WO2016184405A1 - 一种小微型鼓风机 - Google Patents

一种小微型鼓风机 Download PDF

Info

Publication number
WO2016184405A1
WO2016184405A1 PCT/CN2016/082699 CN2016082699W WO2016184405A1 WO 2016184405 A1 WO2016184405 A1 WO 2016184405A1 CN 2016082699 W CN2016082699 W CN 2016082699W WO 2016184405 A1 WO2016184405 A1 WO 2016184405A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove pattern
foil
bearing
dynamic pressure
pressure gas
Prior art date
Application number
PCT/CN2016/082699
Other languages
English (en)
French (fr)
Inventor
罗立峰
Original Assignee
罗立峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2015/079232 external-priority patent/WO2016183786A1/zh
Priority claimed from PCT/CN2015/079234 external-priority patent/WO2016183788A1/zh
Application filed by 罗立峰 filed Critical 罗立峰
Publication of WO2016184405A1 publication Critical patent/WO2016184405A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/0563Bearings cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/163Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the invention relates to a small micro blower and belongs to the technical field of high precision machinery.
  • the air blower is mainly used in a part of an office automation equipment that requires a large amount of air, and the hot air generated inside the device is discharged outward by the wind generated by rotating the impeller, and the device is internally cooled and cooled.
  • the traditional blower usually uses the speed increasing system to drive the compressor impeller to rotate after the speed increase of the ordinary power frequency motor.
  • the main defects are as follows: 1 The speed increasing system is very complicated, the weight is large, the floor space is large, and the cost is expensive; Specially equipped oil system, and easy to leak oil problem, limited application range; 3 gear transmission noise is large, there is a certain mechanical loss, and ordinary power frequency motor has low power density, large volume and weight, high noise; Both the speed system and the ordinary power frequency motor need to apply the bearing.
  • Chinese Patent Publication No. CN102200136B discloses an air suspension gas supply adjustable high speed motor direct drive blower, which comprises a compressor impeller, a permanent magnet synchronous motor rotor, a motor stator, and a front Radial air bearing, rear radial air bearing, axial thrust air bearing, volute and motor housing; one end of the permanent magnet synchronous motor rotor is connected to the compressor impeller, and the motor stator drives the permanent magnet synchronous motor rotor to rotate, the front diameter
  • the air bearing, the rear radial air bearing and the axial thrust air bearing are suspended to support the permanent magnet synchronous motor rotor, and the scroll is disposed at the periphery of the compressor impeller, and the motor housing is located at the motor stator, the front radial air bearing, and the rear radial Air bearing, axial thrust air bearing and the periphery of the permanent magnet synchronous motor rotor.
  • the patented technology directly drives the compressor impeller through the permanent magnet synchronous motor rotor of the high-speed motor
  • the utility model has the advantages of high efficiency, low loss, environmental protection, wide applicable range, and the like, but the patent technology still has the following problems: 1.
  • the rotational speed is still limited. At present, it can only achieve a speed of up to 100,000 rpm; 2. It can not be operated for a long time: the heat generated by high-speed operation cannot be effectively exported, so that the continuous working time cannot be very long; 3.
  • the stability of high-speed operation is not good, so that the actual operating efficiency is up to Not ideal goals; 4, the structure is still relatively complex, large size, can not meet the requirements of today's miniaturization development.
  • an object of the present invention is to provide a small micro blower which has high operation efficiency, high speed running stability, and can work for a long time.
  • a small micro blower comprising an impeller and a motor, the motor comprising a rotor, a stator, a rotating shaft, an end cover and a casing; further comprising: a rotary connecting member and a hybrid dynamic pressure gas radial bearing, and
  • the housing is an annular cylindrical structure formed by two inner and outer cylinders, the rotary connecting member is a cylindrical structure having a cavity, and the rotating connecting member is sleeved on a rotating shaft close to the impeller Up and connected to the impeller and the end of the rotating shaft respectively, the side of the rotating connecting member is located in a cavity formed by the outer cylinder and the inner cylinder of the casing; the hybrid dynamic pressure gas radial bearing and The rotating shaft is located in the inner cylinder cavity of the casing, and the hybrid dynamic pressure gas radial bearing is sleeved on the rotating shaft; the stator is fixed on the outer wall of the inner cylinder of the casing, and the rotor is fixed on the rotating connecting member On the inner wall of the
  • a plurality of air guide vanes are provided at a side of the rotary joint located above the air flow passage formed at the end of the rotary shaft and the hybrid dynamic pressure gas radial bearing.
  • a plurality of air inlet holes and a plurality of heat dissipation vent holes are formed on the outer circumference side of the outer casing of the casing.
  • the impeller is fixedly connected to the rotating connecting member and the rotating shaft by a locking bolt.
  • the rotating shaft and the locking bolt are both provided with a cavity to reduce the weight of the blower.
  • the small micro blower further comprises an impeller casing, and the impeller casing is fixedly connected to the outer cylinder of the casing by bolts.
  • the hybrid dynamic pressure gas radial bearing comprises a bearing sleeve, a bearing inner sleeve and a foil-type elastic member disposed between the bearing outer sleeve and the inner sleeve.
  • the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a regular pattern of grooves.
  • the groove pattern of one end surface of the bearing inner sleeve is mirror-symmetrical with the groove pattern of the other end surface, and the axial contour line of the groove pattern of the outer circumferential surface and the groove pattern of the both end surfaces
  • the radial contour lines form a one-to-one correspondence and intersect each other.
  • the axial high line in the groove pattern of the outer circumferential surface of the bearing inner sleeve corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the axial median line in the groove pattern of the outer circumferential surface corresponds to the radial median line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the axial lower line in the middle corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member that cooperates with the outer circumferential surface of the bearing inner sleeve.
  • the fitting gap between the foil-type elastic member and the bearing inner sleeve is 0.003 to 0.008 mm.
  • both ends of the foil-type elastic member are fixed to the inner circumferential wall of the bearing housing.
  • the foil-type elastic members are plural and evenly distributed along the inner circumferential wall of the bearing outer casing.
  • a card groove for fixing the foil-type elastic member is provided on the inner circumferential wall of the bearing housing.
  • a stop ring is provided at both ends of the bearing housing.
  • the small micro blower further includes a hybrid dynamic pressure gas thrust bearing
  • the hybrid dynamic pressure gas thrust bearing includes two side plates and is sandwiched between the two side plates a middle plate, a foil-type elastic member is disposed between each of the side plates and the middle plate, and the hybrid dynamic pressure gas thrust bearing is located in a cavity formed by the housing and the end cover, and is sleeved on the rotating shaft on.
  • the end cap is fixedly connected to the middle disc adjusting ring of the hybrid dynamic pressure gas thrust bearing and the tail of the housing by bolts.
  • both end faces of the middle plate are provided with a regular pattern of groove patterns, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face.
  • the outer circumferential surface of the intermediate disk is also provided with a groove pattern, and the shape of the groove pattern of the outer circumferential surface is the same as the shape of the groove pattern on both end faces, and the groove pattern of the outer circumferential surface
  • the axial contour line forms a one-to-one correspondence with the radial contour lines of the groove patterns on both end faces and intersects each other.
  • the axial high line in the groove pattern of the outer circumferential surface of the middle disk corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the outer circumference The axial median line in the groove pattern corresponds to the radial median line in the groove pattern on both end faces, and crosses each other before the end face is chamfered;
