphous semiconductor layer 1021p is constant in the in-plane direction of the i-type amorphous semiconductor layer 102i.
  • the resistance is reduced.
  • the resistance when carriers (holes) reach the n-type electrode through the n-type amorphous semiconductor layer having the same structure as that of the p-type amorphous semiconductor layer 1021p is i-type amorphous semiconductor layer 102i.
  • the resistance becomes lower than that in the case where an n-type amorphous semiconductor layer having a constant film thickness is formed in the in-plane direction. Therefore, the conversion efficiency of the photoelectric conversion device 1 can be improved.
  • the p-type electrode 1031p includes two p-type amorphous semiconductor layers 1021p and n-type amorphous semiconductor layers having the same structure as the p-type amorphous semiconductor layer 1021p. It may be arranged in contact with.
  • the p-type amorphous semiconductor layer 102p may have, for example, the cross-sectional structure shown in FIG. 3C instead of the cross-sectional structure shown in FIG. 3A.
  • the photoelectric conversion device 1 includes a p-type amorphous semiconductor layer 1022p instead of the p-type amorphous semiconductor layer 102p, and includes a p-type electrode 1032p instead of the p-type electrode 103p. May be.
  • the point at which the film thickness is maximum is taken as an E point, and the film thickness decrease rate changes from the first decrease rate to a second decrease rate larger than the first decrease rate.
  • the point be the F point, and let the point where the sign of the rate of change of the film thickness changes from negative to positive.
  • the film thickness reduction region TD1 is a region from the point E to the point F in the in-plane direction of the p-type amorphous semiconductor layer 1022p
  • the film thickness reduction region TD2 is the region of the p-type amorphous semiconductor layer 1022p. This is the region from point E to point G in the in-plane direction.
  • the p-type amorphous semiconductor layer 1022p has two film thickness reduction regions TD1 and two film thickness reduction regions TD2 in the in-plane direction of the p-type amorphous semiconductor layer 1022p.
  • the two film thickness reduction regions TD2 are arranged so that the film thickness distribution in the in-plane direction of the p-type amorphous semiconductor layer 1022p is symmetric with respect to a line passing through the G point.
  • the two film thickness reduction regions TD1 are disposed on both sides of the two film thickness reduction regions TD2 in the in-plane direction of the p-type amorphous semiconductor layer 1022p.
  • the p-type electrode 1032p is disposed in contact with the entire two film thickness reduction regions TD2, a part of one film thickness reduction region TD1, and a part of the other film thickness reduction region TD1.
  • the photoelectric conversion device 1 may include an n-type amorphous semiconductor layer having the same structure as the p-type amorphous semiconductor layer 1022p shown in FIG. 3C instead of the n-type amorphous semiconductor layer 102n. .
  • the resistance when carriers (electrons) reach the n-type electrode through the n-type amorphous semiconductor layer is constant in the in-plane direction of the i-type amorphous semiconductor layer 102i.
  • the resistance becomes lower than that in the case where an n-type amorphous semiconductor layer having a thickness is formed.
  • the resistance when carriers (holes) reach the p-type electrode 1032p through the p-type amorphous semiconductor layer 1022p has a constant film thickness in the in-plane direction of the i-type amorphous semiconductor layer 102i.
  • the resistance is lower than when an n-type amorphous semiconductor layer is formed. Therefore, the conversion efficiency of the photoelectric conversion device 1 can be improved.
  • the p-type electrode 1032p includes two p-type amorphous semiconductor layers 1022p and n-type amorphous semiconductor layers having the same structure as the p-type amorphous semiconductor layer 1022p.
  • the two film thickness reduction regions TD2 may be disposed in contact with each other.
  • the photoelectric conversion device 1 includes the p-type amorphous semiconductor layer and the n-type amorphous semiconductor layer having the film thickness reduction region TD (TD1, TD2).
  • the film thickness reduction region is one of the film thickness reduction regions TD, TD1, and TD2.
  • the first point is the point where the film thickness of the p-type amorphous semiconductor layer or the n-type amorphous semiconductor layer is the maximum, and the in-plane of the p-type amorphous semiconductor layer or the n-type amorphous semiconductor layer In the direction, a point at which the film thickness decrease rate changes from the first decrease rate to a second decrease rate larger than the first decrease rate, or a point at which the sign of the film thickness change rate changes from negative to positive.
  • the film thickness reduction region is a region from the first point to the second point in the in-plane direction of the p-type amorphous semiconductor layer or the n-type amorphous semiconductor layer.
  • the texture is not formed on the silicon substrate 101 due to the influence of etching or the like performed to remove the damaged layer.
  • a method for measuring the film thickness of the amorphous semiconductor layer when the surface of the silicon substrate 101 is uneven will be described.
  • a 102n or p-type amorphous semiconductor layer 102p is formed.
  • a cross-sectional photograph of the silicon substrate 101 is taken using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). From the imaging result, the interface between the i-type amorphous semiconductor layer 102i and the silicon substrate 101 can be easily confirmed.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • each film thickness h shown in FIG. 3D (a) can be expressed as shown in FIG. 3D (b). That is, the film thickness of the amorphous semiconductor layer (n-type amorphous semiconductor layer, p-type amorphous semiconductor layer) can be specified on the assumption that the surface of the silicon substrate 101 is substantially flat.
  • the film thickness reduction region is determined by measuring and re-plotting the film thickness on the texture by the same method as described above. be able to.
  • the surface of the silicon wafer where the texture structure is not formed has a height difference of about 2 ⁇ m at the maximum, but the height difference is very large compared to the surface where the texture structure is formed (a height difference of several tens of ⁇ m at the maximum). Small and almost flat.
  • the i-type amorphous semiconductor layer 102i, the n-type amorphous semiconductor layer 102n, and The p-type amorphous semiconductor layer 102p and the like are preferably formed on the back surface (surface on which the texture structure is not formed) which is originally relatively flat.
  • a texture is formed on the back surface of the silicon substrate 101.
  • the silicon substrate 101 has a texture structure. The surface area increases (about 1.7 times), and the contact resistance can be lowered.
  • the texture structure is provided only on one surface of the silicon substrate 101, a step for protecting the surface on which the texture is not formed is necessary when performing anisotropic etching.
  • the texture structure is formed on both sides of the silicon substrate 101, it is not necessary to protect both sides of the silicon substrate 101, so that the number of process steps can be reduced.
  • i-type amorphous semiconductor layer 102i in which none of electrode 103, p-type amorphous semiconductor layer 102p, and n-type amorphous semiconductor layer 102n is formed.
  • an insulating layer 105 is formed as an example of a protective layer so as to overlap a part of the upper end of the electrode 103.
  • the electrode 103, the p-type amorphous semiconductor is 8 nm of the i-type amorphous semiconductor layer 102i.
  • an amorphous silicon layer thin film region a region where the thickness of the semiconductor layer on the back surface of the semiconductor substrate 101 is 10 nm or less (hereinafter referred to as an amorphous silicon layer thin film region) is the outermost surface, moisture, oxygen, Organic substances and the like are easily mixed, leading to deterioration of the photoelectric conversion device 1. Therefore, in this embodiment, such an amorphous silicon layer thin film region is protected by the electrode 103 or the insulating layer 105. Accordingly, the i-type amorphous semiconductor layer 102i between the p-type amorphous semiconductor layers 102p arranged apart from each other and the n-type amorphous semiconductor layers 102n arranged apart from each other is adjacent to the p-type amorphous semiconductor layer 102i.
  • the i-type amorphous semiconductor layer 102i between the n-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n is covered with the insulating layer 105 and is not exposed. As a result, entry of moisture, oxygen, organic matter, and the like from the outside into the i-type amorphous semiconductor layer 102i is prevented, and deterioration of the photoelectric conversion device 1 can be suppressed.
  • FIG. 4 is an enlarged schematic view of a part of the wiring sheet in the present embodiment.
  • the wiring sheet 300 has an n-type wiring material 302n and a p-type wiring material 302p formed on an insulating substrate 301.
  • the insulating substrate 301 may be any insulating material.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • PVF polyvinyl fluoride
  • the thickness of the insulating substrate 301 is not particularly limited, but is preferably about 25 ⁇ m or more and 150 ⁇ m or less.
  • the insulating substrate 301 may have a single layer structure or a multilayer structure of two or more layers.
  • the n-type wiring member 302n and the p-type wiring member 302p have a comb shape and are alternately arranged with a predetermined interval.
  • the n-type electrode 103n and the p-type electrode 103p formed on the back surface of the photoelectric conversion device 1 are joined to the n-type wiring material 302n and the p-type wiring material 302p, respectively.
  • Connection wiring (not shown) is formed on the surface of the insulating substrate 301.
  • the n-type wiring material 302n and the p-type wiring material 302p of the adjacent photoelectric conversion device 1 are electrically connected by the connection wiring, and the adjacent photoelectric conversion devices 1 on the wiring sheet 300 are electrically connected to each other. Has been. Thereby, the current generated by the light incident on the light receiving surface of the photoelectric conversion device 1 can be extracted to the outside through the p-type wiring member 302p and the n-type wiring member 302n.
  • the n-type wiring material 302n and the p-type wiring material 302p may be made of a conductive material, and may be any metal such as Cu, Al, Ag, or any one of these.
  • An alloy containing a metal as a main component may be used.
  • the film thickness of the n-type wiring material 302n and the p-type wiring material 302p is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less, for example. If the film thickness of the n-type wiring material 302n and the p-type wiring material 302p is thinner than 10 ⁇ m, the wiring resistance may increase. If the thickness is greater than 100 ⁇ m, it is necessary to apply heat when bonding the n-type wiring member 302n and the p-type wiring member 302p to the photoelectric conversion device 1.
  • the warpage of the wiring sheet 300 increases due to the difference in thermal expansion coefficient between the n-type wiring material 302n and the p-type wiring material 302p and the silicon substrate 101 of the photoelectric conversion device 1.
  • the film thickness of the n-type wiring material 302n and the p-type wiring material 302p is more preferably 100 ⁇ m or less.
  • a conductive material such as nickel, gold, platinum, palladium, silver, tin, indium, or ITO may be formed on part of the surface of the n-type wiring member 302n and the p-type wiring member 302p.
  • the n-type wiring member 302n and the p-type wiring member 302p are electrically connected to the n-type electrode 103n and the p-type electrode 103p of the photoelectric conversion device 1, and the n-type wiring member is provided.
  • the weather resistance of 302n and the p-type wiring material 302p is improved.
  • the n-type wiring material 302n and the p-type wiring material 302p may have a single-layer structure or a multilayer structure of two or more layers.
  • a wafer having a thickness of 100 to 300 ⁇ m is cut out from bulk silicon, and etching for removing a damaged layer on the wafer surface and etching for adjusting the thickness are performed.
  • a protective film is formed on one side of these etched wafers.
  • silicon oxide, silicon nitride, or the like is used as the protective film.
  • the wafer on which the protective film is formed is subjected to wet etching using an alkaline solution such as NaOH or KOH (for example, an aqueous solution of KOH: 1 to 5 wt%, isopropyl alcohol: 1 to 10 wt%).
  • an alkaline solution such as NaOH or KOH
  • a texture structure is formed on the surface 101a where the protective film is not formed by anisotropic etching.
  • an antireflection film 104 is formed on the light receiving surface 101 a of the silicon substrate 101.
  • the antireflection film 104 has a stacked structure in which a silicon oxide film and a silicon nitride film are stacked will be described.
  • the surface of the silicon substrate 101 is thermally oxidized to form an oxide film on the light receiving surface 101a.
  • an antireflection film 104 is formed by forming a silicon nitride film on the oxide film of the light receiving surface 101a.
  • wet treatment for example, the silicon substrate 101 is immersed in hydrogen peroxide, nitric acid, ozone water, or the like, and then heated to 800 to 1000 ° C. in a dry atmosphere.
  • thermal oxidation treatment for example, the silicon substrate 101 is heated to 900 to 1000 ° C. in an atmosphere of oxygen or water vapor.
  • the silicon nitride film can be formed by sputtering, EB (Electron-Beam) deposition, TEOS (TetraEthOxySilane), or the like. Note that the i-type amorphous semiconductor layer 102i and the n-type amorphous semiconductor layer 102n may be sequentially formed and sandwiched between the silicon substrate 101 and the silicon nitride film.
  • an i-type amorphous semiconductor layer 102i is formed on the back surface of the silicon substrate 101 opposite to the light receiving surface 101a.
  • the i-type amorphous semiconductor layer 102i is formed by using, for example, a plasma chemical vapor deposition (CVD) method.
  • the reaction gas introduced into the reaction chamber provided in the plasma CVD apparatus is silane gas or hydrogen gas.
  • the temperature of the silicon substrate 101 is 130 to 210 ° C.
  • the hydrogen gas flow rate is 0 to 100 sccm
  • the silane gas (SiH 4 ) flow rate is about 40 sccm
  • the pressure in the reaction chamber is 40 to 120 Pa
  • the high frequency (13.56 MHz) power density The film may be formed using a condition of 5 to 15 mW / cm 2 .
  • the i-type amorphous semiconductor layer 102 i is formed on the entire back surface of the silicon substrate 101.
  • a metal mask 500 shown in FIG. 6 is disposed on the i-type amorphous semiconductor layer 102i to form a p-type amorphous semiconductor layer 102p.
  • the metal mask 500 has a plurality of openings 501 for forming the p-type amorphous semiconductor layer 102p.
  • the plurality of openings 501 are arranged apart from each other in the X-axis direction and arranged at a constant interval in the Y-axis direction.
  • a gap GA between the opening 501 and the opening 501 adjacent in the Y-axis direction is about 2 mm or less.
  • the diffusion length of carriers (electrons and holes) generated in the silicon substrate 101 is about 2 mm. If the gap GA between the p-type amorphous semiconductor layers 102p is larger than the diffusion length (about 2 mm) of carriers (electrons and holes), the gap between the p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p is between. Carriers disappear and photoelectric conversion efficiency decreases. In this embodiment, since the gap GA is 2 mm or less, carriers can be eliminated and the photoelectric conversion efficiency can be improved.
  • the metal mask 500 may be made of a metal such as stainless steel, copper, nickel, an alloy containing nickel (for example, SUS430, 42 alloy, or Invar material), molybdenum, or the like.
  • a metal such as stainless steel, copper, nickel, an alloy containing nickel (for example, SUS430, 42 alloy, or Invar material), molybdenum, or the like.
  • a mask made of glass, ceramic (alumina, zirconia, etc.), an organic film, or the like may be used.
  • a mask obtained by etching a silicon substrate may be used.
  • the thickness of the metal mask 500 is preferably about 50 ⁇ m to 300 ⁇ m, for example. In this case, the metal mask 500 is not easily bent or floated by a magnetic force.
  • the metal mask 500 is more preferably 42 alloy. Regarding the thickness of the metal mask 500, considering the manufacturing cost, it becomes a problem to dispose the metal mask 500 once. Since the running cost of production can be suppressed by using the metal mask 500 many times, it is preferable to recycle the metal mask 500 and use it many times. In this case, the film deposited on the metal mask 500 is removed using hydrofluoric acid or NaOH.
  • the p-type amorphous semiconductor layer 102p is formed by using, for example, a plasma CVD method.
  • the reaction gas introduced into the reaction chamber provided in the plasma CVD apparatus is silane gas, hydrogen gas, and diborane gas diluted with hydrogen (diborane concentration is about 2%, for example).
  • the hydrogen gas flow rate is 0 to 100 sccm
  • the silane gas flow rate is 40 sccm
  • the diborane gas flow rate is 40 sccm
  • the temperature of the silicon substrate 101 is 150 to 210 ° C.
  • the pressure in the reaction chamber is 40 to 120 Pa
  • the high-frequency power density is 5 to 15 mW / it may be formed using the conditions to cm 2.
  • the p-type amorphous semiconductor layer 102p doped with boron (B) is formed on the i-type amorphous semiconductor layer 102i.
  • an n-type amorphous semiconductor layer 102n is formed on the i-type amorphous semiconductor layer 102i.
  • the n-type amorphous semiconductor layer 102n is formed using, for example, a plasma CVD method with the metal mask 600 shown in FIG. 7 disposed on the back side of the semiconductor substrate 101.
  • the metal mask 600 has a plurality of openings 601 for forming the n-type amorphous semiconductor layer 102n. As shown in FIG. 7, the plurality of openings 601 are arranged apart from each other in the X-axis direction and arranged at a constant interval in the Y-axis direction. The interval GB between the openings 601 adjacent in the Y-axis direction is about 500 to 1500 ⁇ m.
  • the metal mask 600 may have the same material and thickness as the metal mask 500 described above.
  • the n-type amorphous semiconductor layer 102n is formed using plasma CVD, for example.
  • the reaction gas introduced into the reaction chamber provided in the plasma CVD apparatus is silane gas, hydrogen gas, and phosphine gas diluted with hydrogen (phosphine concentration is 1%, for example).
  • the temperature of the silicon substrate 101 is about 170 ° C.
  • the hydrogen gas flow rate is 0 to 100 sccm
  • the silane gas flow rate is about 40 sccm
  • the phosphine gas flow rate is about 40 sccm
  • the pressure in the reaction chamber is about 40 Pa
  • the high-frequency power density is about 8. You may form into a film using the conditions set as 33 mW / cm ⁇ 2 >.
  • an n-type amorphous semiconductor layer 102n doped with phosphorus is formed.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p do not need to overlap with each other, and the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p partially overlap with each other. Also good.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p do not overlap, as shown in FIG. 5D, the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n are spaced apart from each other. K is formed apart.
  • n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p partially overlap, these semiconductors are interposed between the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n.
  • An overlap region is formed where the layers partially overlap.
  • the conductivity of the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n is low, current flows between the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n. In other words, a short circuit of the pn junction does not occur.
  • the p-type electrode 103p and the n-type electrode are formed on the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n.
  • Each of the electrodes 103n is formed.
  • the n-type electrode 103n and the p-type electrode 103p are formed by, for example, a vapor deposition method or a sputtering method by disposing a metal mask 700 shown in FIG. 8 on the silicon substrate 101.
