WO2016184417A1 - 一种小微型涡轮增压器 - Google Patents
一种小微型涡轮增压器 Download PDFInfo
- Publication number
- WO2016184417A1 WO2016184417A1 PCT/CN2016/082714 CN2016082714W WO2016184417A1 WO 2016184417 A1 WO2016184417 A1 WO 2016184417A1 CN 2016082714 W CN2016082714 W CN 2016082714W WO 2016184417 A1 WO2016184417 A1 WO 2016184417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foil
- groove pattern
- bearing
- radial
- groove
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/04—Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
- F02B37/10—Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/024—Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/10—Engines with prolonged expansion in exhaust turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/0563—Bearings cartridges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/601—Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/042—Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/08—Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/161—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/163—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at only one end of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/167—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
- H02K9/06—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
Definitions
- the invention relates to a small micro turbocharger, belonging to the technical field of high precision machinery.
- the engine generates power by burning fuel in the cylinder.
- the amount of fuel input is limited by the amount of air sucked into the cylinder, and the generated power is also limited. If the running performance of the engine is at its best, increase it.
- the output power can only increase the amount of fuel by compressing more air into the cylinder, increasing the combustion function.
- the turbocharger is the only mechanical device that can increase the output power of the engine under the same working efficiency.
- the working principle of the turbocharger is to use the inertial force of the exhaust gas from the engine to push the turbine in the turbine chamber.
- the turbine drives the coaxial impeller.
- the impeller pushes the air sent by the air cleaner pipe to pressurize it into the cylinder.
- the exhaust gas discharge speed and the turbine speed also increase synchronously.
- the impeller compresses more air into the cylinder.
- the pressure and density of the air increase to burn more fuel, correspondingly increase the fuel amount and adjust the engine.
- the speed of the engine can increase the output of the engine.
- the current turbocharger since the key component of the turbocharger is the bearing, the current turbocharger usually uses rolling bearings and plain bearings.
- a small micro turbocharger comprising a turbine, a compressor, a rotating shaft, two radial bearings, a thrust bearing and a main casing, the turbine including a turbine, a turbine deflector and a turbine casing,
- the compressor comprises a pressure wheel, a compressor diffuser and a compressor casing;
- the radial bearing is a hybrid dynamic pressure gas radial bearing, comprising a bearing jacket, a bearing inner sleeve and a bearing jacket and a foil-type elastic member between the inner sleeves;
- the thrust bearing is a hybrid dynamic pressure gas thrust bearing, comprising two side discs and a middle disc sandwiched between the two side discs, at each side disc
- a foil-type elastic member is disposed between the middle plates;
- the main casing is sleeved in a middle portion of the rotating shaft, and two radial bearings are respectively sleeved in the main casing
- the thrust bearing sleeve is disposed on a rotating shaft between the main
- the small micro-turbocharger further includes a turbine deflector housing, a rotating sleeve and a left bearing chamber end cover and a right bearing chamber end cover, the rotating shaft sleeve is disposed on the rotating shaft, and the radial bearing And the thrust bearing are sleeved on the rotating sleeve;
- the turbine housing is fixedly connected with the turbine deflector housing, the turbine deflector housing is fixedly connected with the left bearing chamber end cover, and the left bearing chamber end cover and the main housing The fixed connection;
- the compressor housing is fixedly connected to the right bearing chamber end cover, and the right bearing chamber end cover is fixedly connected to the main housing.
- the surface of the rotating shaft is provided with a heat dissipation spiral groove to facilitate heat dissipation of the rotating shaft and the bearing chamber.
- a plurality of vent holes are formed on the inner circumference of the inner casing of the main casing to facilitate the introduction and discharge of gas, and on the one hand, rapid heat dissipation and exhaust are realized, and on the other hand, air supply to the bearing chamber is realized.
- the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a regular pattern of grooves.
- the groove pattern of one end surface of the bearing inner sleeve is mirror-symmetrical with the groove pattern of the other end surface, and the axial contour line of the groove pattern of the outer circumferential surface and the groove pattern of the both end surfaces
- the radial contour lines form a one-to-one correspondence and intersect each other.
- the axial high line in the groove pattern of the outer circumferential surface of the bearing inner sleeve corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
- the axial median line in the groove pattern of the outer circumferential surface corresponds to the radial median line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
- the axial lower line in the middle corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
- a wear-resistant coating is provided on the mating surface of the foil-type elastic member that cooperates with the outer circumferential surface of the bearing inner sleeve.
- the fitting gap between the foil-type elastic member and the bearing inner sleeve is 0.003 to 0.008 mm.
- both ends of the foil-type elastic member are fixed to the inner circumferential wall of the bearing housing.
- the foil-type elastic members are plural and evenly distributed along the inner circumferential wall of the bearing outer casing.
- a card groove for fixing the foil-type elastic member is provided on the inner circumferential wall of the bearing housing.
- a stop ring is provided at both ends of the bearing housing.
- both end faces of the middle plate are provided with a regular pattern of groove patterns, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face.
- the outer circumferential surface of the intermediate disk is also provided with a groove pattern, and the shape of the groove pattern of the outer circumferential surface is the same as the shape of the groove pattern on both end faces, and the groove pattern of the outer circumferential surface
- the axial contour line forms a one-to-one correspondence with the radial contour lines of the groove patterns on both end faces and intersects each other.
- the axial high line in the groove pattern of the outer circumferential surface of the middle disk corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
- the outer circumference The axial median line in the groove pattern corresponds to the radial median line in the groove pattern on both end faces, and crosses each other before the end face is chamfered;
- the axis in the groove pattern of the outer circumferential surface The low-order line corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
- a wear-resistant coating is provided on the mating surface of the foil-type elastic member that is fitted to the intermediate disk.
- the fitting gap between the foil-type elastic member and the middle plate is 0.003 to 0.008 mm.
- At least one end of the foil-type elastic member is fixed to an inner end surface of the corresponding side disk.
- the foil-type elastic members on each of the side plates are plural and evenly distributed along the inner end faces of the side plates.
- the foil-type elastic member fixed to one side disk is mirror-symmetrical to the foil-shaped elastic member fixed to the other side disk.
- a card slot for fixing the foil-type elastic member is provided on the inner end surface of the side disk.
- the foil-type elastic member is composed of a wave foil and a flat foil, and the curved convex top end of the wave foil is attached to the flat foil.
- the foil-type elastic member is composed of a wave foil and a flat foil, and the inter-wave arch transition bottom edge of the wave foil is in contact with the flat foil.
- the foil-type elastic member is composed of two flat foils.
- the above-mentioned groove patterns are all impeller shapes.
- the above-mentioned foil-type elastic member is preferably subjected to surface heat treatment.
- the present invention has the following beneficial effects:
- the turbocharger provided by the present invention uses gas as a lubricant for the bearing, and therefore has not only pollution-free, low friction loss, long use time, wide application range, energy saving and environmental protection, but also adopts the above structure.
- the heat dissipation effect is good, and the stable operation can be ensured for a long time; in particular, the air bearing of the structure can realize ultra-high-speed stable operation under air-floating state (tested, the limit speed can reach 100,000-450,000 rpm), so
- the invention can significantly reduce the volume of the turbocharger to achieve miniaturization, has the advantages of small occupied space and convenient use, and has important value for promoting the development of miniaturization high-tech, and is remarkable compared with the prior art. Progress.