  • the axis in the groove pattern of the outer circumferential surface The low-order line corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member that is fitted to the intermediate disk.
  • the fitting gap between the foil-type elastic member and the middle plate is 0.003 to 0.008 mm.
  • At least one end of the foil-type elastic member is fixed to an inner end surface of the corresponding side disk.
  • the foil-type elastic members on each of the side plates are plural and evenly distributed along the inner end faces of the side plates.
  • the foil-type elastic member fixed to one side disk is mirror-symmetrical to the foil-shaped elastic member fixed to the other side disk.
  • a card slot for fixing the foil-type elastic member is provided on the inner end surface of the side disk.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the curved convex top end of the wave foil is attached to the flat foil.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the inter-wave arch transition bottom edge of the wave foil is in contact with the flat foil.
  • the foil-type elastic member is composed of two flat foils.
  • the above-mentioned groove patterns are all impeller shapes.
  • the above-mentioned foil-type elastic member is preferably subjected to surface heat treatment.
  • the present invention has the following beneficial effects:
  • the air blower provided by the present invention uses gas as a lubricant of the bearing, so that it has not only pollution-free, low friction loss, long use time, wide application range, energy saving and environmental protection, etc., but also adopts the structure, and the heat dissipation effect is good. It can guarantee stable operation for a long time; in particular, because the air bearing of the structure can achieve ultra-high speed operation under air-floating state (tested, the limit speed can reach 100,000 to 450,000 rpm), so for the same power requirement, The invention can significantly reduce the volume of the blower to achieve miniaturization, has the advantages of small occupied space and convenient use, and has great value for promoting the development of miniaturization high-tech, and has significant progress for the prior art.
  • Embodiment 1 is a front perspective view of a small micro blower provided in Embodiment 1;
  • Figure 2 is a front elevational view showing the structure of the small micro blower provided in Embodiment 1;
  • Figure 3 is a view taken along line A-A of Figure 2;
  • FIG. 4 is a schematic perspective structural view of a rotary joint provided in Embodiment 1;
  • Figure 5 is a perspective view showing the structure of the housing provided in Embodiment 1;
  • Embodiment 6 is a partially-divided left-view three-dimensional structure diagram of the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 7 is a partial enlarged view of B in Figure 6;
  • Figure 8 is a right side perspective view showing the partial division of the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 9 is a partial enlarged view of C in Figure 8.
  • Figure 10 is a cross-sectional structural view showing the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 11 is a partial enlarged view of D in Figure 10;
  • Figure 12 is a partial enlarged view of E in Figure 11;
  • Figure 13 is a cross-sectional structural view of the hybrid dynamic pressure gas thrust bearing provided in Embodiment 1;
  • Figure 14a is a left side view of the center disk described in Embodiment 1;
  • Figure 14b is a right side view of the center disk described in Embodiment 1;
  • Figure 15a is a right side view of the left side disk to which the foil-type elastic member is fixed as described in Embodiment 1;
  • Figure 15b is a left side view of the right side disk to which the foil-type elastic member is fixed as described in Embodiment 1;
  • FIG. 16 is a schematic cross-sectional structural view of a foil-type elastic member provided in Embodiment 1;
  • Figure 17 is a perspective view showing the structure of the foil-type elastic member provided in Embodiment 1;
  • Figure 18 is a cross-sectional structural view showing a hybrid dynamic pressure gas radial bearing provided in Embodiment 2;
  • Figure 19 is a schematic structural view of the wave foil of Figure 18;
  • 21a is a left side perspective structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 4.
  • Figure 21b is a right perspective view showing the hybrid dynamic pressure gas thrust bearing of the fourth embodiment
  • Figure 22 is a partially sectional perspective structural view of the hybrid dynamic pressure gas thrust bearing provided in the fourth embodiment.
  • Figure 23 is a left perspective view of the middle disc of the fourth embodiment.
  • Figure 24 is a partial enlarged view of F in Figure 23;
  • Figure 25 is a right perspective view showing the center disk of the fourth embodiment
  • Figure 26 is a partial enlarged view of G in Figure 25.
  • a small micro blower provided by the embodiment includes an impeller 1 and a motor 2, the motor 2 including a rotor 21, a stator 22, a rotating shaft 23, an end cover 24 and a housing 25, It is characterized in that it further comprises a rotary joint 3, a hybrid dynamic pressure gas radial bearing 4 and a hybrid dynamic pressure gas thrust bearing 5.
  • the housing 25 is an annular cylindrical structure in which two cavities are formed by inner and outer cylinders, and the rotary connecting member 3 is a cylindrical structure having a cavity, and the rotating connecting member 3 is sleeved close to
  • the rotating shaft 23 of the impeller 1 is coupled to the end of the impeller 1 and the rotating shaft 23, and the side portion 31 of the rotating connecting member 3 is located in a cavity formed by the outer cylinder 251 and the inner cylinder 252 of the casing;
  • the hybrid dynamic pressure gas radial bearing 4 and the rotating shaft 23 are both located in the cavity of the inner cylinder 252 of the casing, and the hybrid dynamic pressure gas radial bearing 4 is sleeved on the rotating shaft 23;
  • the stator 22 is fixed On the outer wall of the inner cylinder 252 of the casing, the rotor 21 is fixed to the inner wall of the side portion 31 of the rotary joint 3.
  • the hybrid dynamic pressure gas radial bearing 4 includes a bearing outer casing 41, a bearing inner sleeve 42 and a foil-type elastic member 45 disposed between the bearing outer casing 41 and the inner sleeve 42; the hybrid dynamic pressure gas thrust bearing 5
  • the utility model comprises two side discs 51 and a middle disc 52 sandwiched between the two side discs, and a foil-type elastic member 53 is disposed between each of the side discs 51 and the middle disc 52, and the hybrid dynamic pressure is provided.
  • the gas thrust bearing 5 is located in a cavity formed by the housing 25 and the end cover 24, and is sleeved on the rotating shaft 23.
  • a plurality of air guide vanes 32 are formed in the side portion 31 of the rotary link 3 above the air flow passage formed at the end of the rotary shaft 23 and the hybrid dynamic pressure gas radial bearing 4.
  • a plurality of intake holes 253 and a plurality of heat dissipation vent holes 254 are opened on the circumferential side of the outer cylinder 251 of the casing, and the intake holes 253 communicate with the air guide vanes 32.
  • the impeller 1 is connected and fixed to the rotary joint 3 and the rotating shaft 23 by a locking bolt 6.
  • the rotating shaft 23 and the locking bolt 6 both open a cavity (231/61).
  • the small micro-blower further comprises an impeller casing 11 which is fixedly connected to the outer cylinder 251 of the casing by bolts 7.
  • the end cap 24 is fixedly coupled to the middle disc adjusting ring 54 of the hybrid dynamic pressure gas thrust bearing 5 and the tail portion of the housing 25 by bolts 8.
  • the outer circumferential surface and the left and right end surfaces of the bearing inner sleeve 42 each have a regular shape of the groove pattern 43 (431, 432 and 433 in the figure, the groove in this embodiment).
  • the pattern is an impeller shape
  • the groove pattern 432 of the left end surface is mirror-symmetrical with the groove pattern 433 of the right end surface.
  • the axial contour line of the groove pattern 431 located on the outer circumferential surface of the bearing inner sleeve 42 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end surfaces, and is mutually overlapped, that is, external
  • the axially high bit line 4311 in the circumferential groove pattern 431 corresponds to the radial high bit lines (4321 and 4331) in the groove patterns (432 and 433) of the left and right end faces, and is chamfered before the end face is chamfered Interlacing with each other;
  • the middle radial line (4322 and 4332) in the middle correspond to each other and cross each other before the circumferential chamfer of the end face;
  • the groove pattern 432 of the left end surface and the groove pattern 433 of the right end surface are mirror-symmetrical and outer circumference.
  • the axial contour line of the groove pattern 431 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end faces, and mutually intersects each other, thereby ensuring the groove pattern of the impeller shape at both end faces.