  • the metal mask 700 has a plurality of openings 701n for forming the n-type electrode 103n and a plurality of openings 701p for forming the p-type electrode 103p.
  • the openings 701p and 701n have long sides LCp and LCn (LCp> LCn) of about 80 to 100 mm, and short sides WC of about 500 ⁇ m to 1500 ⁇ m.
  • a gap GC1 between the electrodes 103 adjacent to each other in the direction of the short side WC, that is, a gap width L between the p-type electrode 103p and the n-type electrode 103n is about 100 to 300 ⁇ m.
  • the film thickness of the n-type electrode 103n and the p-type electrode 103p is preferably 50 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. This is because as the electrode 103 becomes thicker, the stress applied to the silicon substrate 101 becomes stronger, causing warpage of the silicon substrate 101.
  • an insulating layer 105 is formed so as to overlap with a part of the upper end of the electrode 103 as shown in FIG. 5F.
  • the insulating layer 105 is formed as follows using, for example, a plasma CVD method. SiN is deposited on the back side of the silicon substrate 101, a resist is applied to a region excluding a predetermined region on the electrode 103, and etching is performed with hydrofluoric acid. The resist may be applied by ink jet or screen printing. Thereby, the insulating layer 105 is formed in a region on the electrode 103 excluding a predetermined region.
  • the insulating layer 105 may be formed using the metal masks 910 and 920 shown in FIGS. 9A and 9B.
  • the metal mask 910 has a plurality of openings 910 a for forming the insulating layer 105.
  • the plurality of openings 910a have a rectangular shape with long sides parallel to the X axis, and are arranged along the Y axis direction.
  • the lengths of the plurality of openings 910a in the X-axis direction are substantially the same, but the lengths of the plurality of openings 910a in the Y-axis direction are arranged on the inner side of the openings 9101 disposed at both ends. It is longer than the opening 9102.
  • the metal mask 920 has two openings 920a.
  • the opening 920a has a rectangular shape whose long side is parallel to the Y axis.
  • the two openings 920a are arranged in the vicinity of two sides parallel to the Y axis in the metal mask 920.
  • the size and outer shape of the metal mask 910 and the metal mask 920 are substantially the same.
  • the left and right ends of the opening 910 a in the metal mask 910 overlap with the opening 920 a in the metal mask 920.
  • the formation of the insulating layer 105 using the metal masks 910 and 920 is performed as follows. After the formation of the electrode 103, first, a metal mask 910 is disposed on the back side of the silicon substrate 101, and SiN is deposited using a plasma CVD method. Thereby, SiN is deposited on the opening 910a. Thereafter, instead of the metal mask 910, a metal mask 920 is disposed on the back surface side of the silicon substrate 101, and a SiN film is formed using a plasma CVD method. As a result, SiN is deposited on the opening 920a and the insulating layer 105 is formed.
  • an insulating layer 105 is formed on the back side of the silicon substrate 101 except for a part of the electrode 103 as shown in FIG. Is done. That is, as illustrated in FIG. 5F, the insulating layer 105 is formed so as to overlap with part of the upper end of the electrode 103. Accordingly, the region of the i-type amorphous semiconductor layer 102i that is not covered by any of the electrode 103, the n-type amorphous semiconductor layer 102n, and the p-type amorphous semiconductor layer 102p is covered with the insulating layer 105.
  • the insulating layer 105 is formed at least in the amorphous silicon layer thin film region. Just do it.
  • the thickness of the SiN film is larger in this region than in other regions. That is, the film thickness of SiN formed on the back side of the silicon substrate 101 has an in-plane distribution. A region where the film thickness of SiN is thicker than the other regions is preferable because the passivation property is improved and the influence of moisture and oxygen from the outside is less likely.
  • the insulating layer 105 When the insulating layer 105 is formed using a metal mask, the insulating layer 105 has the above-described thickness reduction region. This is because when the insulating layer 105 is formed by the plasma CVD method, the reaction gas stays at the end of the opening in the metal mask, and the deposition rate of SiN becomes slower than other regions. Further, when the insulating layer 105 is formed by the sputtering method, the deposition of sputtered particles is hindered by the end of the opening in the metal mask, and the deposition rate of SiN becomes slower than that of other regions.
  • the material of the insulating layer 105 is not limited to this.
  • SiO, SiON, AlO, TiO or the like may be used.
  • FIG. 11 compares the standardized deterioration rates of the conventional photoelectric conversion device (comparative example) in which the insulating layer 105 is not provided and the photoelectric conversion device 1 (A to E) in which the material of the insulating layer 105 is different. Results are shown.
  • the electrode of the comparative example is one in which an Ag paste is formed. Further, the electrodes 103 of A to E are formed by depositing Ag using a sputtering method.
  • the normalized deterioration rate shown in FIG. 11 is obtained by conducting an experiment in which the photoelectric conversion devices of Comparative Example and A to E are left for 1000 hours in an environment where the temperature is 85 ° C. and the relative humidity is 85%. It was determined based on the results of measuring the performance characteristics of
  • deterioration rate ⁇ (photoelectric conversion efficiency before experiment) ⁇ (photoelectric conversion efficiency after experiment) ⁇ ⁇ (before experiment) The photoelectric conversion efficiency) is calculated. Then, assuming that the deterioration rate of the comparative example was 100%, the respective deterioration rates of the photoelectric conversion devices A to E were standardized. That is, the standardized deterioration rate is obtained by calculating the respective deterioration rates of the photoelectric conversion devices A to E / the deterioration rate of the comparative example.
  • the normalized deterioration rates of the photoelectric conversion devices A to E are lower than the normalized deterioration rate of the comparative example, and the photoelectric conversion device is deteriorated by providing the insulating layer 105. It turns out that it is suppressed.
  • the normalized deterioration rate of “B” using SiN as the material of the insulating layer 105 is the lowest, and subsequently, the normalized deterioration rate of “C” using SiON is low. From this result, it can be seen that the use of a material containing Si for the insulating layer 105 further suppresses deterioration of the photoelectric conversion device.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor are formed on the i-type amorphous semiconductor layer 102i formed on the entire back surface of the silicon substrate 101.
  • the layers 102p are formed separately from each other.
  • a continuous electrode 103 is formed on the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p. That is, in the photoelectric conversion device 1, the i-type amorphous semiconductor layer between the p-type amorphous semiconductor layers 102p that are spaced apart and the n-type amorphous semiconductor layer 102n that is spaced apart is disposed.
  • the photoelectric conversion device 1 includes the insulating layer 105 over the i-type amorphous semiconductor layer 102i in which none of the electrode 103, the n-type amorphous semiconductor layer 102n, and the p-type amorphous semiconductor layer 102p is formed. Is formed. That is, in the photoelectric conversion device 1, since the i-type amorphous semiconductor layer 102i between the adjacent p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n is protected by the insulating layer 105, i The type amorphous semiconductor layer 102i is not exposed.
  • the amorphous silicon layer thin film region where the thickness of the semiconductor layer is 10 nm or less is covered with the electrode 103 or the insulating layer 105.
  • the electrode 103 or the insulating layer 105 As a result, even when the thickness of the i-type amorphous semiconductor layer 102i is 10 nm or less, moisture, organic matter, or the like from the outside does not enter the i-type amorphous semiconductor layer 102i. Deterioration can be suppressed.
  • the insulating layer 105 is formed so as to overlap with part of the upper end of the electrode 103, the electrode 103 and the semiconductor layer (the i-type amorphous semiconductor layer 102i, the n-type amorphous semiconductor layer 102n, and the p-type are formed). Adhesion with the amorphous semiconductor layer 102p) is improved. Accordingly, it is possible to reduce the occurrence of defects such as peeling of the electrode 103 from the silicon substrate 101 due to the stress of the film formed on the silicon substrate 101 or the stress applied to the silicon substrate 101 during modularization.
  • the end portions of the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p are not aligned. Further, a position between the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n, and a position between the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p. Are not aligned. Therefore, when forming the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p, the metal masks 500 and 600 are unlikely to be bent or float due to stress.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p can be formed at appropriate positions, and the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p can be formed. Can be formed more finely.
  • the carrier collection efficiency can be improved.
  • FIG. 12 is a schematic diagram showing a plane of the photoelectric conversion device 1A in the present modification.
  • This modification differs from the photoelectric conversion apparatus 1 (see FIG. 1) of the first embodiment in the following points.
  • the positions of the end portions of the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p are aligned. Further, a position between the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n, and a position between the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p. And all.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p are more easily affected by the stress of the metal mask.
  • the n-type amorphous semiconductor layer 102n and the p-type are less affected by the stress of the metal mask.
  • the amorphous semiconductor layer 102p can be formed at an appropriate position.
  • the region of the i-type amorphous semiconductor layer 102i in which none of the electrode 103, the n-type amorphous semiconductor layer 102n, and the p-type amorphous semiconductor layer 102p is formed that is, An insulating layer 105 is formed on the amorphous silicon layer thin film region. Therefore, it is difficult for moisture, organic substances, and the like from the outside to enter the i-type amorphous semiconductor layer 102i, and deterioration of the photoelectric conversion device 1A can be suppressed.
  • FIG. 13 is a schematic diagram illustrating a plane of a photoelectric conversion device according to this modification.
  • FIG. 14A is a schematic diagram showing an AA cross section of the photoelectric conversion device 1B shown in FIG. 14B is a schematic diagram showing a BB cross section of the photoelectric conversion device 1B shown in FIG.
  • the photoelectric conversion device 1B is different from the photoelectric conversion device 1 of the first embodiment (see FIG. 1) in that the insulating layer 105 does not overlap with a part of the upper end of the electrode 103. Different.
  • the adhesion between the electrode 103 and the semiconductor layer (the i-type amorphous semiconductor layer 102i, the n-type amorphous semiconductor layer 102n, and the p-type amorphous semiconductor layer 102p) is larger than that of the photoelectric conversion device 1A. Sex declines. However, also in the photoelectric conversion device 1B, the i-type amorphous semiconductor between the n-type amorphous semiconductor layers 102n that are spaced apart and the p-type amorphous semiconductor layer 102p that is spaced apart is also present. The region of the layer 102 i is covered with the electrode 103.
  • a region of the i-type amorphous semiconductor layer 102 i where neither the n-type amorphous semiconductor layer 102 n nor the p-type amorphous semiconductor layer 102 p is formed is covered with the insulating layer 105. Therefore, it is difficult for moisture, organic substances, and the like from the outside to enter such an i-type amorphous semiconductor layer 102i region, that is, an amorphous silicon layer thin film region, and deterioration of the photoelectric conversion device 1B can be suppressed.
  • FIG. 15A is a schematic diagram showing the plane of the metal mask of this modification used when forming the insulating layer 105.
  • FIG. 15B is a schematic diagram showing a II cross section of the metal mask shown in FIG.
  • the metal mask 930 has a plurality of openings 930a.
  • the opening 930a is formed by a plurality of bridges 930b arranged at regular intervals along the Y-axis direction, and an outer peripheral portion 930c. Both ends of the plurality of bridges 930b are connected to ends in the X-axis direction of the outer peripheral portion 930c.
  • the reaction gas used in the plasma CVD method easily flows around, so that the reaction gas also enters the region 9301 in the metal mask 930.
  • the region 9301 in the metal mask 930.
  • the insulating layer 105 is also formed in a region where a step is generated. Note that also in the case where the insulating layer 105 is formed using the metal mask 930, the insulating layer 105 has the above-described thickness reduction region.
  • the metal mask 930 it is not necessary to pattern the region where the insulating layer 105 is to be formed after the SiN is deposited, and the insulating layer 105 is insulated by a single SiN film formation as shown in FIGS. Since the layer 105 can be formed, the manufacturing cost of the photoelectric conversion device 1 can be reduced.
  • FIG. 16 is a schematic diagram showing a plane of the photoelectric conversion device in the present embodiment.
  • FIG. 17A is a schematic diagram showing a CC cross section of the photoelectric conversion device 1C shown in FIG.
  • FIG. 17B is a schematic diagram illustrating a DD cross section of the photoelectric conversion device 1C illustrated in FIG. 16, FIG. 17A and 17B, the same code
  • a configuration different from the first embodiment will be described.
  • the region of the i-type amorphous semiconductor layer 102i is an amorphous silicon layer thin film region, and an insulating layer 1051 is provided in this region as an example of a protective layer.
  • the p-type electrode 103p or the n-type electrode 103n is provided on the insulating layer 1051.
  • a region not covered with the n-type amorphous semiconductor layer 102n or the p-type amorphous semiconductor layer 102p is an amorphous silicon layer thin film region, and an insulating layer 105 is provided in this region.
  • the insulating layer 1051 is made of the same material as the insulating layer 105 in the first embodiment described above.
  • the manufacturing method of the photoelectric conversion device 1C in the present embodiment is performed as follows. For example, after performing the above-described steps shown in FIGS. 5A to 5D, the n-type amorphous semiconductor layer 102n disposed between and spaced apart from the p-type amorphous semiconductor layer 102p.
  • An insulating layer 1051 is formed so as to be in contact with the i-type amorphous semiconductor layer 102i therebetween.
  • the insulating layer 1051 may be formed by depositing SiN by plasma CVD using a metal mask 940 having an opening 940 a for forming the insulating layer 1051. Good.
  • the openings 940a are arranged substantially in parallel along the Y axis. Thereby, a plurality of insulating layers 1051 connected in a line along the Y-axis direction are formed.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p are formed by plasma CVD after the step illustrated in FIG. 5D.
  • the insulating layer 1051 may be formed by depositing SiN so as to cover, applying a resist to a region where the insulating layer 1051 is to be formed, and etching with hydrofluoric acid.
  • the photoelectric conversion device 1C in the second embodiment described above is the photoelectric conversion device in the first embodiment in that the p-type electrode 103p and the n-type electrode 103n are not in contact with the i-type amorphous semiconductor layer 102i. Different from 1.
  • the region of the i-type amorphous semiconductor layer 102i between the p-type amorphous semiconductor layers 102p that are spaced apart is protected by the insulating layer 1051, and the n-type amorphous semiconductor layer
  • the region of the i-type amorphous semiconductor layer 102i that is not covered by either the n-type amorphous semiconductor layer 102p or the p-type amorphous semiconductor layer 102p is protected by the insulating layer 105.
  • the region of the i-type amorphous semiconductor layer 102i that is, the amorphous silicon layer thin film region is not exposed, and moisture, organic matter, or the like hardly enters the i-type amorphous semiconductor layer 102i from the outside. 1C deterioration can be suppressed.
  • a current flows to the n-type amorphous semiconductor layer 102n side through the insulating layer 1051 that covers the p-type amorphous semiconductor layer 102p that is spaced apart. Leakage can be suppressed. As a result, the shunt resistance in the photoelectric conversion device 1C can be reduced, and the fill factor FF of the photoelectric conversion device 1C can be improved.
  • the insulating layer 105 is disposed between the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n so as to overlap a part of the upper end of the electrode 103. Is covered. Thereby, the adhesion between the electrode 103 and the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n is improved. As a result, the electrode 103 is not easily peeled off from the silicon substrate 101 due to the stress of the film formed on the silicon substrate 101 or the stress generated in the silicon substrate 101 when the photoelectric conversion device 1C is modularized.
  • FIG. 19 is a schematic diagram illustrating a plane of the photoelectric conversion device in the present embodiment.
  • FIG. 20A is a schematic diagram showing an EE cross section of the photoelectric conversion device 1D shown in FIG.
  • FIG. 20B is a schematic diagram showing a FF cross section of the photoelectric conversion device 1D shown in FIG. 19, FIG. 20A and 20B, the same code
  • a configuration different from the first embodiment will be described.
  • the photoelectric conversion device 1D includes a plurality of p-type electrodes that are spaced apart from each other in the X-axis direction on the spaced apart p-type amorphous semiconductor layer 102p. 103p is provided.
  • a plurality of n-type electrodes 103n that are spaced apart from each other in the X-axis direction are provided on n-type amorphous semiconductor layers 102n that are spaced apart.
  • the region of the i-type amorphous semiconductor layer 102i between the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p is an amorphous silicon layer thin film region, and this region is covered by the p-type electrode 103p. Is called. Further, the i-type amorphous semiconductor layer 102i between the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n is an amorphous silicon layer thin film region, and this region is covered with the n-type electrode 103n. Is called.
  • the electrode 103 overlaps with a part of the upper end of each electrode 103 and is covered with any of the electrode 103, the n-type amorphous semiconductor layer 102n, and the p-type amorphous semiconductor layer 102p.
  • An insulating layer 105 is provided in a region of the i-type amorphous semiconductor layer 102 i that is not present, that is, in an amorphous silicon layer thin film region.
  • the photoelectric conversion device 1D according to the present embodiment is different from the first embodiment in that the p-type electrode 103p and the n-type electrode 103n are provided apart from each other in the X-axis direction.
  • the manufacturing method of the photoelectric conversion device 1D in the present embodiment is performed as follows. For example, after performing the above-described steps shown in FIGS. 5A to 5D, the p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p that are spaced apart from each other on the p-type amorphous semiconductor layer 102p are disposed. A p-type electrode 103p is formed in contact with the i-type amorphous semiconductor layer 102i between the amorphous semiconductor layers 102p.
  • the i-type amorphous semiconductor layer 102n is disposed between the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n, which are spaced apart from each other on the n-type amorphous semiconductor layer 102n.
  • An n-type electrode 103n is formed in contact with 102i.
  • the p-type electrode 103p and the n-type electrode 103n may be formed using the metal mask 710 shown in FIG.
  • the metal mask 710 has an opening 710p for forming the p-type electrode 103p and an opening 710n for forming the n-type electrode 103n.
  • the metal mask 710 is provided with openings 710p and 710n apart from each other in the X-axis direction, and the positions of the ends of the openings 710p and 710n adjacent in the Y-axis direction are not aligned. Therefore, the p-type electrode 103p and the n-type electrode 103n can be formed at appropriate positions with less bending than the metal mask 700.