- Embodiment 1 is a schematic cross-sectional structural view of a small micro turbocharger provided in Embodiment 1;
- Embodiment 2 is a partially-divided left-view three-dimensional structure diagram of the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
- Figure 3 is a partial enlarged view of A in Figure 2;
- Embodiment 4 is a right side perspective view showing the partial division of the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
- Figure 5 is a partial enlarged view of B in Figure 4.
- FIG. 6 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
- Figure 7 is a partial enlarged view of C in Figure 6;
- Figure 8 is a partial enlarged view of D in Figure 7;
- Embodiment 9 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 1;
- Figure 10a is a left side view of the center disk described in Embodiment 1;
- Figure 10b is a right side view of the center disk described in Embodiment 1;
- Figure 11a is a right side view of the left side disk to which the foil-type elastic member is fixed as described in Embodiment 1;
- Figure 11b is a left side view of the right side disc to which the foil-type elastic member is fixed as described in Embodiment 1;
- FIG. 12 is a schematic cross-sectional structural view of a foil-type elastic member provided in Embodiment 1;
- Figure 13 is a perspective view showing the structure of the foil-type elastic member provided in Embodiment 1;
- Figure 14 is a cross-sectional structural view showing a hybrid dynamic pressure gas radial bearing provided in Embodiment 2;
- Figure 15 is a schematic structural view of the wave foil of Figure 14;
- Figure 16 is a cross-sectional structural view showing a hybrid dynamic pressure gas radial bearing provided in Embodiment 3;
- Figure 17a is a left side perspective structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 4.
- Figure 17b is a right perspective view showing the hybrid dynamic pressure gas thrust bearing of the fourth embodiment
- Figure 19 is a left perspective view showing the middle plate of the fourth embodiment.
- Figure 20 is a partial enlarged view of E in Figure 19;
- Figure 21 is a right perspective view showing the center disk of the fourth embodiment
- Figure 22 is a partial enlarged view of F in Figure 21;
- FIG. 23 is a schematic structural view of a rotating shaft provided in Embodiment 5.
- Figure 24 is a partial enlarged view of G in Figure 23 .
- a small micro turbocharger provided by the embodiment includes a turbine 1 , a compressor 2 , a rotating shaft 3 , two radial bearings 4 , a thrust bearing 5 , and a main casing 6 .
- the turbine 1 includes a turbine 11 , a turbine deflector 12 and a turbine casing 13 , the compressor 2 including a pressure wheel 21 , a compressor diffuser 22 and a compressor casing 23;
- the bearing 4 is a hybrid dynamic pressure gas radial bearing, including a bearing outer casing 41, a bearing inner sleeve 42 and a foil-type elastic member 45 disposed between the bearing outer casing 41 and the inner sleeve 42;
- the thrust bearing 5 is a hybrid type
- the dynamic pressure gas thrust bearing comprises two side discs 51 and a middle disc 52 sandwiched between the two side discs, and a foil-type elastic member 53 is disposed between each of the side discs 51 and the middle disc 52;
- the main housing 6 is sleeved in the middle of the rotating shaft 3, and the two radial bearings 4 are respectively sleeved on the rotating shaft 3 located in the main housing 6.
- the thrust bearing 5 is sleeved on the main housing 6 and pressed. On
- the small micro turbocharger further includes a turbine deflector housing 14, a rotating sleeve 31 and a left bearing chamber end cover 7a and a right bearing chamber end cover 7b.
- the rotating sleeve 31 is sleeved on the rotating shaft 3, and the diameter
- the bearing 4 and the thrust bearing 5 are sleeved on the rotating sleeve 31;
- the turbine housing 13 is fixedly connected with the turbine deflector housing 14, and the turbine deflector housing 14 is fixedly connected with the left bearing chamber end cover 7a.
- the left bearing chamber end cover 7a is fixedly coupled to the main housing 6;
- the compressor housing 23 is fixedly coupled to the right bearing chamber end cover 7b, and the right bearing chamber end cover 7b is fixedly coupled to the main housing 6.
- vent holes are provided on the inner side of the inner cylinder of the main casing, which can facilitate the introduction and discharge of gas, and on the one hand, can realize rapid heat dissipation and exhaust, and the other side can realize the bearing chamber. Air supply.
- the outer circumferential surface and the left and right end surfaces of the bearing inner sleeve 42 each have a regular shape of the groove pattern 43 (431, 432 and 433 in the figure, the groove in this embodiment).
- the pattern is an impeller shape), and the groove pattern 432 of the left end surface is mirror-symmetrical with the groove pattern 433 of the right end surface.
- the axial contour line of the groove pattern 431 located on the outer circumferential surface of the bearing inner sleeve 42 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end surfaces, and is mutually overlapped, that is, external
- the axially high bit line 4311 in the circumferential groove pattern 431 corresponds to the radial high bit lines (4321 and 4331) in the groove patterns (432 and 433) of the left and right end faces, and is chamfered before the end face is chamfered Interacting with each other;
- the axial center line 4312 in the groove pattern 431 of the outer circumferential surface corresponds to the radial center line (4322 and 4332) in the groove patterns (432 and 433) of the left and right end faces, and
- the front end is circumferentially chamfered to each other;
- the groove pattern 432 of the left end surface and the groove pattern 433 of the right end surface are mirror-symmetrical and outer circumference.
- the axial contour line of the groove pattern 431 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end faces, and mutually intersects each other, thereby ensuring the groove pattern of the impeller shape at both end faces.
- the pressurized gas generated by (432 and 433) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 431 of the outer circumferential surface, so as to form a gas film required for supporting the high-speed running bearing more strongly, and
- the gas film is used as a lubricant for the dynamic pressure gas radial bearing, and thus it is advantageous to achieve high-speed stable operation of the hybrid dynamic pressure gas radial bearing 4 in an air floating state.
- the retaining ring 44 when the retaining ring 44 is respectively disposed at both ends of the bearing outer casing 41, the self-sealing action between the end faces of the bearing inner sleeve 42 and the retaining ring 44 can be achieved under the driving of the high-speed rotating shaft, so that the trough pattern is continuous.
- the generated dynamic pressure gas can be well sealed and stored in the entire matching clearance of the bearing, which fully ensures the lubrication of the high-speed running dynamic pressure gas radial bearing.
- the foil-shaped elastic member 45 is disposed between the bearing sleeve 41 and the inner sleeve 42 and is composed of a wave foil 451 and a flat foil 452.
- the curved protrusion 4511 of the wave foil 451 The top end is attached to the flat foil 452, and the inter-wave transition bottom edge 4512 of the wave foil 451 is fitted to the inner circumferential wall of the bearing outer casing 41.
- a card slot 411 for fixing both ends of the foil-type elastic member 45 is provided on the inner circumferential wall of the bearing housing 41, and the card slot 411 corresponds to the number of the foil-type elastic members 45, and is evenly distributed along the inner circumferential wall of the bearing housing 41. distributed.
