WO2016181679A1 - シラン化合物 - Google Patents

シラン化合物 Download PDF

Info

Publication number
WO2016181679A1
WO2016181679A1 PCT/JP2016/055094 JP2016055094W WO2016181679A1 WO 2016181679 A1 WO2016181679 A1 WO 2016181679A1 JP 2016055094 W JP2016055094 W JP 2016055094W WO 2016181679 A1 WO2016181679 A1 WO 2016181679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silane compound
integer
rubber
silane
Prior art date
Application number
PCT/JP2016/055094
Other languages
English (en)
French (fr)
Inventor
知野 圭介
鈴木 宏明
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Publication of WO2016181679A1 publication Critical patent/WO2016181679A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a silane compound. More specifically, the present invention relates to a silane compound having a high reactivity and a low-polarity reactive functional group and a hydrolyzable group.
  • a silane compound having a reactive functional group and a hydrolyzable group is a silane coupling agent for improving the dispersibility between an organic polymer material such as rubber and an inorganic material such as silica in a rubber composition.
  • silane compounds have been used as adhesive aids for improving adhesion to inorganic materials such as glass in adhesive compositions and sealant compositions.
  • such a silane compound has a substituent such as a mercapto group, a polysulfide group, an amino group or an epoxy group as a reactive functional group highly reactive with an organic polymer material such as rubber, and silica or As a hydrolyzable group having high reactivity with an inorganic material such as glass, it has a substituent such as an alkoxysilyl group.
  • a substituent such as a mercapto group, a polysulfide group, an amino group or an epoxy group
  • JP-A-8-259736 Patent Document 1 discloses a polysulfide-based silane coupling agent.
  • JP-A-11-335381 Patent Document 2 discloses a silane compound having an amino group as a reactive functional group and a methoxy group as a hydrolyzable group.
  • JP-A-8-259736 Japanese Patent Laid-Open No. 11-335381
  • the present invention has been made in view of the above problems.
  • the main object of the present invention is to have a high reactivity with organic polymer materials such as rubber, a low-polarity reactive functional group, and a hydrolyzable group with high reactivity with inorganic materials such as silica and glass. It is to provide a silane compound.
  • the silane compound according to the present invention comprises As a basic skeleton, it has a condensed ring formed by combining two or more of the following formulas (1) to (4) and having at least one structure of the following formulas (1) to (3). And (Where a, c, e and g are each independently an integer of 0 to 5; When the condensed ring has 2 rings, b, d, f and h are each independently an integer of 1 to 5, When the condensed ring has 3 or more rings, b, d, f and h are each independently an integer of 0 to 5, (However, when a, c, e and g are 0, no crosslinked structure is formed.) The basic skeleton is substituted with one silane group represented by the following formula (5).
  • R 1 is hydrogen or an alkyl group
  • R 2 is an alkoxy group or an amino group substituted with one or more alkyl groups
  • R 3 is hydrogen or an alkyl group
  • i is an integer from 0 to 30
  • n is an integer from 0 to 2, when i is 2 or more, each R 3 is independently selected
  • the condensed ring preferably has 2 to 10 rings.
  • a silane compound is represented by the following general formula (I).
  • R 1 is hydrogen or an alkyl group
  • R 2 is an alkoxy group or an amino group substituted with one or more alkyl groups
  • n is an integer from 0 to 2
  • p is an integer from 1 to 10
  • q is an integer from 0 to 5
  • r is an integer from 0 to 5
  • s is an integer from 0 to 30, when p is 2 or more, q is independently selected;
  • q and r are 0, a crosslinked structure is not formed
  • R 2 is preferably an amino group substituted with an alkoxy group having 1 to 30 carbon atoms or one or more alkyl groups having 1 to 30 carbon atoms.
  • R 2 is preferably a methoxy group or an ethoxy group.
  • the rubber composition of the present invention comprises the above silane compound and a silane compound represented by the following general formula (II). (Where X is an integer of 2 to 20) o and o ′ are each an integer of 1 to 10, p and q are each an integer of 1 to 3, R 11 and R 13 are each an amino group substituted with an alkoxy group or one or more alkyl groups, R 12 and R 14 are each hydrogen or an alkyl group)
  • a silane coupling agent composition and an adhesion assistant composition that have high reactivity and affinity with organic polymer materials such as rubber and high reactivity with inorganic materials such as silica and glass.
  • organic polymer materials such as rubber
  • inorganic materials such as silica and glass.
  • FIG. 1 shows a 1 H-NMR chart of silane compound 1 synthesized in Example 1-1.
  • FIG. 2 shows a 13 C-NMR chart of silane compound 1 synthesized in Example 1-1.
  • FIG. 3 shows a chromatogram of the silane compound 1 synthesized in Example 1-1.
  • the silane compound according to the present invention comprises one or more of the following formulas (1) to (4) in combination of two or more, and at least one of the following formulas (1) to (3):
  • a condensed ring having a structure is used as a basic skeleton. This condensed ring functions as a reactive functional group, and its polarity is low, and since it has a high active site (allylic hydrogen), it has a high reactivity with organic polymer materials such as rubber.
  • a, c, e and g are each independently an integer of 0 to 5, more preferably an integer of 0 to 3, and still more preferably 0 or 1.
  • b, d, f and h are each independently an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1 It is.
  • b, d, f and h are each independently an integer of 0 to 5, more preferably an integer of 0 to 3, and still more preferably 0 or 1.
  • a, c, e and g are 0, a crosslinked structure is not formed.
  • the number of rings in the condensed ring is preferably 2 to 10, more preferably 2 to 5, and further preferably 2 to 4.
  • synthesis can be performed more simply and an increase in viscosity can be prevented.
  • condensed ring examples include the following, but are not limited thereto.
  • the following condensed rings are particularly preferable.
  • the basic skeleton described above is substituted by one silane group having a hydrolyzable group represented by the following formula (5).
  • R 1 is hydrogen or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, still more preferably an alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, Examples include an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a cyclopentyl group, a hexyl group, and a cyclohexyl group.
  • R 2 is a hydrolyzable group, and is substituted with an alkoxy group, more preferably an alkoxy group having 1 to 30 carbon atoms, still more preferably an alkoxy group having 1 to 20 carbon atoms, or one or more alkyl groups.
  • An amino group more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, more preferably an amino group substituted with one or more alkyl groups having 1 to 20 carbon atoms.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, and an isobutoxy group, and among these, a methoxy group or an ethoxy group is preferable.
  • the amino group substituted with one or more alkyl groups include N-methylamino group, N, N-dimethylamino group, N-ethylamino group, N, N-diethylamino group, and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferable.
  • R 3 is hydrogen or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, still more preferably an alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, or the like.
  • R 3 is preferably hydrogen, a methyl group or an ethyl group.
  • N is an integer of 0 to 2
  • i is an integer of 0 to 30, more preferably an integer of 0 to 10, and still more preferably an integer of 0 to 5.
  • R 3 is independently selected.
  • silane compound of the present invention include, but are not limited to, the following compounds.
  • the following compounds are particularly preferable.
  • the above-mentioned silane compound has a low-polarity but has an allylic hydrogen, and therefore has a reactive functional group and a hydrolyzable group exhibiting high reactivity, and therefore does not have a polar group or the like. Even when used in combination with a material, it has excellent affinity (dispersibility) and can maintain reactivity with the polymer material, and is suitably used as a silane coupling agent or adhesion aid. be able to.
  • the silane compound according to the present invention has a condensed ring formed by combining the above formulas (1) and (4) as a basic skeleton, and the basic skeleton is represented by the silane group represented by the above formula (5).
  • Is replaced by Such a compound is represented by the following general formula (I).
  • the silane compound represented by the following general formula (I) has a reactive functional group having a high active site while having a low polarity, and a hydrolyzable group, and therefore does not have a polar group or the like. Even when used in combination with the polymer material, it has excellent affinity (dispersibility) and can also maintain reactivity with the polymer material, and can be suitably used as a silane coupling agent or adhesion aid. Can do.
  • the reactive functional group and the hydrolyzable group in the silane compound according to the present invention will be described in detail.
  • the reactive functional group in the silane compound according to the present invention is a substituent containing the alicyclic hydrocarbon in the general formula (I). This substituent has a high active site (allylic hydrogen) while having low polarity as a whole reactive functional group, and has high reactivity with organic polymer materials such as rubber.
  • the hydrolyzable group in the silane compound according to the present invention is the substituent R 2 in the general formula (I).
  • the substituent R 2 is highly reactive with inorganic materials such as silica and glass, and can form a bond between the silane compound and the inorganic material by a hydrolysis reaction.
  • R 1 is hydrogen or an alkyl group, and a preferred embodiment thereof is the same as R 1 in the above formula (5).
  • R 2 is an alkoxy group or an amino group substituted with one or more alkyl groups, and a preferred embodiment thereof is the same as R 2 in the above formula (5).
  • n is an integer of 0 to 2
  • p is an integer of 1 to 10, more preferably an integer of 1 to 5
  • q is an integer of 0 to 5. More preferably an integer of 0 to 3
  • r is an integer of 0 to 5, more preferably an integer of 0 to 3
  • s is an integer of 0 to 30, preferably 1 to 30 More preferably, it is an integer of 2 to 30, particularly preferably an integer of 2 to 10.
  • q is independently selected from an integer of 0 to 5. However, when q and r are 0, a crosslinked structure is not formed.
  • Examples of the compound satisfying the general formula (I) include the following compounds, but are not limited thereto.
  • the following compounds have a norbornene skeleton, so that they are highly reactive with organic materials and can eliminate ethanol that is not a health problem when condensed with a surface such as silica. Therefore, it is particularly preferable.
  • the silane compound of the present invention can be obtained by subjecting an alicyclic hydrocarbon compound having an unsaturated group and a silane compound to a hydrosilylation reaction in the presence of a hydrosilylation catalyst.
  • An alicyclic hydrocarbon compound having an unsaturated group can be obtained by, for example, vinyl norbornene being generated by Diels-Alder reaction of 1,4-butadiene and cyclopentadiene, and further cyclopentadiene reacting.
  • a silane compound to be reacted with an alicyclic hydrocarbon compound having an unsaturated group can be obtained by reacting a corresponding halosilane with an alcohol or an amine.
  • the hydrosilylation catalyst is a catalyst that causes an addition reaction between an aliphatic unsaturated group (alkenyl group, diene group, etc.) in one raw material compound and a silicon-bonded hydrogen atom (that is, SiH group) in the other raw material compound.
  • the hydrosilylation catalyst include a platinum group metal catalyst such as a platinum group metal simple substance or a compound thereof.
  • platinum group metal-based catalyst conventionally known ones can be used. Specific examples thereof include finely divided platinum metal adsorbed on a support such as silica, alumina or silica gel, platinous chloride, chloroplatinic acid, chlorination.
  • Examples thereof include an alcohol solution of platinic acid hexahydrate, a palladium catalyst, and a rhodium catalyst.
  • a palladium catalyst examples thereof include an alcohol solution of platinic acid hexahydrate, a palladium catalyst, and a rhodium catalyst.