  • the photoelectric conversion device 1D in the third embodiment is an i-type amorphous layer between the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p.
  • the region of the i-type amorphous semiconductor layer 102i between the semiconductor layer 102i and the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n is an amorphous silicon layer thin film region, and is a p-type electrode. 103p and n-type electrode 103n are respectively protected.
  • the amorphous silicon layer thin film region is not exposed, and the i-type amorphous semiconductor layer 102i can be prevented from being mixed with moisture or organic substances from the outside.
  • the electrodes 103 are arranged apart from each other, so that the stress of the electrode 103 is relieved as compared with the photoelectric conversion device 1 in the first embodiment, and the silicon substrate 101 is not easily stressed. As a result, the stress applied to the silicon substrate 101 when the photoelectric conversion device 1D is modularized is reduced, and a defect that the electrode 103 is peeled off from the silicon substrate 101 can be suppressed.
  • FIG. 22 is a schematic diagram showing a plane of the photoelectric conversion device in the present embodiment.
  • FIG. 23A is a schematic diagram showing a GG section of the photoelectric conversion device 1E shown in FIG.
  • FIG. 23B is a schematic diagram showing an HH cross section of the photoelectric conversion device 1E shown in FIG. 22, FIG. 23A and 23B, the same code
  • a configuration different from the first embodiment will be described.
  • a p-type electrode 103p is provided on each of a plurality of p-type amorphous semiconductor layers 102p that are spaced apart.
  • the n-type electrode 103n is provided on each of the plurality of n-type amorphous semiconductor layers 102n that are spaced apart.
  • the photoelectric conversion device 1E overlaps with a part of the upper end of each electrode 103 and covers both the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p.
  • a region of the i-type amorphous semiconductor layer 102i that is not exposed is an amorphous silicon layer thin film region, and an insulating layer 105 is provided in this region.
  • the p-type electrode 103p and the n-type electrode 103n are provided apart from each other in the X-axis direction, and the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor are provided.
  • the layer 102p and the adjacent n-type amorphous semiconductor layer 102n and the n-type amorphous semiconductor layer 102n are not covered with the p-type electrode 103p and the n-type electrode 103n.
  • the manufacturing method of the photoelectric conversion device 1E is performed as follows. For example, after performing the steps shown in FIGS. 5A to 5D, the p-type electrode 103p is formed on the p-type amorphous semiconductor layer 102p, and the n-type amorphous semiconductor layer 102n is n-type. An electrode 103n is formed. In this case, for example, the p-type electrode 103p and the n-type electrode 103n may be formed using the metal mask 720 shown in FIG.
  • the metal mask 720 has an opening 720p for forming the p-type electrode 103p shown in FIG. 22 and an opening 720n for forming the n-type electrode 103n shown in FIG.
  • the metal mask 720 is provided with openings 720p and 720n apart from each other in the X-axis direction, and a position between the adjacent openings 720p and 720p and a position between the adjacent openings 720n and 720n. Are not aligned. Therefore, the p-type electrode 103p and the n-type electrode 103n can be formed at appropriate positions with less bending than the metal mask 700.
  • the photoelectric conversion device 1E includes an i-type amorphous semiconductor layer 102i between the adjacent p-type amorphous semiconductor layer 102p and the p-type amorphous semiconductor layer 102p, and an adjacent n-type amorphous semiconductor.
  • the region of the i-type amorphous semiconductor layer 102i between the semiconductor layer 102n and the n-type amorphous semiconductor layer 102n is an amorphous silicon layer thin film region, and these regions are protected by the insulating layer 105, respectively. Therefore, in the photoelectric conversion device 1E, the amorphous silicon layer thin film region is not exposed, and it is possible to prevent moisture, organic substances, and the like from entering the i-type amorphous semiconductor layer 102i.
  • FIG. 25 is a schematic diagram showing a plane of the photoelectric conversion device in the present embodiment.
  • FIG. 26A is a schematic diagram showing a II cross section of the photoelectric conversion device 1F shown in FIG. 26B is a schematic diagram illustrating a JJ cross section of the photoelectric conversion device 1F illustrated in FIG. 25, 26A and 26B, the same reference numerals as those in the first embodiment are given to the same configurations as those in the first embodiment.
  • a configuration different from the first embodiment will be described.
  • a p-type electrode 103p is provided on each of a plurality of p-type amorphous semiconductor layers 102p that are spaced apart.
  • an n-type electrode 103n is provided on each of the plurality of n-type amorphous semiconductor layers 102n that are spaced apart.
  • an insulating layer 1053 is provided between the adjacent p-type amorphous semiconductor layer 102p and n-type amorphous semiconductor layer 102n.
  • the insulating layer 1053 is formed so as to overlap with a part of the upper end of the n-type electrode 103n, and the p-type amorphous is formed so as to cover a part of the insulating layer 1053.
  • a semiconductor layer 102p is formed.
  • the photoelectric conversion device 1F overlaps with a part of the upper end of each electrode 103 and covers both the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p.
  • the i-type amorphous semiconductor layer 102i that is not exposed is an amorphous silicon layer thin film region, and an insulating layer 105 is provided in this region.
  • an insulating layer 105 is formed in contact with the i-type amorphous semiconductor layer 102i between 102n.
  • An insulating layer 1053 is formed in contact with the i-type amorphous semiconductor layer 102i between the adjacent p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n. That is, in this example, the insulating layer 1053 and the insulating layer 105 are provided as an example of a protective layer covering the amorphous silicon layer thin film region.
  • the manufacturing method of the photoelectric conversion device 1F is performed as follows. For example, after performing the above-described steps shown in FIGS. 5A to 5B, the n-type amorphous semiconductor layer 102n is formed on the i-type amorphous semiconductor layer 102i. Then, an n-type electrode 103n is formed on the n-type amorphous semiconductor layer 102n (see FIG. 27A). Note that the formation method of the n-type amorphous semiconductor layer 102n in this embodiment is the same as that in the first embodiment. Further, the n-type electrode 103n may be formed using a metal mask 730 shown in FIG. 28A.
  • the metal mask 730 has an opening 730n for forming the n-type electrode 103n shown in FIG.
  • the openings 730n are arranged apart from each other in the X-axis direction and are arranged substantially in parallel with a certain interval in the Y-axis direction.
  • an insulating layer 1053 is formed so as to cover a part of the upper end of the n-type electrode 103 and the n-type amorphous semiconductor layer 102n (see FIG. 27B).
  • SiN is formed by plasma CVD using a metal mask 950 shown in FIG. 28B.
  • the metal mask 950 has an opening 950 a for forming the insulating layer 1053.
  • the openings 950a have a rectangular shape and are arranged substantially in parallel along the Y-axis direction.
  • a continuous insulating layer 1053 that covers a part of the upper end of the n-type electrode 103 and a part of the n-type amorphous semiconductor layer 102n and is substantially parallel to the X axis is formed.
  • a p-type amorphous semiconductor layer 102p is formed so as to cover part of the insulating layer 1053 and part of the n-type amorphous semiconductor layer 102n, and then the p-type amorphous semiconductor layer 102p is formed.
  • a p-type electrode 103p is formed thereon (see FIG. 27C).
  • the p-type amorphous semiconductor layer 102p in this embodiment is formed using the metal mask 510 shown in FIG. 28C.
  • the metal mask 510 has an opening 510p having a width (WA ⁇ WA1) in the Y-axis direction larger than the opening 501 (see FIG. 5) of the metal mask used in the first embodiment.
  • the p-type electrode 103p may be formed using a metal mask 740 shown in FIG. 28D.
  • the metal mask 740 has an opening 740p for forming the p-type electrode 103p shown in FIG.
  • the openings 740p are spaced apart from each other in the X-axis direction, and are arranged substantially in parallel with a certain interval in the Y-axis direction.
  • the p-type electrode 103p is formed on each of the p-type amorphous semiconductor layers 102p that are spaced apart in the X-axis direction.
  • a method similar to that of the first embodiment is applied to the region of the i-type amorphous semiconductor layer 102i that is not covered by the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p. Is used to form the insulating layer 105 (see FIG. 27D).
  • the region of the i-type amorphous semiconductor layer 102i between the adjacent p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n is protected by the insulating layer 1053.
  • the region of the i-type amorphous semiconductor layer 102 i between the adjacent p-type amorphous semiconductor layers 102 p and the adjacent n-type amorphous semiconductor layers is protected by the insulating layer 105. Therefore, in the photoelectric conversion device 1F, such a region of the i-type amorphous semiconductor layer 102i, that is, the amorphous silicon layer thin film region is not exposed, and entry of moisture, organic matter, and the like from the outside can be suppressed.
  • the p-type amorphous semiconductor layer 102p is formed after the i-type amorphous semiconductor layer 102i is formed, and then the n-type amorphous semiconductor layer 102n is formed. The Then, after the electrode 103 is formed on the p-type amorphous semiconductor layer 102p and the n-type amorphous semiconductor layer 102n, the insulating layer 105 is formed.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p May overlap.
  • a leak current is generated between the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p are n-type amorphous even if the position of the metal mask of the amorphous semiconductor layer to be formed later is shifted. Since the insulating layer 1053 is provided between the crystalline semiconductor layer 102n and the p-type amorphous semiconductor layer 102p, the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p are not in direct contact with each other. Therefore, leakage current between the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p can be suppressed.
  • FIG. 29 is a schematic diagram illustrating a configuration of a photoelectric conversion module according to the present embodiment.
  • the photoelectric conversion module 1000 includes a plurality of photoelectric conversion devices 1001, a cover 1002, and output terminals 1003 and 1004.
  • any of the photoelectric conversion devices 100 for example, one in which a wiring sheet is bonded to any one of the photoelectric conversion devices 1, 1A to 1F may be applied. Also, any of the photoelectric conversion devices may be arranged in an array on the wiring sheet and connected in series. Instead of connecting in series, parallel connection or a combination of series and parallel is connected. It may be done.
  • the cover 1002 is made of a weather resistant cover and covers the plurality of photoelectric conversion devices 1001.
  • the cover 1002 includes, for example, a transparent base material (for example, glass) provided on the light receiving surface side of the photoelectric conversion device 1001 and a back base material (for example, glass, resin sheet) provided on the back surface of the photoelectric conversion device 1001. And a sealing material (for example, EVA) that fills a gap between the transparent substrate and the resin substrate.
  • a transparent base material for example, glass
  • a back base material for example, glass, resin sheet
  • the output terminal 1003 is connected to a photoelectric conversion device 1001 disposed at one end of a plurality of photoelectric conversion devices 1001 connected in series.
  • the output terminal 1004 is connected to the photoelectric conversion device 1001 arranged at the other end of the plurality of photoelectric conversion devices 1001 connected in series.
  • the photoelectric conversion module 1000 is not limited to the above configuration as long as at least one of the plurality of photoelectric conversion devices 1001 includes any one of the photoelectric conversion devices of the first to sixth embodiments, and may take any configuration.
  • FIG. 30A is a schematic diagram illustrating a configuration of a photovoltaic power generation system according to the present embodiment.
  • the photovoltaic power generation system 1100 includes a photoelectric conversion module array 1101, a connection box 1102, a power conditioner 1103, a distribution board 1104, and a power meter 1105.
  • Functions such as “Home Energy Management System (HEMS)” and “Building Energy Management System (BEMS)” are added to the photovoltaic power generation system 1100.
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • connection box 1102 is connected to the photoelectric conversion module array 1101.
  • the power conditioner 1103 is connected to the connection box 1102.
  • Distribution board 1104 is connected to power conditioner 1103 and electrical equipment 1110.
  • the power meter 1105 is connected to the distribution board 1104 and the commercial power system.
  • the photoelectric conversion module array 1101 converts sunlight into electricity to generate DC power, and supplies the generated DC power to the connection box 1102.
  • connection box 1102 receives the DC power generated by the photoelectric conversion module array 1101 and supplies the received DC power to the power conditioner 1103.
  • the power conditioner 1103 converts the DC power received from the connection box 1102 into AC power, and supplies the converted AC power to the distribution board 1104.
  • Distribution board 1104 supplies AC power received from power conditioner 1103 and / or commercial power received via power meter 1105 to electrical equipment 1110. Further, when the AC power received from the power conditioner 1103 is larger than the power consumption of the electric device 1110, the distribution board 1104 supplies the surplus AC power to the commercial power system via the power meter 1105.
  • the power meter 1105 measures the power in the direction from the commercial power system to the distribution board 1104 and measures the power in the direction from the distribution board 1104 to the commercial power system.
  • FIG. 31 is a schematic diagram showing the configuration of the photoelectric conversion module array 1101 shown in FIG. 30A.
  • photoelectric conversion module array 1101 includes a plurality of photoelectric conversion modules 1120 and output terminals 1121 and 1122.
  • the plurality of photoelectric conversion modules 1120 are arranged in an array and connected in series. Each of the plurality of photoelectric conversion modules 1120 includes a photoelectric conversion module 1000 shown in FIG.
  • the output terminal 1121 is connected to a photoelectric conversion module 1120 located at one end of a plurality of photoelectric conversion modules 1120 connected in series.
  • the output terminal 1122 is connected to the photoelectric conversion module 1120 located at the other end of the plurality of photoelectric conversion modules 1120 connected in series.
  • the photoelectric conversion module array 1101 generates sunlight by converting sunlight into electricity, and supplies the generated DC power to the power conditioner 1103 via the connection box 1102.
  • the power conditioner 1103 converts the DC power received from the photoelectric conversion module array 1101 into AC power, and supplies the converted AC power to the distribution board 1104.
  • the distribution board 1104 supplies the AC power received from the power conditioner 1103 to the electrical device 1110 when the AC power received from the power conditioner 1103 is greater than or equal to the power consumption of the electrical device 1110. Distribution board 1104 supplies surplus AC power to the commercial power system via power meter 1105.
  • the distribution board 1104 receives the AC power received from the commercial power system and the AC power received from the power conditioner 1103 to the electric device 1110. Supply.
  • the photovoltaic power generation system according to the present embodiment is not limited to the configuration shown in FIGS. 29 and 30A, but is a modification of the first embodiment and the first embodiment, and photoelectric conversion devices according to the second to fifth embodiments. As long as any one of the above is used, any configuration may be used.
  • a storage battery 1106 may be connected to the power conditioner 1103. In this case, output fluctuation due to fluctuations in the amount of sunlight can be suppressed, and power stored in the storage battery 1106 can be supplied even in a time zone without sunlight.
  • the storage battery 1106 may be built in the power conditioner 1103.
  • FIG. 32A is a schematic diagram illustrating a configuration of a photovoltaic power generation system according to the present embodiment.
  • the photovoltaic power generation system 1200 includes subsystems 1201 to 120n (n is an integer of 2 or more), power conditioners 1211 to 121n, and a transformer 1221.
  • the photovoltaic power generation system 1200 is a photovoltaic power generation system having a larger scale than the photovoltaic power generation system 1100 illustrated in FIGS. 30A and 30B.
  • the power conditioners 1211 to 121n are connected to the subsystems 1201 to 120n, respectively.
  • the transformer 1221 is connected to the power conditioners 1211 to 121n and the commercial power system.
  • Each of the subsystems 1201 to 120n includes module systems 1231 to 123j (j is an integer of 2 or more).
  • Each of the module systems 1231 to 123j includes photoelectric conversion module arrays 1301 to 130i (i is an integer of 2 or more), connection boxes 1311 to 131i, and a current collection box 1321.
  • Each of the photoelectric conversion module arrays 1301 to 130i has the same configuration as the photoelectric conversion module array 1101 shown in FIG. 30A.
  • connection boxes 1311 to 131i are connected to the photoelectric conversion module arrays 1301 to 130i, respectively.
  • the current collection box 1321 is connected to the connection boxes 1311 to 131i. Also, j current collection boxes 1321 of the subsystem 1201 are connected to the power conditioner 1211. The j current collection boxes 1321 of the subsystem 1202 are connected to the power conditioner 1212. Hereinafter, similarly, j current collection boxes 1321 of the subsystem 120n are connected to the power conditioner 121n.
  • the i photoelectric conversion module arrays 1301 to 130i of the module system 1231 generate sunlight by converting sunlight into electricity, and the generated DC power is collected through the connection boxes 1311 to 131i, respectively.
  • the i photoelectric conversion module arrays 1301 to 130i of the module system 1232 generate sunlight by converting sunlight into electricity, and the generated DC power is collected through the connection boxes 1311 to 131i, respectively.
  • the i photoelectric conversion module arrays 1301 to 130i of the module system 123j convert sunlight into electricity to generate DC power, and the generated DC power is connected to the connection boxes 1311 to 131i, respectively. To the current collection box 1321.
  • the j current collection boxes 1321 of the subsystem 1201 supply DC power to the power conditioner 1211.
  • the j current collection boxes 1321 of the subsystem 1202 supply DC power to the power conditioner 1212 in the same manner.
  • the j current collecting boxes 1321 of the subsystem 120n supply DC power to the power conditioner 121n.
  • the power conditioners 1211 to 121n convert the DC power received from the subsystems 1201 to 120n into AC power, and supply the converted AC power to the transformer 1221.
  • the transformer 1221 receives AC power from the power conditioners 1211 to 121n, converts the voltage level of the received AC power, and supplies it to the commercial power system.
  • the photovoltaic power generation system according to the present embodiment is not limited to the configuration illustrated in FIG. 32A, and includes a modification of the first embodiment and the first embodiment, and photoelectric conversion devices according to the second to fifth embodiments. Any configuration may be used as long as either one is used.
  • a storage battery 1213 may be connected to the power conditioners 1211 to 121n, or the storage battery 1213 may be built in the power conditioners 1211 to 121n.
  • the power conditioners 1211 to 121n can appropriately convert part or all of the direct-current power received from the current collection box 1321, and store it in the storage battery 1213.
  • the electric power stored in the storage battery 1213 is appropriately supplied to the power conditioners 1211 to 121n according to the power generation amount of the subsystems 1201 to 120n, and is appropriately converted into electric power and supplied to the transformer 1221.
