WO2016184407A1 - 一种小微型电机 - Google Patents

一种小微型电机 Download PDF

Info

Publication number
WO2016184407A1
WO2016184407A1 PCT/CN2016/082703 CN2016082703W WO2016184407A1 WO 2016184407 A1 WO2016184407 A1 WO 2016184407A1 CN 2016082703 W CN2016082703 W CN 2016082703W WO 2016184407 A1 WO2016184407 A1 WO 2016184407A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
groove pattern
foil
radial
sleeve
Prior art date
Application number
PCT/CN2016/082703
Other languages
English (en)
French (fr)
Inventor
罗立峰
Original Assignee
罗立峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2015/079234 external-priority patent/WO2016183788A1/zh
Priority claimed from PCT/CN2015/079232 external-priority patent/WO2016183786A1/zh
Application filed by 罗立峰 filed Critical 罗立峰
Publication of WO2016184407A1 publication Critical patent/WO2016184407A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/0563Bearings cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/163Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the invention relates to a small micro motor, belonging to the technical field of high precision machinery.
  • High-speed motors usually refer to motors with a speed exceeding 10,000 r/min. They have the following advantages: First, because of the high speed, the motor has a high power density, and the volume is much smaller than that of a normal motor, which can effectively save materials; The motives are connected, the traditional speed reduction mechanism is eliminated, the transmission efficiency is high, and the noise is small; the third is because the high-speed motor has a small moment of inertia, so the dynamic response is fast.
  • ordinary mechanical ball bearings can no longer meet the requirements of high-power high-speed motors. Air-floating bearings have become a hot spot in industry and academia because of their small friction loss, high temperature stability, high reliability, low vibration, no need for lubricating oil, and no limitation on the size of the shaft. Used in aviation and aerospace.
  • the existing air-floating bearings used in high-speed motors mainly include: tilting type, slot type and foil type.
  • the tilting type air bearing has self-adjusting performance, it can be within a smaller air gap. Safe work, insensitive to thermal deformation, elastic deformation, etc., and the processing accuracy is easy to be guaranteed, but its bearing structure is more complicated, the installation process is complex, never suitable for industrial applications; although the foil type dynamic pressure gas radial bearing has The elastic support can make the bearing obtain a certain bearing capacity and the ability to mitigate the impact vibration.
  • the foil bearing is generally made of metal foil, not only the material manufacturing technology and the processing technology still have some problems, but also the damping of the bearing.
  • the value can not be greatly improved, resulting in insufficient rigidity of the bearing, the critical speed of the bearing is low, and it is easy to be unstable or even stuck during high-speed operation; although the slot type dynamic pressure gas radial bearing has good stability, at high speed, Its static bearing capacity is larger than other types of bearings, but the current slotted dynamic gas radial bearing has high rigidity and is not good enough for impact resistance. Bearing capacity is not large enough to realize high-speed operation under a large load. Due to the above-mentioned various problems of the current air bearing technology, the existing high-speed motor still has the following problems: 1. The speed is still limited, and currently only up to 50,000 rpm can be achieved; 2.
  • a small micro motor comprising a motor housing, a rotor, a stator, two radial bearings, a thrust bearing, and an inner shaft and an outer shaft;
  • the radial bearing is a hybrid dynamic pressure gas path a bearing, comprising a bearing sleeve, a bearing inner sleeve and a foil-type elastic member disposed between the bearing outer sleeve and the inner sleeve;
  • the thrust bearing is a hybrid dynamic pressure gas thrust bearing, comprising two side plates and being sandwiched a middle plate between the two side plates, a foil-type elastic member is disposed between each of the side plates and the middle plate;
  • the rotor is sleeved in the middle of the inner shaft, and two radial bearings are respectively sleeved on the rotor
  • the thrust bearing is sleeved on the outer shaft of the right end and on the outer end side of the right end radial bearing.
  • the small micro motor further includes a left radial bearing sleeve and a left bearing chamber end cover, and the left bearing chamber end cover is connected to the left radial bearing sleeve, and the left radial bearing sleeve is The motor housings are connected.
  • the small micro motor further includes a right radial bearing sleeve, a right bearing chamber end cover, a cooling fan and a fan housing, and the fan housing is connected to the right bearing chamber end cover, the right The bearing chamber end cover is connected to the right radial bearing sleeve, the right radial bearing sleeve is connected to the motor housing, and the cooling fan is sleeved on the inner shaft between the right bearing chamber end cover and the fan housing on.
  • a plurality of open slots are defined in a peripheral side of the inner wall of the motor housing, and a plurality of vent holes are formed in an end surface of the motor housing, and the open slots communicate with the vent holes to facilitate gas introduction and derivation.
  • the open slots communicate with the vent holes to facilitate gas introduction and derivation.
  • a plurality of exhaust holes are formed on a circumferential side of the left bearing chamber end cover, and a plurality of air inlet holes are formed in an outer end surface of the fan housing.
  • the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a regular pattern of grooves.
  • the groove pattern of one end surface of the bearing inner sleeve is mirror-symmetrical with the groove pattern of the other end surface, and the axial contour line of the groove pattern of the outer circumferential surface and the groove pattern of the both end surfaces
  • the radial contour lines form a one-to-one correspondence and intersect each other.
  • the axial high line in the groove pattern of the outer circumferential surface of the bearing inner sleeve corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the axial median line in the groove pattern of the outer circumferential surface corresponds to the radial median line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the axial lower line in the middle corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member that cooperates with the outer circumferential surface of the bearing inner sleeve.
  • the fitting gap between the foil-type elastic member and the bearing inner sleeve is 0.003 to 0.008 mm.
  • both ends of the foil-type elastic member are fixed to the inner circumferential wall of the bearing housing.
  • the foil-type elastic members are plural and evenly distributed along the inner circumferential wall of the bearing outer casing.
  • a card groove for fixing the foil-type elastic member is provided on the inner circumferential wall of the bearing housing.
  • a stop ring is provided at both ends of the bearing housing.
  • both end faces of the middle plate are provided with a regular pattern of groove patterns, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face.
  • the outer circumferential surface of the intermediate disk is also provided with a groove pattern, and the shape of the groove pattern of the outer circumferential surface is the same as the shape of the groove pattern on both end faces, and the groove pattern of the outer circumferential surface
  • the axial contour line forms a one-to-one correspondence with the radial contour lines of the groove patterns on both end faces and intersects each other.
  • the axial high line in the groove pattern of the outer circumferential surface of the middle disk corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the outer circumference The axial median line in the groove pattern corresponds to the radial median line in the groove pattern on both end faces, and crosses each other before the end face is chamfered;
  • the axis in the groove pattern of the outer circumferential surface The low-order line corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member that is fitted to the intermediate disk.
  • the fitting gap between the foil-type elastic member and the middle plate is 0.003 to 0.008 mm.
  • At least one end of the foil-type elastic member is fixed to an inner end surface of the corresponding side disk.
  • the foil-type elastic members on each of the side plates are plural and evenly distributed along the inner end faces of the side plates.
  • the foil-type elastic member fixed to one side disk is mirror-symmetrical to the foil-shaped elastic member fixed to the other side disk.
  • a card slot for fixing the foil-type elastic member is provided on the inner end surface of the side disk.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the curved convex top end of the wave foil is attached to the flat foil.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the inter-wave arch transition bottom edge of the wave foil is in contact with the flat foil.
  • the foil-type elastic member is composed of two flat foils.
  • the above-mentioned groove patterns are all impeller shapes.
  • the above-mentioned foil-type elastic member is preferably subjected to surface heat treatment.