  • the pressurized gas generated by (432 and 433) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 431 of the outer circumferential surface, so as to form a gas film required for supporting the high-speed running bearing more strongly, and
  • the gas film is used as a lubricant for the dynamic pressure gas radial bearing, so that the high-speed stable operation of the bearing 4 in the air-floating state can be achieved.
  • the retaining ring 44 when the retaining ring 44 is respectively disposed at both ends of the bearing outer casing 41, the self-sealing action between the end faces of the bearing inner sleeve 42 and the retaining ring 44 can be achieved under the driving of the high-speed rotating shaft, so that the trough pattern is continuous.
  • the generated dynamic pressure gas can be well sealed and stored in the entire matching clearance of the bearing to fully ensure the lubrication of the high-speed running dynamic pressure gas radial bearing.
  • the foil-shaped elastic member 45 is disposed between the bearing sleeve 41 and the inner sleeve 42 and is composed of a wave foil 451 and a flat foil 452.
  • the curved protrusion 4511 of the wave foil 451 The top end is attached to the flat foil 452, and the inter-wave transition bottom edge 4512 of the wave foil 451 is fitted to the inner circumferential wall of the bearing outer casing 41.
  • a card slot 411 for fixing both ends of the foil-type elastic member 45 is provided on the inner circumferential wall of the bearing housing 41, and the card slot 411 corresponds to the number of the foil-type elastic members 45, and is evenly distributed along the inner circumferential wall of the bearing housing 41. distributed.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member 45 (i.e., the inner surface of the flat foil 452 constituting the foil-shaped elastic member 45) which is engaged with the outer circumferential surface of the bearing inner sleeve 42. 453, to further reduce the wear of the foil-type elastic member 45 by the bearing inner sleeve 42 at a high speed, and prolong the service life of the bearing.
  • the fitting clearance of the foil-type elastic member 45 and the bearing inner sleeve 42 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the high-speed operation of the bearing.
  • the middle plate 52 of the present embodiment is sandwiched between two side plates 51, and the left end surface of the middle plate 52 is provided with a regular groove pattern 521, and the right end surface is provided with a regular shape.
  • the trough pattern 522 is provided on the middle plate 52.
  • the groove pattern 521 of the left end surface of the middle plate 52 and the groove pattern 522 of the right end surface form mirror symmetry, and the radial contour line and the right end surface of the groove pattern 521 of the left end surface are formed.
  • the radial contours of the troughs 522 form a one-to-one correspondence.
  • the troughs 521 and 522 have the same shape, and are in the shape of an impeller in this embodiment.
  • the foil-type elastic member 53 is fixed to the inner end surface of the corresponding side disk 51 (for example, the left side disk 511 to which the foil-type elastic member 53a is fixed as shown in Fig. 15a and the left side disk 511 shown in Fig. 15b
  • the right side disc 512 to which the foil type elastic member 53b is fixed, and the foil type elastic member 53a fixed to the left side disc 511 is mirror-symmetrical with the foil type elastic member 53b fixed to the right side disc 512.
  • the foil-type elastic member 53 By providing the foil-type elastic member 53 between the side disk 51 and the intermediate disk 52, regular groove patterns (521 and 522) are provided on the left and right end faces of the middle plate 52, and the groove pattern 521 of the left end face is The groove pattern 522 of the right end surface is mirror-symmetrical, thereby obtaining a rigid characteristic of a high limit rotation speed of the groove type dynamic pressure gas thrust bearing, and a high impact resistance and load of the foil type dynamic pressure gas thrust bearing.
  • the hybrid dynamic pressure gas thrust bearing of the flexible nature of the capability because the foil-shaped elastic member 53 forms a wedge-shaped space with the intermediate disk 52, when the disk 52 rotates, the gas is driven by its own viscous action and is compressed to the wedge shape.
  • the axial dynamic pressure can be significantly enhanced, compared with the existing simple foil dynamic pressure gas thrust bearing, which can have a limit rotation speed which is multiplied under the same load; meanwhile, due to the increased foil type
  • the elastic member 53 can also significantly improve the bearing capacity, the impact resistance and the ability to suppress the whirl of the bearing under the elastic action, and can have the same in comparison with the existing simple groove type dynamic pressure gas thrust bearing. Doubling the speed of impact resistance and load capacity.
  • the foil-type elastic members 45/53 described in this embodiment are each composed of a wave foil 451/531 and a flat foil 452/532, and the arc-shaped projection 4511 of the wave foil 451/531.
  • the top of the /5311 fits the flat foil 452/532.
  • the foil-type elastic member 45 of the present embodiment is composed of a wave foil 451 and a flat foil 452, and the tip end of the curved projection 4511 of the wave foil 451 is fitted to the inner circumferential wall of the bearing outer casing 41.
  • the inter-wave transition bottom edge 4512 of the wave foil 451 is in contact with the flat foil 452.
  • FIG. 19 is a schematic view showing the structure of the wave foil 451.
  • the foil-type elastic member 45 of the present embodiment is composed of two flat foils 452.
  • a hybrid dynamic pressure gas thrust bearing provided by this embodiment differs from Embodiment 1 only in that:
  • a groove pattern 523 is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is
  • the groove patterns (521 and 522) of the left and right end faces have the same shape (the impeller shape in this embodiment), and the axial contour lines of the groove pattern 523 of the outer circumferential surface and the groove patterns of the left and right end faces.
  • the radial contours of the patterns (521 and 522) form a one-to-one correspondence and intersect each other; that is:
  • the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line line 5211 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end face is chamfered;
  • the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5212 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end surface is chamfered;
  • the axially lower bit line 5233 corresponds to the radially lower bit line 5213 in the groove pattern 521 of the left end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 24);
  • the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line 5221 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered;
  • the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5222 in the groove pattern 522 of the right end surface, and is mutually overlapped before the end surface is chamfered;
  • the axially lower bit line 5233 corresponds to the radially lower bit line 5223 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 26).
  • a groove pattern is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces, and When the axial contour line of the groove pattern 523 of the circumferential surface forms a one-to-one correspondence with the radial contour lines of the groove patterns (521 and 522) of the left and right end faces, the groove pattern of both end faces of the inner disk can be obtained.
  • the pressurized gas generated by (521 and 522) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 523 of the outer circumferential surface so as to form a gas film which is stronger for supporting the high speed running bearing, and
  • the gas film is used as a lubricant for the dynamic pressure gas thrust bearing, so that the high-speed stable operation of the hybrid dynamic pressure gas thrust bearing in the air floating state can be further ensured, and further guarantee for realizing the high limit rotation speed of the air blower.
  • a card slot 513 (shown in Fig. 22) for fixing the foil-type elastic member 53 is provided on the inner end surface of the side disk 51.
  • the fitting clearance of the foil-type elastic member 53 and the intermediate disk 52 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the high-speed operation of the bearing.
  • foil-type elastic members 45/53 described in the present invention are preferably subjected to surface heat treatment to better meet the performance requirements of high-speed operation; the composition of the foil-type elastic member 45/53 is not Other existing structures may be employed as described in the above embodiments.
  • the bearing provided by the invention can reach the limit rotation speed of 100,000-450,000 rpm in the air floating state, so the invention can significantly reduce the volume of the air blower to achieve miniaturization for the same power requirement, and promote the miniaturization of high-tech. Development is of great value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Support Of The Bearing (AREA)
  • Motor Or Generator Frames (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