  • the antireflection film 104 is formed on the light receiving surface of the silicon substrate 101 has been described.
  • the antireflection film 104 may not be formed.
  • an n + layer in which a high concentration n-type dopant is diffused may be formed.
  • an n + layer in which a high-concentration n-type dopant is diffused may be formed between the light receiving surface of the silicon substrate 101 and the antireflection film 104.
  • the i-type amorphous semiconductor layer 102 i and the n-type amorphous semiconductor layer 102 n may be sequentially formed and sandwiched between the silicon substrate 101 and the antireflection film 104.
  • the i-type amorphous semiconductor layer 102i is formed on the entire back surface of the silicon substrate 101, and then the p-type film is formed on the i-type amorphous semiconductor layer 102i.
  • the n-type amorphous semiconductor layer 102n is formed on the i-type amorphous semiconductor layer 102i, and then the p-type amorphous semiconductor layer 102p is changed to i. It may be formed on the type amorphous semiconductor layer 102i.
  • FIG. 33 is a schematic diagram illustrating a cross section of a photoelectric conversion device according to this modification.
  • the photoelectric conversion device 1G has a texture formed not only on the light receiving surface of the silicon substrate 101 but also on the back surface.
  • An i-type amorphous semiconductor layer 102i, an n-type amorphous semiconductor layer 102n, and a p-type amorphous semiconductor layer 102p are formed along the textured irregularities formed on the back surface of the silicon substrate 101.
  • the n-type amorphous semiconductor layer 102n and the p-type amorphous semiconductor layer 102p and the electrode 103 are formed using a photomask. Therefore, it is difficult to obtain a desired shape.
  • an n-type amorphous semiconductor layer having a desired shape is used. 102n and the p-type amorphous semiconductor layer 102p and the electrode 103 can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

光電変換装置(1)は、半導体基板(101)の一方の面に接するように形成されたi型非晶質半導体層(102i)と、i型非晶質半導体層(102i)の上に離間して配置されたp型非晶質半導体層(102p)と、i非晶質半導体層(102i)の上に離間して配置され、かつ半導体基板(101)の面内方向においてp型非晶質半導体層(102p)に隣接して形成されたn型非晶質半導体層(102n)とを備える。さらに、光電変換装置(1)は、隣接するp型非晶質半導体層(102p)の間、及び隣接するn型非晶質半導体層(102n)の間においてi型非晶質半導体層(102)に接するように形成された保護層として電極(103)を備える。

Description

光電変換装置
 本発明は、光電変換装置に関する。
 特開2010-283406号公報には、裏面電極型太陽電池が開示されている。この裏面電極型太陽電池は、単結晶シリコン基板の裏面に、アモルファスシリコン層を形成し、その上に、n型非晶質半導体層とp型非晶質半導体層が交互に形成されている。そして、n型非晶質半導体層とp型非晶質半導体層の上にはそれぞれ電極が形成されている。この裏面電極型太陽電池において、n型非晶質半導体層は、離間して配置された2つの島状n型非晶質半導体層からなり、p型非晶質半導体層は一つながりの半導体層からなる。
 特開2010-283406号公報の場合、隣接する島状n型非晶質半導体層の間や、n型非晶質半導体層とp型非晶質半導体層の間の領域は、アモルファスシリコン層が最表面となる。そのため、アモルファスシリコン層に外部から水分や有機物などが入り込みやすくなり、パッシベーション性が低下し、光電変換装置の劣化を招く。
 本発明の目的は、光電変換装置の劣化を抑制することができる技術を提供することを目的とする。
 本発明に係る光電変換装置は、半導体基板と、前記半導体基板の一方の面に接するように形成された真性非晶質半導体層と、前記真性非晶質半導体層の上に離間して配置された第1導電型を有する第1非晶質半導体層と、前記真性非晶質半導体層の上に離間して配置され、かつ前記半導体基板の面内方向において前記第1非晶質半導体層に隣接して形成され、前記第1導電型と反対の第2導電型を有する第2非晶質半導体層と、隣接する前記第1非晶質半導体層の間、及び隣接する前記第2非晶質半導体層の間において前記真性非晶質半導体層に接するように形成された保護層と、を備える。
 本発明によれば、光電変換装置の劣化を抑制することができる。
図1は、第1実施形態に係る光電変換装置の平面を表す模式図である。 図2Aは、図1に示す光電変換装置のA-A断面を示す模式図である。 図2Bは、図1に示す光電変換装置のB-B断面を示す模式図である。 図3Aは、p型非晶質半導体層の断面構造を例示した模式図である。 図3Bは、p型非晶質半導体層の他の断面構造を例示した模式図である。 図3Cは、p型非晶質半導体層の他の断面構造を例示した模式図である。 図3Dの(a)は、i型非晶質半導体層とシリコン基板の表面との界面から非晶質半導体層の表面までの膜厚を測定した結果を表す模式図である。図3Dの(b)は、図3Dの(a)に示す膜厚をプロットし直した結果を表す模式図である。 図4は、第1実施形態における配線シートの平面を表す模式図である。 図5Aは、図1に示す光電変換装置の製造工程を説明する図であって、シリコン基板にテクスチャが形成された状態の断面図である。 図5Bは、図5Aに示すシリコン基板の受光面に反射防止膜が形成された状態を示す断面図である。 図5Cは、図5Bに示すシリコン基板の裏面にi型非晶質半導体層とp型非晶質半導体層とが形成された状態の断面図である。 図5Dは、図5Cに示すシリコン基板の裏面にn型非晶質半導体層が形成された状態の断面図である。 図5Eは、図5Dに示すp型非晶質半導体層及びn型非晶質半導体層の上に電極が形成された状態の断面図である。 図5Fは、図5Eに示すシリコン基板の裏面に絶縁層が形成された状態の断面図である。 図6は、図5Cの工程においてp型非晶質半導体層を形成する際に用いるメタルマスクの平面を表す模式図である。 図7は、図5Cの工程においてn型非晶質半導体層を形成する際に用いるメタルマスクの平面を表す模式図である。 図8は、図5Dの工程において電極を形成する際に用いるメタルマスクの平面を表す模式図である。 図9Aは、図5Eの工程において絶縁層を形成する際に用いるメタルマスクの平面を表す模式図である。 図9Bは、図5Eの工程において絶縁層を形成する際に用いるメタルマスクの平面を表す模式図である。 図10は、図9A及び図9Bのメタルマスクを用いてシリコン基板の裏面に絶縁層が形成された状態を表す模式図である。 図11は、第1実施形態の光電変換装置と比較例の劣化率を示す図である。 図12は、第1実施形態の変形例1に係る光電変換装置の平面を表す模式図である。 図13は、第1実施形態の変形例2に係る光電変換装置の平面を表す模式図である。 図14Aは、図13に示す光電変換装置のA-A断面を示す模式図である。 図14Bは、図13に示す光電変換装置のB-B断面を示す模式図である。 図15の(a)は、第1実施形態の変形例3において絶縁層を形成する際に用いるメタルマスクの平面を表す模式図である。図15の(b)は、図15の(a)に示すメタルマスクの断面を表す模式図である。 図16は、第2実施形態に係る光電変換装置の平面を表す模式図である。 図17Aは、図16に示す光電変換装置のC-C断面を示す模式図である。 図17Bは、図16に示す光電変換装置のD-D断面を示す模式図である。 図18は、第2実施形態において絶縁層を形成する際に用いるメタルマスクの平面を表す模式図である。 図19は、第3実施形態に係る光電変換装置の平面を表す模式図である。 図20Aは、図19に示す光電変換装置のE-E断面を示す模式図である。 図20Bは、図19に示す光電変換装置のF-F断面を示す模式図である。 図21は、図19に示す電極を形成する際に用いるメタルマスクの平面を表す模式図である。 図22は、第4実施形態に係る光電変換装置の平面を表す模式図である。 図23Aは、図22に示す光電変換装置のG-G断面を示す模式図である。 図23Bは、図22に示す光電変換装置のH-H断面を示す模式図である。 図24は、図22に示す電極を形成する際に用いるメタルマスクの平面を表す模式図である。 図25は、第5実施形態に係る光電変換装置の平面を表す模式図である。 図26Aは、図25に示す光電変換装置のI-I断面を示す模式図である。 図26Bは、図25に示す光電変換装置のJ-J断面を示す模式図である。 図27Aは、第5実施形態においてi型非晶質半導体層の上にn型非晶質半導体層が形成され、n型非晶質半導体層の上にn型電極が形成された状態を示す断面図である。 図27Bは、図27Aに示すn型電極とn型非晶質半導体層を覆う絶縁層が形成された状態を示す断面図である。 図27Cは、図27Bに示すi型非晶質半導体層の上にp型非晶質半導体層が形成され、p型非晶質半導体層の上にp型電極が形成された状態を示す断面図である。 図27Dは、図27Cに示すi型非晶質半導体層の上に絶縁層が形成された状態を示す断面図である。 図28Aは、図27Aの工程においてn電極を形成する際に用いるメタルマスクの平面を表す模式図である。 図28Bは、図27Aの工程において絶縁層を形成する際に用いるメタルマスクの平面を表す模式図である。 図28Cは、図27Cの工程においてp型非晶質半導体層を形成する際に用いるメタルマスクの平面を表す模式図である。 図28Dは、図27Cの工程においてp電極を形成する際に用いるメタルマスクの平面を表す模式図である。 図29は、第6実施形態に係る光電変換モジュールの構成を示す概略図である。 図30Aは、第6実施形態による光電変換装置を備える太陽光発電システムの構成を示す概略図である。 図30Bは、図30Aに示す太陽光発電システムの他の構成例を示す概略図である。 図31は、図30Aに示す光電変換モジュールアレイの構成を示す概略図である。 図32Aは、第7実施形態による光電変換装置を備える太陽光発電システムの構成を示す概略図である。 図32Bは、図32Aに示す太陽光発電システムの他の構成例を示す概略図である。 図33は、変形例(4)における光電変換装置の断面を表す模式図である。
 本発明の一実施形態に係る光電変換装置は、半導体基板と、前記半導体基板の一方の面に接するように形成された真性非晶質半導体層と、前記真性非晶質半導体層の上に離間して配置された第1導電型を有する第1非晶質半導体層と、前記真性非晶質半導体層の上に離間して配置され、かつ前記半導体基板の面内方向において前記第1非晶質半導体層に隣接して形成され、前記第1導電型と反対の第2導電型を有する第2非晶質半導体層と、隣接する前記第1非晶質半導体層の間、及び隣接する前記第2非晶質半導体層の間において前記真性非晶質半導体層に接するように形成された保護層と、を備える(第1の構成)。
 第1の構成によれば、半導体基板の一方の面に形成された真性非晶質半導体層上において、離間して配置された第1非晶質半導体層の間と、離間して配置された第2非晶質半導体層の間は保護層によって覆われる。そのため、離間して配置された第1非晶質半導体層の間と、離間して配置された第2非晶質半導体層の間における真性非晶質半導体層に、外部から水分や有機物等が入り混みにくく、光電変換装置の劣化を抑制することができる。
 第2の構成に係る光電変換装置は、第1の構成において、前記保護層は、絶縁膜を含むこととしてもよい。
 第2の構成によれば、離間して配置された第1非晶質半導体層の間と、離間して配置された第2非晶質半導体層の間における真性非晶質半導体層に、外部から水分や有機物等が混入することを抑制することができる。
 また、第3の構成に係る光電変換装置は、第1又は第2の構成において、前記保護層は、前記第1非晶質半導体層と前記第2非晶質半導体層のそれぞれに更に接する電極を含むこととしてもよい。
 第3の構成によれば、離間して配置された第1非晶質半導体層の間と、離間して配置された第2非晶質半導体層の間における真性非晶質半導体層に、外部から水分や有機物等が混入することを抑制することができる。
 また、第4の構成に係る光電変換装置は、第2の構成において、前記絶縁膜は、さらに、隣接する前記第1非晶質半導体層と前記第2非晶質半導体層との間において前記真性非晶質半導体層と接するように形成されていることとしてもよい。
 第4の構成によれば、隣接する第1非晶質半導体層と第2非晶質半導体層との間における真性非晶質半導体層は絶縁膜によって覆われる。そのため、第1非晶質半導体層と第2非晶質半導体層との間の短絡を防止するとともに、外部からの水分や有機物等の混入を抑制することができる。
 また、第5の構成に係る光電変換装置は、第4の構成において、前記絶縁膜は、前記電極の端部近傍と重なるように形成されていることとしてもよい。
 第5の構成によれば、電極の端部近傍に絶縁膜が重なる。そのため、絶縁膜によって電極と、第1非晶質半導体層及び第2非晶質半導体層との密着性が向上する。その結果、半導体基板に応力が生じても半導体基板から電極を剥がれにくくすることができる。
 第6の構成に係る光電変換装置は、第1から第5のいずれかの構成において、前記第1非晶質半導体層と前記第2非晶質半導体層のそれぞれは、略矩形形状を有し、隣接する前記第1非晶質半導体層と前記第2非晶質半導体層のそれぞれの短辺の位置は、前記第1非晶質半導体層及び前記第2非晶質半導体層の長辺方向において互いにずれていることとしてもよい。
 第6の構成によれば、隣接する第1非晶質半導体層と第2非晶質半導体層のそれぞれの短辺の位置が揃っている場合と比べてキャリアの収集効率を向上させることができる。
 また、第7の構成に係る光電変換装置は、第1から第6のいずれかの構成における前記半導体基板上に成膜された一の薄膜において、膜厚が最大である点を第1の点とし、当該一の薄膜の面内方向において当該薄膜の膜厚の減少率が第1の減少率から前記第1の減少率よりも大きい第2の減少率に変化する点、または当該一の薄膜の面内方向において当該一の薄膜の膜厚の変化率の符号が負から正に変化する点を第2の点とし、当該一の薄膜の面内方向において前記第1の点から前記第2の点までの領域を膜厚減少領域と定義したとき、前記第1非晶質半導体層及び前記第2非晶質半導体層の少なくとも一方は、前記膜厚減少領域を有することとしてもよい。
 第7の構成によれば、第1非晶質半導体層と第2非晶質半導体層の少なくとも一方の半導体層において、膜厚減少領域を有する。膜厚減少領域の膜厚は、当該半導体層の第1の点における膜厚よりも薄い。そのため、膜厚が均一な非晶質半導体層を設ける場合と比べ、膜厚減少領域を有する半導体層における直列抵抗成分を低減させることができる。
 また、第8の構成に係る光電変換装置は、第7の構成において、前記絶縁膜は、前記膜厚減少領域を有することとしてもよい。
 第8の構成によれば、絶縁膜の応力は絶縁膜の膜厚の増大と共に大きくなるため、膜厚減少領域を有することで絶縁膜の応力を低減することができる。その結果、絶縁膜の応力による半導体基板の反りを低減することができる。
 また、第9の構成に係る光電変換装置は、第1から第8のいずれかの構成において、前記真性非晶質半導体層の膜厚は10nm以下であることとしてもよい。
 第9の構成によれば、光電変換装置の劣化を抑制しつつ、直列抵抗成分を低減することができる。
 以下、図面を参照し、本発明の光電変換装置の実施の形態を詳しく説明する。本明細書において、光電変換装置は、光電変換素子、光電変換素子を用いた光電変換モジュール、光電変換モジュールを備えた太陽電池発電システム、を含む。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る光電変換装置の平面を示す模式図である。また、図2Aは、図1に示す光電変換装置1のA-A断面を示す模式図である。また、図2Bは、図1に示す光電変換装置1のB-B断面を示す模式図である。
 図1、図2A及び図2Bに示すように、光電変換装置1は、シリコン基板101、i型非晶質シリコン層102i、n型非晶質半導体層102n、p型非晶質半導体層102p、電極103、反射防止膜104、及び絶縁層105を備える。
 シリコン基板101は、例えば、n型の単結晶シリコン基板である。シリコン基板101の厚さは、例えば、100~150μmである。
 図2A及び図2Bに示すように、シリコン基板101の一方(Z軸負方向側)の面を覆うように反射防止膜104が形成されている。反射防止膜104は、例えば、厚さ20nm程度の酸化シリコン膜と、厚さ60nm程度の窒化シリコン膜をこの順に積層したものである。反射防止膜104は、シリコン基板101の表面反射率を低下させ、短絡電流を増加させる。以下の説明において、反射防止膜104が形成された面を受光面と称し、他方(Z軸正方向側)の面を裏面と称する。
 また、シリコン基板101の裏面には,i型非晶質半導体層102iが形成されている。i型非晶質半導体層102iは、実質的に真性で、水素を含有する非晶質半導体の膜である。i型非晶質半導体層102iは、例えば、i型非晶質シリコン、i型非晶質シリコンゲルマニウム、i型非晶質ゲルマニウム、i型非晶質シリコンカーバイド、i型非晶質シリコンナイトライド、i型非晶質シリコンオキサイド、i型非晶質シリコンカーボンオキサイド等からなる。i型非晶質半導体層102iの厚さは、例えば、10nm以下である。i型非晶質半導体層102iの膜厚が10nmよりも薄くなるとパッシベーション性は低下するが、i型非晶質半導体層102iの膜厚を厚くすると直列抵抗成分が高くなる。そのため、パッシベーション性及び直列抵抗成分を考慮すると、i型非晶質半導体層102iの膜厚は10nm以下が望ましい。
 図2A及び図2Bに示すように、i型非晶質半導体層102iの上に、p型非晶質半導体層102pとn型非晶質半導体層102nが形成されている。