  • the rotor comprises a rotor base, a magnetic steel and a magnetic steel protective sleeve, the rotor base is sleeved on the inner shaft, the magnetic steel sleeve is disposed at a central portion of the rotor base, and the magnetic steel protective sleeve is sleeved On the magnetic steel.
  • the stator comprises a core and a winding, the core being fixed to a motor housing located above the rotor On the inner wall, the winding is disposed on the iron core.
  • the core comprises a stator lamination formed by stacking a plurality of punching sheets and an end platen fixed to both sides of the stator lamination.
  • the punching piece has a circular shape, and a plurality of cup-shaped perforations are arranged at intervals in the annular portion, the mouth of the perforated cup is closed, and the bottom of the cup is open.
  • the winding is a three-phase star connection
  • the center line is not led out, and only three ends of A, B, and C are drawn.
  • each phase winding is 2 coils, and each coil is continuously wound from an enamelled copper wire.
  • the present invention has the following beneficial effects:
  • the motor provided by the invention is a lubricant of a bearing, so that it has not only pollution-free, low friction loss, long service time, wide application range, energy saving and environmental protection, but also has the advantages of good heat dissipation. It can guarantee stable operation for a long time; in particular, because the air bearing of the structure can achieve ultra-high-speed stable operation under air-floating state (tested, the limit speed can reach 100,000-450,000 rpm), so the same power requirement
  • the invention can significantly reduce the volume of the motor to achieve miniaturization, has the advantages of small occupied space and convenient use, and has important value for promoting the development of miniaturization high-tech, and has significant progress compared with the prior art.
  • Embodiment 1 is a schematic cross-sectional structural view of a small micro motor provided in Embodiment 1;
  • Embodiment 2 is a partially-divided left-view three-dimensional structure diagram of the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 3 is a partial enlarged view of A in Figure 2;
  • Embodiment 4 is a right side perspective view showing the partial division of the hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 5 is a partial enlarged view of B in Figure 4.
  • FIG. 6 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 7 is a partial enlarged view of C in Figure 6;
  • Figure 8 is a partial enlarged view of D in Figure 7;
  • Embodiment 9 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 1;
  • Figure 10a is a left side view of the center disk described in Embodiment 1;
  • Figure 10b is a right side view of the center disk described in Embodiment 1;
  • Figure 11a is a right side view of the left side disk to which the foil-type elastic member is fixed as described in Embodiment 1;
  • Figure 11b is a left side view of the right side disc to which the foil-type elastic member is fixed as described in Embodiment 1;
  • FIG. 12 is a schematic cross-sectional structural view of a foil-type elastic member provided in Embodiment 1;
  • Figure 13 is a perspective view showing the structure of the foil-type elastic member provided in Embodiment 1;
  • Figure 14 is a cross-sectional structural view showing a hybrid dynamic pressure gas radial bearing provided in Embodiment 2;
  • Figure 15 is a schematic structural view of the wave foil of Figure 14;
  • Figure 16 is a cross-sectional structural view showing a hybrid dynamic pressure gas radial bearing provided in Embodiment 3;
  • Figure 17a is a left side perspective structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 4.
  • Figure 17b is a right perspective view showing the hybrid dynamic pressure gas thrust bearing of the fourth embodiment
  • Figure 19 is a left perspective view showing the middle plate of the fourth embodiment.
  • Figure 20 is a partial enlarged view of E in Figure 19;
  • Figure 21 is a right perspective view showing the center disk of the fourth embodiment
  • Figure 22 is a partial enlarged view of F in Figure 21;
  • FIG. 23 is a schematic structural view of a rotor provided in Embodiment 5.
  • Figure 24 is a schematic view showing the structure of a core provided in Embodiment 6;
  • Figure 25 is a schematic structural view of a punching piece according to Embodiment 6;
  • Figure 26 is a schematic view showing the structure of a winding provided in Embodiment 6;
  • Figure 27 is a perspective view showing the structure of the motor housing provided in Embodiment 7;
  • Figure 28 is a partial enlarged view of G in Figure 27;
  • Embodiment 29 is a right perspective view showing the structure of a small micro motor provided in Embodiment 7.
  • a small micro motor provided by the embodiment includes a motor housing 1 , a rotor 2 , a stator 3 , two radial bearings 4 , a thrust bearing 5 , an inner shaft 6 and an outer shaft . 7;
  • the radial bearing 4 is a hybrid dynamic pressure gas radial bearing, comprising a bearing shell 41, a bearing inner sleeve 42 and a foil-type elastic member 45 disposed between the bearing shell 41 and the inner sleeve 42;
  • the bearing 5 is a hybrid dynamic pressure gas thrust bearing, and includes two side discs 51 and a middle disc 52 interposed between the two side discs, and a foil type is disposed between each of the side discs 51 and the intermediate disc 52.
  • the elastic member 53; the rotor 2 is sleeved in the middle of the inner shaft 6, and the two radial bearings 4 are respectively sleeved on the outer shaft 7 at the left and right ends of the rotor 2, and the thrust bearing 5 is sleeved at the right end.
  • the outer shaft 7 is located on the outer end side of the right end radial bearing 4b.
  • the small micro motor further includes a left radial bearing sleeve 8a, a left bearing chamber end cover 9a, a right radial bearing sleeve 8b, a right bearing chamber end cover 9b, a cooling fan 10 and a fan housing 101, and the left bearing chamber
  • the end cap 9a is connected to the left radial bearing sleeve 8a
  • the left radial bearing sleeve 8a is connected to the motor housing 1
  • the fan housing 101 is connected to the right bearing chamber end cover 9b
  • the chamber end cover 9b is connected to the right radial bearing sleeve 8b
  • the right radial bearing sleeve 8b is connected to the motor housing 1
  • the cooling fan 10 is sleeved on the right bearing chamber end cover 9b and the fan housing.
  • the outer circumferential surface and the left and right end surfaces of the bearing inner sleeve 42 each have a regular shape of the groove pattern 43 (431, 432 and 433 in the figure, the groove in this embodiment).
  • the pattern is an impeller shape), and the groove pattern 432 of the left end surface is mirror-symmetrical with the groove pattern 433 of the right end surface.
  • the axial contour line of the groove pattern 431 located on the outer circumferential surface of the bearing inner sleeve 42 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end surfaces, and is mutually overlapped, that is, external
  • the axially high bit line 4311 in the circumferential groove pattern 431 corresponds to the radial high bit lines (4321 and 4331) in the groove patterns (432 and 433) of the left and right end faces, and is chamfered before the end face is chamfered Interacting with each other;
  • the axial center line 4312 in the groove pattern 431 of the outer circumferential surface corresponds to the radial center line (4322 and 4332) in the groove patterns (432 and 433) of the left and right end faces, and Interlacing each other before the circumferential chamfer of the end face;
  • the groove pattern 432 of the left end surface and the groove pattern 433 of the right end surface are mirror-symmetrical and outer circumference.
  • the axial contour line of the groove pattern 431 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end faces, and mutually intersects each other, thereby ensuring the groove pattern of the impeller shape at both end faces.
  • the pressurized gas generated by (432 and 433) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 431 of the outer circumferential surface, so as to form a gas film required for supporting the high-speed running bearing more strongly, and
  • the gas film is used as a lubricant for the dynamic pressure gas radial bearing, and thus it is advantageous to achieve high-speed stable operation of the hybrid dynamic pressure gas radial bearing 4 in an air floating state.
  • the retaining ring 44 when the retaining ring 44 is respectively disposed at both ends of the bearing outer casing 41, the self-sealing action between the end faces of the bearing inner sleeve 42 and the retaining ring 44 can be achieved under the driving of the high-speed rotating shaft, so that the trough pattern is continuous.
  • the generated dynamic pressure gas can be well sealed and stored in the entire matching clearance of the bearing, which fully ensures the lubrication of the high-speed running dynamic pressure gas radial bearing.
  • the foil-shaped elastic member 45 is disposed between the bearing sleeve 41 and the inner sleeve 42 and is composed of a wave foil 451 and a flat foil 452.
  • the curved protrusion 4511 of the wave foil 451 The top end is attached to the flat foil 452, and the inter-wave transition bottom edge 4512 of the wave foil 451 is fitted to the inner circumferential wall of the bearing outer casing 41.