- a wear-resistant coating is provided on the mating surface of the foil-type elastic member 45 (i.e., the inner surface of the flat foil 452 constituting the foil-shaped elastic member 45) which is engaged with the outer circumferential surface of the bearing inner sleeve 42. 453, to further reduce the wear of the foil-type elastic member 45 by the bearing inner sleeve 42 at a high speed, and prolong the service life of the bearing.
- the matching gap between the foil-type elastic member 45 and the bearing inner sleeve 42 is preferably 0.003 to 0.008 mm to further confirm Guarantee the reliability and stability of high-speed operation of bearings.
- a hybrid dynamic pressure gas thrust bearing 5 provided by the embodiment includes: two side discs 51 , and a middle disc 52 is interposed between the two side discs 51 on each side.
- a foil-shaped elastic member 53 is disposed between the disk 51 and the intermediate plate 52; the left end surface of the intermediate plate 52 is provided with a groove pattern 521 having a regular shape, and the right end surface is provided with a groove pattern 522 having a regular shape.
- the groove pattern 521 of the left end surface of the middle plate 52 and the groove pattern 522 of the right end surface form mirror symmetry, and the radial contour line and the right end surface of the groove pattern 521 of the left end surface are formed.
- the radial contours of the troughs 522 form a one-to-one correspondence.
- the troughs 521 and 522 have the same shape, and are in the shape of an impeller in this embodiment.
- the foil-type elastic member 53 is fixed to the inner end surface of the corresponding side disk 51 (for example, the left side disk 511 to which the foil-type elastic member 53a is fixed as shown in Fig. 11a and the left side disk 511 shown in Fig. 11b
- the foil-type elastic member 53 By providing the foil-type elastic member 53 between the side disk 51 and the intermediate disk 52, regular groove patterns (521 and 522) are provided on the left and right end faces of the middle plate 52, and the groove pattern 521 of the left end face is The groove pattern 522 of the right end surface is mirror-symmetrical, thereby obtaining a rigid characteristic of a high limit rotation speed of the groove type dynamic pressure gas thrust bearing, and a high impact resistance and load of the foil type dynamic pressure gas thrust bearing.
- the hybrid dynamic pressure gas thrust bearing of the flexible nature of the capability because the foil-shaped elastic member 53 forms a wedge-shaped space with the intermediate disk 52, when the disk 52 rotates, the gas is driven by its own viscous action and is compressed to the wedge shape.
- the axial dynamic pressure can be significantly enhanced, compared with the existing simple foil dynamic pressure gas thrust bearing, which can have a limit rotation speed which is multiplied under the same load; meanwhile, due to the increased foil type
- the elastic member 53 can also significantly improve the bearing capacity, the impact resistance and the ability to suppress the whirl of the bearing under the elastic action, and can have the same in comparison with the existing simple groove type dynamic pressure gas thrust bearing. Doubling the speed of impact resistance and load capacity.
- the foil-type elastic members 45/53 described in this embodiment are each composed of a wave foil 451/531 and a flat foil 452/532, and the curved protrusions 4511 of the wave foils 451/531.
- the top of the /5311 fits the flat foil 452/532.
- the foil-type elastic member 45 of the present embodiment is composed of a wave foil 451 and a flat foil 452, and the tip end of the curved projection 4511 of the wave foil 451 is fitted to the inner circumferential wall of the bearing outer casing 41. , the inter-wave transition of the wave foil 451 The bottom edge 4512 is attached to the flat foil 452.
- FIG. 15 is a schematic view showing the structure of the wave foil 451.
- the foil-type elastic member 45 of the present embodiment is composed of two flat foils 452.
- a hybrid dynamic pressure gas thrust bearing provided by the present embodiment differs from Embodiment 1 only in that:
- a groove pattern 523 is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces (this embodiment)
- the axial contour of the groove pattern 523 of the outer circumferential surface and the radial contour lines of the groove patterns (521 and 522) of the left and right end faces are in one-to-one correspondence with each other and intersect with each other; :
- the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line line 5211 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end face is chamfered;
- the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5212 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end surface is chamfered;
- the axial low bit line 5233 corresponds to the radially lower bit line 5213 in the groove pattern 521 of the left end face, and overlaps each other before the end face is chamfered (as shown in FIG. 20);
- the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line 5221 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered;
- the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5222 in the groove pattern 522 of the right end surface, and is mutually overlapped before the end surface is chamfered;
- the axially lower bit line 5233 corresponds to the radially lower bit line 5223 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 22).
- a groove pattern is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces, and When the axial contour line of the groove pattern 523 of the circumferential surface forms a one-to-one correspondence with the radial contour lines of the groove patterns (521 and 522) of the left and right end faces, the groove pattern of both end faces of the inner disk can be obtained.
- the pressurized gas generated by (521 and 522) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 523 of the outer circumferential surface so as to form a gas film which is stronger for supporting the high speed running bearing, and
- the gas film is used as a lubricant for the dynamic pressure gas thrust bearing, so that the high-speed stable operation of the hybrid dynamic pressure gas thrust bearing in the air-floating state can be further ensured, and further guarantee for realizing the high limit rotation speed of the motor.
- a card slot 513 (shown in Fig. 18) for fixing the foil-type elastic member 53 is provided on the inner end surface of the side disk 51.
- the fitting clearance of the foil-type elastic member 53 and the intermediate plate 52 is preferably 0.003 to 0.008 mm to further secure the shaft. Reliability and stability of high speed operation.
- the foil-type elastic member 53 is preferably subjected to surface heat treatment.
- composition of the foil-type elastic member 53 of the present invention is not limited to that described in the above embodiments, and may be composed of a wave foil and a flat foil, but the transition edge between the wave arches of the wave foil is The flat foil is fitted, or it is composed of two flat foils directly, or other existing structures.
- a heat dissipating spiral groove 32 is formed on the surface of the rotating shaft 3 to facilitate heat dissipation of the rotating shaft and the bearing chamber.
- the bearing provided by the invention can reach the limit rotation speed of 100,000-450,000 rpm in the air floating state, so the invention can significantly reduce the volume of the turbocharger to achieve miniaturization for the same power requirement, and promote miniaturization.