 図1に示すように、p型非晶質半導体層102pとn型非晶質半導体層102nは、略長方形の形状を有する。図1及び図2Bに示すように、p型非晶質半導体層102pとn型非晶質半導体層102nは、シリコン基板101上において、Y軸方向に交互に配置されている。
 図1に示すように、シリコン基板101上において、p型非晶質半導体層102pとn型非晶質半導体層102nはそれぞれ、X軸方向に離間して配置されている。つまり、シリコン基板101の裏面におけるX軸方向に、複数のp型非晶質半導体層102pが配列されるとともに、複数のn型非晶質半導体層102nが配列されている。
 また、この例では、図1に示すように、シリコン基板101のY軸に平行なエッジ近傍に配置されたp型非晶質半導体層102pとn型非晶質半導体層102nは、p型非晶質半導体層102pよりもn型非晶質半導体層102nの端部の位置がシリコン基板101の内側となるように配置されている。また、図1に示すように、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間の位置と、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間の位置とがずれている。この例において、隣接するn型非晶質半導体層102nの間と、隣接するp型非晶質半導体層102pの間はそれぞれ約2mm以下であり、シリコン基板101で発生するキャリア(電子及び正孔)の拡散長(例えば約2mm)よりも距離が短い。よって、このように構成することにより、キャリアの再結合が抑制され、キャリアの収集効率を向上させることができる。
 n型非晶質半導体層102nは、水素を含有するn型の非晶質半導体層である。n型非晶質半導体層102nは、例えばリン(P)を不純物として含有する、n型非晶質シリコン、n型非晶質シリコンゲルマニウム、n型非晶質ゲルマニウム、n型非晶質シリコンカーバイド、n型非晶質シリコンナイトライド、n型非晶質シリコンオキサイド、n型非晶質シリコンオキシナイトライド、n型非晶質シリコンカーボンオキサイド等であってもよい。n型非晶質半導体層102nの厚さは、例えば、5~20nmである。
 p型非晶質半導体層102pは、水素を含有するp型の非晶質半導体層である。p型非晶質半導体層102pは、例えばボロン(B)を不純物として含有する、p型非晶質シリコン、p型非晶質シリコンゲルマニウム、p型非晶質ゲルマニウム、p型非晶質シリコンカーバイド、p型非晶質シリコンナイトライド、p型非晶質シリコンオキサイド、p型非晶質シリコンオキシナイトライド、p型非晶質シリコンカーボンオキサイド等であってもよい。p型非晶質半導体層102pの厚さは、例えば、5~20nmである。
 なお、本明細書において、非晶質半導体には、微結晶相が含まれても良いものとする。微結晶相は、平均粒子径が1~50nmである結晶を含む。
 そして、図1、図2A及び図2Bに示すように、p型非晶質半導体層102pとn型非晶質半導体層102nのそれぞれの上には電極103が形成されている。図1に示すように、電極103は、略長方形の形状を有し、p型非晶質半導体層102pとn型非晶質半導体層102nの長手方向(X軸方向)に沿って一つながりに形成されている。すなわち、離間して配置されたp型非晶質半導体層102pの間と、離間して配置されたn型非晶質半導体層102nの間におけるi型非晶質半導体層102iに接して、保護層の一例として電極103が形成される。
 以下、p型非晶質半導体層102pの上に形成された電極103と、n型非晶質半導体層102nの上に形成された電極103とを区別するときは、p型電極103p及びn型電極103nと表す。
 図2Bに示すように、n型電極103nとp型電極103pは、距離Lを隔てて形成されている。n型電極103n、p型電極103pは、例えば、Ag(銀)、Ni(ニッケル)、Al(アルミニウム)、Cu(銅)、Sn(錫)、Pt(プラチナ)、Au(金)、Ti(チタン)等の金属、ITO等の酸化物導電体膜、又はこれらの金属の合金、又はこれら金属の積層膜で構成されている。n型電極103n及びp型電極103pは、導電率の高い金属を用いることが好ましい。n型電極103n及びp型電極103pの厚さは、例えば50nm~1μm程度である。
 本実施形態において、例えば、p型非晶質半導体層102pは、図3Aに示す断面構造を有していてもよい。以下、この断面構造について具体的に説明する。図3Aに示すように、p型非晶質半導体層102pは、p型非晶質半導体層102pの面内方向(幅方向)において、フラット領域FTと、膜厚減少領域TDとを有する。フラット領域FTは、p型非晶質半導体層102pのうち、最も厚い膜厚を有し、かつ、膜厚がほぼ一定である部分からなる。
 フラット領域FTの両端の点をA点とし、膜厚の減少率が第1の減少率から第1の減少率よりも大きい第2の減少率に変化する点をB点としたとき、膜厚減少領域TDは、p型非晶質半導体層102pの面内方向においてA点からB点までの領域である。
 そして、膜厚減少領域TDは、p型非晶質半導体層102pの面内方向においてフラット領域FTの両側に配置される。
 p型非晶質半導体層102pが膜厚減少領域TDを有するのは、メタルマスクを用い、プラズマCVD法によってp型非晶質半導体層102pを形成するからである。膜厚減少領域TDは、フラット領域FTよりも薄い膜厚を有するので、膜厚減少領域TDのドーパント濃度は、フラット領域FTのドーパント濃度よりも高い。
 そして、電極103pは、p型非晶質半導体層102pのフラット領域FTの全体と膜厚減少領域TDの一部とに接して配置される。
 なお、図3Aでは、p型非晶質半導体層102pを例示しているが、本発明の実施形態において、p型非晶質半導体層102pおよびn型非晶質半導体層102nの少なくとも一方が膜厚減少領域を有していればよい。n型非晶質半導体層102nが図3Aと同様の構造を有する場合、n型電極103nは、n型非晶質半導体層102nのフラット領域FTの全体と膜厚減少領域TDの一部とに接して配置される。
 その結果、キャリア(電子)がp型非晶質半導体層102pを介してp型電極103pへ到達するときの抵抗は、i型非晶質半導体層102iの面内方向において一定の膜厚を有するp型非晶質半導体層102pが形成される場合に比べ低抵抗になる。また、キャリア(正孔)がn型非晶質半導体層102nを介してn型電極103nへ到達するときの抵抗は、i型非晶質半導体層102iの面内方向において一定の膜厚を有するn型非晶質半導体層102nが形成される場合に比べ低抵抗になる。従って、光電変換装置1の変換効率を向上できる。
 なお、p型電極103pは、p型非晶質半導体層102pの膜厚減少領域TDの全体に接していてもよく、n型電極103nは、n型非晶質半導体層102nの膜厚減少領域TDの全体に接していてもよい。
 また、p型非晶質半導体層102pは、図3Aに示す断面構造に代えて、例えば、図3Bに示す断面構造を有していてもよい。図3Bを参照して、光電変換装置1は、p型非晶質半導体層102pに代えて、p型非晶質半導体層1021pを備え、p型電極103pに代えてp型電極1031pを備えていてもよい。
 p型非晶質半導体層1021pにおいて、膜厚が最大である点をC点とし、膜厚の減少率が第1の減少率から第1の減少率よりも大きい第2の減少率に変化する点をD点とする。この場合、膜厚減少領域TDは、p型非晶質半導体層1021pの面内方向においてC点からD点までの領域である。
 そして、p型非晶質半導体層1021pは、p型非晶質半導体層1021pの面内方向において2つの膜厚減少領域TDを有する。2つの膜厚減少領域TDは、p型非晶質半導体層1021pの面内方向において相互に接して配置される。
 p型電極1031pは、2つの膜厚減少領域TDのうち、一方の膜厚減少領域TDの一部と他方の膜厚減少領域TDの一部とに接して配置される。
 また、光電変換装置1は、n型非晶質半導体層102nに代えて、図3Bに示すp型非晶質半導体層1021pと同じ構造からなるn型非晶質半導体層を備えていてもよい。
 このように構成することにより、キャリア(電子)がp型非晶質半導体層1021pを介してp型電極1031pへ到達するときの抵抗は、i型非晶質半導体層102iの面内方向において一定の膜厚を有するp型非晶質半導体層が形成される場合に比べ低抵抗になる。また、キャリア(正孔)がp型非晶質半導体層1021pと同じ構造を有するn型非晶質半導体層を介してn型電極へ到達するときの抵抗は、i型非晶質半導体層102iの面内方向において一定の膜厚を有するn型非晶質半導体層が形成される場合に比べ低抵抗になる。従って、光電変換装置1の変換効率を向上できる。
 なお、p型電極1031pは、p型非晶質半導体層1021pと、p型非晶質半導体層1021pと同じ構造を有するn型非晶質半導体層とにおいて、2つの膜厚減少領域TDの全体に接して配置されていてもよい。
 また、p型非晶質半導体層102pは、図3Aに示す断面構造に代えて、例えば、図3Cに示す断面構造を有していてもよい。図3Cを参照して、光電変換装置1は、p型非晶質半導体層102pに代えてp型非晶質半導体層1022pを備え、p型電極103pに代えて、p型電極1032pを備えていてもよい。
 p型非晶質半導体層1022pにおいて、膜厚が最大である点をE点とし、膜厚の減少率が第1の減少率から第1の減少率よりも大きい第2の減少率に変化する点をF点とし、膜厚の変化率の符号が負から正に変化する点をG点とする。この場合、膜厚減少領域TD1は、p型非晶質半導体層1022pの面内方向においてE点からF点までの領域であり、膜厚減少領域TD2は、p型非晶質半導体層1022pの面内方向においてE点からG点までの領域である。
 よって、p型非晶質半導体層1022pは、p型非晶質半導体層1022pの面内方向において2つの膜厚減少領域TD1と2つの膜厚減少領域TD2とを有する。
 2つの膜厚減少領域TD2は、p型非晶質半導体層1022pの面内方向における膜厚分布がG点を通る線に対して対称になるように配置される。2つの膜厚減少領域TD1は、p型非晶質半導体層1022pの面内方向において2つの膜厚減少領域TD2の両側に配置される。
 p型電極1032pは、2つの膜厚減少領域TD2の全体と、一方の膜厚減少領域TD1の一部と、他方の膜厚減少領域TD1の一部とに接して配置される。
 また、光電変換装置1は、n型非晶質半導体層102nに代えて、図3Cに示すp型非晶質半導体層1022pと同じ構造からなるn型非晶質半導体層を備えていてもよい。
 このように構成することにより、キャリア(電子)がn型非晶質半導体層を介してn型電極へ到達するときの抵抗は、i型非晶質半導体層102iの面内方向において一定の膜厚を有するn型非晶質半導体層が形成される場合に比べ低抵抗になる。また、キャリア(正孔)がp型非晶質半導体層1022pを介してp型電極1032pへ到達するときの抵抗は、i型非晶質半導体層102iの面内方向において一定の膜厚を有するn型非晶質半導体層が形成される場合に比べ低抵抗になる。従って、光電変換装置1の変換効率を向上できる。
 なお、p型電極1032pは、p型非晶質半導体層1022pと、p型非晶質半導体層1022pと同じ構造を有するn型非晶質半導体層とにおいて、2つの膜厚減少領域TD1の全体と、2つの膜厚減少領域TD2の全体とに接して配置されていてもよい。
 このように、光電変換装置1は、膜厚減少領域TD(TD1,TD2)を有するp型非晶質半導体層およびn型非晶質半導体層を備える。そして、この発明の実施の形態においては、膜厚減少領域は、膜厚減少領域TD,TD1,TD2のいずれかからなる。
 従って、p型非晶質半導体層またはn型非晶質半導体層の膜厚が最大である点を第1の点とし、p型非晶質半導体層またはn型非晶質半導体層の面内方向において、膜厚の減少率が第1の減少率から第1の減少率よりも大きい第2の減少率に変化する点、または膜厚の変化率の符号が負から正に変化する点を第2の点としたとき、膜厚減少領域は、p型非晶質半導体層またはn型非晶質半導体層の面内方向において、第1の点から第2の点までの領域である。
 上記の例では、シリコン基板101の表面が平坦である場合について説明したが、実際には、シリコン基板101には、ダメージ層を除去するために行うエッチングの影響等によって、テクスチャが形成されていない面にも1μm程度の凹凸が存在する場合がある。ここで、シリコン基板101の表面に凹凸がある場合の非晶質半導体層の膜厚の測定方法について説明する。
 表面に凹凸が形成されているシリコン基板101上に、i型非晶質半導体層102iを形成し、i型非晶質半導体層102iの上に膜厚減少領域を有するn型非晶質半導体層102n又はp型非晶質半導体層102pを形成する。そして、走査電子顕微鏡(SEM)又は透過電子顕微鏡(TEM)を用いて、そのシリコン基板101の断面写真を撮影する。撮影結果から、i型非晶質半導体層102iとシリコン基板101との界面を容易に確認することができる。図3Dの(a)は、i型非晶質半導体層102iとシリコン基板101の表面との界面Sからn型非晶質半導体層102n又はp型非晶質半導体層102pの表面までの膜厚hを測定した結果を表す模式図である。図3Dの(a)に示す各膜厚hをプロットし直すことにより、図3Dの(a)に示す各膜厚hを、図3Dの(b)に示すように表すことができる。つまり、シリコン基板101の表面が略平坦なものとして非晶質半導体層(n型非晶質半導体層、p型非晶質半導体層)の膜厚を特定できる。
 また、シリコン基板101の両面にテクスチャが形成されている基板を用いた場合においても、上記と同様の方法でテクスチャ上の膜厚を測定してプロットし直すことで、膜厚減少領域を判断することができる。
 なお、シリコンウェハーのテクスチャ構造が形成されていない面は、最大で2μm程度の高低差を有するが、テクスチャ構造が形成された面(最大で数10μmの高低差)に比べると、高低差が非常に小さく、ほぼフラットである。
 従って、後述する配線シート等の外部配線とのコンタクトのし易さ、および電極103間の短絡の生じ難さを考慮すると、i型非晶質半導体層102i、n型非晶質半導体層102nおよびp型非晶質半導体層102p等は、本来、比較的フラットである裏面(テクスチャ構造が形成されていない面)上に形成されるのが好ましい。しかし、入射光を効率よくシリコン基板101に閉じ込めるためには、シリコン基板101の裏面にテクスチャが形成されることが好ましく、更に、シリコン基板101の裏面にテクスチャ構造を有することで、シリコン基板101の表面積が増加し(1.7倍程度)、コンタクト抵抗を下げることができる。また、シリコン基板101の片面にだけテクスチャ構造を有する場合には、異方性エッチングを行う際、テクスチャを形成しない面を保護する工程が必要となる。一方、シリコン基板101の両面にテクスチャ構造を形成する場合には、シリコン基板101の両面を保護する必要がないので、プロセス工数を低減することができる。
 図1と図2A及び図2Bを参照して、電極103、p型非晶質半導体層102p、及びn型非晶質半導体層102nのいずれもが形成されていないi型非晶質半導体層102i上の領域において、電極103の上端の一部と重なるように、保護層の一例として絶縁層105が形成されている。
 例えば、i型非晶質半導体層102iの膜厚が8nm、p型非晶質半導体層102p及びn型非晶質半導体層102nの各膜厚が10nmである場合、電極103、p型非晶質半導体層102p、及びn型非晶質半導体層102nのいずれもが形成されていない領域の膜厚は、i型非晶質半導体層102iの膜厚8nmとなる。特に、半導体基板101の裏面上の半導体層の膜厚が10nm以下となる領域(以下、アモルファスシリコン層薄膜領域と称する)が最表面となっている場合、アモルファスシリコン層薄膜領域から水分、酸素、有機物等が混入しやすく、光電変換装置1の劣化につながる。そのため、本実施形態では、このようなアモルファスシリコン層薄膜領域を、電極103又は絶縁層105によって保護する。従って、離間して配置されたp型非晶質半導体層102pの間と、離間して配置されたn型非晶質半導体層102nの間におけるi型非晶質半導体層102iと、隣接するp型非晶質半導体層102pとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iは絶縁層105によって覆われ、剥き出しにならない。その結果、i型非晶質半導体層102iに対して外部からの水分、酸素、有機物等の混入が防止され、光電変換装置1の劣化を抑制することができる。
 次に光電変換装置1のモジュール化を行う場合の構成について説明する。光電変換装置1をモジュール化する際、光電変換装置1を外部配線回路(以下、配線シート)と電気的に接続する。図4は、本実施形態における配線シートの一部を拡大した模式図である。
 配線シート300は、絶縁性基板301の上に、n型用配線材302nと、p型用配線材302pとが形成されている。
 絶縁性基板301は、絶縁性の材料であればよく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ポリビニルフルオライド(PVF)、ポリイミド等を用いてもよい。絶縁性基板301の膜厚は特に限定されないが、25μm以上、150μm以下程度が好ましい。また、絶縁性基板301は、1層構造でもよいし、2層以上の多層構造であってもよい。
 n型用配線材302nと、p型用配線材302pは、櫛歯形状を有し、所定の間隔を隔てて交互に配置されている。光電変換装置1の裏面に形成されたn型電極103nとp型電極103pは、それぞれ、n型用配線材302n、p型用配線材302pと接合される。絶縁性基板301の表面には、接続用配線(図示略)が形成されている。接続用配線によって、隣接する光電変換装置1のn型用配線材302nとp型用配線材302pとが電気的に接続され、配線シート300上の隣接する光電変換装置1は互いに電気的に接続されている。これにより、光電変換装置1の受光面に光が入射することによって発生した電流を、p型用配線材302p、及びn型用配線材302nを介して外部に取り出すことができる。
 n型用配線材302nと、p型用配線材302pは、導電性の材料で構成されていればよく、例えば、Cu、Al、Ag等のいずれかの金属でもよいし、又はこれらいずれかの金属を主成分とする合金等であってもよい。
 n型用配線材302nと、p型用配線材302pの膜厚は特に限定されないが、例えば、10μm以上、100μm以下が好ましい。n型用配線材302nと、p型用配線材302pの膜厚が10μmよりも薄くなると配線抵抗が高くなることがある。また、100μmよりも厚くなると、n型用配線材302n及びp型用配線材302pと光電変換装置1とを貼り合せる際に熱をかける必要がある。その結果、100μmよりも厚くなるとn型用配線材302n及びp型用配線材302pと、光電変換装置1のシリコン基板101の熱膨張係数の違いなどにより、配線シート300の反りが大きくなるため、n型用配線材302n及びp型用配線材302pの膜厚は100μm以下がより好ましい。
 また、n型用配線材302n及びp型用配線材302pの表面の一部には、ニッケル、金、白金、パラジウム、銀、錫、インジウム、ITOなどの導電性材料が形成されていてもよい。このように構成することで、n型用配線材302n及びp型用配線材302pと光電変換装置1のn型電極103n及びp型電極103pとの電気的接続が良好となり、n型用配線材302n及びp型用配線材302pの耐候性が向上する。n型用配線材302n及びp型用配線材302pは、1層構造でもよいし、2層以上の多層構造であってもよい。
 次に、図5A~5Fを参照し、光電変換装置1の製造方法の一例について説明する。
 まず、バルクのシリコンから100~300μmの厚さのウェハを切り出し、ウェハ表面のダメージ層を除去するためのエッチングと、厚さを調整するためのエッチングとを行う。これらのエッチングされたウェハの片面に保護膜を形成する。保護膜は、例えば、酸化シリコン、窒化シリコン等が用いられる。保護膜が形成されたウェハを、NaOH、KOH等のアルカリ溶液(例えば、KOH:1~5wt%、イソプロピルアルコール:1~10wt%の水溶液)を用いてウェットエッチングを行う。このとき、異方性エッチングによって、保護膜が形成されていない面101aにテクスチャ構造が形成される。エッチング後に保護膜を除去することにより、図5Aに示すシリコン基板101が生成される。
 続いて、図5Bに示すように、シリコン基板101の受光面101aに、反射防止膜104を形成する。以下、反射防止膜104は、酸化シリコン膜と窒化シリコン膜とを積層した積層構造である場合について説明する。