  • a card slot 411 for fixing both ends of the foil-type elastic member 45 is provided on the inner circumferential wall of the bearing housing 41, and the card slot 411 corresponds to the number of the foil-type elastic members 45, and is evenly distributed along the inner circumferential wall of the bearing housing 41. distributed.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member 45 (i.e., the inner surface of the flat foil 452 constituting the foil-shaped elastic member 45) which is engaged with the outer circumferential surface of the bearing inner sleeve 42. 453, to further reduce the wear of the foil-type elastic member 45 by the bearing inner sleeve 42 at a high speed, and prolong the service life of the bearing.
  • the fitting clearance of the foil-type elastic member 45 and the bearing inner sleeve 42 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the high-speed operation of the bearing.
  • a hybrid dynamic pressure gas thrust bearing 5 provided by the embodiment includes: two side discs 51 , and a middle disc 52 is interposed between the two side discs 51 on each side.
  • a foil-shaped elastic member 53 is disposed between the disk 51 and the intermediate plate 52; the left end surface of the intermediate plate 52 is provided with a groove pattern 521 having a regular shape, and the right end surface is provided with a groove pattern 522 having a regular shape.
  • the groove pattern 521 of the left end surface of the middle plate 52 and the groove pattern 522 of the right end surface form mirror symmetry, and the radial contour line and the right end surface of the groove pattern 521 of the left end surface are formed.
  • the radial contours of the troughs 522 form a one-to-one correspondence.
  • the troughs 521 and 522 have the same shape, and are in the shape of an impeller in this embodiment.
  • the foil-shaped elastic member 53 is fixed on the inner end surface of the corresponding side disk 51 (for example).
  • the piece 53a is mirror-symmetrical with the foil-shaped elastic member 53b fixed to the right side disk 512.
  • the foil-type elastic member 53 By providing the foil-type elastic member 53 between the side disk 51 and the intermediate disk 52, regular groove patterns (521 and 522) are provided on the left and right end faces of the middle plate 52, and the groove pattern 521 of the left end face is The groove pattern 522 of the right end surface is mirror-symmetrical, thereby obtaining a rigid characteristic of a high limit rotation speed of the groove type dynamic pressure gas thrust bearing, and a high impact resistance and load of the foil type dynamic pressure gas thrust bearing.
  • the hybrid dynamic pressure gas thrust bearing of the flexible nature of the capability because the foil-shaped elastic member 53 forms a wedge-shaped space with the intermediate disk 52, when the disk 52 rotates, the gas is driven by its own viscous action and is compressed to the wedge shape.
  • the axial dynamic pressure can be significantly enhanced, compared with the existing simple foil dynamic pressure gas thrust bearing, which can have a limit rotation speed which is multiplied under the same load; meanwhile, due to the increased foil type
  • the elastic member 53 can also significantly improve the bearing capacity, the impact resistance and the ability to suppress the whirl of the bearing under the elastic action, and can have the same in comparison with the existing simple groove type dynamic pressure gas thrust bearing. Doubling the speed of impact resistance and load capacity.
  • the foil-type elastic members 45/53 described in this embodiment are each composed of a wave foil 451/531 and a flat foil 452/532, and the curved protrusions 4511 of the wave foils 451/531.
  • the top of the /5311 fits the flat foil 452/532.
  • the foil-type elastic member 45 of the present embodiment is composed of a wave foil 451 and a flat foil 452, and the tip end of the curved projection 4511 of the wave foil 451 is fitted to the inner circumferential wall of the bearing outer casing 41.
  • the inter-wave transition bottom edge 4512 of the wave foil 451 is in contact with the flat foil 452.
  • FIG. 15 is a schematic view showing the structure of the wave foil 451.
  • the foil-type elastic member 45 of the present embodiment is composed of two flat foils 452.
  • a hybrid dynamic pressure gas thrust bearing provided by the present embodiment differs from Embodiment 1 only in that:
  • a groove pattern 523 is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces (this embodiment) In the middle of the impeller shape), and the outer circle
  • the axial contour of the circumferential groove pattern 523 forms a one-to-one correspondence with the radial contour lines of the groove patterns (521 and 522) of the left and right end faces;
  • the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line line 5211 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end face is chamfered;
  • the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5212 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end surface is chamfered;
  • the axial low bit line 5233 corresponds to the radially lower bit line 5213 in the groove pattern 521 of the left end face, and overlaps each other before the end face is chamfered (as shown in FIG. 20);
  • the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line 5221 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered;
  • the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5222 in the groove pattern 522 of the right end surface, and is mutually overlapped before the end surface is chamfered;
  • the axially lower bit line 5233 corresponds to the radially lower bit line 5223 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 22).
  • a groove pattern is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces, and When the axial contour line of the groove pattern 523 of the circumferential surface forms a one-to-one correspondence with the radial contour lines of the groove patterns (521 and 522) of the left and right end faces, the groove pattern of both end faces of the inner disk can be obtained.
  • the pressurized gas generated by (521 and 522) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 523 of the outer circumferential surface so as to form a gas film which is stronger for supporting the high speed running bearing, and
  • the gas film is used as a lubricant for the dynamic pressure gas thrust bearing, so that the high-speed stable operation of the hybrid dynamic pressure gas thrust bearing in the air-floating state can be further ensured, and further guarantee for realizing the high limit rotation speed of the motor.
  • a card slot 513 (shown in Fig. 18) for fixing the foil-type elastic member 53 is provided on the inner end surface of the side disk 51.
  • the fitting clearance of the foil-type elastic member 53 and the intermediate disk 52 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the high-speed operation of the bearing.
  • the foil-type elastic member 53 is preferably subjected to surface heat treatment.
  • composition of the foil-type elastic member 53 of the present invention is not limited to that described in the above embodiments, and may be composed of a wave foil and a flat foil, but the transition edge between the wave arches of the wave foil is The flat foil is fitted, or it is composed of two flat foils directly, or other existing structures.
  • the rotor 2 includes a rotor base 21, a magnetic steel 22 and a magnetic steel protective sleeve 23, the rotor base 21 is sleeved on the inner shaft 6, and the magnetic steel 22 is sleeved on the rotor.
  • the magnetic steel protective cover 23 is sleeved on the magnetic steel 22 to better satisfy the ultra-high speed rotation.
  • the stator 3 includes a core 31 and a winding 32 fixed to an inner wall of the motor housing 1 above the rotor 2, the winding 32 being disposed on the core 31;
  • the core 31 includes a stator lamination 312 formed by stacking a plurality of punching sheets 311 and end platens 313 fixed to both sides of the stator laminations 312.
  • the punching piece 311 has a circular ring shape, and a plurality of cup-shaped through holes 3111 are formed at intervals in the annular portion.
  • the cup mouth portion 3111a of the through hole 3111 is closed, and the bottom of the cup foot 3111b is open.
  • the winding 32 is connected by a three-phase star type, the center line is not led out, and only three ends of A, B, and C are taken out; each phase winding is two coils, and each coil is made of an enamelled copper wire. Continuously wound.
  • a plurality of open slots 11 are defined in the inner wall of the motor housing 1, and a plurality of vent holes 12 are formed in the end surface of the motor housing 1, and the open slots 11 and the vent holes 12 are provided. Connected to facilitate the introduction and export of gas, on the one hand to achieve rapid heat dissipation and exhaust, on the other hand to achieve air supply to the bearing chamber.
  • a plurality of exhaust holes 9a1 are formed on the circumferential side of the left bearing chamber end cover 9a, and a plurality of air inlet holes 102 (shown in FIG. 29) are opened on the outer end surface of the fan casing 101 to further achieve rapid heat dissipation.
  • the bearing provided by the invention can reach the limit rotation speed of 100,000-450,000 rpm in the air floating state, so the invention can significantly reduce the volume of the motor to achieve miniaturization for the same power requirement, and promote the miniaturization of high-tech. Development is of great value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Support Of The Bearing (AREA)
  • Motor Or Generator Frames (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