- the development of high technology has important value.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Support Of The Bearing (AREA)
- Motor Or Generator Frames (AREA)
- Supercharger (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
一种小微型涡轮增压器,其包括涡轮机(1)、压气机(2)、转轴(3)、2个径向轴承(4)、1个止推轴承(5)及主壳体(6),所述径向轴承(4)为混合式动压气体径向轴承,所述止推轴承(5)为混合式动压气体止推轴承,所述主壳体(6)套设在转轴(3)的中部,2个径向轴承(4)分别套设在位于主壳体(6)内的转轴(3)上,所述止推轴承(5)套设在位于主壳体(6)与压轮(21)间的转轴(3)上。该小微型涡轮增压器可实现在气浮状态下的超高速稳定运转,针对相同功率要求,可使涡轮增压器的体积显著减小实现微型化。
Description
本发明是涉及一种小微型涡轮增压器,属于高精密机械技术领域。
发动机是靠燃料在气缸内燃烧作功来产生功率的,输入的燃料量受到吸入气缸内空气量的限制,所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入气缸来增加燃料量,提高燃烧作功能力。在目前技术条件下,涡轮增压器是唯一能使发动机在工作效率不变的情况下增加输出功率的机械装置。涡轮增压器的工作原理是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸,当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。
由于涡轮增压器的关键零件是轴承,然而目前的涡轮增压器通常采用滚动轴承和滑动轴承,存在以下诸多问题:由于采用润滑油,不可避免的出现漏油现象,从而导致了经油封泄漏机油和中冷器的工作面沾污的问题;由于摩擦力的存在,使得转子转速低,效率低下;并且由于存在磨损使得轴承寿命较短;难以适应高转速工况;并且,较大质量的转子也会消耗较多的废气能量。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种可长时间稳定运行的小微型涡轮增压器。
为实现上述目的,本发明采用的技术方案如下:
一种小微型涡轮增压器,包括涡轮机、压气机、转轴、2个径向轴承、1个止推轴承及主壳体,所述涡轮机包括涡轮、涡轮机导流器及涡轮机壳体,所述压气机包括压轮、压气机扩压器及压气机壳体;其特征在于:所述径向轴承为混合式动压气体径向轴承,包括轴承外套、轴承内套及设置在轴承外套与内套之间的箔型弹性件;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述主壳体套设在转轴的中部,2个径向轴承分别套设在位于主壳体内
的转轴上,所述止推轴承套设在位于主壳体与压轮间的转轴上。
作为进一步实施方案,所述的小微型涡轮增压器还包括涡轮机导流器壳体、转轴套及左轴承室端盖和右轴承室端盖,所述转轴套套设在转轴上,径向轴承和止推轴承均套设在转轴套上;涡轮机壳体与涡轮机导流器壳体固定连接,涡轮机导流器壳体与左轴承室端盖固定连接,左轴承室端盖与主壳体固定连接;压气机壳体与右轴承室端盖固定连接,右轴承室端盖与主壳体固定连接。
作为优选方案,所述转轴的表面开设有散热螺旋槽,以利于转轴和轴承室的散热。
作为优选方案,在主壳体的内筒周侧开设有若干通气孔,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
作为优选方案,所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
作为进一步优选方案,所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与轴承内套的外圆周面相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述的箔型弹性件与轴承内套的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述的箔型弹性件的两端均固定在轴承外套的内圆周壁上。
作为进一步优选方案,所述的箔型弹性件为多个,且沿轴承外套的内圆周壁均匀分布。
作为进一步优选方案,在轴承外套的内圆周壁设有用于固定箔型弹性件的卡槽。
作为进一步优选方案,在轴承外套的两端设有止环。
作为优选方案,所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
作为优选方案,在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与中盘相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述箔型弹性件与中盘的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述箔型弹性件的至少一端固定在对应侧盘的内端面上。
作为进一步优选方案,每个侧盘上的箔型弹性件为多个,且沿侧盘的内端面均匀分布。
作为进一步优选方案,固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
作为进一步优选方案,在侧盘的内端面设有用于固定箔型弹性件的卡槽。
作为一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
作为另一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
作为又一种实施方案,所述的箔型弹性件由两个平箔组成。
上述的槽式花纹均为叶轮形状。
上述的箔型弹性件优选经过表面热处理。
与现有技术相比,本发明具有如下有益效果:
因本发明所提供的涡轮增压器,是以气体作为轴承的润滑剂,因此不仅具有无污染、摩擦损失低、使用时间长、适用范围广、节能环保等诸多优点,而且采用所述结构,散热效果好,可保证长时间稳定运行;尤其是,因所述结构的空气轴承能实现在气浮状态下的超高速稳定运转(经测试,可达100,000~450,000rpm的极限转速),因此针对相同功率要求,本发明可使涡轮增压器的体积显著减小实现微型化,具有占用空间小、使用便捷等优点,对促进微型化高新技术的发展具有重要价值,相对于现有技术具有显著性进步。
图1是实施例1提供的一种小微型涡轮增压器的剖面结构示意图;
图2是实施例1提供的混合式动压气体径向轴承的局部分割的左视立体结构示意图;
图3是图2中的A局部放大图;
图4是实施例1提供的混合式动压气体径向轴承的局部分割的右视立体结构示意图;
图5是图4中的B局部放大图;
图6是实施例1提供的混合式动压气体径向轴承的剖面结构示意图;
图7是图6中的C局部放大图;
图8是图7中的D局部放大图;
图9是实施例1提供的混合式动压气体止推轴承的剖面结构示意图;
图10a是实施例1中所述中盘的左视图;
图10b是实施例1中所述中盘的右视图;
图11a是实施例1中所述的固定有箔型弹性件的左侧盘的右视图;
图11b是实施例1中所述的固定有箔型弹性件的右侧盘的左视图;
图12是实施例1提供的箔型弹性件的截面结构示意图;
图13是实施例1提供的箔型弹性件的立体结构示意图;
图14是实施例2提供的一种混合式动压气体径向轴承的剖面结构示意图;
图15是图14中波箔的结构示意图;
图16是实施例3提供的一种混合式动压气体径向轴承的剖面结构示意图;
图17a是实施例4提供的一种混合式动压气体止推轴承的左视立体结构示意图;
图17b是实施例4提供的混合式动压气体止推轴承的右视立体结构示意图;
图18是实施例4提供的混合式动压气体止推轴承的局部分割立体结构示意图;
图19是实施例4中所述中盘的左视立体结构示意图;
图20是图19中的E局部放大图;
图21是实施例4中所述中盘的右视立体结构示意图;
图22是图21中的F局部放大图;
图23是实施例5所提供的转轴结构示意图;
图24是图23中的G局部放大图。
图中标号示意如下:
1、涡轮机;11、涡轮;12、涡轮机导流器;13、涡轮机壳体;14、涡轮机导流器壳体;2、压气机;21、压轮;22、压气机扩压器;23、压气机壳体;3、转轴;31、转轴套;32、散热螺旋槽;4、混合式动压气体径向轴承;4a、左端径向轴承;4b、右端径向轴承;41、轴承外套;411、卡槽;42、轴承内套;43、槽式花纹;431、外圆周面的槽式花纹;4311、
轴向高位线;4312、轴向中位线;4313、轴向低位线;432、左端面的槽式花纹;4321、径向高位线;4322、径向中位线;4323、径向低位线;433、右端面的槽式花纹;4331、径向高位线;4332、径向中位线;4333、径向低位线;44、止环;45、箔型弹性件;451、波箔;4511、弧形凸起;4512、波拱间过渡底边;452、平箔;453、耐磨涂层;5、混合式动压气体止推轴承;51、侧盘;511、左侧盘;512、右侧盘;513、卡槽;52、中盘;521、左端面的槽式花纹;5211、径向高位线;5212、径向中位线;5213、径向低位线;522、右端面的槽式花纹;5221、径向高位线;5222、径向中位线;5223、径向低位线;523、外圆周面的槽式花纹;5231、轴向高位线;5232、轴向中位线;5233、轴向低位线;53、箔型弹性件;53a、固定在左侧盘上的箔型弹性件;53b、固定在右侧盘上的箔型弹性件;531、波箔;5311、弧形凸起;5312、波拱间过渡底边;532、平箔;6、主壳体;7a、左轴承室端盖;7b、右轴承室端盖。
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
如图1所示:本实施例提供的一种小微型涡轮增压器,包括涡轮机1、压气机2、转轴3、2个径向轴承4、1个止推轴承5及主壳体6,所述涡轮机1包括涡轮11、涡轮机导流器12及涡轮机壳体13,所述压气机2包括压轮21、压气机扩压器22及压气机壳体23;其特征在于:所述径向轴承4为混合式动压气体径向轴承,包括轴承外套41、轴承内套42及设置在轴承外套41与内套42之间的箔型弹性件45;所述止推轴承5为混合式动压气体止推轴承,包括两个侧盘51以及夹设在两个侧盘之间的中盘52,在每个侧盘51与中盘52之间均设有箔型弹性件53;所述主壳体6套设在转轴3的中部,2个径向轴承4分别套设在位于主壳体6内的转轴3上,所述止推轴承5套设在位于主壳体6与压轮21间的转轴3上。