一种小微型鼓风机,其包括叶轮(1)、电机(2)、转动连接件(3)和混合式动压气体径向轴承(4),所述电机包括转子(21)、定子(22)、转轴(23)、端盖(24)和壳体(25),所述壳体(25)是由内、外筒形成两个空腔的环形圆筒状结构,所述转动连接件(3)是具有一个空腔的圆筒状结构,所述转动连接件套设在靠近叶轮(1)的转轴(23)上、并与叶轮(1)和转轴(23)端部分别相契合连接,其侧部(31)位于由壳体的外筒(251)与内筒(252)所形成的空腔内;所述混合式动压气体径向轴承(4)和转轴(23)均位于壳体的内筒(252)腔内,且所述混合式动压气体径向轴承(4)套设在转轴(23)上;所述定子(22)固定在壳体的内筒(252)外壁上,所述转子(21)固定在转动连接件(3)的侧部(31)内壁上。所述鼓风机可实现在气浮状态下的超高速运转,针对相同功率要求,鼓风机的体积显著减小实现微型化。

Description

一种小微型鼓风机 技术领域
本发明是涉及一种小微型鼓风机,属于高精密机械技术领域。
背景技术
鼓风机主要用于办公自动化设备中需要较大风量的部位,通过旋转叶轮所得的风力将设备内部产生的热气向外排出,对其内部进行散热冷却的装置。传统的鼓风机通常是采用增速系统对普通工频电动机增速后驱动压气机叶轮旋转做功,存在如下主要缺陷:①增速系统十分复杂,重量大,占地面积多,造价昂贵;②不仅需要专门配套的滑油系统,而且容易出现漏油问题,应用范围受限;③齿轮传动噪声大,存在一定机械损失,并且,普通工频电动机功率密度低,体积和重量大,噪声高;④增速系统和普通工频电动机都需要应用轴承,受制于轴承的摩擦和寿命,转动速度不能做到很高,导致系统整体功率密度低,体积巨大,在和压气机叶轮进行功率匹配时存在一定困难;⑤由于工频电机转速恒定,如要调节鼓风机的供气量,必须添加非常复杂的进气控制系统,增加制造成本及控制难度。
为了解决传统的电机鼓风机所存在的上述诸多缺陷,中国专利文献CN102200136B中公开了一种空气悬浮供气可调高速电机直驱鼓风机,其包括压气机叶轮、永磁同步电机转子、电机定子、前径向空气轴承、后径向空气轴承、轴向止推空气轴承、涡壳和电机壳体;永磁同步电机转子的一端连接压气机叶轮,电机定子驱动永磁同步电机转子旋转,前径向空气轴承、后径向空气轴承、轴向止推空气轴承悬浮支撑永磁同步电机转子,涡壳设置在压气机叶轮外围,电机壳体位于电机定子、前径向空气轴承、后径向空气轴承、轴向止推空气轴承和永磁同步电机转子的外围。虽然该专利技术通过高速电动机的永磁同步电机转子直接驱动压气机叶轮,具有效率高、损耗低、环保、可适用范围广等优点,但该专利技术还存在如下问题:1、转速仍然有限,目前只能实现最高10万转的转速;2、不能长期运行:因高速运转产生的热量不能有效导出,以致连续工作时间不能很长;3、高速运转的稳定性不佳,以致实际运行效率达不到理想目标;4、结构仍然较复杂,体积较大,不能满足当今微型化发展要求。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种运行效率高、高速运行稳定性好及可长时间工作的小微型鼓风机。
为实现上述目的,本发明采用的技术方案如下:
一种小微型鼓风机,包括叶轮和电机,所述电机包括转子、定子、转轴、端盖和壳体;其特征在于:还包括一转动连接件和一个混合式动压气体径向轴承,并且,所述壳体是由内、外筒形成两个空腔的环形圆筒状结构,所述转动连接件是具有一个空腔的圆筒状结构,所述转动连接件套设在靠近叶轮的转轴上,并与叶轮和转轴端部分别相契合连接,所述转动连接件的侧部位于由壳体的外筒与内筒所形成的空腔内;所述混合式动压气体径向轴承和转轴均位于壳体的内筒腔内,且所述混合式动压气体径向轴承套设在转轴上;所述定子固定在壳体的内筒外壁上,所述转子固定在转动连接件的侧部内壁上。
作为优选方案,在位于转轴与混合式动压气体径向轴承的端部所形成的气流通道的上方的转动连接件的侧部开设有若干导气叶片。
作为进一步优选方案,在壳体的外筒周侧开设有若干进气孔和若干散热排气孔。
作为优选方案,所述叶轮与转动连接件及转轴间通过锁紧螺栓连接固定。
作为进一步优选方案,所述转轴和锁紧螺栓均开设有空腔,以减轻所述鼓风机的重量。
作为优选方案,所述的小微型鼓风机还包括叶轮壳,所述叶轮壳通过螺栓与壳体的外筒固定连接。
作为优选方案,所述混合式动压气体径向轴承包括轴承外套、轴承内套及设置在轴承外套与内套之间的箔型弹性件。
作为进一步优选方案,所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
作为进一步优选方案,所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与轴承内套的外圆周面相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述的箔型弹性件与轴承内套的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述的箔型弹性件的两端均固定在轴承外套的内圆周壁上。
作为进一步优选方案,所述的箔型弹性件为多个,且沿轴承外套的内圆周壁均匀分布。
作为进一步优选方案,在轴承外套的内圆周壁设有用于固定箔型弹性件的卡槽。
作为进一步优选方案,在轴承外套的两端设有止环。
作为一种实施方案,所述的小微型鼓风机还包括一个混合式动压气体止推轴承,所述的混合式动压气体止推轴承包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件,并且,所述混合式动压气体止推轴承位于壳体与端盖形成的腔体内,并套设在转轴上。
作为优选方案,所述端盖通过螺栓与混合式动压气体止推轴承的中盘调整环及壳体的尾部固定连接。
作为优选方案,所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
作为优选方案,在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与中盘相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述箔型弹性件与中盘的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述箔型弹性件的至少一端固定在对应侧盘的内端面上。
作为进一步优选方案,每个侧盘上的箔型弹性件为多个,且沿侧盘的内端面均匀分布。
作为进一步优选方案,固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
作为进一步优选方案,在侧盘的内端面设有用于固定箔型弹性件的卡槽。
作为一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
作为另一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
作为又一种实施方案,所述的箔型弹性件由两个平箔组成。
上述的槽式花纹均为叶轮形状。
上述的箔型弹性件优选经过表面热处理。
与现有技术相比,本发明具有如下有益效果:
因本发明所提供的鼓风机,是以气体作为轴承的润滑剂,因此不仅具有无污染、摩擦损失低、使用时间长、适用范围广、节能环保等诸多优点,而且采用所述结构,散热效果好,可保证长时间稳定运行;尤其是,因所述结构的空气轴承能实现在气浮状态下的超高速运转(经测试,可达100,000~450,000rpm的极限转速),因此针对相同功率要求,本发明可使鼓风机的体积显著减小实现微型化,具有占用空间小、使用便捷等优点,对促进微型化高新技术的发展具有重要价值,现对于现有技术具有显著性进步。
附图说明
图1是实施例1提供的一种小微型鼓风机的前视立体结构示意图;
图2是实施例1提供的小微型鼓风机的正视结构示意图;
图3是图2的A-A向视图;
图4是实施例1提供的转动连接件的立体结构示意图;
图5是实施例1提供的壳体的立体结构示意图;
图6是实施例1提供的混合式动压气体径向轴承的局部分割的左视立体结构示意图;
图7是图6中的B局部放大图;
图8是实施例1提供的混合式动压气体径向轴承的局部分割的右视立体结构示意图;
图9是图8中的C局部放大图;
图10是实施例1提供的混合式动压气体径向轴承的剖面结构示意图;
图11是图10中的D局部放大图;
图12是图11中的E局部放大图;
图13是实施例1提供的混合式动压气体止推轴承的剖面结构示意图;
图14a是实施例1中所述中盘的左视图;
图14b是实施例1中所述中盘的右视图;
图15a是实施例1中所述的固定有箔型弹性件的左侧盘的右视图;
图15b是实施例1中所述的固定有箔型弹性件的右侧盘的左视图;
图16是实施例1提供的箔型弹性件的截面结构示意图;
图17是实施例1提供的箔型弹性件的立体结构示意图;
图18是实施例2提供的一种混合式动压气体径向轴承的剖面结构示意图;
图19是图18中波箔的结构示意图;
图20是实施例3提供的一种混合式动压气体径向轴承的剖面结构示意图;
图21a是实施例4提供的一种混合式动压气体止推轴承的左视立体结构示意图;
图21b是实施例4提供的混合式动压气体止推轴承的右视立体结构示意图;
图22是实施例4提供的混合式动压气体止推轴承的局部分割立体结构示意图;
图23是实施例4中所述中盘的左视立体结构示意图;
图24是图23中的F局部放大图;
图25是实施例4中所述中盘的右视立体结构示意图;
图26是图25中的G局部放大图。
图中标号示意如下:
1、叶轮;11、叶轮壳;2、电机;21、转子;22、定子;23、转轴;231、转轴空腔;24、端盖;25、壳体;251、壳体的外筒;252、壳体的内筒;253、进气孔;254、散热排气孔;3、转动连接件;31、转动连接件的侧部;32、导气叶片;4、混合式动压气体径向轴承;41、轴承外套;411、卡槽;42、轴承内套;43、槽式花纹;431、外圆周面的槽式花纹;4311、轴向高位线;4312、轴向中位线;4313、轴向低位线;432、左端面的槽式花纹;4321、径向高位线;4322、径向中位线;4323、径向低位线;433、右端面的槽式花纹;4331、径向高位线;4332、径向中位线;4333、径向低位线;44、止环;45、箔型弹性件;451、波箔;4511、弧形凸起;4512、波拱间过渡底边;452、平箔;453、耐磨涂层;5、混合式动压气体止推轴承;51、侧盘;511、左侧盘;512、右侧盘;513、卡槽;52、中盘;521、左端面的槽式花纹;5211、径向高位线;5212、径向中位线;5213、径向低位线;522、右端面的槽式花纹;5221、径向高位线;5222、径向中位线;5223、径向低位线;523、外圆周面的槽式花纹;5231、轴向高位线;5232、轴向中位线;5233、轴向低位线;53、箔型弹性件;53a、固定在左侧盘上的箔型弹性件;53b、固定在右侧盘上的箔型弹性件;531、波箔;5311、弧形凸起;5312、波拱间过渡底边;532、平箔;54、中盘调整环;6、锁紧螺栓;61、锁紧螺栓空腔;7、固定叶轮壳的螺栓;8、固定端盖的螺栓。