一种小微型电机,其包括电机壳体(1)、转子(2)、定子(3)、2个径向轴承(4)、1个止推轴承(5)及內轴(6)和外轴(7),所述径向轴承为混合式动压气体径向轴承,所述止推轴承为混合式动压气体止推轴承,所述转子套设在內轴的中部,2个径向轴承分别套设在位于转子左、右端的外轴上,所述止推轴承套设在右端的外轴上、并位于右端径向轴承(4b)的外端侧。这种结构可实现在气浮状态下的超高速稳定运转,针对相同功率要求,可使电机的体积显著减小实现微型化。

Description

一种小微型电机 技术领域
本发明是涉及一种小微型电机,属于高精密机械技术领域。
背景技术
高速电机通常是指转速超过10000r/min的电机,它们具有以下优点:一是由于转速高,所以电机功率密度高,而体积远小于功率普通的电机,可以有效的节约材料;二是可与原动机相连,取消了传统的减速机构,传动效率高,噪音小;三是由于高速电机转动惯量小,所以动态响应快。但随着对高速电机功率等级和转速要求的不断提高,普通的机械球轴承已经不能满足大功率高速电机的使用要求。而气浮轴承以其摩擦损耗小、高温稳定性好、可靠性高、振动小、不需要润滑油、不受转轴尺寸限制等一系列优点,已经逐渐成为工业界和学术界关注的热点,已应用于航空、航天领域。
目前现有的高速电机所用气浮轴承主要有:可倾瓦式、槽式和箔片式三种,虽然可倾瓦式气浮轴承具有自调性能,能在更小的气膜间隙范围内安全工作,对热变形、弹性变形等不敏感,且加工精度易得到保证等优点,但其轴瓦结构比较复杂,安装工艺复杂,从不适合工业化应用;虽然箔片式动压气体径向轴承具有弹性支承,可使轴承相应获得一定的承载能力和缓和冲击振动的能力,但由于箔片轴承一般采用的是金属箔片,不仅材料制造技术和加工工艺技术上还存在一些难题,而且轴承的阻尼值不能很大提高,导致轴承的刚性不够,轴承的临界转速较低,在高速运转时容易失稳甚至卡死;虽然槽式动压气体径向轴承具有较好的稳定性,在高速下,其静态承载能力较其它形式的轴承大,但目前的槽式动压气体径向轴承具有高刚性,抗冲击能力不够好及载荷能力不够大,不能实现较大载荷下的高速运转。因目前的气浮轴承技术还存在上述种种问题,以致现有的高速电机还存在如下问题:1、转速仍然有限,目前只能实现最高5万转的转速;2、不能长期运行:因高速运转产生的热量不能有效导出,以致连续工作时间不能很长;3、高速运转的稳定性不佳,以致实际运行效率达不到理想目标;4、结构仍然较复杂,体积较大,不能满足当今微型化发展要求。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种可稳定运行的小微型电机。
为实现上述目的,本发明采用的技术方案如下:
一种小微型电机,包括电机壳体、转子、定子、2个径向轴承、1个止推轴承及內轴和外轴;其特征在于:所述径向轴承为混合式动压气体径向轴承,包括轴承外套、轴承内套及设置在轴承外套与内套之间的箔型弹性件;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述转子套设在內轴的中部,2个径向轴承分别套设在位于转子左、右端的外轴上,所述止推轴承套设在右端的外轴上、并位于右端径向轴承的外端侧。
作为一种实施方案,所述的小微型电机还包括左径向轴承套和左轴承室端盖,所述左轴承室端盖与左径向轴承套相连接,所述左径向轴承套与电机壳体相连接。
作为一种实施方案,所述的小微型电机还包括右径向轴承套、右轴承室端盖、散热风扇和风扇壳体,所述风扇壳体与右轴承室端盖相连接,所述右轴承室端盖与右径向轴承套相连接,所述右径向轴承套与电机壳体相连接,所述散热风扇套设在位于右轴承室端盖与风扇壳体之间的內轴上。
作为优选方案,在电机壳体的内壁周侧开设有若干开口槽,在电机壳体的端面开设有若干通气孔,所述开口槽与通气孔相连通,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
作为优选方案,在左轴承室端盖的周侧开设有若干排气孔,在风扇壳体的外端面上开设有若干进气孔。
作为优选方案,所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
作为进一步优选方案,所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与轴承内套的外圆周面相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述的箔型弹性件与轴承内套的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述的箔型弹性件的两端均固定在轴承外套的内圆周壁上。
作为进一步优选方案,所述的箔型弹性件为多个,且沿轴承外套的内圆周壁均匀分布。
作为进一步优选方案,在轴承外套的内圆周壁设有用于固定箔型弹性件的卡槽。
作为进一步优选方案,在轴承外套的两端设有止环。
作为优选方案,所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
作为优选方案,在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与中盘相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述箔型弹性件与中盘的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述箔型弹性件的至少一端固定在对应侧盘的内端面上。
作为进一步优选方案,每个侧盘上的箔型弹性件为多个,且沿侧盘的内端面均匀分布。
作为进一步优选方案,固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
作为进一步优选方案,在侧盘的内端面设有用于固定箔型弹性件的卡槽。
作为一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
作为另一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
作为又一种实施方案,所述的箔型弹性件由两个平箔组成。
上述的槽式花纹均为叶轮形状。
上述的箔型弹性件优选经过表面热处理。
作为优选方案,所述转子包括转子底座、磁钢和磁钢保护套,所述转子底座套设在內轴上,所述磁钢套设在转子底座的中心部,所述磁钢保护套套设在磁钢上。
作为优选方案,所述定子包括铁芯和绕组,所述铁芯固定在位于转子上方的电机壳体 的内壁上,所述绕组设置在铁芯上。
作为优选方案,所述铁芯包括由若干冲片上下叠置形成的定子叠片和固定在定子叠片两侧的端压板。
作为进一步优选方案,所述冲片呈圆环形,在环形部间隔设有多个杯状穿孔,所述穿孔的杯口部封闭,杯脚的底部开口。
作为优选方案,所述绕组为三相星型连接,中心线不引出,只引出A、B、C三个端头。
作为进一步优选方案,每相绕组为2个线圈,每个线圈由漆包铜线连续绕制而成。
与现有技术相比,本发明具有如下有益效果:
因本发明所提供的电机,是以气体作为轴承的润滑剂,因此不仅具有无污染、摩擦损失低、使用时间长、适用范围广、节能环保等诸多优点,而且采用所述结构,散热效果好,可保证长时间稳定运行;尤其是,因所述结构的空气轴承能实现在气浮状态下的超高速稳定运转(经测试,可达100,000~450,000rpm的极限转速),因此针对相同功率要求,本发明可使电机的体积显著减小实现微型化,具有占用空间小、使用便捷等优点,对促进微型化高新技术的发展具有重要价值,相对于现有技术具有显著性进步。
附图说明
图1是实施例1提供的一种小微型电机的剖面结构示意图;
图2是实施例1提供的混合式动压气体径向轴承的局部分割的左视立体结构示意图;
图3是图2中的A局部放大图;
图4是实施例1提供的混合式动压气体径向轴承的局部分割的右视立体结构示意图;
图5是图4中的B局部放大图;
图6是实施例1提供的混合式动压气体径向轴承的剖面结构示意图;
图7是图6中的C局部放大图;
图8是图7中的D局部放大图;
图9是实施例1提供的混合式动压气体止推轴承的剖面结构示意图;
图10a是实施例1中所述中盘的左视图;
图10b是实施例1中所述中盘的右视图;
图11a是实施例1中所述的固定有箔型弹性件的左侧盘的右视图;
图11b是实施例1中所述的固定有箔型弹性件的右侧盘的左视图;
图12是实施例1提供的箔型弹性件的截面结构示意图;
图13是实施例1提供的箔型弹性件的立体结构示意图;
图14是实施例2提供的一种混合式动压气体径向轴承的剖面结构示意图;
图15是图14中波箔的结构示意图;
图16是实施例3提供的一种混合式动压气体径向轴承的剖面结构示意图;
图17a是实施例4提供的一种混合式动压气体止推轴承的左视立体结构示意图;
图17b是实施例4提供的混合式动压气体止推轴承的右视立体结构示意图;
图18是实施例4提供的混合式动压气体止推轴承的局部分割立体结构示意图;
图19是实施例4中所述中盘的左视立体结构示意图;
图20是图19中的E局部放大图;
图21是实施例4中所述中盘的右视立体结构示意图;
图22是图21中的F局部放大图;
图23是实施例5所提供的转子结构示意图;
图24是实施例6所提供的铁芯结构示意图;
图25是实施例6所述冲片的结构示意图;
图26是实施例6所提供的绕组结构示意图;
图27是实施例7所提供的电机壳体的立体结构示意图;
图28是图27中的G局部放大图;
图29是实施例7提供的一种小微型电机的右视立体结构示意图。
图中标号示意如下:
1、电机壳体;11、开口槽;12、通气孔;2、转子;21、转子底座;22、磁钢;23、磁钢保护套;3、定子;31、铁芯;311、冲片;3111、杯状穿孔;3111a、杯口部;3111b、杯脚;312、定子叠片;313、端压板;32、绕组;4、混合式动压气体径向轴承;4a、左径向轴承;4b、右径向轴承;41、轴承外套;411、卡槽;42、轴承内套;43、槽式花纹;431、外圆周面的槽式花纹;4311、轴向高位线;4312、轴向中位线;4313、轴向低位线;432、左端面的槽式花纹;4321、径向高位线;4322、径向中位线;4323、径向低位线;433、右端面的槽式花纹;4331、径向高位线;4332、径向中位线;4333、径向低位线;44、止环;45、箔型弹性件;451、波箔;4511、弧形凸起;4512、波拱间过渡底边;452、平箔;453、耐磨涂层;5、混合式动压气体止推轴承;51、侧盘;511、左侧盘;512、右侧盘;513、卡槽;52、中盘;521、左端面的槽式花纹;5211、径向高位线;5212、径向中位线;5213、径向低位线;522、右端面的槽式花纹;5221、径向高位线;5222、径向中位线;5223、径 向低位线;523、外圆周面的槽式花纹;5231、轴向高位线;5232、轴向中位线;5233、轴向低位线;53、箔型弹性件;53a、固定在左侧盘上的箔型弹性件;53b、固定在右侧盘上的箔型弹性件;531、波箔;5311、弧形凸起;5312、波拱间过渡底边;532、平箔;6、內轴;7、外轴;8a、左径向轴承套;8b、右径向轴承套;9a、左轴承室端盖;9a1、排气孔;9b、右轴承室端盖;10、散热风扇;101、风扇壳体;102、进气孔。
具体实施方式
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