所述的小微型涡轮增压器还包括涡轮机导流器壳体14、转轴套31及左轴承室端盖7a和右轴承室端盖7b,所述转轴套31套设在转轴3上,径向轴承4和止推轴承5均套设在转轴套31上;涡轮机壳体13与涡轮机导流器壳体14固定连接,涡轮机导流器壳体14与左轴承室端盖7a固定连接,左轴承室端盖7a与主壳体6固定连接;压气机壳体23与右轴承室端盖7b固定连接,右轴承室端盖7b与主壳体6固定连接。
另外,在主壳体的内筒周侧开设有若干通气孔(图中未示出),可有利于气体的导入和导出,一方面可实现快速散热排气,另一面可实现对轴承室内进行空气补给。
结合图2至图5所示:所述轴承内套42的外圆周面和左、右端面均具有规则形状的槽式花纹43(如图中的431、432和433,本实施例中的槽式花纹均为叶轮形状),且左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称。位于轴承内套42的外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,即:外圆周面的槽式花纹431中的轴向高位线4311与左、右端面的槽式花纹(432和433)中的径向高位线(4321和4331)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向中位线4312与左、右端面的槽式花纹(432和433)中的径向中位线(4322和4332)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向低位线4313与左、右端面的槽式花纹(432和433)中的径向低位线(4323和4333)均相对应、并在端面圆周倒角前相互交接。
通过使轴承内套42的外圆周面和两端面均具有规则形状的槽式花纹(431、432和433),左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称及外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,可保证两端面的叶轮形状的槽式花纹(432和433)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹431形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体径向轴承的润滑剂,因此有利于实现所述混合式动压气体径向轴承4在气浮状态下的高速稳定运转。
另外,当在轴承外套41的两端分别设置止环44时,可实现在高速回转轴的带动下,使轴承内套42的两端面与止环44间产生自密封作用,使槽式花纹连续产生的动压气体能完好地密闭保存在轴承的整个配合间隙中,充分保证高速运转的动压气体径向轴承的润滑需要。
结合图6和图7所示:所述的箔型弹性件45设置在轴承外套41与内套42之间,是采用波箔451和平箔452组成,所述波箔451的弧形凸起4511的顶端与平箔452相贴合,所述波箔451的波拱间过渡底边4512与轴承外套41的内圆周壁相贴合。在轴承外套41的内圆周壁设有用于固定箔型弹性件45两端的卡槽411,所述卡槽411与箔型弹性件45的数量相对应,且均沿轴承外套41的内圆周壁均匀分布。
如图8所示:在与轴承内套42的外圆周面相配合的箔型弹性件45的配合面(即:构成箔型弹性件45的平箔452的内表面)上设有耐磨涂层453,以进一步降低高速运转的轴承内套42对箔型弹性件45的磨损,延长轴承的使用寿命。
所述的箔型弹性件45与轴承内套42的配合间隙优选为0.003~0.008mm,以进一步确
保轴承高速运转的可靠性和稳定性。
如图9所示:本实施例提供的一种混合式动压气体止推轴承5,包括:两个侧盘51,在两个侧盘51之间夹设有中盘52,在每个侧盘51与中盘52之间设有箔型弹性件53;所述中盘52的左端面设有规则形状的槽式花纹521,右端面设有规则形状的槽式花纹522。
结合图10a和图10b可见:所述中盘52的左端面的槽式花纹521与右端面的槽式花纹522之间形成镜像对称,左端面的槽式花纹521的径向轮廓线与右端面的槽式花纹522的径向轮廓线形成一一对应。
所述的槽式花纹521与522的形状相同,本实施例中均为叶轮形状。
进一步结合图11a和图11b可见:所述箔型弹性件53固定在对应侧盘51的内端面上(例如图11a所示的固定有箔型弹性件53a的左侧盘511和图11b所示的固定有箔型弹性件53b的右侧盘512),且固定在左侧盘511上的箔型弹性件53a与固定在右侧盘512上的箔型弹性件53b形成镜像对称。在每个侧盘上的箔型弹性件可为多个(图中示出的是4个),且沿侧盘的内端面均匀分布。
通过在侧盘51与中盘52之间设置箔型弹性件53,在中盘52的左、右端面设置规则形状的槽式花纹(521和522),且使左端面的槽式花纹521与右端面的槽式花纹522形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;因为箔型弹性件53与中盘52间形成了楔形空间,当中盘52转动时,气体因其自身的粘性作用被带动并被压缩到楔形空间内,从而可使轴向动压力得到显著增强,相对于现有的单纯箔片式动压气体止推轴承,可具有在相同载荷下成倍增加的极限转速;同时,由于增加了箔型弹性件53,在其弹性作用下,还可使轴承的载荷能力、抗冲击能力和抑制轴涡动的能力显著提高,相对于现有的单纯槽式动压气体止推轴承,可具有在相同转速下成倍增加的抗冲击能力和载荷能力。
为进一步降低高速运转的中盘52对箔型弹性件53的磨损,以延长轴承的使用寿命,最好在与中盘52相配合的箔型弹性件53的配合面上设置耐磨涂层(图中未示出)。
如图12和图13所示:本实施例中所述的箔型弹性件45/53均由波箔451/531和平箔452/532组成,所述波箔451/531的弧形凸起4511/5311的顶端与平箔452/532相贴合。
实施例2
如图14所示,本实施例所述的箔型弹性件45由波箔451和平箔452组成,所述波箔451的弧形凸起4511的顶端与轴承外套41的内圆周壁相贴合,所述波箔451的波拱间过渡
底边4512与平箔452相贴合。
图15所示为所述波箔451的结构示意图。
实施例3
如图16所示,本实施例所述的箔型弹性件45由两个平箔452组成。
实施例4
结合图17a、17b、18至22所示可见,本实施例提供的一种混合式动压气体止推轴承与实施例1的区别仅在于:
在所述中盘52的外圆周面也设有槽式花纹523,且外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同(本实施例中均为叶轮形状),以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接;即:
外圆周面的槽式花纹523中的轴向高位线5231与左端面的槽式花纹521中的径向高位线5211均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与左端面的槽式花纹521中的径向中位线5212均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与左端面的槽式花纹521中的径向低位线5213均相对应、并在端面圆周倒角前相互交接(如图20所示);
外圆周面的槽式花纹523中的轴向高位线5231与右端面的槽式花纹522中的径向高位线5221均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与右端面的槽式花纹522中的径向中位线5222均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与右端面的槽式花纹522中的径向低位线5223均相对应、并在端面圆周倒角前相互交接(如图22所示)。
当在所述中盘52的外圆周面也设有槽式花纹,且使外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同,以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接时,可使内盘两端面的槽式花纹(521和522)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹523形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体止推轴承的润滑剂,因而可进一步确保所述的混合式动压气体止推轴承在气浮状态下的高速稳定运转,为实现电机的高极限转速提供进一步保证。
在侧盘51的内端面上设有用于固定箔型弹性件53的卡槽513(如图18所示)。
所述的箔型弹性件53与中盘52的配合间隙优选为0.003~0.008mm,以进一步确保轴
承高速运转的可靠性和稳定性。
为了更好地满足高速运转的性能要求,所述的箔型弹性件53优选经过表面热处理。
另外需要说明的是:本发明所述的箔型弹性件53的组成结构不限于上述实施例中所述,还可以采用波箔和平箔组成,但所述波箔的波拱间过渡底边与平箔相贴合,或者,直接采用两个平箔组成,或采用其它的现有结构。
实施例5
结合图23和图24所示:在转轴3的表面开设有散热螺旋槽32,以利于转轴和轴承室的散热。
经测试,本发明提供的轴承在气浮状态下能达到100,000~450,000rpm的极限转速,因此针对相同功率要求,本发明可使涡轮增压器的体积显著减小实现微型化,对促进微型化高新技术的发展具有重要价值。
最后有必要在此指出的是:以上内容只用于对本发明所述技术方案做进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。
Claims (14)
- 一种小微型涡轮增压器,包括涡轮机、压气机、转轴、2个径向轴承、1个止推轴承及主壳体,所述涡轮机包括涡轮、涡轮机导流器及涡轮机壳体,所述压气机包括压轮、压气机扩压器及压气机壳体;其特征在于:所述径向轴承为混合式动压气体径向轴承,包括轴承外套、轴承内套及设置在轴承外套与内套之间的箔型弹性件;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述主壳体套设在转轴的中部,2个径向轴承分别套设在位于主壳体内的转轴上,所述止推轴承套设在位于主壳体与压轮间的转轴上。