 この場合、まず、シリコン基板101の表面を熱酸化させ、受光面101aの酸化膜を形成する。その後、受光面101aの酸化膜の上に窒化シリコン膜を形成することにより反射防止膜104を形成する。シリコン基板101の酸化は、ウェット処理および熱酸化処理のいずれを用いてもよい。ウェット処理の場合、例えば、シリコン基板101を過酸化水素、硝酸、又はオゾン水等に浸漬し、その後、ドライ雰囲気で800~1000℃に加熱する。また、熱酸化処理の場合には、例えば、シリコン基板101を酸素又は水蒸気の雰囲気で900~1000℃に加熱する。窒化シリコン膜の形成は、スパッタ法、EB(Electron Beam)蒸着法、TEOS(TetraEthOxySilane)法等によって行うことができる。なお、シリコン基板101と窒化シリコン膜の間に、i型非晶質半導体層102i及びn型非晶質半導体層102nを順次形成して挟んでもよい。
 次に、シリコン基板101の受光面101aと反対側の裏面に、i型非晶質半導体層102iを形成する。i型非晶質半導体層102iの成膜は、例えば、プラズマCVD(Plasma Chemical Vapor Deposition)法を用いて行う。この場合、プラズマCVD装置が備える反応室に導入される反応ガスは、シランガス、水素ガスである。そして、例えば、シリコン基板101の温度を130~210℃、水素ガス流量を0~100sccm、シランガス(SiH4)流量を約40sccm、反応室内の圧力を40~120Pa、高周波(13.56MHz)電力密度を5~15mW/cm2とする条件を用いて成膜してもよい。これにより、図5Cに示すように、シリコン基板101の裏面全体に、i型非晶質半導体層102iが形成される。
 続いて、i型非晶質半導体層102iの上に、図6に示すメタルマスク500を配置し、p型非晶質半導体層102pを形成する。メタルマスク500は、p型非晶質半導体層102pを形成するための複数の開口部501を有する。図6に示すように、複数の開口部501は、X軸方向に離間して配置されるとともに、Y軸方向に一定の間隔を隔てて配置されている。Y軸方向に隣接する開口部501と開口部501の間隔GAは、約2mm以下である。
 シリコン基板101で発生するキャリア(電子及び正孔)の拡散長は2mm程度である。p型非晶質半導体層102pの間隔GAがキャリア(電子及び正孔)の拡散長(約2mm)より大きければ、p型非晶質半導体層102pとp型非晶質半導体層102pの間でキャリアが消滅し、光電変換効率が低下する。本実施形態では、間隔GAが2mm以下であるため、キャリアを消滅させず、光電変換効率を向上させることができる。
 メタルマスク500は、ステンレス鋼、銅、ニッケル、ニッケルを含む合金(例えば、SUS430、42アロイ、又はインバー材等)、モリブデン等の金属で構成されていてもよい。上記メタルマスク500に代えて、ガラス、セラミック(アルミナ、ジルコニア等)、有機フィルム等で構成されたマスクを用いてもよい。また、シリコン基板をエッチングしたマスクを用いてもよい。また、メタルマスク500の厚さは、例えば50μm~300μm程度が好ましい。この場合、メタルマスク500が磁力で曲がったり、浮いたりしにくい。
 シリコン基板101の熱膨張係数と、原料コストとを考慮するとメタルマスク500は42アロイがより好ましい。メタルマスク500の厚さに関し、製造コストを考慮すると、メタルマスク500を1回で使い捨てることは問題となる。メタルマスク500を何度も使用することによって生産のランニングコストを抑制することができるため、メタルマスク500を再生して多数回使用することが好ましい。この場合、メタルマスク500に付着する成膜物を、弗酸やNaOHを用いて除去する。
 p型非晶質半導体層102pは、例えばプラズマCVD法を用いて形成される。プラズマCVD装置が備える反応室に導入される反応ガスは、シランガス、水素ガス、及び水素希釈されたジボランガス(ジボラン濃度は例えば約2%)である。この場合、水素ガス流量を0~100sccm、シランガス流量を40sccm、ジボランガス流量を40sccm、シリコン基板101の温度を150~210℃とし、反応室内の圧力を40~120Pa、高周波電力密度を5~15mW/cm2とする条件を用いて成膜してもよい。これにより、図5Cに示すように、i型非晶質半導体層102iの上に、ボロン(B)がドープされたp型非晶質半導体層102pが形成される。
 次に、図5Dに示すように、i型非晶質半導体層102iの上に、n型非晶質半導体層102nを形成する。n型非晶質半導体層102nは、図7に示すメタルマスク600を半導体基板101の裏面側に配置し、例えば、プラズマCVD法を用いて形成される。メタルマスク600は、n型非晶質半導体層102nを形成するための複数の開口部601を有する。図7に示すように、複数の開口部601は、X軸方向に離間して配置されるとともに、Y軸方向に一定の間隔を隔てて配置されている。Y軸方向に隣接する開口部601の間隔GBは、約500~1500μmである。メタルマスク600は、上述したメタルマスク500と同様の材料及び厚さを有するものとしてもよい。
 n型非晶質半導体層102nは、例えば、プラズマCVDを用いて形成される。プラズマCVD装置が備える反応室に導入される反応ガスは、シランガス、水素ガス、及び水素で希釈されたホスフィンガス(ホスフィン濃度は例えば1%)である。この場合、シリコン基板101の温度を例えば約170℃、水素ガス流量を0~100sccm、シランガス流量を約40sccm、ホスフィンガス流量を約40sccm、反応室内の圧力を約40Pa、高周波電力密度を約8.33mW/cm2とする条件を用いて成膜してもよい。これにより、図5Dに示すように、リンがドープされたn型非晶質半導体層102nが形成される。
 n型非晶質半導体層102nとp型非晶質半導体層102pは、重ならなくてもよいし、n型非晶質半導体層102nとp型非晶質半導体層102pの一部が重なってもよい。n型非晶質半導体層102nとp型非晶質半導体層102pとが重ならない場合、図5Dに示すように、p型非晶質半導体層102pとn型非晶質半導体層102nは、間隔Kを隔てて形成される。p型非晶質半導体層102pとn型非晶質半導体層102nの間の領域は、i型非晶質半導体層102iによってパッシベーションされているため、シリコン基板101中で発生したキャリアが殆ど消滅しない。
 一方、n型非晶質半導体層102nとp型非晶質半導体層102pとが一部重なる場合、p型非晶質半導体層102pとn型非晶質半導体層102nとの間に、これら半導体層が一部重なるオーバーラップ領域が形成される。しかしながら、p型非晶質半導体層102pとn型非晶質半導体層102nは導電率が低いため、p型非晶質半導体層102pとn型非晶質半導体層102nとの間で電流は流れず、pn接合の短絡は生じない。
 次に、n型非晶質半導体層102nの形成後、図5Eに示すように、p型非晶質半導体層102p及びn型非晶質半導体層102nの上に、p型電極103pとn型電極103nをそれぞれ形成する。
 n型電極103nとp型電極103pは、シリコン基板101の上に、図8に示すメタルマスク700を配置し、例えば、蒸着法やスパッタ法によって形成される。メタルマスク700は、n型電極103nを形成するための複数の開口部701nと、p型電極103pを形成するための複数の開口部701pとを有する。開口部701p,701nは、その長辺LCp、LCn(LCp>LCn)が約80~100mm、短辺WCが約500μm~1500μmの長さを有する。短辺WC方向に隣接する電極103と電極103の間隔GC1、つまり、p型電極103pとn型電極103nのギャップ幅Lは、約100~300μmである。
 n型電極103n及びp型電極103pの膜厚は、50nm~1μmが好ましく、50nm~500nmがさらに好ましい。電極103が厚くなるとシリコン基板101にかかる応力が強くなり、シリコン基板101の反りの原因となるからである。
 次に、n型電極103n及びp型電極103pの形成後、図5Fに示すように、電極103の上端の一部と重なるように絶縁層105を成膜する。絶縁層105の成膜は、例えばプラズマCVD法を用いて以下のようにして行う。シリコン基板101の裏面側にSiNを堆積し、電極103の上の所定領域を除いた領域にレジストを塗布し、フッ酸によりエッチングを行う。レジストは、インクジェット又はスクリーン印刷によって塗布してもよい。これにより、電極103の上の所定領域を除いた領域に絶縁層105が形成される。
 また、例えば、図9A及び図9Bに示すメタルマスク910、920を用いて絶縁層105を成膜してもよい。
 メタルマスク910は、絶縁層105を形成するための複数の開口部910aを有する。複数の開口部910aは、長辺がX軸に平行な矩形形状を有し、Y軸方向に沿って配列されている。複数の開口部910aのX軸方向の長さは略同じであるが、複数の開口部910aのY軸方向の長さは、両端に配置されている開口部9101の方が、内側に配置されている開口部9102よりも長い。
 また、メタルマスク920は、2つの開口部920aを有する。開口部920aは、長辺がY軸に平行な矩形形状を有する。2つの開口部920aは、メタルマスク920におけるY軸に平行な2つの辺の近傍に配置されている。
 メタルマスク910とメタルマスク920の大きさ及び外形は略同じである。メタルマスク910とメタルマスク920とを重ね合わせた場合、メタルマスク910における開口部910aの左右の端部は、メタルマスク920における開口部920aと重なる。
 メタルマスク910、920を用いた絶縁層105の成膜は以下のようにして行う。電極103の形成後、まず、シリコン基板101の裏面側にメタルマスク910を配置し、プラズマCVD法を用いてSiNを成膜する。これにより、開口部910aの部分にSiNが堆積する。その後、メタルマスク910に替えて、シリコン基板101の裏面側にメタルマスク920を配置し、プラズマCVD法を用いてSiNを成膜する。これにより、開口部920aの部分にSiNが堆積し、絶縁層105が形成される。
 このようにメタルマスク910、920を用いてSiNを成膜することにより、図10に示すように、シリコン基板101の裏面側には、電極103の一部の領域を除き、絶縁層105が形成される。つまり、図5Fに示すように、電極103の上端の一部と重なるように絶縁層105が形成される。これにより、電極103、n型非晶質半導体層102n、及びp型非晶質半導体層102pのいずれによっても覆われていないi型非晶質半導体層102iの領域が絶縁層105によって覆われる。なお、この例では、電極103上の一部を除き、シリコン基板101の略全面が絶縁層105によって覆われる例を示しているが、絶縁層105は、少なくともアモルファスシリコン層薄膜領域に形成されていればよい。
 なお、メタルマスク910の開口部910aとメタルマスク920の開口部920aとが重なる領域は、SiNが2回堆積されるため、この領域は他の領域よりもSiNの膜厚が厚くなる。つまり、シリコン基板101の裏面側に形成されたSiNの膜厚は面内分布を有することになる。SiNの膜厚が他の領域よりも厚い領域は、パッシベーション性が向上し、外部からの水分や酸素の影響を受けにくくなるため好ましい。
 メタルマスクを用いて絶縁層105を形成する場合、絶縁層105は、上述の膜厚減少領域を有する。これは、プラズマCVD法によって絶縁層105を形成する場合には、メタルマスクにおける開口部の端部に反応ガスが滞留し、SiNの堆積速度が他の領域よりも遅くなるためである。また、スパッタリング法によって絶縁層105を形成する場合には、メタルマスクにおける開口部の端部によってスパッタ粒子の堆積が阻害され、SiNの堆積速度が他の領域よりも遅くなるからである。
 上記の例では、絶縁層105の材料としてSiNを用いる例を説明したが、絶縁層105の材料はこれに限定されない。例えば、SiO、SiON、AlO、TiO等を用いてもよい。
 ここで、図11に、絶縁層105が設けられていない従来の光電変換装置(比較例)と、絶縁層105の材料が異なる光電変換装置1(A~E)の規格化劣化率を比較した結果を示す。比較例の電極は、Agペーストが成膜されたものである。また、A~Eの電極103は、スパッタリング法を用いてAgが成膜されたものである。
 図11に示す規格化劣化率は、比較例、及びA~Eの光電変換装置をそれぞれ、温度が85℃、相対湿度が85%の環境に、1000時間放置する実験を行い、実験前と後の性能特性を測定した結果を基に求めたものである。
 具体的には、比較例、及びA~Eの光電変換装置について、それぞれ、劣化率として、劣化率={(実験前の光電変換効率)-(実験後の光電変換効率)}÷(実験前の光電変換効率)を算出する。そして、比較例の劣化率を100%として、A~Eの光電変換装置の各劣化率を規格化した。つまり、規格化劣化率は、A~Eの光電変換装置の各劣化率÷比較例の劣化率を算出することにより得られる。
 図11に示すように、比較例の規格化劣化率に対し、A~Eの光電変換装置のいずれの規格化劣化率も低くなっており、絶縁層105を設けることによって光電変換装置の劣化が抑制されることが分かる。また、特に、絶縁層105の材料としてSiNを用いた「B」の規格化劣化率が最も低く、続いて、SiONを用いた「C」の規格化劣化率が低くなっている。この結果より、Siを含む材料を絶縁層105に用いることで、光電変換装置の劣化がより一層抑制されることが分かる。
 上述した第1実施形態における光電変換装置1は、シリコン基板101の裏面全体に形成されたi型非晶質半導体層102iの上に、n型非晶質半導体層102nとp型非晶質半導体層102pとがそれぞれ離間して形成される。そして、n型非晶質半導体層102n及びp型非晶質半導体層102pの上に、一つながりの電極103が形成される。つまり、光電変換装置1において、離間して配置されたp型非晶質半導体層102pの間と、離間して配置されたn型非晶質半導体層102nの間におけるi型非晶質半導体層102iは電極103によって保護される。さらに、光電変換装置1は、電極103、n型非晶質半導体層102n、及びp型非晶質半導体層102pのいずれもが形成されていないi型非晶質半導体層102i上に絶縁層105が形成される。つまり、光電変換装置1は、隣接するp型非晶質半導体層102pとn型非晶質半導体層102nとの間におけるi型非晶質半導体層102iは絶縁層105によって保護されるため、i型非晶質半導体層102iが剥き出しにならない。言い換えれば、光電変換装置1において、半導体層の膜厚が10nm以下となるアモルファスシリコン層薄膜領域は、電極103又は絶縁層105によって覆われる。その結果、i型非晶質半導体層102iの膜厚が10nm以下となる場合であっても、i型非晶質半導体層102iに外部からの水分や有機物等が入り込まず、光電変換装置1の劣化を抑制することができる。
 また、電極103の上端の一部と重なるように絶縁層105が形成されているため、電極103と半導体層(i型非晶質半導体層102i、n型非晶質半導体層102n、及びp型非晶質半導体層102p)との密着性が向上する。これにより、シリコン基板101上に形成される膜の応力や、モジュール化の際にシリコン基板101にかかる応力によって、シリコン基板101から電極103が剥がれる等の不良の発生を低減することができる。
 また、上述の第1実施形態では、n型非晶質半導体層102nとp型非晶質半導体層102pの端部の位置が揃っていない。さらに、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間の位置と、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間の位置とが揃っていない。そのため、n型非晶質半導体層102nとp型非晶質半導体層102pを形成する際に、メタルマスク500,600が応力によって曲がったり浮いたりしにくい。その結果、n型非晶質半導体層102nとp型非晶質半導体層102pとを適切な位置に形成することができるとともに、n型非晶質半導体層102nとp型非晶質半導体層102pをより微細に形成することができる。また、n型非晶質半導体層102nとp型非晶質半導体層102pの端部の位置が揃っていないことによって、キャリアの収集効率を向上させることができる。
 <第1実施形態の変形例1>
 図12は、本変形例における光電変換装置1Aの平面を示す模式図である。本変形例では以下の点で第1実施形態の光電変換装置1(図1参照)と異なる。図12に示すように、本変形例では、n型非晶質半導体層102nとp型非晶質半導体層102pの端部の位置が揃っている。また、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間の位置と、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間の位置とが揃っている。
 光電変換装置1Aの場合、光電変換装置1と比べ、n型非晶質半導体層102n及びp型非晶質半導体層102pを形成する際にメタルマスクの応力の影響を受けやすい。しかしながら、一つながりのn型非晶質半導体層102n及びp型非晶質半導体層102pを形成する場合と比べ、メタルマスクの応力の影響を受けにくく、n型非晶質半導体層102n及びp型非晶質半導体層102pを適切な位置に形成することができる。
 なお、光電変換装置1Aにおいても、電極103、n型非晶質半導体層102n、及びp型非晶質半導体層102pのいずれもが形成されていないi型非晶質半導体層102iの領域、すなわちアモルファスシリコン層薄膜領域の上には絶縁層105が形成されている。そのため、i型非晶質半導体層102iに外部からの水分や有機物等が入り込みにくく、光電変換装置1Aの劣化を抑制することができる。
 <第1実施形態の変形例2>
 図13は、本変形例に係る光電変換装置の平面を示す模式図である。また、図14Aは、図13に示す光電変換装置1BのA-A断面を示す模式図である。また、図14Bは、図13に示す光電変換装置1BのB-B断面を示す模式図である。
 図13、図14A及び図14Bに示すように、光電変換装置1Bは、絶縁層105が電極103の上端の一部と重ならない点で第1実施形態の光電変換装置1(図1参照)と異なる。
 光電変換装置1Bは、光電変換装置1Aと比べ、電極103と半導体層(i型非晶質半導体層102i、n型非晶質半導体層102n、及びp型非晶質半導体層102p)との密着性は低下する。しかしながら、光電変換装置1Bにおいても、離間して配置されたn型非晶質半導体層102nの間と、離間して配置されたp型非晶質半導体層102pの間におけるi型非晶質半導体層102iの領域は、電極103に覆われる。また、n型非晶質半導体層102n、及びp型非晶質半導体層102pのいずれもが形成されていないi型非晶質半導体層102iの領域は、絶縁層105によって覆われる。そのため、このようなi型非晶質半導体層102iの領域、すなわちアモルファスシリコン層薄膜領域に外部からの水分や有機物等が入り込みにくく、光電変換装置1Bの劣化を抑制することができる。
 <第1実施形態の変形例3>
 図15の(a)は、絶縁層105を形成する際に用いる本変形例のメタルマスクの平面を示す模式図である。また、図15の(b)は、図15の(a)に示すメタルマスクのI-I断面を示す模式図である。
 図15の(a)に示すように、メタルマスク930は、複数の開口部930aを有する。開口部930aは、Y軸方向に沿って一定の間隔を隔てて配列された複数のブリッジ930bと、外周部分930cとによって形成されている。複数のブリッジ930bの両端は、外周部分930cにおけるX軸方向の端部に接続されている。
 図15の(b)に示すように、ブリッジ930bにおける両端の領域9301の下端はハーフエッチングされており、領域9301の厚みL2は、ブリッジ930bにおける他の領域の約1/2の厚み(=L1/2)となっている。
 例えば、プラズマCVD法により絶縁層105を形成する場合、プラズマCVD法で用いる反応ガスは回り込みやすいため、メタルマスク930における領域9301にも反応ガスが入り込む。その結果、シリコン基板101の裏面において、開口部930aに対応する領域だけでなく、領域9301に対応する領域、すなわち、n型非晶質半導体層102n及びp型非晶質半導体層102pと電極103との段差が生じている領域にも絶縁層105が形成される。なお、メタルマスク930を用いて絶縁層105を形成する場合も、絶縁層105は、上述した膜厚減少領域を有する。