具体实施方式
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
结合图1至图5所示:本实施例提供的一种小微型鼓风机,包括叶轮1和电机2,所述电机2包括转子21、定子22、转轴23、端盖24和壳体25,其特征在于:还包括转动连接件3、混合式动压气体径向轴承4和混合式动压气体止推轴承5。
所述壳体25是由内、外筒形成两个空腔的环形圆筒状结构,所述转动连接件3是具有一个空腔的圆筒状结构,所述转动连接件3套设在靠近叶轮1的转轴23上,并与叶轮1和转轴23端部相契合连接,所述转动连接件3的侧部31位于由壳体的外筒251与内筒252所形成的空腔内;所述混合式动压气体径向轴承4和转轴23均位于壳体的内筒252的空腔内,且所述混合式动压气体径向轴承4套设在转轴23上;所述定子22固定在壳体的内筒252外壁上,所述转子21固定在转动连接件3的侧部31的内壁上。
所述混合式动压气体径向轴承4包括轴承外套41、轴承内套42及设置在轴承外套41与内套42之间的箔型弹性件45;所述混合式动压气体止推轴承5包括两个侧盘51以及夹设在两个侧盘之间的中盘52,在每个侧盘51与中盘52之间均设有箔型弹性件53,并且,所述混合式动压气体止推轴承5位于壳体25与端盖24形成的腔体内,并套设在转轴23上。
在位于转轴23与混合式动压气体径向轴承4的端部所形成的气流通道的上方的转动连接件3的侧部31开设有若干导气叶片32。
在壳体的外筒251周侧开设有若干进气孔253和若干散热排气孔254,所述进气孔253与导气叶片32相连通。
所述叶轮1与转动连接件3及转轴23间通过锁紧螺栓6连接固定。
为了进一步减轻所述鼓风机的重量,所述转轴23和锁紧螺栓6均开设空腔(231/61)。
作为优选方案,所述的小微型鼓风机还包括叶轮壳11,所述叶轮壳11通过螺栓7与壳体的外筒251固定连接。所述端盖24通过螺栓8与混合式动压气体止推轴承5的中盘调整环54及壳体25的尾部固定连接。
结合图6至图9所示:所述轴承内套42的外圆周面和左、右端面均具有规则形状的槽式花纹43(如图中的431、432和433,本实施例中的槽式花纹均为叶轮形状),且左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称。位于轴承内套42的外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,即:外圆周面的槽式花纹431中的轴向高位线4311与左、右端面的槽式花纹(432和433)中的径向高位线(4321和4331)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向中位线4312与左、右端面的槽式花纹(432和433) 中的径向中位线(4322和4332)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向低位线4313与左、右端面的槽式花纹(432和433)中的径向低位线(4323和4333)均相对应、并在端面圆周倒角前相互交接。
通过使轴承内套42的外圆周面和两端面均具有规则形状的槽式花纹(431、432和433),左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称及外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,可保证两端面的叶轮形状的槽式花纹(432和433)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹431形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体径向轴承的润滑剂,因而可实现所述轴承4在气浮状态下的高速稳定运转。
另外,当在轴承外套41的两端分别设置止环44时,可实现在高速回转轴的带动下,使轴承内套42的两端面与止环44间产生自密封作用,使槽式花纹连续产生的动压气体能完好地密闭保存在轴承的整个配合间隙中,以充分保证高速运转的动压气体径向轴承的润滑需要。
结合图10和图11所示:所述的箔型弹性件45设置在轴承外套41与内套42之间,是采用波箔451和平箔452组成,所述波箔451的弧形凸起4511的顶端与平箔452相贴合,所述波箔451的波拱间过渡底边4512与轴承外套41的内圆周壁相贴合。在轴承外套41的内圆周壁设有用于固定箔型弹性件45两端的卡槽411,所述卡槽411与箔型弹性件45的数量相对应,且均沿轴承外套41的内圆周壁均匀分布。
如图12所示:在与轴承内套42的外圆周面相配合的箔型弹性件45的配合面(即:构成箔型弹性件45的平箔452的内表面)上设有耐磨涂层453,以进一步降低高速运转的轴承内套42对箔型弹性件45的磨损,延长轴承的使用寿命。
所述的箔型弹性件45与轴承内套42的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
如图13所示:本实施例所述的中盘52夹设在两个侧盘51之间,所述中盘52的左端面设有规则形状的槽式花纹521,右端面设有规则形状的槽式花纹522。
结合图14a和图14b可见:所述中盘52的左端面的槽式花纹521与右端面的槽式花纹522之间形成镜像对称,左端面的槽式花纹521的径向轮廓线与右端面的槽式花纹522的径向轮廓线形成一一对应。
所述的槽式花纹521与522的形状相同,本实施例中均为叶轮形状。
进一步结合图15a和图15b可见:所述箔型弹性件53固定在对应侧盘51的内端面上(例如图15a所示的固定有箔型弹性件53a的左侧盘511和图15b所示的固定有箔型弹性件53b的右侧盘512),且固定在左侧盘511上的箔型弹性件53a与固定在右侧盘512上的箔型弹性件53b形成镜像对称。在每个侧盘上的箔型弹性件可为多个(图中示出的是4个),且沿侧盘的内端面均匀分布。
通过在侧盘51与中盘52之间设置箔型弹性件53,在中盘52的左、右端面设置规则形状的槽式花纹(521和522),且使左端面的槽式花纹521与右端面的槽式花纹522形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;因为箔型弹性件53与中盘52间形成了楔形空间,当中盘52转动时,气体因其自身的粘性作用被带动并被压缩到楔形空间内,从而可使轴向动压力得到显著增强,相对于现有的单纯箔片式动压气体止推轴承,可具有在相同载荷下成倍增加的极限转速;同时,由于增加了箔型弹性件53,在其弹性作用下,还可使轴承的载荷能力、抗冲击能力和抑制轴涡动的能力显著提高,相对于现有的单纯槽式动压气体止推轴承,可具有在相同转速下成倍增加的抗冲击能力和载荷能力。
为进一步降低高速运转的中盘52对箔型弹性件53的磨损,以延长轴承的使用寿命,最好在与中盘52相配合的箔型弹性件53的配合面上设置耐磨涂层(图中未示出)。
如图16和图17所示:本实施例中所述的箔型弹性件45/53均由波箔451/531和平箔452/532组成,所述波箔451/531的弧形凸起4511/5311的顶端与平箔452/532相贴合。
实施例2
如图18所示,本实施例所述的箔型弹性件45由波箔451和平箔452组成,所述波箔451的弧形凸起4511的顶端与轴承外套41的内圆周壁相贴合,所述波箔451的波拱间过渡底边4512与平箔452相贴合。
图19所示为所述波箔451的结构示意图。
实施例3
如图20所示,本实施例所述的箔型弹性件45由两个平箔452组成。
实施例4
结合图21a、21b、22至26所示可见,本实施例提供的一种混合式动压气体止推轴承与实施例1的区别仅在于:
在所述中盘52的外圆周面也设有槽式花纹523,且外圆周面的槽式花纹523的形状与 左、右端面的槽式花纹(521和522)的形状相同(本实施例中也均为叶轮形状),以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接;即:
外圆周面的槽式花纹523中的轴向高位线5231与左端面的槽式花纹521中的径向高位线5211均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与左端面的槽式花纹521中的径向中位线5212均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与左端面的槽式花纹521中的径向低位线5213均相对应、并在端面圆周倒角前相互交接(如图24所示);
外圆周面的槽式花纹523中的轴向高位线5231与右端面的槽式花纹522中的径向高位线5221均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与右端面的槽式花纹522中的径向中位线5222均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与右端面的槽式花纹522中的径向低位线5223均相对应、并在端面圆周倒角前相互交接(如图26所示)。
当在所述中盘52的外圆周面也设有槽式花纹,且使外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同,以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接时,可使内盘两端面的槽式花纹(521和522)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹523形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体止推轴承的润滑剂,因而可进一步确保所述的混合式动压气体止推轴承在气浮状态下的高速稳定运转,为实现鼓风机的高极限转速提供进一步保证。
在侧盘51的内端面上设有用于固定箔型弹性件53的卡槽513(如图22所示)。
所述的箔型弹性件53与中盘52的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
另外需要说明的是:本发明中所述的箔型弹性件45/53均优选经过表面热处理,以更好地满足高速运转的性能要求;所述的箔型弹性件45/53的组成结构不限于上述实施例中所述,也可采用其它的现有结构。
经测试,本发明提供的轴承在气浮状态下能达到100,000~450,000rpm的极限转速,因此针对相同功率要求,本发明可使鼓风机的体积显著减小实现微型化,对促进微型化高新技术的发展具有重要价值。