- 根据权利要求1所述的小微型涡轮增压器,其特征在于:所述的小微型涡轮增压器还包括涡轮机导流器壳体、转轴套及左轴承室端盖和右轴承室端盖,所述转轴套套设在转轴上,径向轴承和止推轴承均套设在转轴套上;涡轮机壳体与涡轮机导流器壳体固定连接,涡轮机导流器壳体与左轴承室端盖固定连接,左轴承室端盖与主壳体固定连接;压气机壳体与右轴承室端盖固定连接,右轴承室端盖与主壳体固定连接。
- 根据权利要求1或2所述的小微型涡轮增压器,其特征在于:所述转轴的表面开设有散热螺旋槽。
- 根据权利要求1或2所述的小微型涡轮增压器,其特征在于:在主壳体的内筒周侧开设有若干通气孔。
- 根据权利要求1所述的小微型涡轮增压器,其特征在于:所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
- 根据权利要求5所述的小微型涡轮增压器,其特征在于:所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
- 根据权利要求6所述的小微型涡轮增压器,其特征在于:所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
- 根据权利要求1所述的小微型涡轮增压器,其特征在于:所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
- 根据权利要求8所述的小微型涡轮增压器,其特征在于:在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆 周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
- 根据权利要求9所述的小微型涡轮增压器,其特征在于:中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
- 根据权利要求1所述的小微型涡轮增压器,其特征在于:固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
- 根据权利要求1或11所述的小微型涡轮增压器,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
- 根据权利要求1或11所述的小微型涡轮增压器,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
- 根据权利要求1或11所述的小微型涡轮增压器,其特征在于:所述的箔型弹性件由两个平箔组成。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/079232 WO2016183786A1 (zh) | 2015-05-19 | 2015-05-19 | 一种混合式动压气体径向轴承 |
PCT/CN2015/079234 WO2016183788A1 (zh) | 2015-05-19 | 2015-05-19 | 一种混合式动压气体止推轴承 |
CNPCT/CN2015/079234 | 2015-05-19 | ||
CNPCT/CN2015/079232 | 2015-05-19 | ||
CN201610334011.2A CN105889326B (zh) | 2015-05-19 | 2016-05-18 | 一种小微型涡轮增压器 |
CN201610334011.2 | 2016-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016184417A1 true WO2016184417A1 (zh) | 2016-11-24 |
Family
ID=56716452
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082703 WO2016184407A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型电机 |
PCT/CN2016/082706 WO2016184409A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型涡轮发电机 |
PCT/CN2016/082714 WO2016184417A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型涡轮增压器 |
PCT/CN2016/082699 WO2016184405A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型鼓风机 |
PCT/CN2016/082710 WO2016184413A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型燃气轮发电机 |
PCT/CN2016/082708 WO2016184411A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型电动发电涡轮增压装置 |
PCT/CN2016/082712 WO2016184415A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型涡喷发动机 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082703 WO2016184407A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型电机 |
PCT/CN2016/082706 WO2016184409A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型涡轮发电机 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082699 WO2016184405A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型鼓风机 |
PCT/CN2016/082710 WO2016184413A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型燃气轮发电机 |
PCT/CN2016/082708 WO2016184411A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型电动发电涡轮增压装置 |
PCT/CN2016/082712 WO2016184415A1 (zh) | 2015-05-19 | 2016-05-19 | 一种小微型涡喷发动机 |
Country Status (3)
Country | Link |
---|---|
CN (14) | CN105888847B (zh) |
TW (3) | TWI676735B (zh) |
WO (7) | WO2016184407A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105888847B (zh) * | 2015-05-19 | 2018-03-27 | 罗立峰 | 一种小微型涡喷发动机 |
GB201615491D0 (en) | 2016-09-13 | 2016-10-26 | Delta Motorsport Ltd | Improvements in or relating to gas turbine generators |
CN106640986A (zh) * | 2017-01-18 | 2017-05-10 | 哈尔滨工业大学 | 用于气体轴承‑转子系统的双推力盘结构 |
CN106979072B (zh) * | 2017-06-01 | 2019-02-19 | 北京磐龙天地科技发展股份有限公司 | 热管发动机 |
CN107795590B (zh) * | 2017-11-21 | 2024-06-04 | 珠海格力电器股份有限公司 | 轴承冷却结构、电机及离心式压缩机 |
CN108868893B (zh) * | 2018-01-12 | 2024-04-02 | 刘慕华 | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 |
JP7035593B2 (ja) * | 2018-02-15 | 2022-03-15 | 日本精工株式会社 | スピンドル装置 |
CN108286567B (zh) * | 2018-03-06 | 2023-08-29 | 河北金士顿科技有限责任公司 | 一种具有厚顶层箔片结构的止推箔片动压空气轴承 |
DE102018207114A1 (de) * | 2018-05-08 | 2019-11-14 | Robert Bosch Gmbh | Lagereinrichtung mit einer strukturierten Welle |
CN108644005B (zh) * | 2018-05-19 | 2019-09-03 | 温州伊诺韦特科技有限公司 | 一种电动涡轮增压器 |
DE102018208706A1 (de) * | 2018-06-04 | 2019-12-05 | Audi Ag | System zum Kühlen einer Elektromaschine |
CN111075563A (zh) * | 2019-12-27 | 2020-04-28 | 至玥腾风科技集团有限公司 | 一种冷热电三联供微型燃气轮机设备 |
CN112302971A (zh) * | 2020-11-23 | 2021-02-02 | 深圳大学 | 基于非晶软磁材料的无油润滑空压机 |
CN112716396B (zh) * | 2021-01-09 | 2021-11-23 | 苏州简单有为科技有限公司 | 湿式清洁装置 |
CN113266596A (zh) * | 2021-06-02 | 2021-08-17 | 北京智拓博科技有限公司 | 动压气悬浮离心制冷压缩机及其轴向轴承结构 |
CN113937926B (zh) * | 2021-09-30 | 2022-10-25 | 西安交通大学 | 一种用于微型液泵的动力系统 |