 従って、メタルマスク930を用いる場合、SiNを堆積した後に、絶縁層105を形成する領域をパターニングする必要がなく、1回のSiNの成膜によって、図1及び図2A、2Bに示すように絶縁層105を形成することができるので、光電変換装置1の製造コストを低減することができる。
 <第2実施形態>
 図16は、本実施形態における光電変換装置の平面を示す模式図である。また、図17Aは、図16に示す光電変換装置1CのC-C断面を示す模式図である。図17Bは、図16に示す光電変換装置1CのD-D断面を示す模式図である。図16、図17A及び17Bにおいて、第1実施形態と同様の構成には、第1実施形態と同じ符号を付している。以下、第1実施形態と異なる構成について説明する。
 本実施形態では、図16及び図17Aに示すように、離間して配置されたp型非晶質半導体層102pの間、及び離間して配置されたn型非晶質半導体層102nの間におけるi型非晶質半導体層102iの領域は、アモルファスシリコン層薄膜領域であり、この領域には、保護層の一例として絶縁層1051が設けられている。そして、図17A及び図17Bに示すように、絶縁層1051の上に、p型電極103p又はn型電極103nが設けられている。また、さらに、n型非晶質半導体層102n又はp型非晶質半導体層102pによって覆われていない領域はアモルファスシリコン層薄膜領域であり、この領域には絶縁層105が設けられている。絶縁層1051は、上述した第1実施形態における絶縁層105と同様の材料が用いられる。
 本実施形態における光電変換装置1Cの製造方法は以下のようにして行う。例えば、上述した図5A~図5Dに示す各工程を行った後、離間して配置されたp型非晶質半導体層102pの間、及び離間して配置されたn型非晶質半導体層102nの間におけるi型非晶質半導体層102iと接するように絶縁層1051を形成する。この場合、例えば、図18に示すように、絶縁層1051を形成するための開口部940aを有するメタルマスク940を用い、プラズマCVD法によりSiNを成膜することによって絶縁層1051を形成してもよい。メタルマスク940において、開口部940aは、Y軸に沿って略平行に配列されている。これにより、Y軸方向に沿って一つながりの絶縁層1051が複数形成される。
 また、メタルマスク940を用いないで絶縁層1051を形成する場合には、図5Dに示す工程の後、プラズマCVD法により、n型非晶質半導体層102n及びp型非晶質半導体層102pを覆うようにSiNを堆積し、絶縁層1051を形成する領域にレジストを塗布し、フッ酸によりエッチングを行うことにより絶縁層1051を形成してもよい。
 このように、上述の第2実施形態における光電変換装置1Cは、p型電極103p及びn型電極103nがi型非晶質半導体層102iに接していない点で、第1実施形態における光電変換装置1と異なる。光電変換装置1Cは、離間して配置されたp型非晶質半導体層102pの間におけるi型非晶質半導体層102iの領域は絶縁層1051によって保護されるとともに、n型非晶質半導体層102n及びp型非晶質半導体層102pのいずれにも覆われていないi型非晶質半導体層102iの領域は絶縁層105によって保護される。そのため、このようなi型非晶質半導体層102iの領域、すなわちアモルファスシリコン層薄膜領域が剥き出しにならず、i型非晶質半導体層102iに外部から水分や有機物等が入り込みにくく、光電変換装置1Cの劣化を抑制することができる。また、第2実施形態における光電変換装置1Cは、離間して配置されたp型非晶質半導体層102pの間を覆う絶縁層1051を介して、n型非晶質半導体層102n側へ電流がリークすることを抑制することができる。その結果、光電変換装置1Cにおけるシャント抵抗を低減し、光電変換装置1Cの曲線因子FFを向上させることができる。
 また、第2実施形態における光電変換装置1Cは、絶縁層105によって、電極103の上端の一部と重なるように、p型非晶質半導体層102pとn型非晶質半導体層102nとの間が覆われている。これにより、電極103と、p型非晶質半導体層102p及びn型非晶質半導体層102nとの密着性が向上する。その結果、シリコン基板101上に形成された膜の応力や、光電変換装置1Cのモジュール化の際にシリコン基板101に生じる応力によって、電極103がシリコン基板101から剥がれにくくなる。
 <第3実施形態>
 図19は、本実施形態における光電変換装置の平面を示す模式図である。また、図20Aは、図19に示す光電変換装置1DのE-E断面を示す模式図である。図20Bは、図19に示す光電変換装置1DのF-F断面を示す模式図である。図19、図20A及び20Bにおいて、第1実施形態と同様の構成には、第1実施形態と同じ符号を付している。以下、第1実施形態と異なる構成について説明する。
 図19及び図20Aに示すように、光電変換装置1Dは、離間して配置されたp型非晶質半導体層102pの上に、X軸方向に互いに離間して配置された複数のp型電極103pが設けられている。また、光電変換装置1Dは、離間して配置されたn型非晶質半導体層102nの上に、X軸方向に互いに離間して配置された複数のn型電極103nが設けられている。隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間におけるi型非晶質半導体層102iの領域はアモルファスシリコン層薄膜領域であり、この領域はp型電極103pによって覆われる。また、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iはアモルファスシリコン層薄膜領域であり、この領域はn型電極103nによって覆われる。
 そして、図20A及び20Bに示すように、各電極103の上端の一部と重なり、電極103、n型非晶質半導体層102n、及びp型非晶質半導体層102pのいずれにも覆われていないi型非晶質半導体層102iの領域、すなわちアモルファスシリコン層薄膜領域に絶縁層105が設けられている。
 このように、本実施形態における光電変換装置1Dは、p型電極103p及びn型電極103nが、X軸方向に離間して設けられている点で第1実施形態と異なる。
 本実施形態における光電変換装置1Dの製造方法は以下のようにして行う。例えば、上述した図5A~図5Dに示す各工程を行った後、p型非晶質半導体層102pの上に、互いに離間して配置され、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間におけるi型非晶質半導体層102iと接するようにp型電極103pを形成する。また、n型非晶質半導体層102nの上に、互いに離間して配置され、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iと接するようにn型電極103nを形成する。
 この場合、例えば、図21に示すメタルマスク710を用いてp型電極103p及びn型電極103nを形成するようにしてもよい。メタルマスク710は、p型電極103pを形成するための開口部710pと、n型電極103nを形成するための開口部710nとを有する。メタルマスク710は、X軸方向に離間して開口部710p,710nがそれぞれ設けられ、Y軸方向に隣接する開口部710pと710nの端部の位置が揃っていない。そのため、メタルマスク700と比べて撓みにくく、p型電極103pとn型電極103nとを適切な位置に形成することができる。
 第3実施形態における光電変換装置1Dは、第1実施形態における光電変換装置1と同様、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間におけるi型非晶質半導体層102iと、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iの領域は、アモルファスシリコン層薄膜領域であり、p型電極103p及びn型電極103nによってそれぞれ保護される。そのため、光電変換装置1Dにおいて、アモルファスシリコン層薄膜領域が剥き出しにならず、i型非晶質半導体層102iに外部からの水分や有機物等の混入することを抑制することができる。また、光電変換装置1Dは、電極103が離間して配置されることにより、第1実施形態における光電変換装置1と比べて電極103が持つ応力が緩和され、シリコン基板101に応力がかかりにくい。その結果、光電変換装置1Dをモジュール化する際のシリコン基板101にかかる応力が低減され、電極103がシリコン基板101から剥がれるという不良を抑制することができる。
 <第4実施形態>
 図22は、本実施形態における光電変換装置の平面を示す模式図である。また、図23Aは、図22に示す光電変換装置1EのG-G断面を示す模式図である。図23Bは、図22に示す光電変換装置1EのH-H断面を示す模式図である。図22、図23A及び23Bにおいて、第1実施形態と同様の構成には、第1実施形態と同じ符号を付している。以下、第1実施形態と異なる構成について説明する。
 図22及び図23Aに示すように、光電変換装置1Eは、離間して配置された複数のp型非晶質半導体層102pのそれぞれの上にp型電極103pが設けられている。また、光電変換装置1Eは、離間して配置された複数のn型非晶質半導体層102nのそれぞれの上にn型電極103nが設けられている。そして、図23A及び23Bに示すように、光電変換装置1Eは、各電極103の上端の一部と重なり、n型非晶質半導体層102n及びp型非晶質半導体層102pのいずれにも覆われていないi型非晶質半導体層102iの領域はアモルファスシリコン層薄膜領域であり、この領域には絶縁層105が設けられている。
 よって、本実施形態における光電変換装置1Eは、p型電極103p及びn型電極103nが、X軸方向に離間して設けられ、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間が、p型電極103p及びn型電極103nによって覆われていない点で第1実施形態と異なる。
 光電変換装置1Eの製造方法は以下のようにして行う。例えば、上述した図5A~図5Dに示す各工程を行った後、p型非晶質半導体層102pの上にp型電極103pを形成し、n型非晶質半導体層102nの上にn型電極103nを形成する。この場合、例えば、図24に示すメタルマスク720を用いてp型電極103p及びn型電極103nを形成するようにしてもよい。メタルマスク720は、図22に示すp型電極103pを形成するための開口部720pと、図22に示すn型電極103nを形成するための開口部720nとを有する。メタルマスク720は、X軸方向に離間して開口部720p,720nがそれぞれ設けられ、隣接する開口部720pと開口部720pの間の位置と、隣接する開口部720nと開口部720nの間の位置とが揃っていない。そのため、メタルマスク700と比べて撓みにくく、p型電極103pとn型電極103nとを適切な位置に形成することができる。
 第4実施形態における光電変換装置1Eは、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間におけるi型非晶質半導体層102iと、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iの領域はアモルファスシリコン層薄膜領域であり、これら領域は絶縁層105によってそれぞれ保護される。そのため、光電変換装置1Eにおいて、アモルファスシリコン層薄膜領域が剥き出しにならず、i型非晶質半導体層102iに外部からの水分や有機物等が混入することを抑制することができる。
 <第5実施形態>
 図25は、本実施形態における光電変換装置の平面を示す模式図である。また、図26Aは、図25に示す光電変換装置1FのI-I断面を示す模式図である。図26Bは、図25に示す光電変換装置1FのJ-J断面を示す模式図である。図25、図26A及び26Bにおいて、第1実施形態と同様の構成には、第1実施形態と同じ符号を付している。以下、第1実施形態と異なる構成について説明する。
 図25及び図26Aに示すように、光電変換装置1Fは、離間して配置された複数のp型非晶質半導体層102pのそれぞれの上にp型電極103pが設けられている。また、光電変換装置1Fは、離間して配置された複数のn型非晶質半導体層102nのそれぞれの上にn型電極103nが設けられている。隣接するp型非晶質半導体層102pとn型非晶質半導体層102nの間には、図26Bに示すように、絶縁層1053が設けられている。
 つまり、光電変換装置1Fは、図26Bに示すように、n型電極103nの上端の一部と重なるように絶縁層1053が形成され、絶縁層1053の一部を覆うようにp型非晶質半導体層102pが形成されている。そして、図26A及び26Bに示すように、光電変換装置1Fは、各電極103の上端の一部と重なり、n型非晶質半導体層102n及びp型非晶質半導体層102pのいずれにも覆われていないi型非晶質半導体層102iはアモルファスシリコン層薄膜領域であり、この領域には絶縁層105が設けられている。
 このように、本実施形態では、隣接するp型非晶質半導体層102pとp型非晶質半導体層102pの間と、隣接するn型非晶質半導体層102nとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iに接して絶縁層105が形成されている。また、隣接するp型非晶質半導体層102pとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iに接して絶縁層1053が形成されている。すなわち、この例では、アモルファスシリコン層薄膜領域を覆う保護層の一例として絶縁層1053と絶縁層105とが設けられている。
 光電変換装置1Fの製造方法は以下のようにして行う。例えば、上述した図5A~図5Bに示す各工程を行った後、i型非晶質半導体層102iの上に、n型非晶質半導体層102nを形成する。そして、n型非晶質半導体層102nの上にn型電極103nを形成する(図27A参照)。なお、本実施形態におけるn型非晶質半導体層102nの形成方法は第1実施形態と同様の形成方法を用いる。また、n型電極103nは、図28Aに示すメタルマスク730を用いて形成してもよい。メタルマスク730は、図25に示すn型電極103nを形成するための開口部730nを有する。メタルマスク730において、開口部730nは、X軸方向に離間して配置され、Y軸方向に一定の間隔を隔てて略平行に配列されている。
 次に、n型電極103の上端の一部とn型非晶質半導体層102nとを覆うように絶縁層1053を形成する(図27B参照)。この場合、例えば、図28Bに示すメタルマスク950を用い、プラズマCVD法によりSiNを成膜する。メタルマスク950は、絶縁層1053を形成するための開口部950aを有する。開口部950aは、矩形形状を有し、Y軸方向に沿って略平行に配列されている。これにより、n型電極103の上端の一部とn型非晶質半導体層102nの一部とを覆う、X軸と略平行な一つながりの絶縁層1053が形成される。
 その後、絶縁層1053の一部とn型非晶質半導体層102nの一部とを覆うように、p型非晶質半導体層102pを形成し、続いて、p型非晶質半導体層102pの上にp型電極103pを形成する(図27C参照)。なお、本実施形態におけるp型非晶質半導体層102pは、図28Cに示すメタルマスク510を用いて形成する。メタルマスク510は、第1実施形態で用いたメタルマスクの開口部501(図5参照)よりもY軸方向の幅(WA<WA1)が大きい開口部510pを有する。p型電極103pは、図28Dに示すメタルマスク740を用いて形成してもよい。メタルマスク740は、図25に示すp型電極103pを形成するための開口部740pを有する。メタルマスク740において、開口部740pは、X軸方向に離間して配置され、Y軸方向に一定の間隔を隔てて略平行に配列されている。これにより、X軸方向に離間して配置されたp型非晶質半導体層102pのそれぞれの上にp型電極103pが形成される。
 p型電極103pの形成後、n型非晶質半導体層102n及びp型非晶質半導体層102pによって覆われていないi型非晶質半導体層102iの領域に、第1実施形態と同様の方法を用いて絶縁層105を形成する(図27D参照)。
 これにより、隣接するp型非晶質半導体層102pとn型非晶質半導体層102nの間におけるi型非晶質半導体層102iの領域は絶縁層1053によって保護される。また、隣接するp型非晶質半導体層102pの間と、隣接するn非晶質半導体層の間におけるi型非晶質半導体層102iの領域は絶縁層105によって保護される。そのため、光電変換装置1Fにおいて、このようなi型非晶質半導体層102iの領域、すなわちアモルファスシリコン層薄膜領域が剥き出しにならず、外部からの水分や有機物等の混入を抑制することができる。
 上述した第1実施形態における光電変換装置1は、i型非晶質半導体層102iを形成後、p型非晶質半導体層102pが形成され、その後、n型非晶質半導体層102nが形成される。そして、p型非晶質半導体層102pとn型非晶質半導体層102nの上に電極103が形成された後、絶縁層105が形成される。この場合、n型非晶質半導体層102nとp型非晶質半導体層102pを形成する際にメタルマスクの位置がずれると、n型非晶質半導体層102nとp型非晶質半導体層102pとが重なることがある。n型非晶質半導体層102nとp型非晶質半導体層102pとが重なることによって、n型非晶質半導体層102nとp型非晶質半導体層102pとの間でリーク電流が生じる。
 第5実施形態では、n型非晶質半導体層102nとp型非晶質半導体層102pのうち、後で形成する非晶質半導体層のメタルマスクの位置がずれたとしても、n型非晶質半導体層102nとp型非晶質半導体層102pとの間に絶縁層1053が設けられるため、n型非晶質半導体層102nとp型非晶質半導体層102pとが直接接触しない。そのため、n型非晶質半導体層102nとp型非晶質半導体層102pとの間におけるリーク電流を抑制することができる。
 <第6実施形態>
 本実施形態では、上述した第1実施形態及び第1実施形態の変形例と、第2実施形態から第5実施形態の少なくとも1つの光電変換装置を備えた光電変換モジュールについて説明する。図29は、本実施形態に係る光電変換モジュールの構成を示す概略図である。光電変換モジュール1000は、複数の光電変換装置1001と、カバー1002と、出力端子1003,1004とを備える。
 複数の光電変換装置1001は、例えば、光電変換装置1、1A~1Fのいずれかに配線シートが接合されたものを適用してもよい。また、配線シート上にいずれかの光電変換装置がアレイ状に配置され、直列に接続されたものあってもよいし、直列に接続する代わりに、並列接続、または、直列と並列を組み合わせて接続されたものでもよい。
 カバー1002は、耐候性のカバーからなり、複数の光電変換装置1001を覆う。カバー1002は、例えば、光電変換装置1001の受光面側に設けられた透明基材(例えばガラス等)と、光電変換装置1001の裏面に設けられた裏面基材(例えば、ガラス、樹脂シート等)と、前記透明基材と前記樹脂基材との間の隙間を埋める封止材(例えばEVA等)とを含む。
 出力端子1003は、直列に接続された複数の光電変換装置1001の一方端に配置される光電変換装置1001に接続される。
 出力端子1004は、直列に接続された複数の光電変換装置1001の他方端に配置される光電変換装置1001に接続される。
 なお、光電変換モジュール1000は、複数の光電変換装置1001の少なくとも1つが第1~第6実施形態の光電変換装置のいずれかからなる限り、上記構成に限定されず、いかなる構成も取り得る。
 <第7実施形態>
 図30Aは、本実施形態に係る太陽光発電システムの構成を示す概略図である。太陽光発電システム1100は、光電変換モジュールアレイ1101と、接続箱1102と、パワーコンディショナー1103と、分電盤1104と、電力メーター1105とを備える。太陽光発電システム1100には、「ホーム・エネルギー・マネジメント・システム(HEMS:Home Energy Management System)」、「ビルディング・エネルギー・マネジメント・システム(BEMS:Building Energy Management System)」等の機能を付加することができる。これにより、太陽光発電システム1100の発電量の監視、太陽光発電システム1100に接続される各電気機器類の消費電力量の監視・制御等を行うことができ、エネルギー消費量を削減することができる。