Claims (15)

  1. 一种小微型鼓风机,包括叶轮和电机,所述电机包括转子、定子、转轴、端盖和壳体;其特征在于:还包括一转动连接件和一个混合式动压气体径向轴承,并且,所述壳体是由内、外筒形成两个空腔的环形圆筒状结构,所述转动连接件是具有一个空腔的圆筒状结构,所述转动连接件套设在靠近叶轮的转轴上,并与叶轮和转轴端部分别相契合连接,所述转动连接件的侧部位于由壳体的外筒与内筒所形成的空腔内;所述混合式动压气体径向轴承和转轴均位于壳体的内筒腔内,且所述混合式动压气体径向轴承套设在转轴上;所述定子固定在壳体的内筒外壁上,所述转子固定在转动连接件的侧部内壁上。
  2. 根据权利要求1所述的小微型鼓风机,其特征在于:在位于转轴与混合式动压气体径向轴承的端部所形成的气流通道的上方的转动连接件的侧部开设有若干导气叶片。
  3. 根据权利要求2所述的小微型鼓风机,其特征在于:在壳体的外筒周侧开设有若干进气孔和若干散热排气孔。
  4. 根据权利要求1所述的小微型鼓风机,其特征在于:所述的混合式动压气体径向轴承包括轴承外套、轴承内套及设置在轴承外套与内套之间的箔型弹性件。
  5. 根据权利要求4所述的小微型鼓风机,其特征在于:所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
  6. 根据权利要求5所述的小微型鼓风机,其特征在于:所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  7. 根据权利要求6所述的小微型鼓风机,其特征在于:轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  8. 根据权利要求1至7中任一项所述的小微型鼓风机,其特征在于:所述的小微型鼓风机还包括一个混合式动压气体止推轴承,所述的混合式动压气体止推轴承包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件,并且,所述混合式动压气体止推轴承位于壳体与端盖形成的腔体内,并套设在转轴上。
  9. 根据权利要求8所述的小微型鼓风机,其特征在于:所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
  10. 根据权利要求9所述的小微型鼓风机,其特征在于:在所述中盘的外圆周面也设 有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  11. 根据权利要求10所述的小微型鼓风机,其特征在于:中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  12. 根据权利要求8所述的小微型鼓风机,其特征在于:固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
  13. 根据权利要求8所述的小微型鼓风机,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
  14. 根据权利要求8所述的小微型鼓风机,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
  15. 根据权利要求8所述的小微型鼓风机,其特征在于:所述的箔型弹性件由两个平箔组成。
PCT/CN2016/082699 2015-05-19 2016-05-19 一种小微型鼓风机 WO2016184405A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/CN2015/079232 WO2016183786A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体径向轴承
PCT/CN2015/079234 WO2016183788A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体止推轴承
CNPCT/CN2015/079234 2015-05-19
CNPCT/CN2015/079232 2015-05-19
CN201610329207.2 2016-05-18
CN201610329207.2A CN105889099B (zh) 2015-05-19 2016-05-18 一种小微型鼓风机