CN113922556B (zh) * | 2021-10-12 | 2022-09-13 | 扬州市华天电机有限公司 | 一种永磁同步电机端盖连接装置 |
TWI781860B (zh) * | 2021-12-28 | 2022-10-21 | 財團法人工業技術研究院 | 渦輪裝置及循環系統 |
CN114483611B (zh) * | 2022-01-21 | 2024-02-13 | 扬州大学 | 一种动压浮环和磁轴承支承燃料电池空压机主轴结构 |
US12055156B2 (en) | 2022-04-01 | 2024-08-06 | Hamilton Sundstrand Corporation | High speed turbo-alternator with integrated cooling fan |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4355850A (en) * | 1980-04-02 | 1982-10-26 | Toyota Jidosha Kogyo Kabushiki Kaisha | Bearing of a turbomachine |
JPH07154010A (ja) * | 1993-12-01 | 1995-06-16 | Fanuc Ltd | レーザ用ターボブロア |
US20100027925A1 (en) * | 2004-06-07 | 2010-02-04 | Honeywell International Inc. | Thrust bearing |
CN102278366A (zh) * | 2011-05-27 | 2011-12-14 | 罗立峰 | 自密封动压气体径向陶瓷轴承 |
CN202091349U (zh) * | 2011-06-15 | 2011-12-28 | 罗立峰 | 动压气体止推陶瓷轴承 |
JP2012092969A (ja) * | 2010-09-27 | 2012-05-17 | Ntn Corp | フォイル軸受 |
CN104895917A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体止推轴承 |
CN104895924A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体径向轴承 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01290999A (ja) * | 1988-05-14 | 1989-11-22 | Daikin Ind Ltd | ファン装置 |
CN2191308Y (zh) * | 1994-04-19 | 1995-03-08 | 崔援 | 一种双风叶电风扇 |
RU2137954C1 (ru) * | 1997-04-03 | 1999-09-20 | Московский государственный авиационный институт (технический университет) | Лепестковый газодинамический подшипник |
US6294842B1 (en) * | 1997-12-19 | 2001-09-25 | Alliedsignal Inc. | Fog cycle for microturbine power generating system |
JP2000130176A (ja) * | 1998-10-30 | 2000-05-09 | Isuzu Motors Ltd | 発電・電動機を備えたターボチャージャ |
US6224263B1 (en) * | 1999-01-22 | 2001-05-01 | Alliedsignal Inc. | Foil thrust bearing with varying circumferential and radial stiffness |
JP2002039096A (ja) * | 2000-07-27 | 2002-02-06 | Minebea Co Ltd | 送風機 |
CN2558797Y (zh) * | 2002-04-03 | 2003-07-02 | 廖英桐 | 改进的动压轴承 |
CN1209554C (zh) * | 2002-09-23 | 2005-07-06 | 北京航空航天大学 | 微型涡轮喷气发动机 |
GB0304320D0 (en) * | 2003-02-26 | 2003-04-02 | Bladon Jets Ltd | Gas turbine engines |
CN1283931C (zh) * | 2004-03-18 | 2006-11-08 | 西安交通大学 | 高速透平机械弹性支承平箔型止推气体轴承 |
US7174714B2 (en) * | 2004-12-13 | 2007-02-13 | Caterpillar Inc | Electric turbocompound control system |
US7948105B2 (en) * | 2007-02-01 | 2011-05-24 | R&D Dynamics Corporation | Turboalternator with hydrodynamic bearings |
KR101324226B1 (ko) * | 2008-09-22 | 2013-11-20 | 삼성테크윈 주식회사 | 유체 과급 장치 |
US8618706B2 (en) * | 2008-12-04 | 2013-12-31 | Seagate Technology Llc | Fluid pumping capillary seal for a fluid dynamic bearing |
CN201373019Y (zh) * | 2009-01-14 | 2009-12-30 | 西安交通大学 | 一种具有轴向支撑的动压气体止推轴承 |
CN101463868B (zh) * | 2009-01-14 | 2010-07-21 | 西安交通大学 | 一种具有轴向支撑的动压气体止推轴承 |
JP2011047388A (ja) * | 2009-08-28 | 2011-03-10 | Toshiba Home Technology Corp | 送風装置 |
CN201786444U (zh) * | 2010-08-05 | 2011-04-06 | 郎定川 | 可控平衡燃烧涡轮增压器 |
CN102200136B (zh) * | 2011-05-25 | 2012-09-05 | 北京虎渡能源科技有限公司 | 一种空气悬浮供气可调高速电机直驱鼓风机 |
CN102242762B (zh) * | 2011-05-27 | 2013-01-23 | 罗立峰 | 动压气体径向陶瓷轴承 |
CN102192237A (zh) * | 2011-06-07 | 2011-09-21 | 罗立峰 | 自密封动压气体径向陶瓷轴承 |
CN102261374B (zh) * | 2011-06-15 | 2014-04-09 | 罗立峰 | 动压气体止推陶瓷轴承 |
CN102223007A (zh) * | 2011-06-24 | 2011-10-19 | 罗立峰 | 高速永磁电动机/发电机 |
JP6051220B2 (ja) * | 2011-08-24 | 2016-12-27 | ボーグワーナー インコーポレーテッド | 軸受装置 |
KR20130115570A (ko) * | 2012-04-12 | 2013-10-22 | 현대자동차주식회사 | 엔진의 과급장치 |
KR101666092B1 (ko) * | 2012-10-16 | 2016-10-13 | 가부시키가이샤 아이에이치아이 | 스러스트 베어링 |
CN103089405B (zh) * | 2013-01-09 | 2015-09-16 | 北京理工大学 | 转子离合式电动发电涡轮增压器 |
US9157473B2 (en) * | 2013-01-16 | 2015-10-13 | Korea Institute Of Machinery & Materials | Thrust bearing and combo bearing |
CN103306995B (zh) * | 2013-05-30 | 2015-08-26 | 西安交通大学 | 一种花键齿拉杆组合转子高速直驱压缩机结构 |
CN103670628B (zh) * | 2013-12-19 | 2017-01-11 | 湖南大学 | 废气涡轮发电机 |
CN103670672B (zh) * | 2013-12-19 | 2016-03-02 | 湖南大学 | 一种涡轮增压器 |
CN103775196B (zh) * | 2014-03-04 | 2016-04-06 | 山东理工大学 | 一种涡轮增压发电装置 |
JP6591179B2 (ja) * | 2014-03-19 | 2019-10-16 | Ntn株式会社 | フォイル軸受 |
CN204082684U (zh) * | 2014-05-30 | 2015-01-07 | 鑫贺精密电子(东莞)有限公司 | 一种散热风扇 |
CN104265460B (zh) * | 2014-08-20 | 2016-03-23 | 中国科学院工程热物理研究所 | 微型航空发动机轴承燃油换热冷却装置 |
CN105202018B (zh) * | 2015-05-19 | 2018-06-12 | 罗立峰 | 一种混合式动压气体径向轴承 |
CN105202027B (zh) * | 2015-05-19 | 2017-10-20 | 罗立峰 | 一种混合式动压气体止推轴承 |
CN105888847B (zh) * | 2015-05-19 | 2018-03-27 | 罗立峰 | 一种小微型涡喷发动机 |
-
2016
- 2016-05-18 CN CN201610329342.7A patent/CN105888847B/zh active Active