 接続箱1102は、光電変換モジュールアレイ1101に接続される。パワーコンディショナー1103は、接続箱1102に接続される。分電盤1104は、パワーコンディショナー1103および電気機器1110に接続される。電力メーター1105は、分電盤1104および商用電力系統に接続される。
 光電変換モジュールアレイ1101は、太陽光を電気に変換して直流電力を発電し、その発電した直流電力を接続箱1102に供給する。
 接続箱1102は、光電変換モジュールアレイ1101が発電した直流電力を受け、その受けた直流電力をパワーコンディショナー1103へ供給する。
 パワーコンディショナー1103は、接続箱1102から受けた直流電力を交流電力に変換し、その変換した交流電力を分電盤1104に供給する。
 分電盤1104は、パワーコンディショナー1103から受けた交流電力および/または電力メーター1105を介して受けた商用電力を電気機器1110へ供給する。また、分電盤1104は、パワーコンディショナー1103から受けた交流電力が電気機器1110の消費電力よりも多いとき、余った交流電力を、電力メーター1105を介して、商用電力系統へ供給する。
 電力メーター1105は、商用電力系統から分電盤1104へ向かう方向の電力を計測するとともに、分電盤1104から商用電力系統へ向かう方向の電力を計測する。
 図31は、図30Aに示す光電変換モジュールアレイ1101の構成を示す概略図である。図30Bを参照して、光電変換モジュールアレイ1101は、複数の光電変換モジュール1120と、出力端子1121,1122とを含む。
 複数の光電変換モジュール1120は、アレイ状に配列され、直列に接続される。複数の光電変換モジュール1120の各々は、図29に示す光電変換モジュール1000からなる。
 出力端子1121は、直列に接続された複数の光電変換モジュール1120の一方端に位置する光電変換モジュール1120に接続される。
 出力端子1122は、直列に接続された複数の光電変換モジュール1120の他方端に位置する光電変換モジュール1120に接続される。
 太陽光発電システム1100における動作を説明する。光電変換モジュールアレイ1101は、太陽光を電気に変換して直流電力を発電し、その発電した直流電力を、接続箱1102を介してパワーコンディショナー1103へ供給する。
 パワーコンディショナー1103は、光電変換モジュールアレイ1101から受けた直流電力を交流電力に変換し、その変換した交流電力を分電盤1104へ供給する。
 分電盤1104は、パワーコンディショナー1103から受けた交流電力が電気機器1110の消費電力以上であるとき、パワーコンディショナー1103から受けた交流電力を電気機器1110に供給する。そして、分電盤1104は、余った交流電力を、電力メーター1105を介して商用電力系統へ供給する。
 また、分電盤1104は、パワーコンディショナー1103から受けた交流電力が電気機器1110の消費電力よりも少ないとき、商用電力系統から受けた交流電力およびパワーコンディショナー1103から受けた交流電力を電気機器1110へ供給する。
 なお、本実施形態による太陽光発電システムは、図29、30Aに示す構成に限らず、第1実施形態及び第1実施形態の変形例、第2実施形態から第5実施形態に係る光電変換装置のいずれかを用いる限り、どのような構成であってもよい。また、図30Bに示すようにパワーコンディショナー1103には蓄電池1106が接続されていてもよい。この場合、日照量の変動による出力変動を抑制することができるとともに、日照のない時間帯であっても蓄電池1106に蓄電された電力を供給することができる。蓄電池1106はパワーコンディショナー1103に内蔵されていてもよい。
 <第7実施形態>
 図32Aは、本実施形態に係る太陽光発電システムの構成を示す概略図である。太陽光発電システム1200は、サブシステム1201~120n(nは2以上の整数)と、パワーコンディショナー1211~121nと、変圧器1221とを備える。太陽光発電システム1200は、図30A、Bに示す太陽光発電システム1100よりも規模が大きい太陽光発電システムである。
 パワーコンディショナー1211~121nは、それぞれ、サブシステム1201~120nに接続される。
 変圧器1221は、パワーコンディショナー1211~121nおよび商用電力系統に接続される。
 サブシステム1201~120nの各々は、モジュールシステム1231~123j(jは2以上の整数)からなる。
 モジュールシステム1231~123jの各々は、光電変換モジュールアレイ1301~130i(iは2以上の整数)と、接続箱1311~131iと、集電箱1321とを含む。
 光電変換モジュールアレイ1301~130iの各々は、図30Aに示す光電変換モジュールアレイ1101と同じ構成からなる。
 接続箱1311~131iは、それぞれ、光電変換モジュールアレイ1301~130iに接続される。
 集電箱1321は、接続箱1311~131iに接続される。また、サブシステム1201のj個の集電箱1321は、パワーコンディショナー1211に接続される。サブシステム1202のj個の集電箱1321は、パワーコンディショナー1212に接続される。以下、同様にして、サブシステム120nのj個の集電箱1321は、パワーコンディショナー121nに接続される。
 モジュールシステム1231のi個の光電変換モジュールアレイ1301~130iは、太陽光を電気に変換して直流電力を発電し、その発電した直流電力を、それぞれ接続箱1311~131iを介して集電箱1321へ供給する。モジュールシステム1232のi個の光電変換モジュールアレイ1301~130iは、太陽光を電気に変換して直流電力を発電し、その発電した直流電力をそれぞれ、接続箱1311~131iを介して集電箱1321へ供給する。以下、同様にして、モジュールシステム123jのi個の光電変換モジュールアレイ1301~130iは、太陽光を電気に変換して直流電力を発電し、その発電した直流電力をそれぞれ、接続箱1311~131iを介して集電箱1321へ供給する。
 そして、サブシステム1201のj個の集電箱1321は、直流電力をパワーコンディショナー1211へ供給する。
 サブシステム1202のj個の集電箱1321は、同様にして直流電力をパワーコンディショナー1212へ供給する。
 以下、同様にして、サブシステム120nのj個の集電箱1321は、直流電力をパワーコンディショナー121nへ供給する。
 パワーコンディショナー1211~121nは、それぞれ、サブシステム1201~120nから受けた直流電力を交流電力に変換し、その変換した交流電力を変圧器1221へ供給する。
 変圧器1221は、パワーコンディショナー1211~121nから交流電力を受け、その受けた交流電力の電圧レベルを変換して商用電力系統へ供給する。
 なお、本実施形態による太陽光発電システムは、図32Aに示す構成に限らず、第1実施形態及び第1実施形態の変形例と、第2実施形態から第5実施形態に係る光電変換装置のいずれかを用いる限り、どのような構成であってもよい。
 また、図32Bに示すようにパワーコンディショナー1211~121nに蓄電池1213が接続されていてもよいし、蓄電池1213がパワーコンディショナー1211~121nに内蔵されていてもよい。この場合、パワーコンディショナー1211~121nは、集電箱1321から受けた直流電力の一部または全部を適切に電力変換して、蓄電池1213に蓄電することができる。蓄電池1213に蓄電された電力は、サブシステム1201~120nの発電量に応じて適宜パワーコンディショナー1211~121n側に供給され、適切に電力変換されて変圧器1221へ供給される。
 <変形例>
 以上、本発明の第1~第7実施形態にかかる光電変換装置について説明した。本発明の光電変換装置は上述の各実施形態のみに限定されず、発明の範囲内で種々の変更が可能である。また、各実施形態は、適宜組み合わせて実施することが可能である。
 (1)上述した第1実施形態~第7実施形態において、光電変換装置におけるシリコン基板101の導電型がn型の場合を説明したが、シリコン基板101はp型であってもよい。
 (2)上述した第1実施形態~第7実施形態では、シリコン基板101の受光面に反射防止膜104が形成されている場合を説明したが、反射防止膜104が形成されていなくてもよい。また、反射防止膜104に代えて、高濃度のn型ドーパントが拡散されたn+層が形成されていてもよい。あるいは、シリコン基板101の受光面と反射防止膜104との間に、高濃度のn型ドーパントが拡散されたn+層が形成されていてもよい。または、シリコン基板101と反射防止膜104との間に、i型非晶質半導体層102i及びn型非晶質半導体層102nを順次形成して挟んでもよい。
 (3)上述した第1実施形態~第4実施形態では、シリコン基板101の裏面の全面に、i型非晶質半導体層102iを形成した後、i型非晶質半導体層102iの上にp型非晶質半導体層102pを形成し、その後、n型非晶質半導体層102nを形成する例を説明したが、p型非晶質半導体層102pとn型非晶質半導体層102nの形成順序はこれに限定されない。例えば、i型非晶質半導体層102iを形成した後、n型非晶質半導体層102nをi型非晶質半導体層102iの上に形成し、その後、p型非晶質半導体層102pをi型非晶質半導体層102iの上に形成してもよい。
 (4)上述した第1実施形態~第7実施形態において、光電変換装置におけるシリコン基板101の受光面にテクスチャが形成されている例を説明したが、シリコン基板101の裏面にテクスチャが形成されていてもよい。図33は、本変形例における光電変換装置の断面を表す模式図である。図33に示すように、光電変換装置1Gは、シリコン基板101の受光面だけでなく、裏面にもテクスチャが形成されている。また、シリコン基板101の裏面に形成されたテクスチャの凹凸に沿って、i型非晶質半導体層102i、n型非晶質半導体層102n及びp型非晶質半導体層102pが形成されている。
 シリコン基板101の裏面にテクスチャが形成されている場合、フォトマスクを用いてn型非晶質半導体層102n及びp型非晶質半導体層102pと、電極103(103n、103p)を形成すると、レジストの膜厚や露光量が不均一となり、所望する形状を得ることが難しい。本変形例では、シリコン基板101の裏面にテクスチャが形成されている場合であっても、例えば、第1実施形態と同様のメタルマスクを用いることで、所望する形状のn型非晶質半導体層102n及びp型非晶質半導体層102pと、電極103とを形成することができる。

Claims (5)

  1.  半導体基板と、
     前記半導体基板の一方の面に接するように形成された真性非晶質半導体層と、
     前記真性非晶質半導体層の上に離間して配置された第1導電型を有する第1非晶質半導体層と、
     前記真性非晶質半導体層の上に離間して配置され、かつ前記半導体基板の面内方向において前記第1非晶質半導体層に隣接して形成され、前記第1導電型と反対の第2導電型を有する第2非晶質半導体層と、
     隣接する前記第1非晶質半導体層の間、及び隣接する前記第2非晶質半導体層の間において前記真性非晶質半導体層に接するように形成された保護層と、
     を備える光電変換装置。
  2.  請求項1に記載の光電変換装置において、
     前記保護層は、絶縁膜を含む、光電変換装置。
  3.  請求項1又は2に記載の光電変換装置において、
     前記保護層は、前記第1非晶質半導体層と前記第2非晶質半導体層のそれぞれに更に接する電極を含む、光電変換装置。
  4.  請求項2に記載の光電変換装置において、
     前記絶縁膜は、さらに、隣接する前記第1非晶質半導体層と前記第2非晶質半導体層との間において前記真性非晶質半導体層と接するように形成されている、光電変換装置。
  5.  請求項4に記載の光電変換装置において、
     前記絶縁膜は、前記電極の端部近傍と重なるように形成されている、光電変換装置。
PCT/JP2016/055366 2015-05-21 2016-02-24 光電変換装置 WO2016185752A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680028567.7A CN107667435B (zh) 2015-05-21 2016-02-24 光电转换装置
US15/574,994 US10355145B2 (en) 2015-05-21 2016-02-24 Photovoltaic device
JP2017519037A JPWO2016185752A1 (ja) 2015-05-21 2016-02-24 光電変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103633 2015-05-21
JP2015-103633 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016185752A1 true WO2016185752A1 (ja) 2016-11-24

Family

ID=57319825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055366 WO2016185752A1 (ja) 2015-05-21 2016-02-24 光電変換装置

Country Status (4)

Country Link
US (1) US10355145B2 (ja)
JP (1) JPWO2016185752A1 (ja)
CN (1) CN107667435B (ja)
WO (1) WO2016185752A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519438A (ja) * 2004-10-29 2008-06-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド バックコンタクト太陽電池
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
US20120073647A1 (en) * 2009-06-02 2012-03-29 Helmholtz-Zentrum Berlin Fuer Materialien Und Energie Gmbh Solar cell comprising neighboring electrically insulating passivation regions having high surface charges of opposing polarities and production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442254A (en) * 2006-09-29 2008-04-02 Renewable Energy Corp Asa Back contacted solar cell
FR2914501B1 (fr) * 2007-03-28 2009-12-04 Commissariat Energie Atomique Dispositif photovoltaique a structure a heterojonctions interdigitee discontinue
JP5252472B2 (ja) * 2007-09-28 2013-07-31 シャープ株式会社 太陽電池、太陽電池の製造方法、太陽電池モジュールの製造方法および太陽電池モジュール
KR101142861B1 (ko) 2009-02-04 2012-05-08 엘지전자 주식회사 태양 전지 및 그 제조 방법
WO2011020124A2 (en) * 2009-08-14 2011-02-17 Gigasi Solar, Inc. Backside only contact thin-film solar cells and devices, systems and methods of fabricating same, and products produced by processes thereof
JP5046308B2 (ja) * 2009-10-09 2012-10-10 シャープ株式会社 配線シート、配線シート付き太陽電池セル、太陽電池モジュールおよび配線シートロール
JP2010283406A (ja) * 2010-09-28 2010-12-16 Sanyo Electric Co Ltd 太陽電池
CN102738289B (zh) * 2011-04-02 2016-09-14 上海太阳能工程技术研究中心有限公司 异质结太阳能电池及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519438A (ja) * 2004-10-29 2008-06-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド バックコンタクト太陽電池
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
US20120073647A1 (en) * 2009-06-02 2012-03-29 Helmholtz-Zentrum Berlin Fuer Materialien Und Energie Gmbh Solar cell comprising neighboring electrically insulating passivation regions having high surface charges of opposing polarities and production method

Also Published As

Publication number Publication date
JPWO2016185752A1 (ja) 2018-03-08
US20180138323A1 (en) 2018-05-17
CN107667435B (zh) 2020-02-28
CN107667435A (zh) 2018-02-06
US10355145B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
US11316061B2 (en) Photovoltaic devices, photovoltaic modules provided therewith, and solar power generation systems
JP6774163B2 (ja) 光電変換装置
JP6785775B2 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
JP6613252B2 (ja) 光電変換素子
JP6719548B2 (ja) 光電変換装置、光電変換モジュールおよび太陽光発電システム
JP6639496B2 (ja) 光電変換装置
JP6639295B2 (ja) 光電変換装置、光電変換モジュールおよび太陽光発電システム
JP6689757B2 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
JP5913446B2 (ja) 光電変換装置およびその製造方法
WO2016072415A1 (ja) 光電変換素子
WO2016185752A1 (ja) 光電変換装置
JP6697824B2 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
JP6133465B2 (ja) 光電変換装置およびその製造方法
WO2016163168A1 (ja) 光電変換素子
WO2016076299A1 (ja) 光電変換装置
WO2015198978A1 (ja) 光電変換装置およびその製造方法
JP6744820B2 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519037

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796147

Country of ref document: EP

Kind code of ref document: A1