如图1所示:本实施例提供的一种小微型电机,包括电机壳体1、转子2、定子3、2个径向轴承4、1个止推轴承5及內轴6和外轴7;所述径向轴承4为混合式动压气体径向轴承,包括轴承外套41、轴承内套42及设置在轴承外套41与内套42之间的箔型弹性件45;所述止推轴承5为混合式动压气体止推轴承,包括两个侧盘51以及夹设在两个侧盘之间的中盘52,在每个侧盘51与中盘52之间均设有箔型弹性件53;所述转子2套设在內轴6的中部,2个径向轴承4分别套设在位于转子2左、右端的外轴7上,所述止推轴承5套设在右端的外轴7上、并位于右端径向轴承4b的外端侧。
所述的小微型电机还包括左径向轴承套8a、左轴承室端盖9a、右径向轴承套8b、右轴承室端盖9b、散热风扇10及风扇壳体101,所述左轴承室端盖9a与左径向轴承套8a相连接,所述左径向轴承套8a与电机壳体1相连接,所述风扇壳体101与右轴承室端盖9b相连接,所述右轴承室端盖9b与右径向轴承套8b相连接,所述右径向轴承套8b与电机壳体1相连接,所述散热风扇10套设在位于右轴承室端盖9b与风扇壳体101之间的內轴6上。
结合图2至图5所示:所述轴承内套42的外圆周面和左、右端面均具有规则形状的槽式花纹43(如图中的431、432和433,本实施例中的槽式花纹均为叶轮形状),且左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称。位于轴承内套42的外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,即:外圆周面的槽式花纹431中的轴向高位线4311与左、右端面的槽式花纹(432和433)中的径向高位线(4321和4331)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向中位线4312与左、右端面的槽式花纹(432和433)中的径向中位线(4322和4332)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向低位线4313与左、右端面的槽式花纹(432和433)中的径向低位线 (4323和4333)均相对应、并在端面圆周倒角前相互交接。
通过使轴承内套42的外圆周面和两端面均具有规则形状的槽式花纹(431、432和433),左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称及外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,可保证两端面的叶轮形状的槽式花纹(432和433)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹431形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体径向轴承的润滑剂,因此有利于实现所述混合式动压气体径向轴承4在气浮状态下的高速稳定运转。
另外,当在轴承外套41的两端分别设置止环44时,可实现在高速回转轴的带动下,使轴承内套42的两端面与止环44间产生自密封作用,使槽式花纹连续产生的动压气体能完好地密闭保存在轴承的整个配合间隙中,充分保证高速运转的动压气体径向轴承的润滑需要。
结合图6和图7所示:所述的箔型弹性件45设置在轴承外套41与内套42之间,是采用波箔451和平箔452组成,所述波箔451的弧形凸起4511的顶端与平箔452相贴合,所述波箔451的波拱间过渡底边4512与轴承外套41的内圆周壁相贴合。在轴承外套41的内圆周壁设有用于固定箔型弹性件45两端的卡槽411,所述卡槽411与箔型弹性件45的数量相对应,且均沿轴承外套41的内圆周壁均匀分布。
如图8所示:在与轴承内套42的外圆周面相配合的箔型弹性件45的配合面(即:构成箔型弹性件45的平箔452的内表面)上设有耐磨涂层453,以进一步降低高速运转的轴承内套42对箔型弹性件45的磨损,延长轴承的使用寿命。
所述的箔型弹性件45与轴承内套42的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
如图9所示:本实施例提供的一种混合式动压气体止推轴承5,包括:两个侧盘51,在两个侧盘51之间夹设有中盘52,在每个侧盘51与中盘52之间设有箔型弹性件53;所述中盘52的左端面设有规则形状的槽式花纹521,右端面设有规则形状的槽式花纹522。
结合图10a和图10b可见:所述中盘52的左端面的槽式花纹521与右端面的槽式花纹522之间形成镜像对称,左端面的槽式花纹521的径向轮廓线与右端面的槽式花纹522的径向轮廓线形成一一对应。
所述的槽式花纹521与522的形状相同,本实施例中均为叶轮形状。
进一步结合图11a和图11b可见:所述箔型弹性件53固定在对应侧盘51的内端面上(例 如图11a所示的固定有箔型弹性件53a的左侧盘511和图11b所示的固定有箔型弹性件53b的右侧盘512),且固定在左侧盘511上的箔型弹性件53a与固定在右侧盘512上的箔型弹性件53b形成镜像对称。在每个侧盘上的箔型弹性件可为多个(图中示出的是4个),且沿侧盘的内端面均匀分布。
通过在侧盘51与中盘52之间设置箔型弹性件53,在中盘52的左、右端面设置规则形状的槽式花纹(521和522),且使左端面的槽式花纹521与右端面的槽式花纹522形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;因为箔型弹性件53与中盘52间形成了楔形空间,当中盘52转动时,气体因其自身的粘性作用被带动并被压缩到楔形空间内,从而可使轴向动压力得到显著增强,相对于现有的单纯箔片式动压气体止推轴承,可具有在相同载荷下成倍增加的极限转速;同时,由于增加了箔型弹性件53,在其弹性作用下,还可使轴承的载荷能力、抗冲击能力和抑制轴涡动的能力显著提高,相对于现有的单纯槽式动压气体止推轴承,可具有在相同转速下成倍增加的抗冲击能力和载荷能力。
为进一步降低高速运转的中盘52对箔型弹性件53的磨损,以延长轴承的使用寿命,最好在与中盘52相配合的箔型弹性件53的配合面上设置耐磨涂层(图中未示出)。
如图12和图13所示:本实施例中所述的箔型弹性件45/53均由波箔451/531和平箔452/532组成,所述波箔451/531的弧形凸起4511/5311的顶端与平箔452/532相贴合。
实施例2
如图14所示,本实施例所述的箔型弹性件45由波箔451和平箔452组成,所述波箔451的弧形凸起4511的顶端与轴承外套41的内圆周壁相贴合,所述波箔451的波拱间过渡底边4512与平箔452相贴合。
图15所示为所述波箔451的结构示意图。
实施例3
如图16所示,本实施例所述的箔型弹性件45由两个平箔452组成。
实施例4
结合图17a、17b、18至22所示可见,本实施例提供的一种混合式动压气体止推轴承与实施例1的区别仅在于:
在所述中盘52的外圆周面也设有槽式花纹523,且外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同(本实施例中均为叶轮形状),以及外圆 周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接;即:
外圆周面的槽式花纹523中的轴向高位线5231与左端面的槽式花纹521中的径向高位线5211均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与左端面的槽式花纹521中的径向中位线5212均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与左端面的槽式花纹521中的径向低位线5213均相对应、并在端面圆周倒角前相互交接(如图20所示);
外圆周面的槽式花纹523中的轴向高位线5231与右端面的槽式花纹522中的径向高位线5221均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与右端面的槽式花纹522中的径向中位线5222均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与右端面的槽式花纹522中的径向低位线5223均相对应、并在端面圆周倒角前相互交接(如图22所示)。
当在所述中盘52的外圆周面也设有槽式花纹,且使外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同,以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接时,可使内盘两端面的槽式花纹(521和522)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹523形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体止推轴承的润滑剂,因而可进一步确保所述的混合式动压气体止推轴承在气浮状态下的高速稳定运转,为实现电机的高极限转速提供进一步保证。
在侧盘51的内端面上设有用于固定箔型弹性件53的卡槽513(如图18所示)。
所述的箔型弹性件53与中盘52的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
为了更好地满足高速运转的性能要求,所述的箔型弹性件53优选经过表面热处理。
另外需要说明的是:本发明所述的箔型弹性件53的组成结构不限于上述实施例中所述,还可以采用波箔和平箔组成,但所述波箔的波拱间过渡底边与平箔相贴合,或者,直接采用两个平箔组成,或采用其它的现有结构。
实施例5
结合图1和图23所示:所述转子2包括转子底座21、磁钢22和磁钢保护套23,所述转子底座21套设在內轴6上,所述磁钢22套设在转子底座21的中心部,所述磁钢保护套23套设在磁钢22上,以更好满足超高速转动。
实施例6
结合图1和图24所示:所述定子3包括铁芯31和绕组32,所述铁芯31固定在位于转子2上方的电机壳体1的内壁上,所述绕组32设置在铁芯31上;所述铁芯31包括由若干冲片311上下叠置形成的定子叠片312和固定在定子叠片312两侧的端压板313。
如图25所示:所述冲片311呈圆环形,在环形部间隔设有多个杯状穿孔3111,所述穿孔3111的杯口部3111a封闭,杯脚3111b的底部开口。
如图26所示:所述绕组32采用三相星型连接,中心线不引出,只引出A、B、C三个端头;每相绕组为2个线圈,每个线圈由漆包铜线连续绕制而成。
实施例7
结合图27和图28所示:在电机壳体1的内壁周侧开设有若干开口槽11,在电机壳体1的端面开设有若干通气孔12,所述开口槽11与通气孔12相连通,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
另外,在左轴承室端盖9a的周侧开设有若干排气孔9a1,在风扇壳体101的外端面上开设有若干进气孔102(如图29所示),以进一步实现快速散热。
经测试,本发明提供的轴承在气浮状态下能达到100,000~450,000rpm的极限转速,因此针对相同功率要求,本发明可使电机的体积显著减小实现微型化,对促进微型化高新技术的发展具有重要价值。
最后有必要在此指出的是:以上内容只用于对本发明所述技术方案做进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (20)