Publications (1)

Publication Number Publication Date
WO2016184405A1 true WO2016184405A1 (zh) 2016-11-24

Family

ID=56716452

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2016/082703 WO2016184407A1 (zh) 2015-05-19 2016-05-19 一种小微型电机
PCT/CN2016/082706 WO2016184409A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮发电机
PCT/CN2016/082714 WO2016184417A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮增压器
PCT/CN2016/082699 WO2016184405A1 (zh) 2015-05-19 2016-05-19 一种小微型鼓风机
PCT/CN2016/082710 WO2016184413A1 (zh) 2015-05-19 2016-05-19 一种小微型燃气轮发电机
PCT/CN2016/082708 WO2016184411A1 (zh) 2015-05-19 2016-05-19 一种小微型电动发电涡轮增压装置
PCT/CN2016/082712 WO2016184415A1 (zh) 2015-05-19 2016-05-19 一种小微型涡喷发动机

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2016/082703 WO2016184407A1 (zh) 2015-05-19 2016-05-19 一种小微型电机
PCT/CN2016/082706 WO2016184409A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮发电机
PCT/CN2016/082714 WO2016184417A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮增压器

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2016/082710 WO2016184413A1 (zh) 2015-05-19 2016-05-19 一种小微型燃气轮发电机
PCT/CN2016/082708 WO2016184411A1 (zh) 2015-05-19 2016-05-19 一种小微型电动发电涡轮增压装置
PCT/CN2016/082712 WO2016184415A1 (zh) 2015-05-19 2016-05-19 一种小微型涡喷发动机

Country Status (3)

Country Link
CN (14) CN105888847B (zh)
TW (3) TWI676735B (zh)
WO (7) WO2016184407A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922556A (zh) * 2021-10-12 2022-01-11 扬州市华天电机有限公司 一种永磁同步电机端盖连接装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105888847B (zh) * 2015-05-19 2018-03-27 罗立峰 一种小微型涡喷发动机
GB201615491D0 (en) 2016-09-13 2016-10-26 Delta Motorsport Ltd Improvements in or relating to gas turbine generators
CN106640986A (zh) * 2017-01-18 2017-05-10 哈尔滨工业大学 用于气体轴承‑转子系统的双推力盘结构
CN106979072B (zh) * 2017-06-01 2019-02-19 北京磐龙天地科技发展股份有限公司 热管发动机
CN107795590B (zh) * 2017-11-21 2024-06-04 珠海格力电器股份有限公司 轴承冷却结构、电机及离心式压缩机
CN108868893B (zh) * 2018-01-12 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
JP7035593B2 (ja) * 2018-02-15 2022-03-15 日本精工株式会社 スピンドル装置
CN108286567B (zh) * 2018-03-06 2023-08-29 河北金士顿科技有限责任公司 一种具有厚顶层箔片结构的止推箔片动压空气轴承
DE102018207114A1 (de) * 2018-05-08 2019-11-14 Robert Bosch Gmbh Lagereinrichtung mit einer strukturierten Welle
CN108644005B (zh) * 2018-05-19 2019-09-03 温州伊诺韦特科技有限公司 一种电动涡轮增压器
DE102018208706A1 (de) * 2018-06-04 2019-12-05 Audi Ag System zum Kühlen einer Elektromaschine
CN111075563A (zh) * 2019-12-27 2020-04-28 至玥腾风科技集团有限公司 一种冷热电三联供微型燃气轮机设备
CN112302971A (zh) * 2020-11-23 2021-02-02 深圳大学 基于非晶软磁材料的无油润滑空压机
CN112716396B (zh) * 2021-01-09 2021-11-23 苏州简单有为科技有限公司 湿式清洁装置
CN113266596A (zh) * 2021-06-02 2021-08-17 北京智拓博科技有限公司 动压气悬浮离心制冷压缩机及其轴向轴承结构
CN113937926B (zh) * 2021-09-30 2022-10-25 西安交通大学 一种用于微型液泵的动力系统
TWI781860B (zh) * 2021-12-28 2022-10-21 財團法人工業技術研究院 渦輪裝置及循環系統
CN114483611B (zh) * 2022-01-21 2024-02-13 扬州大学 一种动压浮环和磁轴承支承燃料电池空压机主轴结构
US12055156B2 (en) 2022-04-01 2024-08-06 Hamilton Sundstrand Corporation High speed turbo-alternator with integrated cooling fan

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290999A (ja) * 1988-05-14 1989-11-22 Daikin Ind Ltd ファン装置
CN2191308Y (zh) * 1994-04-19 1995-03-08 崔援 一种双风叶电风扇
JP2002039096A (ja) * 2000-07-27 2002-02-06 Minebea Co Ltd 送風機
JP2011047388A (ja) * 2009-08-28 2011-03-10 Toshiba Home Technology Corp 送風装置
CN102200136A (zh) * 2011-05-25 2011-09-28 北京虎渡能源科技有限公司 一种空气悬浮供气可调高速电机直驱鼓风机
CN103670672A (zh) * 2013-12-19 2014-03-26 湖南大学 一种涡轮增压器
CN204082684U (zh) * 2014-05-30 2015-01-07 鑫贺精密电子(东莞)有限公司 一种散热风扇
CN104895917A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体止推轴承
CN104895924A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体径向轴承
CN105202018A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体径向轴承
CN105202027A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体止推轴承