  • Speier catalyst H 2 PtCl 6 ⁇ H 2 O
  • Rh catalysts such as Rh catalysts, etc., are preferred, but those containing platinum as the platinum group metal are preferred, and the hydrosilylation catalyst may be used alone or in combination of two or more.
  • the addition amount of the hydrosilylation catalyst may be an effective amount that can promote the above addition reaction, and is usually 0.1 ppm (mass basis, hereinafter the same) to the total amount of the raw material compounds in terms of the platinum group metal amount.
  • the range is preferably 1% by mass, and more preferably in the range of 1 to 500 ppm. If the addition amount is within this range, the addition reaction is likely to be sufficiently promoted, and the addition reaction rate is likely to increase with an increase in the addition amount, which is economically advantageous.
  • VNBB 2-ethenyl-1,2,3,4,4a, 5,8,8a-octahydro-1,4-methanonaphthalene
  • VNB norbornene
  • VNB can be obtained by a Diels-Alder reaction of 1,4-butadiene and cyclopentadiene.
  • a solvent such as toluene is put, and a transition metal catalyst solution such as chloroplatinic acid IPA solution is injected.
  • VNBB obtained as described above is put, immersed in an oil bath, heated (for example, the bath temperature is about 50 ° C.), and a silane compound such as triethoxysilane is dropped therein.
  • the bath temperature is preferably 20 to 120 ° C. After 3 to 12 hours, remove the oil bath from the flask and leave it to room temperature. In some cases, after washing with water and drying, the solvent is distilled off under reduced pressure and then dried using a vacuum dryer or the like, whereby the silane compound of the present invention can be obtained. When the purity is low, it is preferable to purify by distillation or column.
  • VDMON 2-ethenyl-1,2,3,4,4a, 5,8,8a-octahydro-1,4,5,8-dimethananaphthalene
  • a solvent such as toluene is put, and a transition metal catalyst solution such as chloroplatinic acid IPA solution is injected.
  • a transition metal catalyst solution such as chloroplatinic acid IPA solution
  • the VGMON obtained as described above is put, immersed in an oil bath, heated (for example, the bath temperature is about 50 ° C.), and a silane compound such as triethoxysilane is dropped therein.
  • the bath temperature is preferably 20 to 120 ° C. After 3 to 12 hours, remove the oil bath from the flask and leave it to room temperature. In some cases, after washing with water and drying, the solvent is distilled off under reduced pressure, followed by drying using a vacuum dryer or the like, whereby the silane compound of the present invention can be obtained. When the purity is low, it is preferable to purify by distillation or column.
  • the silane compound of the present invention can be obtained by utilizing the following two-stage Diels-Alder reaction.
  • silane coupling agent Since the silane compound of the present invention has a reactive functional group having a high active site while having low polarity and a hydrolyzable group, it is used in combination with a polymer material having no polar group or the like. Even in such a case, the reactivity with the polymer material can be maintained while having excellent affinity (dispersibility), so that it can be suitably used as a constituent component of the silane coupling agent.
  • the silane compound of this invention can be used suitably as a structural component of a sealing agent composition.
  • the sealing agent composition contains the silane compound of the present invention, and can optionally contain other sealing agents (sealing polymers).
  • the sealing agent may be a one-component curing type (moisture curing, oxygen curing, dry curing, non-curing type) or a two-component curing type (reaction curing type).
  • the content of the silane compound is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass.
  • the sealing agent is not particularly limited, and an acrylic polymer, an acrylic urethane polymer, a polyurethane polymer, a silicon polymer, a modified silicon polymer, a polysulfide polymer, an SBR polymer, a butyl rubber polymer, Examples thereof include oil-based caulking polymers, and among these, one-component curable polyurethane-based polymers, silicon-based polymers, modified silicon-based polymers, polysulfide-based polymers, and butyl rubber-based polymers are preferable.
  • the sealing agent composition may contain one or two or more of the sealing agents described above.
  • the weight average molecular weight of the sealing agent is preferably 300 to 500,000, more preferably 1000 to 300,000.
  • a weight average molecular weight is a weight average molecular weight (polystyrene conversion) measured by the gel permeation chromatography (Gel permeation chromatography (GPC)).
  • GPC Gel permeation chromatography
  • THF tetrahydrofuran
  • DMF N-dimethylformamide
  • chloroform chloroform
  • the sealing agent composition may contain additives such as an anti-aging agent, an anti-static agent, a heat stabilizer, and a light stabilizer as long as the effect is not impaired.
  • the silane compound of the present invention can be suitably used as a constituent component of an adhesive composition.
  • the adhesive composition can comprise the silane compound of the present invention and an adhesive (adhesive polymer).
  • the adhesive may be a one-component curable type or a two-component curable type.
  • the content of the silane compound is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass.
  • Adhesive is not particularly limited, water-soluble adhesive (vinyl acetate emulsion), rubber adhesive (nitrile rubber resin, synthetic rubber resin), epoxy adhesive, cyanoacrylic Adhesives, vinyl adhesives, silicone rubber adhesives, plastic adhesives, hot melt adhesives, etc., among these, rubber adhesives or epoxy adhesives from the viewpoint of compatibility and stability Is preferred.
  • the adhesive composition may contain one or more of the above-described adhesives.
  • the weight average molecular weight of the adhesive is preferably 300 to 500,000, more preferably 1000 to 300,000.
  • Adhesive composition is antioxidant, anti-aging agent, anti-static agent, heat stabilizer, UV absorber, light stabilizer, flame retardant, nucleating agent, clearing agent, processability, as long as its effect is not impaired. Additives such as improvers and lubricants may be included.
  • the silane compound of this invention can be used suitably as a structural component of a rubber composition.
  • the rubber composition can comprise the above-described silane compound, elastomeric polymer, and inorganic material.
  • the content of the silane compound is preferably 0.1 to 30 parts by mass and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the elastomeric polymer.
  • the elastomeric polymer is a generally known natural polymer or synthetic polymer, and is not particularly limited as long as it has a glass transition point of room temperature (25 ° C.) or lower, that is, an elastomer. There may be.
  • any rubber generally used conventionally can be used.
  • natural rubber isoprene rubber, butadiene rubber, 1, 2-butadiene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene -Diene rubbers such as p-methylstyrene rubber, nitrile rubber, chloroprene rubber, butyl rubber, ethylene-propylene rubber (EPDM, EPM), ethylene-butene rubber (BBM), chlorosulfonated polyethylene, acrylic Examples thereof include olefin rubbers such as ril rubber
  • elastomeric polymers are diene rubbers such as natural rubber, butyl rubber, isoprene rubber, styrene butadiene rubber and butadiene rubber.
  • the weight average molecular weight of the elastomeric polymer is preferably 1,000 to 3,000,000, more preferably 10,000 to 1,000,000.
  • the glass transition temperature (Tg) of the elastomeric polymer is preferably 25 ° C. or lower, and more preferably 0 ° C. or lower.
  • Tg is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry).
  • the temperature raising rate is preferably 10 ° C./min.
  • examples of the inorganic material include silica, carbon black, calcium carbonate, titanium oxide clay, clay and talc. Among these, since the mechanical properties and heat resistance can be further improved, silica and / or It is preferable to use carbon black.
  • the addition amount of the inorganic material is preferably 0.1 to 500 parts by mass, and more preferably 1 to 300 parts by mass with respect to 100 parts by mass of the elastomeric polymer.
  • the rubber composition of this invention may further contain other silane compounds other than the said silane compound in the range which does not impair the objective of this invention.
  • examples of other silane compounds include silane compounds represented by the following general formula (II).
  • x is an integer of 2 to 20, preferably an integer of 2 to 8.
  • O and o ′ are each an integer of 1 to 10, preferably an integer of 1 to 5.
  • p and q are each an integer of 1 to 3.
  • R 11 and R 13 are each a hydrolyzable group, and (i) an alkoxy group, more preferably an alkoxy group having 1 to 30 carbon atoms, still more preferably an alkoxy group having 1 to 20 carbon atoms, or (ii ) An amino group substituted with one or more alkyl groups, more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, more preferably one or more substituted with an alkyl group having 1 to 20 carbon atoms Amino group.
  • R 12 and R 14 are each hydrogen or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, still more preferably an alkyl group having 1 to 20 carbon atoms, specifically, a methyl group
  • Examples include an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a cyclopentyl group, a hexyl group, and a cyclohexyl group.
  • a methyl group and an ethyl group are preferable.
  • a commercially available silane compound satisfying the above formula (II) may be used, and examples thereof include Si-69 and Si-75 manufactured by Evonik.
  • silane compound represented by the general formula (II) In addition to the silane compound represented by the general formula (II), other silane compounds having the following structures can be contained.
  • the rubber composition is a silica reinforcing agent, a reinforcing agent such as carbon black, a silane coupling agent, a vulcanizing agent such as sulfur and zinc oxide, a crosslinking agent, a vulcanization accelerator, and a crosslinking accelerator as long as the effect is not impaired. Further, it may contain additives such as a vulcanization acceleration aid, an anti-aging agent, a softening agent, various oils, an antioxidant, an anti-aging agent, a filler and a plasticizer.
  • the silica reinforcing agent is not particularly limited, and examples thereof include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon mainly containing hydrous silicic acid is preferable. These silicas can be used alone or in combination of two or more in an amount of 10 to 300 parts by weight.
  • the specific surface area of these silicas is not particularly limited, but is usually 10 to 400 m 2 / g, preferably 20 to 300 m 2 / g, more preferably 40 to 250 m 2 / g in terms of nitrogen adsorption specific surface area (BET method). In some cases, improvements in reinforcement, wear resistance, heat generation and the like are sufficiently achieved and suitable.
  • the nitrogen adsorption specific surface area is a value measured by the BET method according to ASTM D3037-81.
  • the carbon black is appropriately selected and used depending on the application. Generally, carbon black is classified into hard carbon and soft carbon based on the particle diameter. Soft carbon has low reinforcement to rubber, and hard carbon has strong reinforcement to rubber. In the rubber composition of the present invention, it is preferable to use hard carbon having particularly strong reinforcement. It may be contained in an amount of 10 to 250 parts by weight, preferably 20 to 200 parts by weight, more preferably 30 to 150 parts by weight based on 100 parts by weight of the elastomeric polymer.
  • antioxidant examples include butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA). It is preferable to add 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the elastomeric polymer.
  • the colorant examples include titanium dioxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate, and other inorganic pigments, azo pigments, copper phthalocyanine pigments, and the like. It is preferable to add 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the elastomeric polymer.
  • vulcanizing agent examples include powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, insoluble sulfur, dimorpholine disulfide, alkylphenol disulfide, and other sulfur-based vulcanizing agents, zinc white, magnesium oxide, resurge, Examples thereof include p-quinonedioxam, p-dibenzoylquinonedioxime, tetrachloro-p-benzoquinone, poly-p-dinitrobenzene, and methylenedianiline.
  • vulcanization aid examples include fatty acids such as acetyl acid, propionic acid, butanoic acid, stearic acid, acrylic acid, and maleic acid, zinc acetylate, zinc propionate, zinc butanoate, zinc stearate, zinc acrylate, maleic acid.
  • Fatty acid zinc such as zinc acid, zinc oxide and the like can be mentioned.