  1. 一种小微型电机,包括电机壳体、转子、定子、2个径向轴承、1个止推轴承及內轴和外轴;其特征在于:所述径向轴承为混合式动压气体径向轴承,包括轴承外套、轴承内套及设置在轴承外套与内套之间的箔型弹性件;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述转子套设在內轴的中部,2个径向轴承分别套设在位于转子左、右端的外轴上,所述止推轴承套设在右端的外轴上、并位于右端径向轴承的外端侧。
  2. 根据权利要求1所述的小微型电机,其特征在于:所述的小微型电机还包括左径向轴承套和左轴承室端盖,所述左轴承室端盖与左径向轴承套相连接,所述左径向轴承套与电机壳体相连接。
  3. 根据权利要求1或2所述的小微型电机,其特征在于:所述的小微型电机还包括右径向轴承套、右轴承室端盖、散热风扇和风扇壳体,所述风扇壳体与右轴承室端盖相连接,所述右轴承室端盖与右径向轴承套相连接,所述右径向轴承套与电机壳体相连接,所述散热风扇套设在位于右轴承室端盖与风扇壳体之间的內轴上。
  4. 根据权利要求3所述的小微型电机,其特征在于:在左轴承室端盖的周侧开设有若干排气孔,在风扇壳体的外端面上开设有若干进气孔。
  5. 根据权利要求1所述的小微型电机,其特征在于:在电机壳体的内壁周侧开设有若干开口槽,在电机壳体的端面开设有若干通气孔,所述开口槽与通气孔相连通。
  6. 根据权利要求1所述的小微型电机,其特征在于:所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
  7. 根据权利要求6所述的小微型电机,其特征在于:所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  8. 根据权利要求7所述的小微型电机,其特征在于:所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  9. 根据权利要求1所述的小微型电机,其特征在于:所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
  10. 根据权利要求9所述的小微型电机,其特征在于:在所述中盘的外圆周面也设有 槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  11. 根据权利要求10所述的小微型电机,其特征在于:中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  12. 根据权利要求1所述的小微型电机,其特征在于:固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
  13. 根据权利要求1或12所述的小微型电机,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
  14. 根据权利要求1或12所述的小微型电机,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
  15. 根据权利要求1或12所述的小微型电机,其特征在于:所述的箔型弹性件由两个平箔组成。
  16. 根据权利要求1所述的小微型电机,其特征在于:所述转子包括转子底座、磁钢和磁钢保护套,所述转子底座套设在內轴上,所述磁钢套设在转子底座的中心部,所述磁钢保护套套设在磁钢上。
  17. 根据权利要求1所述的小微型电机,其特征在于:所述定子包括铁芯和绕组,所述铁芯固定在位于转子上方的电机壳体的内壁上,所述绕组设置在铁芯上。
  18. 根据权利要求17所述的小微型电机,其特征在于:所述铁芯包括由若干冲片上下叠置形成的定子叠片和固定在定子叠片两侧的端压板;所述冲片呈圆环形,在环形部间隔设有多个杯状穿孔,所述穿孔的杯口部封闭,杯脚的底部开口。
  19. 根据权利要求17所述的小微型电机,其特征在于:所述绕组为三相星型连接,中心线不引出,只引出A、B、C三个端头。
  20. 根据权利要求19所述的小微型电机,其特征在于:每相绕组为2个线圈,每个线圈由漆包铜线连续绕制而成。
PCT/CN2016/082703 2015-05-19 2016-05-19 一种小微型电机 WO2016184407A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/079232 2015-05-19
CNPCT/CN2015/079234 2015-05-19
PCT/CN2015/079234 WO2016183788A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体止推轴承
PCT/CN2015/079232 WO2016183786A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体径向轴承
CN201610327792.2 2016-05-18
CN201610327792.2A CN106026491B (zh) 2015-05-19 2016-05-18 一种小微型电机