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141021A (en) * 1980-04-02 1981-11-04 Toyota Motor Corp Bearing construction for turbo machinery
JPH07154010A (ja) * 1993-12-01 1995-06-16 Fanuc Ltd レーザ用ターボブロア
RU2137954C1 (ru) * 1997-04-03 1999-09-20 Московский государственный авиационный институт (технический университет) Лепестковый газодинамический подшипник
US6294842B1 (en) * 1997-12-19 2001-09-25 Alliedsignal Inc. Fog cycle for microturbine power generating system
JP2000130176A (ja) * 1998-10-30 2000-05-09 Isuzu Motors Ltd 発電・電動機を備えたターボチャージャ
US6224263B1 (en) * 1999-01-22 2001-05-01 Alliedsignal Inc. Foil thrust bearing with varying circumferential and radial stiffness
CN2558797Y (zh) * 2002-04-03 2003-07-02 廖英桐 改进的动压轴承
CN1209554C (zh) * 2002-09-23 2005-07-06 北京航空航天大学 微型涡轮喷气发动机
GB0304320D0 (en) * 2003-02-26 2003-04-02 Bladon Jets Ltd Gas turbine engines
CN1283931C (zh) * 2004-03-18 2006-11-08 西安交通大学 高速透平机械弹性支承平箔型止推气体轴承
US7497627B2 (en) * 2004-06-07 2009-03-03 Honeywell International Inc. Thrust bearing
US7174714B2 (en) * 2004-12-13 2007-02-13 Caterpillar Inc Electric turbocompound control system
US7948105B2 (en) * 2007-02-01 2011-05-24 R&D Dynamics Corporation Turboalternator with hydrodynamic bearings
KR101324226B1 (ko) * 2008-09-22 2013-11-20 삼성테크윈 주식회사 유체 과급 장치
US8618706B2 (en) * 2008-12-04 2013-12-31 Seagate Technology Llc Fluid pumping capillary seal for a fluid dynamic bearing
CN201373019Y (zh) * 2009-01-14 2009-12-30 西安交通大学 一种具有轴向支撑的动压气体止推轴承
CN101463868B (zh) * 2009-01-14 2010-07-21 西安交通大学 一种具有轴向支撑的动压气体止推轴承
CN201786444U (zh) * 2010-08-05 2011-04-06 郎定川 可控平衡燃烧涡轮增压器
JP2012092969A (ja) * 2010-09-27 2012-05-17 Ntn Corp フォイル軸受
CN102242762B (zh) * 2011-05-27 2013-01-23 罗立峰 动压气体径向陶瓷轴承
CN102278366A (zh) * 2011-05-27 2011-12-14 罗立峰 自密封动压气体径向陶瓷轴承
CN102192237A (zh) * 2011-06-07 2011-09-21 罗立峰 自密封动压气体径向陶瓷轴承
CN102261374B (zh) * 2011-06-15 2014-04-09 罗立峰 动压气体止推陶瓷轴承
CN202091349U (zh) * 2011-06-15 2011-12-28 罗立峰 动压气体止推陶瓷轴承
CN102223007A (zh) * 2011-06-24 2011-10-19 罗立峰 高速永磁电动机/发电机
JP6051220B2 (ja) * 2011-08-24 2016-12-27 ボーグワーナー インコーポレーテッド 軸受装置
KR20130115570A (ko) * 2012-04-12 2013-10-22 현대자동차주식회사 엔진의 과급장치
KR101666092B1 (ko) * 2012-10-16 2016-10-13 가부시키가이샤 아이에이치아이 스러스트 베어링
CN103089405B (zh) * 2013-01-09 2015-09-16 北京理工大学 转子离合式电动发电涡轮增压器
US9157473B2 (en) * 2013-01-16 2015-10-13 Korea Institute Of Machinery & Materials Thrust bearing and combo bearing
CN103306995B (zh) * 2013-05-30 2015-08-26 西安交通大学 一种花键齿拉杆组合转子高速直驱压缩机结构
CN103670628B (zh) * 2013-12-19 2017-01-11 湖南大学 废气涡轮发电机
CN103775196B (zh) * 2014-03-04 2016-04-06 山东理工大学 一种涡轮增压发电装置
JP6591179B2 (ja) * 2014-03-19 2019-10-16 Ntn株式会社 フォイル軸受
CN104265460B (zh) * 2014-08-20 2016-03-23 中国科学院工程热物理研究所 微型航空发动机轴承燃油换热冷却装置
CN105888847B (zh) * 2015-05-19 2018-03-27 罗立峰 一种小微型涡喷发动机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290999A (ja) * 1988-05-14 1989-11-22 Daikin Ind Ltd ファン装置
CN2191308Y (zh) * 1994-04-19 1995-03-08 崔援 一种双风叶电风扇
JP2002039096A (ja) * 2000-07-27 2002-02-06 Minebea Co Ltd 送風機
JP2011047388A (ja) * 2009-08-28 2011-03-10 Toshiba Home Technology Corp 送風装置
CN102200136A (zh) * 2011-05-25 2011-09-28 北京虎渡能源科技有限公司 一种空气悬浮供气可调高速电机直驱鼓风机
CN103670672A (zh) * 2013-12-19 2014-03-26 湖南大学 一种涡轮增压器
CN204082684U (zh) * 2014-05-30 2015-01-07 鑫贺精密电子(东莞)有限公司 一种散热风扇
CN104895917A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体止推轴承
CN104895924A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体径向轴承
CN105202018A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体径向轴承
CN105202027A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体止推轴承

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922556A (zh) * 2021-10-12 2022-01-11 扬州市华天电机有限公司 一种永磁同步电机端盖连接装置
CN113922556B (zh) * 2021-10-12 2022-09-13 扬州市华天电机有限公司 一种永磁同步电机端盖连接装置

Also Published As

Publication number Publication date
WO2016184411A1 (zh) 2016-11-24
TW201704629A (zh) 2017-02-01
TWI676734B (zh) 2019-11-11
CN105889324B (zh) 2019-01-04
CN105889099B (zh) 2019-01-04
CN105889326B (zh) 2018-10-26
CN105888819B (zh) 2019-01-04
WO2016184413A1 (zh) 2016-11-24
TW201711350A (zh) 2017-03-16
CN105889326A (zh) 2016-08-24
WO2016184415A1 (zh) 2016-11-24
CN105888819A (zh) 2016-08-24
CN205858959U (zh) 2017-01-04
CN105888847B (zh) 2018-03-27
CN106026491A (zh) 2016-10-12
CN205858958U (zh) 2017-01-04
CN205858960U (zh) 2017-01-04
CN205858493U (zh) 2017-01-04
WO2016184409A1 (zh) 2016-11-24
CN105889325A (zh) 2016-08-24
CN105889099A (zh) 2016-08-24
WO2016184407A1 (zh) 2016-11-24
CN205858731U (zh) 2017-01-04
WO2016184417A1 (zh) 2016-11-24
CN105889325B (zh) 2018-10-26
CN106026491B (zh) 2019-01-04
CN105889324A (zh) 2016-08-24
TW201706496A (zh) 2017-02-16
TWI676735B (zh) 2019-11-11
CN205858478U (zh) 2017-01-04
CN105888847A (zh) 2016-08-24
CN205864142U (zh) 2017-01-04
TWI699077B (zh) 2020-07-11

Similar Documents

Publication Publication Date Title
WO2016184405A1 (zh) 一种小微型鼓风机
WO2016184404A1 (zh) 一种超高速鼓风机
WO2016184403A1 (zh) 一种小微型散热风扇
CN112211831A (zh) 空气悬浮高速离心压缩机
CN109139927A (zh) 一种周向流致开启性增强的箔片端面气膜密封结构
CN213511271U (zh) 空气悬浮高速离心压缩机
JP2024530240A (ja) 磁気浮上ポンプ、磁気浮上ポンプを有する冷凍機器および空気調和機の室外機
CN107489615A (zh) 泵体组件及具有其的压缩机
CN220857731U (zh) 高速电机和空压机
CN211715546U (zh) 一种可倾瓦轴承的复合密封结构
CN106401664B (zh) 大功率油制动膨胀机
CN114370426B (zh) 一种组合式叶轮空压机
CN221610185U (zh) 摆动叶片的轮盘式动能转换器
CN211405736U (zh) 一种电机和压缩机
CN221096878U (zh) 一种组合式冷媒用离心压缩机结构
CN108625909B (zh) 一种汽轮机高效油封结构
CN117329124A (zh) 摆动叶片的轮盘式动能转换器
CN111963262A (zh) 一种外廓式空气轴承
TWM512475U (zh) 氣動工具扭力提升轉子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795892

Country of ref document: EP

Kind code of ref document: A1