  • vulcanization accelerator examples include thiurams such as tetramethylthiuram disulfide (TMTD) and tetraethylthiuram disulfide (TETD), aldehydes / ammonias such as hexamethylenetetramine, guanidines such as diphenylguanidine, dibenzothiazyl disulfide ( DM) and the like, and cyclohexylbenzothiazylsulfenamide type.
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • aldehydes / ammonias such as hexamethylenetetramine
  • guanidines such as diphenylguanidine, dibenzothiazyl disulfide ( DM) and the like
  • DM dibenzothiazyl disulfide
  • DM dibenzothiazyl disulfide
  • the compounding agent and the additive can be kneaded with a known rubber kneader, for example, a roll, a Banbury mixer, a kneader, etc., and vulcanized under any conditions to be used as a rubber composition.
  • a known rubber kneader for example, a roll, a Banbury mixer, a kneader, etc.
  • the addition amounts of these compounding agents and additives can be set to conventional general compounding amounts as long as the object of the present invention is not violated.
  • a tire can be produced by a conventionally known method using the rubber composition.
  • a tire can be produced by extruding the rubber composition and then molding it using a tire molding machine, followed by heating and pressurizing using a vulcanizer.
  • the silane compound of the present invention can be used in a sealing agent composition, an adhesive composition, and a rubber composition.
  • a sealing agent composition for example, electrical / electronic, chemical, automobile, machine, food / cosmetic, fiber, pulp, construction / It can be applied to civil engineering-related products.
  • the silane compound of the present invention can be applied as a power train-related product to automobile-related products such as hybrid / electric vehicle products, diesel engine-related products, starters, alternators, engine cooling products, and drive system products.
  • automobile-related products such as hybrid / electric vehicle products, diesel engine-related products, starters, alternators, engine cooling products, and drive system products.
  • Tire parts such as tire tread, carcass, sidewall, inner liner, under tread, belt part, (2) Exterior radiator grill, side molding, garnish (pillar, rear, cowl top), aero parts (air dam, spoiler), wheel cover, weather strip, cow belt grill, air outlet louver, air scoop, food bulge, Ventilation parts, anti-corrosion parts (over fenders, side seal panels, moldings (windows, hoods, door belts)), marks; doors, lights, wiper weatherstrips, glass run, glass run channel parts, etc.
  • Fuel system parts such as fuel hoses, emission control hoses, inlet filler hoses and diaphragms; vibration-proof parts such as engine mounts and in-
  • air-conditioning related products such as passenger car air conditioners, bus air conditioners, and refrigerators.
  • body related products such as a combination meter, a head-up display, a body product, and a relay.
  • the present invention can be applied to travel safety-related products such as inter-vehicle control cruise / pre-crash safety / lane keeping assist system, steering system, lighting control system, airbag-related sensor & ECU, and brake control.
  • information communication related products such as a car navigation system, an ETC, a data communication module, and a CAN-Gateway ECU.
  • the silane compound according to the present invention can be used for surface treatment of inorganic fillers.
  • the surface treatment method there are (1) a dry method, (2) a wet method, and (3) an integral blend method.
  • the dry method is a method suitable for surface treatment of a large amount of inorganic filler, and is performed by spraying the silane compound or blowing it in a vapor state while thoroughly stirring the inorganic filler. Further, a heat treatment step is added as necessary. This method is excellent in workability because no diluent is used.
  • the wet method is performed by dispersing an inorganic filler in a solvent, diluting a silane compound in water or an organic solvent, and adding the slurry while stirring vigorously. According to this method, uniform surface treatment is possible.
  • the integral blend method is performed by adding a silane compound directly to an organic resin when the inorganic filler is mixed with the organic resin.
  • This method is widely used industrially because it is simple.
  • the silane compound acts on the inorganic filler by this method, it passes through the three steps of migration, hydrolysis and condensation of the silane compound to the filler surface. Therefore, this method requires attention to the reactivity of the silane compound and the organic resin.
  • the addition amount of the silane compound can be generally calculated by the following formula.
  • Addition amount (g) [weight of inorganic filler (g) ⁇ specific surface area of inorganic filler (m 2 / g)] / minimum covering area of silane compound (m 2 / g)
  • the specific surface area of the inorganic filler is unknown, 1% by weight of the silane compound Treatment, and then increasing or decreasing the amount as appropriate to find the amount that gives the optimum results.
  • inorganic fillers examples include E-glass (specific surface area 0.1 to 0.12 m 2 / g), mica (specific surface area 0.2 to 0.3 m 2 / g), quartz powder (specific surface area 1.0). To 2.0 m 2 / g), calcium silicate (specific surface area 1.0 to 3.0 m 2 / g), magnetic powder (specific surface area 1.0 to 3.0 m 2 / g), calcium carbonate (specific surface area 2 0.0-5.0 m 2 / g), clay (specific surface area 6.0-15.0 m 2 / g), kaolin (specific surface area 7.0-30.0 m 2 / g), talc (specific surface area 830-20) 0.0 m 2 / g), synthetic silica (specific surface area 200.0 to 300.0 m 2 / g), and the like.
  • E-glass specific surface area 0.1 to 0.12 m 2 / g
  • mica specific surface area 0.2 to 0.3 m 2 / g
  • quartz powder specific surface area 1.0.
  • silane compound according to the present invention By applying the silane compound according to the present invention to paints or coating agents, adhesion, weather resistance, durability, abrasion resistance, chemical resistance can be improved, and filler and pigment dispersibility can be improved. Can do. Further, by applying the silane compound according to the present invention to a glass fiber reinforced resin, impact strength, water resistance, electrical insulation, and long-term stability in a wet environment can be improved. Further, the strength holding ability and the elastic force of the heat insulating mat can be improved. Further, fraying of the glass fiber bundle can be prevented. Moreover, by applying the silane compound according to the present invention to printing ink, it is possible to improve adhesiveness and releasability and improve wettability.
  • the silane compound according to the present invention by applying the silane compound according to the present invention to an elastomer, it is possible to improve wear resistance, tear resistance, followability, and extensibility, and improve dispersibility of the filler. Moreover, since the kneading process can be shortened, the cost can also be reduced. Moreover, by applying the silane compound according to the present invention to a thermoplastic resin, the dispersibility of the filler and the pigment can be improved, and the crosslinkability of the olefin resin and the like can be improved. Moreover, high functionality and imparting flame retardancy can also be expected.
  • the amount added can generally be 0.2 to 2.0% by mass.
  • IPA isopropyl alcohol
  • silane compound according to the present invention When using the silane compound according to the present invention as an adhesion improver, About 1% of a silane compound can be added to the adhesive or coating material. Note that depending on the adhesive or coating material used, it may react and gel.
  • Example 1-1 Synthesis of Silane Compound 1
  • a 100 mL two-necked flask is equipped with a ball stopper, a three-way cock with a vacuum line and a stirrer bar, and the system is degassed and replaced with nitrogen while heating with a dryer using the vacuum line. This was repeated several times to obtain a normal pressure nitrogen atmosphere.
  • sealing agent composition Silane compound 1 is mixed with a one-component urethane-based sealing agent (urethane seal S700NB, manufactured by Cemedine Co., Ltd.) in the amounts shown in Table 1, degassed with a vacuum dryer, and a sealing agent. A composition was obtained. The obtained sealing agent composition was applied to a glass plate (Matsunami Glass Industrial Co., Ltd., 76 mm ⁇ 26 mm ⁇ 1.0 mm microslide glass), allowed to stand at room temperature for 1 week and cured. Next, the adhesive strength (N / m) of the cured sealant composition was measured by a 90 ° peel test (tensile speed 300 mm / min, room temperature) in accordance with JIS K6854-1. The results are shown in Table 1.
  • urethane seal S700NB manufactured by Cemedine Co., Ltd.
  • Example 1-2 Synthesis of Silane Compound 2
  • 2-Ethenyl-1,2,3,4,4a, 5,8,8a-octahydro-1,4-methanonaphthalene (VNBB) instead of 2-ethenyl-1,2,3,4 , 4a, 5,8,8a-octahydro-1,4,5,8-dimethananaphthalene (VDMON) was added in the same manner as in Example 1-1 except that 1.96 g was added dropwise. Obtained (3.55 g, yield 96%).
  • the structure of the obtained compound was confirmed by 1 H-NMR, 13 C-NMR measurement and GC-MS measurement. As a result, the introduction rate of silane was 100%, and the target silane compound 2 was obtained. confirmed.
  • a sealing agent composition was obtained in the same manner as in Example 1-1 except that the silane compound 1 was changed to the silane compound 2. Further, as in Example 1-1, the adhesive strength (N / m) of the sealing agent composition was measured, and the results are shown in Table 1.
  • Example 1-1 A one-component urethane sealant (urethane seal S700NB, manufactured by Cemedine Co., Ltd.) is applied to a glass plate (Matsunami Glass Industrial Co., Ltd., micro-slide glass 76 mm ⁇ 26 mm ⁇ 1.0 mm), left to stand at room temperature for 1 week, and cured. I let you. Next, the adhesive strength of the cured sealing agent was measured by a 90 ° peel test as in Example 1. The results are shown in Table 1.
  • Example 2-2 A rubber composition and a rubber sheet were obtained in the same manner as in Example 2-1, except that the content of the silane coupling agent was changed to 2.2 parts by mass.
  • Example 2-3 A rubber composition and a rubber sheet were prepared in the same manner as in Example 2-1, except that the natural rubber was changed to styrene butadiene rubber (product name: Pole 1502 manufactured by Nippon Zeon Co., Ltd.) and the vulcanization time was changed to 20 minutes. Obtained.
  • Example 2-4 A rubber sheet was obtained in the same manner as in Example 2-1, except that the kneading components were changed to the following.
  • ⁇ Natural rubber (RSS # 3) 100 parts by mass ⁇ Silane compound 2 1 part by mass ⁇
  • Other silane compounds (trade name: Si69, manufactured by Evonik) 3.2 parts by mass, silica AQ (trade name: NipSeal AQ, manufactured by Tosoh Corporation) 40 parts by mass, zinc oxide No.
  • Example 2-1 Six rubber sheets obtained in Example 2-1 were stacked, and JIS-A hardness was measured according to JIS K6353 (issued in 2012). The rubber sheets obtained in Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-3 were measured in the same manner. The measurement results are shown in Table 2.
  • Example 2-1 A rubber obtained in Example 2-1 using a viscoelasticity measuring device (REOGEL E-4000 manufactured by UBM) in accordance with JIS K 6394 under conditions of a strain of 20 ⁇ m, about 0.1%, and a frequency of 10 Hz.