Publications (1)

Publication Number Publication Date
WO2016184407A1 true WO2016184407A1 (zh) 2016-11-24

Family

ID=56716452

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2016/082710 WO2016184413A1 (zh) 2015-05-19 2016-05-19 一种小微型燃气轮发电机
PCT/CN2016/082706 WO2016184409A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮发电机
PCT/CN2016/082712 WO2016184415A1 (zh) 2015-05-19 2016-05-19 一种小微型涡喷发动机
PCT/CN2016/082708 WO2016184411A1 (zh) 2015-05-19 2016-05-19 一种小微型电动发电涡轮增压装置
PCT/CN2016/082699 WO2016184405A1 (zh) 2015-05-19 2016-05-19 一种小微型鼓风机
PCT/CN2016/082703 WO2016184407A1 (zh) 2015-05-19 2016-05-19 一种小微型电机
PCT/CN2016/082714 WO2016184417A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮增压器

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/CN2016/082710 WO2016184413A1 (zh) 2015-05-19 2016-05-19 一种小微型燃气轮发电机
PCT/CN2016/082706 WO2016184409A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮发电机
PCT/CN2016/082712 WO2016184415A1 (zh) 2015-05-19 2016-05-19 一种小微型涡喷发动机
PCT/CN2016/082708 WO2016184411A1 (zh) 2015-05-19 2016-05-19 一种小微型电动发电涡轮增压装置
PCT/CN2016/082699 WO2016184405A1 (zh) 2015-05-19 2016-05-19 一种小微型鼓风机

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082714 WO2016184417A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮增压器

Country Status (3)

Country Link
CN (14) CN205858960U (zh)
TW (3) TWI699077B (zh)
WO (7) WO2016184413A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205858960U (zh) * 2015-05-19 2017-01-04 罗立峰 一种小微型涡轮增压器
GB201615491D0 (en) 2016-09-13 2016-10-26 Delta Motorsport Ltd Improvements in or relating to gas turbine generators
CN106640986A (zh) * 2017-01-18 2017-05-10 哈尔滨工业大学 用于气体轴承‑转子系统的双推力盘结构
CN106979072B (zh) * 2017-06-01 2019-02-19 北京磐龙天地科技发展股份有限公司 热管发动机
CN107795590B (zh) * 2017-11-21 2024-06-04 珠海格力电器股份有限公司 轴承冷却结构、电机及离心式压缩机
CN108868893B (zh) * 2018-01-12 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
JP7035593B2 (ja) * 2018-02-15 2022-03-15 日本精工株式会社 スピンドル装置
CN108286567B (zh) * 2018-03-06 2023-08-29 河北金士顿科技有限责任公司 一种具有厚顶层箔片结构的止推箔片动压空气轴承
DE102018207114A1 (de) * 2018-05-08 2019-11-14 Robert Bosch Gmbh Lagereinrichtung mit einer strukturierten Welle
CN108644005B (zh) * 2018-05-19 2019-09-03 温州伊诺韦特科技有限公司 一种电动涡轮增压器
DE102018208706A1 (de) * 2018-06-04 2019-12-05 Audi Ag System zum Kühlen einer Elektromaschine
CN112716396B (zh) * 2021-01-09 2021-11-23 苏州简单有为科技有限公司 湿式清洁装置
CN113937926B (zh) * 2021-09-30 2022-10-25 西安交通大学 一种用于微型液泵的动力系统
CN113922556B (zh) * 2021-10-12 2022-09-13 扬州市华天电机有限公司 一种永磁同步电机端盖连接装置
TWI781860B (zh) * 2021-12-28 2022-10-21 財團法人工業技術研究院 渦輪裝置及循環系統
CN114483611B (zh) * 2022-01-21 2024-02-13 扬州大学 一种动压浮环和磁轴承支承燃料电池空压机主轴结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080246281A1 (en) * 2007-02-01 2008-10-09 Agrawal Giridhari L Turboalternator with hydrodynamic bearings
CN102223007A (zh) * 2011-06-24 2011-10-19 罗立峰 高速永磁电动机/发电机
CN104895917A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体止推轴承
CN104895924A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体径向轴承
CN105202027A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体止推轴承
CN105202018A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体径向轴承