- 2016-05-18 CN CN201620452766.8U patent/CN205858478U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201620452859.0U patent/CN205858731U/zh active Active
- 2016-05-18 CN CN201610329290.3A patent/CN105889325B/zh active Active
- 2016-05-18 CN CN201610329207.2A patent/CN105889099B/zh active Active
- 2016-05-18 CN CN201620452803.5U patent/CN205858959U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201610329245.8A patent/CN105889324B/zh active Active
- 2016-05-18 CN CN201620449971.9U patent/CN205858958U/zh active Active
- 2016-05-18 CN CN201610329279.7A patent/CN105888819B/zh active Active
- 2016-05-18 CN CN201620457921.5U patent/CN205858960U/zh active Active
- 2016-05-18 CN CN201620452807.3U patent/CN205864142U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201610334011.2A patent/CN105889326B/zh active Active
- 2016-05-18 CN CN201620453233.1U patent/CN205858493U/zh active Active
- 2016-05-18 CN CN201610327792.2A patent/CN106026491B/zh active Active
- 2016-05-19 TW TW105115475A patent/TWI676735B/zh active
- 2016-05-19 WO PCT/CN2016/082703 patent/WO2016184407A1/zh active Application Filing
- 2016-05-19 TW TW105115476A patent/TWI676734B/zh active
- 2016-05-19 WO PCT/CN2016/082706 patent/WO2016184409A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082714 patent/WO2016184417A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082699 patent/WO2016184405A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082710 patent/WO2016184413A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082708 patent/WO2016184411A1/zh active Application Filing
- 2016-05-19 TW TW105115474A patent/TWI699077B/zh active
- 2016-05-19 WO PCT/CN2016/082712 patent/WO2016184415A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4355850A (en) * | 1980-04-02 | 1982-10-26 | Toyota Jidosha Kogyo Kabushiki Kaisha | Bearing of a turbomachine |
JPH07154010A (ja) * | 1993-12-01 | 1995-06-16 | Fanuc Ltd | レーザ用ターボブロア |
US20100027925A1 (en) * | 2004-06-07 | 2010-02-04 | Honeywell International Inc. | Thrust bearing |
JP2012092969A (ja) * | 2010-09-27 | 2012-05-17 | Ntn Corp | フォイル軸受 |
CN102278366A (zh) * | 2011-05-27 | 2011-12-14 | 罗立峰 | 自密封动压气体径向陶瓷轴承 |
CN202091349U (zh) * | 2011-06-15 | 2011-12-28 | 罗立峰 | 动压气体止推陶瓷轴承 |
CN104895917A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体止推轴承 |
CN104895924A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体径向轴承 |
Also Published As
Publication number | Publication date |
---|---|
WO2016184411A1 (zh) | 2016-11-24 |
TW201704629A (zh) | 2017-02-01 |
TWI676734B (zh) | 2019-11-11 |
CN105889324B (zh) | 2019-01-04 |
CN105889099B (zh) | 2019-01-04 |
CN105889326B (zh) | 2018-10-26 |
CN105888819B (zh) | 2019-01-04 |
WO2016184405A1 (zh) | 2016-11-24 |
WO2016184413A1 (zh) | 2016-11-24 |
TW201711350A (zh) | 2017-03-16 |
CN105889326A (zh) | 2016-08-24 |
WO2016184415A1 (zh) | 2016-11-24 |
CN105888819A (zh) | 2016-08-24 |
CN205858959U (zh) | 2017-01-04 |
CN105888847B (zh) | 2018-03-27 |
CN106026491A (zh) | 2016-10-12 |
CN205858958U (zh) | 2017-01-04 |
CN205858960U (zh) | 2017-01-04 |
CN205858493U (zh) | 2017-01-04 |
WO2016184409A1 (zh) | 2016-11-24 |
CN105889325A (zh) | 2016-08-24 |
CN105889099A (zh) | 2016-08-24 |
WO2016184407A1 (zh) | 2016-11-24 |
CN205858731U (zh) | 2017-01-04 |
CN105889325B (zh) | 2018-10-26 |
CN106026491B (zh) | 2019-01-04 |
CN105889324A (zh) | 2016-08-24 |
TW201706496A (zh) | 2017-02-16 |
TWI676735B (zh) | 2019-11-11 |
CN205858478U (zh) | 2017-01-04 |
CN105888847A (zh) | 2016-08-24 |
CN205864142U (zh) | 2017-01-04 |
TWI699077B (zh) | 2020-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016184417A1 (zh) | 一种小微型涡轮增压器 | |
WO2016184416A1 (zh) | 一种超高速涡轮增压器 | |
WO2016184403A1 (zh) | 一种小微型散热风扇 | |
US10690141B2 (en) | Seal structure and supercharger provided with the seal structure | |
CN110594286B (zh) | 箔片气体动压轴承和高速电机 | |
WO2021129425A1 (zh) | 一种空气轴承、转子系统及微型燃气轮机 | |
US10260604B2 (en) | Speed increaser | |
CN105179462B (zh) | 一种波箔型空气动压轴承 | |
JP2013032797A (ja) | フォイル軸受 | |
CN203114634U (zh) | 涡旋部件和涡旋压缩机 | |
JPH03163213A (ja) | 動圧型エア軸受装置 | |
CN113202765B (zh) | 摩擦副组件、曲轴组件和压缩机 | |
CN207647554U (zh) | 一种增压器轴承结构 | |
JP6139938B2 (ja) | 固定スクロール体およびそれを用いたスクロール流体機械 | |
CN219605849U (zh) | 具有改进型油路结构的涡轮增压器球轴承 | |
CN212509237U (zh) | 一种旋转式压缩机的曲轴支撑结构 | |
CN212744393U (zh) | 一种离心式空气压缩机 | |
CN110939657A (zh) | 微动压型涡轮增压器浮动轴承 | |
CN203098861U (zh) | 涡轮增压器转子双层叠环密封结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16795904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16795904 Country of ref document: EP Kind code of ref document: A1 |