  • the rubber sheets obtained in Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-3 were measured in the same manner. The measurement results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

基本骨格として、下記式(1)~(4)のうちの一種または複数を、2以上組み合わせてなり、かつ少なくとも下記式(1)~(3)のいずれか一つの構造を有する縮合環を有し、 (式中、 a、c、eおよびgはそれぞれ独立して、0~5の整数であり、 前記縮合環が有する環数が2である場合、b、d、fおよびhはそれぞれ独立して、1~5の整数であり、 前記縮合環が有する環数が3以上である場合、b、d、fおよびhはそれぞれ独立して、0~5の整数であり、 但し、a、c、eおよびgが0の場合、架橋構造を形成しない) 前記基本骨格が、1つの下記式(5)で表されるシラン基により置換されてなることを特徴とするシラン化合物。 (上記式中、 R1は、水素またはアルキル基であり、 R2は、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、 R3は、水素またはアルキル基であり、 iは、0~30の整数であり、 nは、0~2の整数であり、 iが、2以上である場合、R3はそれぞれ独立して選択される)

Description

シラン化合物
 本発明は、シラン化合物に関する。より具体的には、高い反応性を有し、かつ低極性の反応性官能基と、加水分解性基とを有するシラン化合物に関する。
 従来、反応性官能基および加水分解性基を有するシラン化合物は、ゴム組成物中などにおいて、ゴムなどの有機高分子材料とシリカなどの無機材料との分散性を向上させるためのシランカップリング剤として用いられてきた。また、このようなシラン化合物は、接着剤組成物やシーリング剤組成物において、ガラスなどの無機材料への接着性を改善するための接着助剤として用いられてきた。
 通常、このようなシラン化合物は、ゴムなどの有機高分子材料との反応性が高い反応性官能基として、メルカプト基、ポリスルフィド基、アミノ基やエポキシ基などの置換基を有し、かつシリカやガラスなどの無機材料との反応性が高い加水分解性基として、アルコキシシリル基などの置換基を有する。例えば、特開平8-259736号公報(特許文献1)には、ポリスルフィド系のシランカップリング剤が開示されている。特開平11-335381号公報(特許文献2)には、反応性官能基としてアミノ基、加水分解性基としてメトキシ基を有するシラン化合物が開示されている。
特開平8-259736号公報 特開平11-335381号公報
 しかしながら、アミノ基やエポキシ基などの高極性の反応性官能基を有するシラン化合物を低極性の高分子材料と混合した場合、シラン化合物と有機高分子材料との親和性が低下し、分散不良や混合不良が生じる傾向があった。また、このようなシラン化合物を接着剤やシーリング剤に添加した場合、シラン化合物と有機高分子材料との親和性が低下し、無機材料との接着性が低下する傾向があった。一方、有機高分子材料との親和性を高めるために、極性が低い反応性官能基を有する従来のシラン化合物を添加した場合、有機高分子材料との反応性が低く、シランカップリング剤や接着助剤としての性能が不十分であった。
 本願発明は、上記のような問題に鑑みてなされたものである。本願発明の主目的は、ゴムなどの有機高分子材料との反応性が高く、低極性の反応性官能基と、シリカやガラスなどの無機材料との反応性が高い加水分解性基とを有するシラン化合物を提供することである。
 一実施形態において、本発明によるシラン化合物は、
 基本骨格として、下記式(1)~(4)のうちの一種または複数を、2以上組み合わせてなり、かつ少なくとも下記式(1)~(3)のいずれか一つの構造を有する縮合環を有し、
Figure JPOXMLDOC01-appb-C000005
(式中、
 a、c、eおよびgはそれぞれ独立して、0~5の整数であり、
 前記縮合環が有する環数が2である場合、b、d、fおよびhはそれぞれ独立して、1~5の整数であり、
 前記縮合環が有する環数が3以上である場合、b、d、fおよびhはそれぞれ独立して、0~5の整数であり、
 但し、a、c、eおよびgが0の場合、架橋構造を形成しない)
 基本骨格が、1つの下記式(5)で表されるシラン基により置換されてなることを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(上記式中、
 Rは、水素またはアルキル基であり、
 Rは、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
 Rは、水素またはアルキル基であり、
 iは、0~30の整数であり、
 nは、0~2の整数であり、
 iが、2以上である場合、Rはそれぞれ独立して選択される)
 上記態様においては、縮合環が有する環数が、2~10であることが好ましい。
 上記態様においては、シラン化合物は、下記一般式(I)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000007
(上記式中、
は、水素またはアルキル基であり、
は、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
nは、0~2の整数であり、
pは、1~10の整数であり、
qは、0~5の整数であり、
rは、0~5の整数であり、
sは、0~30の整数であり、
pが2以上である場合、qはそれぞれ独立して選択され、
但し、qおよびrが0の場合、架橋構造を形成しない)
 上記態様においては、Rは、炭素数1~30のアルコキシ基または1以上の炭素数1~30のアルキル基で置換されたアミノ基であることが好ましい。
 上記態様においては、Rは、メトキシ基またはエトキシ基であることが好ましい。
 本発明のゴム組成物は、上記シラン化合物と、下記一般式(II)で表されるシラン化合物とを含んでなることを特徴とする。
Figure JPOXMLDOC01-appb-C000008
(式中、
 Xは、2~20の整数である)
 oおよびo’は、それぞれ1~10の整数であり、
 pおよびqは、それぞれ1~3の整数であり、
 R11およびR13は、それぞれ、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
 R12およびR14は、それぞれ、水素またはアルキル基である)
 本発明によれば、ゴムなどの有機高分子材料との反応性および親和性が高く、かつシリカやガラスなどの無機材料との反応性が高い、シランカップリング剤組成物や接着助剤組成物として有用なシラン化合物を提供することができる。
図1は、実施例1-1で合成したシラン化合物1のH-NMRチャートを表す。 図2は、実施例1-1で合成したシラン化合物1の13C-NMRチャートを表す。 図3は、実施例1-1で合成したシラン化合物1のクロマトグラムを表す。
 本明細書において、配合を示す「部」、「%」などは特に断らない限り質量基準である。
<シラン化合物>
 一実施形態において、本発明によるシラン化合物は、下記式(1)~(4)のうち一種または複数を、2以上組み合わせてなり、かつ少なくとも下記式(1)~(3)のいずれか一つの構造を有する縮合環を基本骨格とする。この縮合環は、反応性官能基として機能するものであり、その極性は、低く、高い活性部位(アリル位水素)を有しているため、ゴムなどの有機高分子材料との高い反応性を有する。
Figure JPOXMLDOC01-appb-C000009
 上記式中、a、c、eおよびgはそれぞれ独立して、0~5の整数であり、より好ましくは、0~3の整数であり、さらに好ましくは、0または1である。
 また、縮合環が有する環数が2である場合、b、d、fおよびhはそれぞれ独立して、1~5の整数であり、より好ましくは1~3の整数であり、さらに好ましくは1である。
 また、縮合環が有する環数が3以上である場合、b、d、fおよびhはそれぞれ独立して、0~5の整数であり、より好ましくは0~3の整数であり、さらに好ましくは0または1である。
 但し、a、c、eおよびgが0の場合、架橋構造を形成しない。
 縮合環が有する環数は、2~10であることが好ましく、2~5であることがより好ましく、2~4であることがさらに好ましい。縮合環が有する環数が上記数値範囲であることにより、合成をより簡潔に行うことができると共に、粘度の上昇を防止することができる。
 縮合環の具体例としては以下のようなものが挙げられが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
 上記した縮合環の中でも、以下の縮合環が特に好ましい。
Figure JPOXMLDOC01-appb-C000012
 一実施形態において、本発明によるシラン化合物は、上記した基本骨格が、1つの下記式(5)で表される、加水分解性基を有するシラン基により置換されてなる。
Figure JPOXMLDOC01-appb-C000013
 上記式中において、Rは、水素またはアルキル基であり、より好ましくは炭素数1~30のアルキル基、さらに好ましくは炭素数1~20のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、シクロペンチル基、へキシル基およびシクロへキシル基などが挙げられ、これらの中でも、メチル基およびエチル基が好ましい。
 また、Rは、加水分解性基であり、アルコキシ基、より好ましくは炭素数1~30のアルコキシ基、さらに好ましくは炭素数1~20のアルコキシ基、または1以上のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~30のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~20のアルキル基で置換されたアミノ基である。具体的には、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基およびイソブトキシ基などが挙げられ、これらの中でも、メトキシ基またはエトキシ基が好ましい。また、1以上のアルキル基で置換されたアミノ基としては、N-メチルアミノ基、N,N-ジメチルアミノ基、N-エチルアミノ基、N,N-ジエチルアミノ基およびN-イソプロピルアミノ基などが挙げられ、これらの中でも、N-メチルアミノ基またはN-エチルアミノ基が好ましい。なお、アルコキシ基およびアミノ基は、炭化水素基などの連結基を介してケイ素(Si)と結合してもよい。
 上記式中において、Rは、水素またはアルキル基、より好ましくは炭素数1~30のアルキル基、さらに好ましくは炭素数1~20のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、シクロペンチル基、へキシル基およびシクロへキシル基などが挙げられる。これらの中でも、Rは、水素、メチル基およびエチル基が好ましい。
 また、nは0~2の整数であり、iは0~30の整数であり、より好ましくは0~10の整数であり、さらに好ましくは0~5の整数である。
 なお、iが2以上の場合、Rはそれぞれ独立して選択される。
 本発明のシラン化合物の具体例としては、以下のような化合物が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記したシラン化合物の中でも、以下の化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記したシラン化合物は、低極性でありながら、アリル位水素を有しているため、高い反応性を示す反応性官能基および加水分解性基を有するため、極性基等を有していない高分子材料と組み合わせて用いた場合であっても、優れた親和性(分散性)を有しながら、該高分子材料との反応性も維持でき、シランカップリング剤や接着助剤として好適に使用することができる。
 一実施形態において、本発明によるシラン化合物は、上記式(1)および(4)を組み合わせてなる縮合環を基本骨格として有し、この基本骨格が、上記式(5)で表されるシラン基により置換されてなる。
 このような化合物は、下記一般式(I)で表される。
 下記一般式(I)で表されるシラン化合物は、低極性でありながら高い活性部位を有する反応性官能基と、加水分解性基とを有するため、極性基等を有していない高分子材料と組み合わせて用いた場合であっても、優れた親和性(分散性)を有しながら、該高分子材料との反応性も維持でき、シランカップリング剤や接着助剤として好適に使用することができる。以下、本発明によるシラン化合物における反応性官能基および加水分解性基について、詳述する。
Figure JPOXMLDOC01-appb-C000026
(反応性官能基)