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141021A (en) * 1980-04-02 1981-11-04 Toyota Motor Corp Bearing construction for turbo machinery
JPH01290999A (ja) * 1988-05-14 1989-11-22 Daikin Ind Ltd ファン装置
JPH07154010A (ja) * 1993-12-01 1995-06-16 Fanuc Ltd レーザ用ターボブロア
CN2191308Y (zh) * 1994-04-19 1995-03-08 崔援 一种双风叶电风扇
RU2137954C1 (ru) * 1997-04-03 1999-09-20 Московский государственный авиационный институт (технический университет) Лепестковый газодинамический подшипник
US6294842B1 (en) * 1997-12-19 2001-09-25 Alliedsignal Inc. Fog cycle for microturbine power generating system
JP2000130176A (ja) * 1998-10-30 2000-05-09 Isuzu Motors Ltd 発電・電動機を備えたターボチャージャ
US6224263B1 (en) * 1999-01-22 2001-05-01 Alliedsignal Inc. Foil thrust bearing with varying circumferential and radial stiffness
JP2002039096A (ja) * 2000-07-27 2002-02-06 Minebea Co Ltd 送風機
CN2558797Y (zh) * 2002-04-03 2003-07-02 廖英桐 改进的动压轴承
CN1209554C (zh) * 2002-09-23 2005-07-06 北京航空航天大学 微型涡轮喷气发动机
GB0304320D0 (en) * 2003-02-26 2003-04-02 Bladon Jets Ltd Gas turbine engines
CN1283931C (zh) * 2004-03-18 2006-11-08 西安交通大学 高速透平机械弹性支承平箔型止推气体轴承
US7497627B2 (en) * 2004-06-07 2009-03-03 Honeywell International Inc. Thrust bearing
US7174714B2 (en) * 2004-12-13 2007-02-13 Caterpillar Inc Electric turbocompound control system
KR101324226B1 (ko) * 2008-09-22 2013-11-20 삼성테크윈 주식회사 유체 과급 장치
US8618706B2 (en) * 2008-12-04 2013-12-31 Seagate Technology Llc Fluid pumping capillary seal for a fluid dynamic bearing
CN201373019Y (zh) * 2009-01-14 2009-12-30 西安交通大学 一种具有轴向支撑的动压气体止推轴承
CN101463868B (zh) * 2009-01-14 2010-07-21 西安交通大学 一种具有轴向支撑的动压气体止推轴承
JP2011047388A (ja) * 2009-08-28 2011-03-10 Toshiba Home Technology Corp 送風装置
CN201786444U (zh) * 2010-08-05 2011-04-06 郎定川 可控平衡燃烧涡轮增压器
JP2012092969A (ja) * 2010-09-27 2012-05-17 Ntn Corp フォイル軸受
CN102200136B (zh) * 2011-05-25 2012-09-05 北京虎渡能源科技有限公司 一种空气悬浮供气可调高速电机直驱鼓风机
CN102278366A (zh) * 2011-05-27 2011-12-14 罗立峰 自密封动压气体径向陶瓷轴承
CN102242762B (zh) * 2011-05-27 2013-01-23 罗立峰 动压气体径向陶瓷轴承
CN102192237A (zh) * 2011-06-07 2011-09-21 罗立峰 自密封动压气体径向陶瓷轴承
CN202091349U (zh) * 2011-06-15 2011-12-28 罗立峰 动压气体止推陶瓷轴承
CN102261374B (zh) * 2011-06-15 2014-04-09 罗立峰 动压气体止推陶瓷轴承
KR102077148B1 (ko) * 2011-08-24 2020-02-14 보르그워너 인코퍼레이티드 베어링 장치
KR20130115570A (ko) * 2012-04-12 2013-10-22 현대자동차주식회사 엔진의 과급장치
EP2910802B1 (en) * 2012-10-16 2019-04-03 IHI Corporation Thrust bearing
CN103089405B (zh) * 2013-01-09 2015-09-16 北京理工大学 转子离合式电动发电涡轮增压器
US9157473B2 (en) * 2013-01-16 2015-10-13 Korea Institute Of Machinery & Materials Thrust bearing and combo bearing
CN103306995B (zh) * 2013-05-30 2015-08-26 西安交通大学 一种花键齿拉杆组合转子高速直驱压缩机结构
CN103670672B (zh) * 2013-12-19 2016-03-02 湖南大学 一种涡轮增压器
CN103670628B (zh) * 2013-12-19 2017-01-11 湖南大学 废气涡轮发电机
CN103775196B (zh) * 2014-03-04 2016-04-06 山东理工大学 一种涡轮增压发电装置
JP6591179B2 (ja) * 2014-03-19 2019-10-16 Ntn株式会社 フォイル軸受
CN204082684U (zh) * 2014-05-30 2015-01-07 鑫贺精密电子(东莞)有限公司 一种散热风扇
CN104265460B (zh) * 2014-08-20 2016-03-23 中国科学院工程热物理研究所 微型航空发动机轴承燃油换热冷却装置
CN205858960U (zh) * 2015-05-19 2017-01-04 罗立峰 一种小微型涡轮增压器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080246281A1 (en) * 2007-02-01 2008-10-09 Agrawal Giridhari L Turboalternator with hydrodynamic bearings
CN102223007A (zh) * 2011-06-24 2011-10-19 罗立峰 高速永磁电动机/发电机
CN104895917A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体止推轴承
CN104895924A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体径向轴承
CN105202027A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体止推轴承
CN105202018A (zh) * 2015-05-19 2015-12-30 罗立峰 一种混合式动压气体径向轴承

Also Published As

Publication number Publication date
CN105889324A (zh) 2016-08-24
CN105889326A (zh) 2016-08-24
CN205858959U (zh) 2017-01-04
TW201706496A (zh) 2017-02-16
WO2016184415A1 (zh) 2016-11-24
CN105889325B (zh) 2018-10-26
CN205858478U (zh) 2017-01-04
TWI699077B (zh) 2020-07-11
CN106026491B (zh) 2019-01-04
WO2016184405A1 (zh) 2016-11-24
CN205858960U (zh) 2017-01-04
CN205858731U (zh) 2017-01-04
CN105889325A (zh) 2016-08-24
TWI676734B (zh) 2019-11-11
CN105888847B (zh) 2018-03-27
WO2016184413A1 (zh) 2016-11-24
WO2016184417A1 (zh) 2016-11-24
CN105889326B (zh) 2018-10-26
TW201711350A (zh) 2017-03-16
CN105888819A (zh) 2016-08-24
CN205858958U (zh) 2017-01-04
CN205858493U (zh) 2017-01-04
CN105888847A (zh) 2016-08-24
WO2016184411A1 (zh) 2016-11-24
CN106026491A (zh) 2016-10-12
CN105889099B (zh) 2019-01-04
CN205864142U (zh) 2017-01-04
TW201704629A (zh) 2017-02-01
CN105889099A (zh) 2016-08-24
WO2016184409A1 (zh) 2016-11-24
CN105888819B (zh) 2019-01-04
CN105889324B (zh) 2019-01-04
TWI676735B (zh) 2019-11-11

Similar Documents

Publication Publication Date Title
WO2016184406A1 (zh) 一种超高速电机
WO2016184407A1 (zh) 一种小微型电机
EP3299644B1 (en) Mixed-type dynamic pressure gas thrust bearing
CN110594286B (zh) 箔片气体动压轴承和高速电机
WO2016184403A1 (zh) 一种小微型散热风扇
US9157473B2 (en) Thrust bearing and combo bearing
WO2021169493A1 (zh) 一种动压滑片轴承转子系统、电机及电器
JP2013256884A (ja) 高速ターボ機械
CN111042925A (zh) 一种转子系统及微型燃气轮机发电机组
KR20130062757A (ko) 주름이 없는 범프 포일을 포함하는 저널 포일 베어링 및 이를 포함하는 모터
CN211474265U (zh) 一种转子系统及微型燃气轮机发电机组
CN210509514U (zh) 一种支撑装置及压缩机
WO2023188434A1 (ja) 固定子および電動機
CN114142654A (zh) 一种箱式高速异步电机
CN114593149A (zh) 一种具有开槽结构的推力盘组件及磁悬浮轴承
JPS6253160A (ja) 誘導電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795894

Country of ref document: EP

Kind code of ref document: A1