 本発明によるシラン化合物における反応性官能基は、上記一般式(I)中の脂環式炭化水素を含む置換基である。この置換基は、反応性官能基全体として低極性でありながら高い活性部位(アリル位水素)を有しており、ゴムなどの有機高分子材料との高い反応性を有する。
(加水分解性基)
 本発明によるシラン化合物における加水分解性基は、上記一般式(I)中の置換基Rである。置換基Rは、シリカやガラスなどの無機材料との反応性が高く、加水分解反応により、シラン化合物と無機材料との間で結合を形成することができる。
 一般式(I)において、Rは、水素またはアルキル基であり、その好ましい態様などについては、上記式(5)におけるRと同様である。
 一般式(I)において、Rは、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、その好ましい態様などについては、上記式(5)におけるRと同様である。
 一般式(I)において、nは、0~2の整数であり、pは、1~10の整数であり、より好ましくは1~5の整数であり、qは、0~5の整数であり、より好ましくは0~3の整数であり、rは、0~5の整数であり、より好ましくは0~3の整数であり、sは、0~30の整数であり、好ましくは1~30の整数であり、より好ましくは2~30の整数であり、特に好ましくは2~10の整数である。なお、pが2以上である場合、qはそれぞれ独立して0~5の整数から選択される。
 但し、qおよびrが0の場合、架橋構造を形成しない。
 上記一般式(I)を満たす化合物としては、例えば、以下の化合物が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 上記した化合物の中でも、下記化合物は、ノルボルネン骨格を有しているため、有機材料と反応性の高く、また、シリカなどの表面と縮合した際、健康上問題ないエタノールを脱離させることができるため特に好ましい。
Figure JPOXMLDOC01-appb-C000032
<シラン化合物の合成方法>
 一実施形態において、本発明のシラン化合物は、不飽和基を有する脂環式炭化水素化合物と、シラン化合物とを、ヒドロシリル化触媒の存在下において、ヒドロシリル化反応させることにより得ることができる。
 不飽和基を有する脂環式炭化水素化合物は、例えば、1,4-ブタジエンとシクロペンタジエンのディールズアルダー反応により、ビニルノルボルネンが生成し、さらにシクロペンタジエンが反応することにより得ることができる。また、不飽和基を有する脂環式炭化水素化合物と反応させるシラン化合物は、対応するハロシランとアルコール又はアミンと反応させることにより得ることができる。
(ヒドロシリル化触媒)
 ヒドロシリル化触媒は、一方の原料化合物中の脂肪族不飽和基(アルケニル基、ジエン基等)と他方の原料化合物中のケイ素原子結合水素原子(即ち、SiH基)とを付加反応させる触媒である。ヒドロシリル化触媒としては、例えば、白金族の金属単体やその化合物などの白金族金属系触媒が挙げられる。白金族金属系触媒としては従来公知のものが使用でき、その具体例としては、シリカ、アルミナ又はシリカゲルのような担体上に吸着させた微粒子状白金金属、塩化第二白金、塩化白金酸、塩化白金酸6水塩のアルコール溶液、パラジウム触媒、ロジウム触媒等が挙げられる。たとえば、Speier触媒(HPtCl・HO)、Karstedt触媒(Pt{[(CH=CH)MeSi]O}、RhCl(PPhやRhH(PPhなどのRh触媒などの公知の触媒が挙げられるが、白金族金属として白金を含むものが好ましい。ヒドロシリル化触媒は一種単独で使用しても二種以上を組み合わせて使用してもよい。
 ヒドロシリル化触媒の添加量は、上記付加反応を促進できる有効量であればよく、通常、白金族金属量に換算して原料化合物の合計に対して0.1ppm(質量基準。以下、同様)~1質量%の範囲であることが好ましく、1~500ppmの範囲であることがより好ましい。該添加量がこの範囲内にあると、付加反応が十分に促進されやすく、また、該添加量の増加に応じて付加反応の速度が向上しやすいので、経済的にも有利となりやすい。
 以下、本発明のシラン化合物の合成方法の一実施形態について具体的に説明する。まず、2-エテニル-1,2,3,4,4a,5,8,8a-オクタヒドロ-1,4-メタノナフタレン(以下、場合により「VNBB」と表す。)は、5-ビニル-2-ノルボルネン(VNB)と、1,4-ブタジエンとをディールズアルダー反応させることにより得ることができる。VNBは、1,4-ブタジエンとシクロペンタジエンのディールズアルダー反応させることにより得ることができる。
 常圧窒素雰囲気としたフラスコ内に、トルエンなどの溶媒を入れ、塩化白金酸IPA溶液等の遷移金属触媒溶液を注入する。次に上述のようにして得られたVNBBを入れ、オイルバスに浸漬し、加熱し(例えば、バス温度を50℃程度とする。)、そこへトリエトキシシランなどのシラン化合物を滴下する。
 バス温度としては、20~120℃であることが好ましい。3~12時間後、フラスコからオイルバスをはずし、室温まで放置する。場合によっては、水洗、乾燥を行った後に、溶媒を減圧留去した後、減圧乾燥機などを用いて乾燥させることにより、本発明のシラン化合物を得ることができる。純度が低い場合は、蒸留やカラムにより精製を行うことが好ましい。
Figure JPOXMLDOC01-appb-C000033
 本発明のシラン化合物の合成方法の他の実施形態について具体的に説明する。まず、化合物である2-エテニル-1,2,3,4,4a,5,8,8a-オクタヒドロ-1,4,5,8-ジメタノナフタレン(以下、場合により「VDMON」と表す。)は、VNBと、シクロペンタジエンとをディールズアルダー反応させることにより得ることができる。
 常圧窒素雰囲気としたフラスコ内に、トルエンなどの溶媒を入れ、塩化白金酸IPA溶液等の遷移金属触媒溶液を注入する。次に上述のようにして得られたVDMONを入れ、オイルバスに浸漬し、加熱し(例えば、バス温度を50℃程度とする。)、そこへトリエトキシシランなどのシラン化合物を滴下する。
 バス温度としては、20~120℃であることが好ましい。3~12時間後、フラスコからオイルバスをはずし、室温まで放置する。場合によっては水洗、乾燥を行った後に、溶媒を減圧留去した後、減圧乾燥機などを用いて乾燥させることにより、本発明のシラン化合物を得ることができる。純度が低い場合は、蒸留やカラムにより精製を行うことが好ましい。
Figure JPOXMLDOC01-appb-C000034
 また、一実施形態において、本発明のシラン化合物は、以下のような2段階のディールズアルダー反応を利用することにより得ることができる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
<シランカップリング剤>
 本発明のシラン化合物は、低極性でありながら高い活性部位を有する反応性官能基と、加水分解性基とを有するため、極性基等を有していない高分子材料と組み合わせて用いた場合であっても、優れた親和性(分散性)を有しながら、該高分子材料との反応性も維持できるため、シランカップリング剤の構成成分として好適に用いることができる。
<シーリング剤組成物>
 本発明のシラン化合物は、シーリング剤組成物の構成成分として好適に用いることができる。
 シーリング剤組成物は、本発明のシラン化合物を含んでなり、所望により、その他のシーリング剤(シーリング性ポリマー)を含んでなることができる。なお、シーリング剤は、一液硬化型(湿気硬化、酸素硬化、乾燥硬化、非硬化型)のものであってもよく、二液硬化型(反応硬化型)ものであってもよい。
 シラン化合物の含有量は、0.1~30質量%であることが好ましく、1~20質量%であることがより好ましい。
 シーリング剤(シーリング性ポリマー)は特に限定されるものではなく、アクリル系ポリマー、アクリルウレタン系ポリマー、ポリウレタン系ポリマー、シリコン系ポリマー、変成シリコン系ポリマー、ポリサルファイド系ポリマー、SBR系ポリマー、ブチルゴム系ポリマー、油性コーキング系ポリマーなどが挙げられ、これらの中でも、一液硬化型のポリウレタン系ポリマー、シリコン系ポリマー、変成シリコン系ポリマー、ポリサルファイド系ポリマー、ブチルゴム系ポリマーが好ましい。シーリング剤組成物は、上記したシーリング剤を1または2以上含んでいてもよい。
 シーリング剤の重量平均分子量は、300~500,000であることが好ましく、1000~300,000であることがさらに好ましい。なお、本発明において、重量平均分子量は、ゲルパーミエションクロマトグラフィー(Gel permeation chromatography(GPC))により測定した重量平均分子量(ポリスチレン換算)である。測定にはテトラヒドロフラン(THF)、N,N-ジメチルホルムアミド(DMF)、クロロホルムを溶媒として用いるのが好ましい。
 また、シーリング剤組成物は、その効果を損なわない範囲で、老化防止剤、耐電防止剤、熱安定剤、光安定剤などの添加剤を含んでいてもよい。
<接着剤組成物>
 本発明のシラン化合物は、接着剤組成物の構成成分として、好適に用いることができる
 接着剤組成物は、本発明のシラン化合物と、接着剤(接着性ポリマー)と、を含んでなることができる。なお、接着剤は、一液硬化型のものであってもよく、二液硬化型ものであってもよい。
 シラン化合物の含有量は、0.1~30質量%であることが好ましく、1~20質量%であることがより好ましい。
 接着剤(接着性ポリマー)は特に限定されるものではなく、水溶性接着剤(酢酸ビニールエマルジョン)、ゴム系接着剤(ニトリルゴム系樹脂、合成ゴム系樹脂)、エポキシ系接着剤、シアノアクリル系接着剤、ビニール系接着剤、シリコーンゴム系接着剤、プラスチック系接着剤、ホットメルト系接着剤などが挙げられ、これらの中でも、相溶性、安定性の観点からゴム系接着剤またはエポキシ系接着剤が好ましい。接着剤組成物は、上記した接着剤を1または2以上含んでいてもよい。
 接着剤の重量平均分子量は、300~500,000であることが好ましく、1000~300,000であることがさらに好ましい。
 接着剤組成物は、その効果を損なわない範囲で、酸化防止剤、老化防止剤、耐電防止剤、熱安定剤、紫外線吸収剤、光安定剤、難燃剤、核剤、透明化剤、加工性改良剤、滑剤などの添加剤を含んでいてもよい。
<ゴム組成物>
 本発明のシラン化合物は、ゴム組成物の構成成分として、好適に用いることができる。ゴム組成物が上記シラン化合物を含んでなることにより、ゴム組成物のtanδバランス(=tanδ(0℃)/tanδ(60℃))を改善することができ、良好な粘弾性を付与することができる。なお、tanδ(60℃)およびtanδ(0℃)は、JIS K 6394に準拠し、測定することができる。
 ゴム組成物は、上記したシラン化合物、エラストマー性ポリマーと、無機材料と、を含んでなることができる。
 シラン化合物の含有量は、エラストマー性ポリマー100質量部に対し、0.1~30質量部であることが好ましく、1~20質量部であることがより好ましい。
 (エラストマー性ポリマー)
 エラストマー性ポリマーは、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマー、すなわちエラストマーであれば特に限定されず、液状または固体状であってもよい。
 本発明のゴム組成物に使用されるエラストマー性ポリマーとしては、従来から一般的に使用されている任意のゴムを用いることができ、具体的には、天然ゴム、イソプレンゴム、ブタジエンゴム、1,2-ブタジエンゴム、スチレン-ブタジエンゴム、イソプレン-ブタジエンゴム、スチレン-イソプレン-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、ハロゲン化ブチルゴム、ハロゲン化イソプレンゴム、ハロゲン化イソブチレンコポリマー、クロロプレンゴム、ブチルゴムおよびハロゲン化イソブチレン-p-メチルスチレンゴム、ニトリルゴム、クロロプレンゴムなどのジエン系ゴム、ブチルゴム、エチレン-プロピレン系ゴム(EPDM、EPM)、エチレン-ブテンゴム(BBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴムなどのオレフィン系ゴム、エピクロロヒドリンゴム、多硫化ゴム、シリコーンゴム、ウレタンゴムなどを挙げることができ、また、水添されていてもよいポリスチレン系エラストマー性ポリマー(SBS、SIS、SEBS)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマーまたはポリアミド系エラストマー性ポリマーなどの熱可塑性エラストマーでもよい。なお、これらは単独、または任意のブレンドとして使用することができる。好ましいエラストマー性ポリマーは、天然ゴム、ブチルゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴムなどのジエン系ゴムである。
 エラストマー性ポリマーの重量平均分子量は、1000~3000,000であることが好ましく、10,000~1000,000であることがさらに好ましい。
 エラストマー性ポリマーのガラス転移温度(Tg)は、上述したように25℃以下であることが好ましく、0℃以下であることがさらに好ましい。エラストマー性ポリマーのTgがこの範囲であると、ゴム組成物が室温でゴム状弾性を示すため好ましい。なお、本発明において、Tgは、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。昇温速度は10℃/minにするのが好ましい。
 無機材料としては、例えば、シリカ、カーボンブラック、炭酸カルシウム、酸化チタンクレイ、クレイおよびタルクなどが挙げられ、これらの中でも、機械的特性および耐熱性をより向上させることができることから、シリカおよび/またはカーボンブラックを用いることが好ましい。
 無機材料の添加量は、エラストマー性ポリマー100質量部に対し、0.1~500質量部であることが好ましく、1~300質量部であることがより好ましい。
 また、本発明のゴム組成物は、本発明の目的を損なわない範囲において、上記シラン化合物以外のその他のシラン化合物をさらに含んでいてもよい。その他のシラン化合物としては例えば、以下の一般式(II)で表されるシラン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000039
 上記一般式(II)中、xは、2~20の整数であり、好ましくは2~8の整数である。また、oおよびo’は、それぞれ1~10の整数であり、好ましくは1~5の整数である。pおよびqは、それぞれ1~3の整数である。また、R11およびR13は、それぞれ加水分解性基であり、(i)アルコキシ基、より好ましくは炭素数1~30のアルコキシ基、さらに好ましくは炭素数1~20のアルコキシ基、または(ii)1以上のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~30のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~20のアルキル基で置換されたアミノ基である。アルコキシ基などの具体例としては上記した通りである。R12およびR14は、それぞれ、水素またはアルキル基であり、より好ましくは炭素数1~30のアルキル基、さらに好ましくは炭素数1~20のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、シクロペンチル基、へキシル基およびシクロへキシル基などが挙げられ、これらの中でも、メチル基およびエチル基が好ましい。
 上記式(II)を満たすシラン化合物として、市販されているものを使用してもよく、例えば、エボニック社製のSi-69やSi-75などが挙げられる。
 上記一般式(II)で表されるシラン化合物以外にも、以下のような構造を有するその他のシラン化合物を含有させることができる。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 ゴム組成物は、その効果を損なわない範囲で、シリカ補強剤、カーボンブラックなどの補強剤、シランカップリング剤、硫黄、酸化亜鉛などの加硫剤、架橋剤、加硫促進剤、架橋促進剤、加硫促進助剤、老化防止剤、軟化剤、各種オイル、酸化防止剤、老化防止剤、充填剤及び可塑材などの添加剤を含んでいてもよい。
 シリカ補強剤としては、特に限定されないが、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、および沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。これらのシリカは、10~300重量部の配合量で、それぞれ単独あるいは2種以上を組み合わせて用いることができる。これらシリカの比表面積は、特に制限されないが、窒素吸着比表面積(BET法)で通常10~400m2/g、好ましくは20~300m2/g、更に好ましくは40~250m2/gの範囲であるときに、補強性、耐摩耗性および発熱性等の改善が十分に達成され好適である。ここで、窒素吸着比表面積は、ASTM D3037-81に準じ、BET法で測定される値である。
 前記カーボンブラックは、用途に応じて適宜選択使用される。一般に、カーボンブラックは粒子径に基づいて、ハードカーボンとソフトカーボンとに分類される。ソフトカーボンはゴムに対する補強性が低く、ハードカーボンはゴムに対する補強性が強い。本発明のゴム組成物では、特に補強性の強いハードカーボンを用いるのが好ましい。エラストマー性ポリマー100重量部に対して10~250重量部、好ましくは20~200重量部、より好ましくは30~150重量部含んでいるのがよい。
 前記老化防止剤としては、例えば、ヒンダードフェノール系、脂肪族および芳香族のヒンダードアミン系等の化合物が挙げられ、エラストマー性ポリマー100重量部に対して0.1~10重量部、より好ましくは1~5重量部添加するのがよい。また、前記酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等が挙げられる。エラストマー性ポリマー100重量部に対して0.1~10重量部、より好ましくは1~5重量部添加するのがよい。
 前記着色剤としては、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料、アゾ顔料、銅フタロシアニン顔料などが挙げられる。エラストマー性ポリマー100重量部に対して0.1~10重量部、より好ましくは1~5重量部添加するのがよい。
 前記加硫剤としては、粉末硫黄、沈降性硫黄、高分散性硫黄、表面処理硫黄、不溶性硫黄、ジモルフォリンジサルファイド、アルキルフェノールジサルファイドなどの硫黄系加硫剤や亜鉛華、酸化マグネシウム、リサージ、p-キノンジオキサム、p-ジベンゾイルキノンジオキシム、テトラクロロ-p-ベンゾキノン、ポリ-p-ジニトロベンゼン、メチレンジアニリンなどが挙げられる。
 前記加硫助剤としては、アセチル酸、プロピオン酸、ブタン酸、ステアリン酸、アクリル酸、マレイン酸等の脂肪酸、アセチル酸亜鉛、プロピオン酸亜鉛、ブタン酸亜鉛、ステアリン酸亜鉛、アクリル酸亜鉛、マレイン酸亜鉛等の脂肪酸亜鉛、酸化亜鉛などが挙げられる。
 前記加硫促進剤としては、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)等のチウラム系、ヘキサメチレンテトラミン等のアルデヒド・アンモニア系、ジフェニルグアニジン等のグアニジン系、ジベンゾチアジルジサルファイド(DM)等のチアゾール系、シクロヘキシルベンゾチアジルスルフェンアマイド系などが挙げられる。
 本発明では、前記配合剤および添加剤は、公知のゴム用混練機、例えば、ロール、バンバリーミキサー、ニーダー等で混練し、任意の条件で加硫してゴム組成物として使用することができる。これら配合剤および添加剤の添加量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
<タイヤ>
 上記ゴム組成物を用いて、従来公知の方法によりタイヤを作製することができる。例えば、上記ゴム組成物を押し出し、次いで、タイヤ成型機を用いて成形した後、加硫機を用いて加熱・加圧することにより、タイヤを作製することができる。
<その他>
 本発明のシラン化合物は、シーリング剤組成物、接着剤組成物およびゴム組成物に使用することができる他、例えば、電気・電子、化学、自動車、機械、食品・化粧品、繊維、パルプ、建築・土木関係の製品に適用することができる。
 本発明のシラン化合物は、パワトレイン関係製品として、ハイブリッド・電気自動車用製品、ディーゼルエンジン関係製品、スタータ、オルタネータ、エンジン冷却製品、駆動系製品など自動車関係製品に適用することができる。
 具体的には、例えば、
(1)タイヤのトレッド、カーカス、サイドウォール、インナーライナー、アンダートレッド、ベルト部などのタイヤ各部、
(2)外装のラジエータグリル、サイドモール、ガーニッシュ(ピラー、リア、カウルトップ)、エアロパーツ(エアダム、スポイラー)、ホイールカバー、ウェザーストリップ、カウベルトグリル、エアアウトレット・ルーバー、エアスクープ、フードバルジ、換気口部品、防触対策部品(オーバーフェンダー、サイドシールパネル、モール(ウインドー、フード、ドアベルト))、マーク類;ドア、ライト、ワイパーのウェザーストリップ、グラスラン、グラスランチャンネルなどの内装窓枠用部品、
(3)エアダクトホース、ラジエターホース、ブレーキホース、
(4)クランクシャフトシール、バルブステムシール、ヘッドカバーガスケット、A/Tオイルクーラーホース、ミッションオイルシール、P/Sホース、P/Sオイルシールなどの潤滑油系部品、
(5)燃料ホース、エミッションコントロールホース、インレットフィラーホース、ダイヤフラム類などの燃料系部品;エンジンマウント、インタンクポンプマウントなどの防振用部品、
(6)CVJブーツ、ラック&ピニオンブーツなどのブーツ類、
(7)A/Cホース、A/Cシールなどのエアコンデショニング用部品、
(8)タイミングベルト、補機用ベルトなどのベルト部品、
(9)ウィンドシールドシーラー、ビニルプラスチゾルシーラー、嫌気性シーラー、ボディシーラー、スポットウェルドシーラーなどのシーラー類などが挙げられる。
 また、乗用車用エアコン、バス用エアコン、冷凍機などの空調関係製品に適用することができる。また、コンビネーションメータ、ヘッドアップディスプレイ、ボデー製品、リレーなどのボデー関係製品に適用することができる。また、車間制御クルーズ/プリクラッシュセーフティ/レーンキーピングアシストシステム、ステアリングシステム、灯火制御システム、エアバッグ関連センサ&ECU、ブレーキコントロールなどの走行安全関係製品に適用することができる。また、カーナビゲーションシステム、ETC、データ通信モジュール、CAN-Gateway ECUなどの情報通信関係製品に適用することができる。また、自動車部品、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、ホットメルト接着剤、ブーツ類、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナーなどのエラストマー、ゴム履物、ベルト、ホース、防振ゴム、ゴムロール、印刷用ブランケット、ゴム・樹脂ライニング、ゴム板(ゴムシート)、導電性ゴム製品、シーリング材、シート防水、ウレタン塗膜防水、土木用遮水シート、密封装置、押出ゴム製品、スポンジゴム製品、防舷材、建築用ガスケット、 免震ゴム、舗装用ゴムブロック、非金属チェーン、医療・衛生用ゴム製品、ゴム引布製品、ゴム・ビニール手袋に適用することができる。また、タッチパネル用耐指紋コーティング、金属表面用潤滑性コート、金属塗装用プライマーなどのコーティング剤に適用することができる。
 また、本発明によるシラン化合物は、無機充填剤の表面処理に使用することができる。表面処理方法としては、(1)乾式法、(2)湿式法および(3)インテグラルブレンド法がある。
 乾式法は、大量の無機充填剤の表面処理をするのに適している方法で、無機充填剤をよくかき混ぜながらシラン化合物を噴霧するか蒸気状態で吹き込むことにより行われる。また、必要に応じて加熱処理工程を入れる。この方法は、希釈剤を使用しないため作業性に優れる。
 湿式法は、無機充填剤を溶媒中に分散させ、シラン化合物も水や有機溶媒に希釈し、スラリー状態で激しくかき混ぜながら添加することにより行われる。この方法によれば、均一な表面処理が可能である。
 インテグラルブレンド法は、無機充填剤を有機樹脂に混合する際に、シラン化合物を直接有機樹脂に添加することにより行われる。この方法は、簡便であることから工業的に広く行われている。この方法で無機充填剤にシラン化合物が作用する際には、フィラー表面へのシラン化合物の移行、加水分解および縮合の3工程を経る。したがって、この方法ではシラン化合物と有機樹脂の反応性に注意する必要があります。
 シラン化合物の添加量としては、一般的に以下の式により計算することができる。
・添加量(g)=[無機充填剤の重量(g)×無機充填剤の比表面積(m/g)]/シラン化合物の最小被覆面積(m/g)
 なお、シラン化合物の最小被覆面積は、以下の式により計算することができる。
・最小被覆面積(m/g)=(6.02×1023×13×10-20)/シラン化合物の分子量
 なお、無機充填剤の比表面積が不明の場合、1重量%のシラン化合物により処理し、次いで量を適宜増減して最適な結果が得られる量を見出すことにより求める。
 無機充填剤としては、例えば、E-ガラス(比表面積0.1~0.12m/g)、マイカ(比表面積0.2~0.3m/g)、石英粉(比表面積1.0~2.0m/g)、ケイ酸カルシウム(比表面積1.0~3.0m/g)、磁性紛(比表面積1.0~3.0m/g)、炭酸カルシウム(比表面積2.0~5.0m/g)、クレイ(比表面積6.0~15.0m/g)、カオリン(比表面積7.0~30.0m/g)、タルク(比表面積830~20.0m/g)、合成シリカ(比表面積200.0~300.0m/g)などが挙げられる。
 本発明によるシラン化合物を塗料またはコーティング剤に適用することにより、接着性、耐候性、耐久性、耐摩耗性、耐薬品性を向上させることができるとともに、充填剤および顔料分散性を改善することができる。
 また、本発明によるシラン化合物をガラス繊維強化樹脂に適用することにより、衝撃強度、耐水性、電気絶縁性および湿潤環境下における長期安定性を向上させることができる。また、強度保持能力および断熱マットの弾性力を改善することができる。さらにガラス繊維束のほつれを防止することができる。
 また、本発明によるシラン化合物を印刷用インクに適用することにより、接着性および離型性を向上させることができるとともに、濡れ性を改善することができる。
 また、本発明によるシラン化合物をエラストマーに適用することにより、耐摩耗性、耐引き裂き性、追従性、伸び性を向上させることができるとともに、充填剤の分散性を改善することができる。また、混練工程を短縮させることができるため、コストを低減させることもできる。
 また、本発明によるシラン化合物を熱可塑性樹脂に適用することにより、充填剤や顔料の分散性を改善することができるとともに、オレフィン樹脂などの架橋性を向上させることができる。また、高機能化や難燃性の付与も期待することができる。
 本発明によるシラン化合物を有機材料または有機溶剤へ添加する場合、その添加量としては、一般的に0.2~2.0質量%とすることができる。
 本発明によるシラン化合物をプライマーとして使用する場合、まず、アルコール系溶媒、例えば、イソプロピルアルコール(IPA)の1~2%溶液を調製し、被着体に塗布することが好ましい。その後IPAを揮発させ、目的の接着剤またはコーティング剤を塗布することが好ましい。
 本発明によるシラン化合物を接着向上剤として使用する場合、
接着剤またはコーティング材に、シラン化合物を1%程度添加することができる。使用する接着剤またはコーティング材によっては、反応してゲル化する場合があるため留意する。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明がこれら実施例に限定されるものではない。
(実施例1-1)
 シラン化合物1の合成
 100mLの2口フラスコに玉栓、真空ラインを繋げた3方コック、スターラーバーを入れ、真空ラインを用いて、ドライヤーで加熱しながら、系内の脱気-窒素置換を10回繰り返し、常圧窒素雰囲気下とした。
 そのフラスコ内に、モレキュラシーブスにて乾燥した11.37gのトルエン溶媒を入れた後、塩化白金酸0.267%イソプロパノール溶液を0.5g(2.55μmol)注入し、2-エテニル-1,2,3,4,4a,5,8,8a-オクタヒドロ-1,4-メタノナフタレン(VNBB)を1.838g(10.54mmol)をシリンジを用いて注入した。
 その後、スターラーを用いて撹拌し溶解させた。次にフラスコをオイルバスに浸漬し、バス温度を50℃まで徐々に上昇させ反応させた。シリンジを用いて、2.00g(12.22mmol)のトリエトキシシランを滴下した。
 6時間後、フラスコからオイルバスをはずし、室温まで放置した。次に、トルエンを減圧去した後、減圧乾燥機にて1mmHg、12時間、室温にて乾燥することにより、3.39gの化合物を得た(収率95%)。得られた化合物の構造をH-NMR、13C-NMR測定およびGC-MS測定により確認したところ、シランの導入率は100%であり、目的とするシラン化合物1が得られていることを確認した。それぞれのNMRチャートを図1および2に表す。また、得られたシラン化合物1のクロマトグラムを図3に表す。
Figure JPOXMLDOC01-appb-C000042
 シーリング剤組成物の作成
 シラン化合物1を、1成分形ウレタン系シーリング剤(ウレタンシールS700NB、セメダイン株式会社製)に、表1に示す量で混合し、減圧乾燥機にて脱気し、シーリング剤組成物を得た。得られたシーリング剤組成物を、ガラス板(松波硝子工業株式会社、76mm×26mm×1.0mmのマイクロスライドガラス)に塗布し、室温で1週間放置、硬化させた。次に硬化させたシーリング剤組成物の接着力(N/m)をJIS K6854-1に準拠し、90°剥離試験(引張速度300mm/分、室温)により測定した。結果を表1に示す。
(実施例1-2)
 シラン化合物2の合成
 2-エテニル-1,2,3,4,4a,5,8,8a-オクタヒドロ-1,4-メタノナフタレン(VNBB)に代え、2-エテニル-1,2,3,4,4a,5,8,8a-オクタヒドロ-1,4,5,8-ジメタノナフタレン(VDMON)に変更し、1.96g滴下させた以外は、実施例1-1と同様にしてシラン化合物を得た(3.55g、収率96%)。得られた化合物の構造をH-NMR、13C-NMR測定およびGC-MS測定により確認したところ、シランの導入率は100%であり、目的とするシラン化合物2が得られていることを確認した。
Figure JPOXMLDOC01-appb-C000043
 シラン化合物1を、シラン化合物2に変更した以外は実施例1-1と同様にして、シーリング剤組成物を得た。また、実施例1-1同様、シーリング剤組成物の接着力(N/m)を測定し、結果を表1に示した。
(比較例1-1)
 1成分形ウレタン系シーリング剤(ウレタンシールS700NB、セメダイン株式会社製)を、ガラス板(松波硝子工業株式会社、マイクロスライドガラス76mm×26mm×1.0mm)に塗布し、室温で1週間放置、硬化させた。次に硬化させたシーリング剤の接着力を実施例1同様、90°剥離試験により測定した。結果を表1に示す。
(比較例1-2)
 1成分形ウレタン系シーリング剤(ウレタンシールS700NB、セメダイン株式会社製)に、上記式(II)を満たすシラン化合物である3-グリシドキシプロピルトリエトキシシラン(KBE-403、信越化学工業株式会社、下記化学式(III))を、表1に示す量で混合して、減圧乾燥機にて脱気し、シーリング剤組成物を得た。得られたシーリング剤を、ガラス板(松波硝子工業株式会社、マイクロスライドガラス76mm×26mm×1.0mm)に塗布し、室温で1週間放置、硬化させた。次に硬化させたシーリング剤組成物の接着力を実施例1同様、90°剥離試験により測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
(実施例2-1)
ゴム組成物の作成
 以下の各成分を100mLニーダー(東洋精機社製ラボプラストミル)を用いて混練し、ゴム組成物を得た。このゴム組成物について160°、15分間のプレス加硫を行いゴム組成物からなる厚さ1mmのゴムシートを得た。
・天然ゴム(RSS♯3)                100質量部
・シラン化合物1                   1.19質量部
・その他のシラン化合物(エボニック社製、商品名:Si69)
                            3.2質量部
・シリカAQ(東ソー社製、商品名:ニップシールAQ)   40質量部
・酸化亜鉛3号(東邦亜鉛社製、商品名:銀嶺R)       3質量部
・ステアリン酸(新日本理化社製、商品名:ステアリン酸300)1質量部
・老化防止剤(大内新興化学社製、ノクラック224)     2質量部
・硫黄(細井化学社製、油処理硫黄)             2質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーCZ)  1質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーD) 0.5質量部
(実施例2-2)
 シランカップリング剤の含有量を2.2質量部に変更した以外は実施例2-1と同様にしてゴム組成物およびゴムシートを得た。
(実施例2-3)
 天然ゴムをスチレンブタジエンゴム(日本ゼオン社製、商品名:にポール1502)に変更し、加硫時間を20分に変更した以外は実施例2-1と同様にしてゴム組成物およびゴムシートを得た。
(実施例2-4)
 混練成分を以下のものに変更した以外は、実施例2-1と同様にしてゴムシートを得た。
・天然ゴム(RSS♯3)                100質量部
・シラン化合物2                      1質量部
・その他のシラン化合物(エボニック社製、商品名:Si69)
                            3.2質量部
・シリカAQ(東ソー社製、商品名:ニップシールAQ)   40質量部
・酸化亜鉛3号(東邦亜鉛社製、商品名:銀嶺R)       3質量部
・ステアリン酸(新日本理化社製、商品名:ステアリン酸300)1質量部
・老化防止剤(大内新興化学社製、ノクラック224)     1質量部
・硫黄(川崎化学社製、油処理硫黄)             2質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーCZ)  1質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーD) 0.5質量部
(比較例2-1)
 シラン化合物1を含有させなかった以外は実施例2-1と同様にしてゴム組成物およびゴムシートを得た。
(比較例2-2)
 シラン化合物1を含有させなかった以外は実施例2-3と同様にしてゴム組成物およびゴムシートを得た。
(比較例2-3)
 混練成分を以下のものに変更した以外は、実施例2-1と同様にしてゴムシートを得た。
・天然ゴム(RSS♯3)                100質量部
・その他のシラン化合物(エボニック社製、商品名:Si69)
                            4.2質量部
・シリカAQ(東ソー社製、商品名:ニップシールAQ)   40質量部
・酸化亜鉛3号(東邦亜鉛社製、商品名:銀嶺R)       3質量部
・ステアリン酸(日本精製、商品名:ステアリン酸300)   1質量部
・老化防止剤(大内新興化学社製、ノクラック224)     1質量部
・硫黄(川崎化学社製、油処理硫黄)             2質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーCZ)  1質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーD) 0.5質量部
<物性評価>
 上記実施例2-1~2-4および比較例2-1~2-3で得られたおよびゴムシートの物性を下記の方法により評価した。
(JIS-A硬度)
 実施例2-1で得られたゴムシートを6枚重ね、JIS K6353(2012年発行)に準拠して、JIS-A硬度を測定した。実施例2-2~2-4および比較例2-1~2-3において得られたゴムシートについても同様にして測定した。測定結果を表2に表す。
(引張特性)
 実施例2-1で得られたゴムシートから3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251(2010年発行)に準拠して行い、100%モジュラス(100%Mod)[MPa]、300%モジュラス(300%Mod)[MPa]、破断強度(TB)[MPa]、および、破断伸び(EB)[%]を室温(25℃)にて測定した。実施例2-2~2-4および比較例2-1~2-3において得られたゴムシートについても同様にして測定した。測定結果を表2に表す。
(粘弾性)
 粘弾性測定装置(UBM社製REOGEL E-4000)を用い、JIS K 6394に準拠して、歪20μm、約0.1%、周波数10Hzの条件下において、実施例2-1で得られたゴムシートの、測定温度0℃および60℃におけるtanδを求め、この値からtanδバランス(=tanδ(0℃)/tanδ(60℃))を算出した。実施例2-2~2-4および比較例2-1~2-3において得られたゴムシートについても同様にして測定した。測定結果を表2に表す。
Figure JPOXMLDOC01-appb-T000046
 実施例2-1および2-2で得られたゴムシートと、比較例2-1で得られたゴムシートを比較すると、tanδバランスは実施例2-1で得られたゴムシートのほうが高く、粘弾性に優れることが分かる。
 また、実施例2-3で得られたゴムシートと、比較例2-2で得られたゴムシートを比較すると、tanδバランスは実施例2-3で得られたゴムシートのほうが高く、粘弾性に優れることが分かる。
 また、実施例2-4で得られたゴムシートと、比較例2-3で得られたゴムシートを比較すると、tanδバランスは実施例2-3で得られたゴムシートのほうが高く、粘弾性に優れることが分かる。

Claims (6)

  1.  基本骨格として、下記式(1)~(4)のうちの一種または複数を、2以上組み合わせてなり、かつ少なくとも下記式(1)~(3)のいずれか一つの構造を有する縮合環を有し、
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     a、c、eおよびgはそれぞれ独立して、0~5の整数であり、
     前記縮合環が有する環数が2である場合、b、d、fおよびhはそれぞれ独立して、1~5の整数であり、
     前記縮合環が有する環数が3以上である場合、b、d、fおよびhはそれぞれ独立して、0~5の整数であり、
     但し、a、c、eおよびgが0の場合、架橋構造を形成しない)
     前記基本骨格が、1つの下記式(5)で表されるシラン基により置換されてなることを特徴とする、シラン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式中、
     Rは、水素またはアルキル基であり、
     Rは、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
     Rは、水素またはアルキル基であり、
     iは、0~30の整数であり、
     nは、0~2の整数であり、
     iが、2以上である場合、Rはそれぞれ独立して選択される)
  2.  前記縮合環が有する環数が、2~10である、請求項1に記載のシラン化合物。
  3.  下記一般式(I)で表される、請求項1または2に記載のシラン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式中、
     Rは、水素またはアルキル基であり、
     Rは、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
     nは、0~2の整数であり、
     pは、1~10の整数であり、
     qは、0~5の整数であり、
     rは、0~5の整数であり、
     sは、0~30の整数であり、
     pが2以上である場合、qはそれぞれ独立して選択され、
     但し、qおよびrが0の場合、架橋構造を形成しない)
  4.  Rは、炭素数1~30のアルコキシ基または1以上の炭素数1~30のアルキル基で置換されたアミノ基である、請求項3に記載のシラン化合物。
  5.  Rは、メトキシ基またはエトキシ基である、請求項3または4に記載のシラン化合物。
  6.  請求項1~5のいずれか一項に記載のシラン化合物と、下記一般式(II)で表されるシラン化合物とを含んでなる、ゴム組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     Xは、2~20の整数である)
     oおよびo’は、それぞれ1~10の整数であり、
     pおよびqは、それぞれ1~3の整数であり、
     R11およびR13は、それぞれ、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
     R12およびR14は、それぞれ、水素またはアルキル基である)
PCT/JP2016/055094 2015-05-14 2016-02-22 シラン化合物 WO2016181679A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015099390A JP2018108935A (ja) 2015-05-14 2015-05-14 シラン化合物
JP2015-099390 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016181679A1 true WO2016181679A1 (ja) 2016-11-17

Family

ID=57248057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055094 WO2016181679A1 (ja) 2015-05-14 2016-02-22 シラン化合物

Country Status (2)

Country Link
JP (1) JP2018108935A (ja)
WO (1) WO2016181679A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146103A1 (ja) * 2016-02-23 2017-08-31 Jxエネルギー株式会社 シラン化合物ならびに、これを含んでなるゴム組成物、シーリング剤組成物、接着剤組成物およびタイヤ
WO2020138056A1 (ja) * 2018-12-26 2020-07-02 Jxtgエネルギー株式会社 シラン化合物およびその組成物
WO2020250824A1 (ja) * 2019-06-10 2020-12-17 Jxtgエネルギー株式会社 シラン化合物およびタンパク質変性剤を含んでなるシランカップリング剤組成物、ならびにそれを含むゴム組成物
WO2021161672A1 (ja) * 2020-02-10 2021-08-19 出光興産株式会社 シラン含有化合物及び変性水添石油樹脂
WO2021256295A1 (ja) * 2020-06-18 2021-12-23 Eneos株式会社 シランカップリング剤組成物およびそれを含むゴム組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322185A (ja) * 2001-04-27 2002-11-08 Nippon Petrochemicals Co Ltd トリアルコキシシリル基含有ノルボルネン組成物
JP2004525230A (ja) * 2001-04-10 2004-08-19 ソシエテ ド テクノロジー ミシュラン カップリング剤としてビス‐アルコキシシランテトラスルフィドを含むタイヤおよびトレッド
JP2009255380A (ja) * 2008-04-16 2009-11-05 Rimtec Kk 複合成形体
JP2010509291A (ja) * 2006-11-10 2010-03-25 ロディア オペレーションズ アルコキシ−及び/又はハロシラン(ポリ)スルフィドの製造方法並びに該方法によって得られる新規の物質及びカップリング剤としての使用
JP2011503004A (ja) * 2007-11-05 2011-01-27 プロメラス, エルエルシー 官能化ノルボルネンの中間体としてのエンド−および/またはエキソ−ノルボルネンカルボキシアルデヒドの生成
WO2013018506A1 (ja) * 2011-07-29 2013-02-07 日本ゼオン株式会社 重合性組成物、樹脂成形体及びその製造方法、並びに積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525230A (ja) * 2001-04-10 2004-08-19 ソシエテ ド テクノロジー ミシュラン カップリング剤としてビス‐アルコキシシランテトラスルフィドを含むタイヤおよびトレッド
JP2002322185A (ja) * 2001-04-27 2002-11-08 Nippon Petrochemicals Co Ltd トリアルコキシシリル基含有ノルボルネン組成物
JP2010509291A (ja) * 2006-11-10 2010-03-25 ロディア オペレーションズ アルコキシ−及び/又はハロシラン(ポリ)スルフィドの製造方法並びに該方法によって得られる新規の物質及びカップリング剤としての使用
JP2011503004A (ja) * 2007-11-05 2011-01-27 プロメラス, エルエルシー 官能化ノルボルネンの中間体としてのエンド−および/またはエキソ−ノルボルネンカルボキシアルデヒドの生成
JP2009255380A (ja) * 2008-04-16 2009-11-05 Rimtec Kk 複合成形体
WO2013018506A1 (ja) * 2011-07-29 2013-02-07 日本ゼオン株式会社 重合性組成物、樹脂成形体及びその製造方法、並びに積層体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146103A1 (ja) * 2016-02-23 2017-08-31 Jxエネルギー株式会社 シラン化合物ならびに、これを含んでなるゴム組成物、シーリング剤組成物、接着剤組成物およびタイヤ
WO2020138056A1 (ja) * 2018-12-26 2020-07-02 Jxtgエネルギー株式会社 シラン化合物およびその組成物
US11807738B2 (en) 2018-12-26 2023-11-07 Eneos Corporation Silane compound and composition thereof
CN113924334A (zh) * 2019-06-10 2022-01-11 引能仕株式会社 包含硅烷化合物和蛋白质变性剂而成的硅烷偶联剂组合物、以及包含该硅烷偶联剂组合物的橡胶组合物
JPWO2020250824A1 (ja) * 2019-06-10 2020-12-17
WO2020250824A1 (ja) * 2019-06-10 2020-12-17 Jxtgエネルギー株式会社 シラン化合物およびタンパク質変性剤を含んでなるシランカップリング剤組成物、ならびにそれを含むゴム組成物
JP7438210B2 (ja) 2019-06-10 2024-02-26 Eneos株式会社 シラン化合物およびタンパク質変性剤を含んでなるシランカップリング剤組成物、ならびにそれを含むゴム組成物
TWI843861B (zh) * 2019-06-10 2024-06-01 日商Jxtg能源股份有限公司 含有矽烷化合物及蛋白質改質劑而成之矽烷偶合劑組合物、以及含有其之橡膠組合物
US12024615B2 (en) 2019-06-10 2024-07-02 Eneos Corporation Silane coupling agent composition comprising silane compound and protein modifying agent, and rubber composition comprising the same
WO2021161672A1 (ja) * 2020-02-10 2021-08-19 出光興産株式会社 シラン含有化合物及び変性水添石油樹脂
WO2021256295A1 (ja) * 2020-06-18 2021-12-23 Eneos株式会社 シランカップリング剤組成物およびそれを含むゴム組成物
CN115698158A (zh) * 2020-06-18 2023-02-03 引能仕株式会社 硅烷偶联剂组合物和包含该硅烷偶联剂组合物的橡胶组合物
CN115698158B (zh) * 2020-06-18 2024-04-05 引能仕株式会社 硅烷偶联剂组合物和包含该硅烷偶联剂组合物的橡胶组合物

Also Published As

Publication number Publication date
JP2018108935A (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2017188411A1 (ja) 含硫黄シラン化合物およびこの合成方法、ゴム組成物、タイヤ、接着剤組成物、ならびにシーリング剤組成物
WO2016181679A1 (ja) シラン化合物
WO2017146103A1 (ja) シラン化合物ならびに、これを含んでなるゴム組成物、シーリング剤組成物、接着剤組成物およびタイヤ
JP7493457B2 (ja) シラン化合物およびその組成物
JP6207125B2 (ja) ゴム混合物
JP7055808B2 (ja) ゴム組成物、架橋ゴム組成物、タイヤ及び工業用ゴム部品
CA2287652A1 (en) Sulfur-functional polyorganosiloxanes
WO2017159633A1 (ja) シラン化合物、ゴム組成物およびタイヤ
WO2016181678A1 (ja) シランカップリング剤、シーリング剤組成物、接着剤組成物、ゴム組成物およびタイヤ
JP2023134560A (ja) 含硫黄シラン化合物およびその組成物
WO2017203728A1 (ja) 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物
JP2008163125A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2018108936A (ja) シランカップリング剤、シーリング剤組成物、接着剤組成物、ゴム組成物およびタイヤ
JP5831354B2 (ja) ゴム用配合剤、ゴム組成物及びタイヤ
KR102394077B1 (ko) 실란 변성 중합체, 및 그것을 사용한 고무용 배합제 및 고무 조성물
JP5105048B2 (ja) 有機珪素化合物及びその製造方法、並びにゴム用配合剤
JP2012240927A (ja) 有機ケイ素化合物及びその製造方法、ゴム用配合剤、ゴム組成物並びにタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP