WO2016179765A1 - 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置 - Google Patents

用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置 Download PDF

Info

Publication number
WO2016179765A1
WO2016179765A1 PCT/CN2015/078608 CN2015078608W WO2016179765A1 WO 2016179765 A1 WO2016179765 A1 WO 2016179765A1 CN 2015078608 W CN2015078608 W CN 2015078608W WO 2016179765 A1 WO2016179765 A1 WO 2016179765A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric portion
crankshaft
rotary compressor
flexible structure
oil pressure
Prior art date
Application number
PCT/CN2015/078608
Other languages
English (en)
French (fr)
Inventor
杨开成
喻继江
虞阳波
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to US15/533,557 priority Critical patent/US20170335849A1/en
Priority to JP2017531701A priority patent/JP6467055B2/ja
Priority to EP15891468.9A priority patent/EP3211239A4/en
Priority to PCT/CN2015/078608 priority patent/WO2016179765A1/zh
Publication of WO2016179765A1 publication Critical patent/WO2016179765A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to the field of compressor manufacturing technology, and in particular to a crankshaft, a rotary compressor and a refrigeration cycle apparatus for a rotary compressor.
  • the rotary compressor generally has a gap between the inner wall of the cylinder and the outer wall of the piston in order to ensure the volumetric efficiency of the compression mechanism.
  • the compression mechanism often jams at the minimum clearance, thereby causing a stall abnormality of the rotary compressor.
  • the eccentric portion of the piston and the crankshaft is supplied with oil by the oil hole on the eccentric portion, and there is a problem that the oil pressure is low and the lubrication is poor, and the contact area between the eccentric portion of the crankshaft and the inner wall of the piston is large, and the friction factor is large, resulting in rotary compression.
  • the machine input power is high.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention is directed to a crankshaft for a rotary compressor that can absorb an abnormal contact force of a piston with a crankshaft or improve lubrication of a crankshaft and a piston.
  • the present invention also proposes a rotary compressor having the above crankshaft.
  • the present invention further provides a refrigeration cycle apparatus having the above rotary compressor.
  • a crankshaft for a rotary compressor includes: a body; and an eccentric portion, the eccentric portion is sleeved on the body, wherein the eccentric portion is provided with a flexible structure and oil At least one of the pressing faces configured to deform inwardly when subjected to an external force in an inward direction, the oil pressure face being configured to rotate in a reverse direction about a central axis of rotation of the crankshaft A distance between a tip end of the oil pressure surface and a central axis of the eccentric portion is smaller than a distance between a tail end of the oil pressure surface and a central axis of the eccentric portion.
  • the crankshaft for a rotary compressor when the eccentric portion is provided with the flexible structure of the above structural features, the problem of the rotary compressor card machine caused by the abnormal contact between the piston and the cylinder can be effectively solved;
  • the hydraulic surface of the above-mentioned structural features is provided on the eccentric portion, the centrifugal force of the high-speed rotating crankshaft can be used to form a high-pressure oil wedge at the tail of the oil chamber, thereby increasing the inlet oil pressure and improving the lubrication environment of the eccentric portion and the piston.
  • the eccentric portion is provided with the flexible structure, the flexible structure has a first end and a second end, and the first end of the flexible structure is connected to a side of the eccentric portion
  • the second end of the flexible structure and the side wall of the eccentric portion are spaced apart from each other on the wall.
  • the oil pressure surface is formed on a side wall of the eccentric portion opposite to the second end of the flexible structure.
  • the oil pressure surface is formed as a smooth curved surface, or a combination of a curved surface and a flat surface.
  • the flexible structure and the central axis of the eccentric portion are located at a central axis of the body The same side of the line.
  • the first end and the second end of the flexible structure are respectively located at two sides of a reference plane, wherein the reference plane is a central axis of the eccentric portion and a center of the body The plane formed by the axis.
  • a distance d2 between a point of the flexible structure and the reference plane that is farthest from a central axis of the eccentric portion and a central axis of the eccentric portion satisfies: d2 ⁇ R0, Wherein R0 is an outer diameter of the eccentric portion.
  • the eccentric portion is provided with the flexible structure, the flexible structure has a first end and a second end, and the first end and the second end of the flexible structure are connected On the side wall of the eccentric portion, the portions of the flexible structure other than the first end and the second end are spaced apart from the side walls of the eccentric portion.
  • the eccentric portion is provided with the oil pressure surface, and both ends of the oil pressure surface in the axial direction of the eccentric portion are respectively adjacent to both end faces of the eccentric portion.
  • the two ends of the oil pressure surface are directly adjacent to corresponding end faces of the eccentric portion, respectively.
  • the oil pressure surface is provided on the eccentric portion, and the oil pressure surface is formed with a communication oil hole that communicates with a center oil hole of the body.
  • a rotary compressor comprising: a housing; a compression mechanism, the compression mechanism being disposed in the housing, the compression mechanism having a working chamber; and an embodiment according to the first aspect of the present invention
  • a crankshaft for a rotary compressor wherein one end of the crankshaft extends through the compression mechanism, and the eccentric portion of the crankshaft is located within the working chamber.
  • the overall performance of the rotary compressor is improved by providing the crankshaft for the rotary compressor of the first aspect embodiment described above.
  • a refrigeration cycle apparatus includes a rotary compressor according to an embodiment of the second aspect of the present invention.
  • the overall performance of the refrigeration cycle apparatus is improved.
  • FIG. 1 is a schematic view of a rotary compressor according to an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of the compression mechanism shown in Figure 1;
  • Figure 3 is a partial axial schematic view of the compression mechanism shown in Figure 2;
  • Figure 4 is a schematic view of the operation of the compression mechanism shown in Figure 2;
  • Figure 5 is another schematic view of the operation of the compression mechanism shown in Figure 2;
  • Figure 6 is an assembled view of the crankshaft and the piston shown in Figure 2;
  • Figure 7 is a perspective view of a crankshaft according to a first embodiment of the present invention.
  • Figure 8 is a front elevational view of the crankshaft shown in Figure 7;
  • FIG. 9 and 10 are two axial views of the crankshaft shown in Fig. 7;
  • Figure 11 is a perspective view of a crankshaft according to a second embodiment of the present invention.
  • Figure 12 is an axial schematic view of the crankshaft shown in Figure 11;
  • Figure 13 is a perspective view of a crankshaft according to a third embodiment of the present invention.
  • Figure 14 is an axial schematic view of the crankshaft shown in Figure 13;
  • Figure 15 is a perspective view of a crankshaft according to a fourth embodiment of the present invention.
  • Figure 16 is a perspective view of a crankshaft according to a fifth embodiment of the present invention.
  • Figure 17 is an axial schematic view of the crankshaft shown in Figure 16.
  • 200 compression mechanism
  • 201 main bearing
  • 202 cylinder
  • 203 auxiliary bearing
  • 204 sliding piece
  • 205 piston
  • crankshaft 1: body; 2: eccentric portion; 2a: corresponding end face;
  • 21 flexible structure; 211: first end; 212: second end;
  • 22 oil pressure surface; 22a: first stage; 22b: second stage; 22c: both ends; 221: apex; 222: tail end;
  • a crankshaft 300 for a rotary compressor 1000 according to an embodiment of the first aspect of the present invention will now be described with reference to Figs.
  • the rotary compressor 1000 may further include: a housing 100 and a compression mechanism 200.
  • the compression mechanism 200 may include a main bearing 201, a cylinder 202, a sub-bearing 203, a slide 204, and
  • the piston 205, the main bearing 201 and the sub-bearing 203 are respectively disposed at both axial ends of the cylinder 202 to define a working chamber together with the cylinder 202, and the crankshaft 300 penetrates the main bearing 201, the cylinder 202, and the sub-bearing 203.
  • a crankshaft 300 for a rotary compressor 1000 includes a body 1 and an eccentric portion 2.
  • the eccentric portion 2 is sleeved on the body 1, wherein the body 1 is formed substantially in a long cylindrical shape and passes through the eccentric portion 2.
  • the “socket” is used to indicate the positional relationship between the eccentric portion 2 and the body 1 instead of defining the assembly relationship between the eccentric portion 2 and the body 1.
  • the eccentric portion 2 and the body 1 may be respectively The parts are separately machined and fixed together by subsequent assembly, and the eccentric portion 2 and the body 1 can also be integrally formed.
  • the eccentric portion 2 is sleeved with a piston 205 and fits in the working cavity.
  • the cylinder 202 is formed with a sliding groove extending through the radial direction of the cylinder 202 and communicating with the working cavity.
  • the sliding piece 204 can be The sliding portion is slidably disposed in the groove of the slider 204, and the tip end 221 of the slider 204 is always stopped against the outer peripheral surface of the piston 205.
  • the eccentric portion 2 can drive the piston 205 to roll along the inner circumferential surface of the cylinder 202, and simultaneously push the sliding plate 204 to slide inward and outward along the radial direction of the cylinder 202 to compress the refrigerant in the working chamber. .
  • the eccentric portion 2 may be provided with only the flexible structure 21, and the eccentric portion 2 It is also possible to provide only the oil pressure surface 22, and the eccentric portion 2 may be provided with both the flexible structure 21 and the oil pressure surface 22.
  • the flexible structure 21 is configured such that the flexible structure 21 is deformed inward when subjected to an external force in the inward direction (toward the central axis direction of the body 1).
  • the contour of the inner circumferential surface of the cylinder 202 is a curve indicated by the arrow line a1
  • the contour of the inner circumferential surface of the cylinder 202 after assembly and deformation is a curve indicated by the arrow line a2, the flexible structure.
  • the original outer contour of 21 is a curve indicated by the b1 arrow line, and when the inner circumferential surface of the deformed cylinder 202 is applied to the piston 205 with an abnormal contact force F, the flexible structure 21 is deformed inward (in the direction toward the central axis of the piston 205), The contour changes to the curve indicated by the b2 arrow line. Thereby, the flexible structure 21 can absorb the contact force generated by the abnormal contact of the piston 205 with the cylinder 202 by deformation.
  • the flexible structure 21 can be Deformation occurs to absorb the contact force generated by the metal contact between the piston 205 and the inner circumferential surface of the cylinder 202, that is, the displacement between the piston 205 and the cylinder 202 is too small due to the deformation of the flexible structure 21, Abnormal contact with the generated contact force ensures that the rotary compressor 1000 operates normally and avoids the problem of running jam.
  • the oil pressure surface 22 is configured to rotate in the opposite direction about the central axis of rotation of the crankshaft 300 (for example, the direction indicated by the arrow line R2 in FIG. 5), the tip end 221 of the oil pressure surface 22, and the center of the eccentric portion 2.
  • the distance L1 between the axes is smaller than the distance L2 between the trailing end 222 of the oil pressure surface 22 and the central axis of the eccentric portion 2.
  • the tip end 221 of the oil pressure surface 22 is always located forward of the trailing end 222 of the oil pressure surface 22.
  • the oil chamber 3 defined between the oil pressure surface 22 and the piston 205 is rotated along the direction of the crankshaft 300 (for example, the arrow line R1 in FIG. 5).
  • the opposite direction of the indicated direction gradually converges, and the lubricating oil in the oil chamber 3 can be gathered as the crankshaft 300 rotates at a high speed to centrifugal force of the lubricating oil in the oil chamber 3.
  • the wedge-shaped space 3a thereby increasing the inlet bearing oil pressure (for example, the curve indicated by the arrow line p in FIG. 5) to improve the oil supply state of the eccentric portion 2, that is, improving the piston 205 and the eccentric portion 2 lubrication conditions.
  • the eccentric portion 2 may be formed to be non-circular, such as the case shown in FIG. 7, that is, the flexible structure 21 has a first end 211 and a second end 212, and the first end 211 of the flexible structure 21 is connected to the side wall of the eccentric portion 2.
  • the second end 212 of the flexible structure 21 and the side wall of the eccentric portion 2 are spaced apart from each other. Therefore, referring to FIG. 5, the outer peripheral surface of the eccentric portion 2 cannot be sufficiently and completely in contact with the inner peripheral surface of the piston 205, so that the eccentric portion can be reduced.
  • the test is performed under the Chinese national standard performance condition, and the refrigeration capacity of the rotary compressor 1000 in the prior art in which the crankshaft 300 (ie, the eccentric portion 2 is a complete cylindrical shape) is installed is 6297 W, The corresponding motor input power is 1623 W, and the refrigeration energy efficiency ratio (COP) is 3.88, while the rotary compressor 1000 equipped with the crankshaft 300 of the embodiment described herein (for example, the eccentric portion 2 has the flexible structure 21 and the oil pressure surface 22) is provided.
  • the crankshaft 300 ie, the eccentric portion 2 is a complete cylindrical shape
  • COP refrigeration energy efficiency ratio
  • the cooling capacity is 6523 W
  • the corresponding motor input power is 1598 W
  • the cooling energy efficiency ratio (COP) is 4.08, thereby comparing the cooling capacity of the rotary compressor 1000 of the crankshaft 300 of the embodiment described herein.
  • the increase was 1.62%
  • the motor input power was reduced by 1.57%
  • the cooling energy efficiency ratio (COP) was increased by 5.21%.
  • the crankshaft 300 for the rotary compressor 1000 when the eccentric portion 2 is provided with the flexible structure 21 of the above-described structural features, the rotary compressor 1000 can be effectively solved by the suction side of the compression mechanism 200, The problem of the rotary compressor 1000 card machine caused by the small gap on the exhaust side or the abnormal contact between the piston 205 and the cylinder 202 due to the presence of impurities or the like in the volume chamber of the compression mechanism 200; when the eccentric portion 2 is provided with the oil pressure surface of the above structural feature At 2 o'clock, the volume of the oil chamber 3 between the piston 205 and the eccentric portion 2 is gradually decreased along the rotation direction of the crankshaft 300, so that the centrifugal force of the high-speed rotating crankshaft 300 can be effectively utilized to form a high-pressure oil wedge space at the tail of the oil chamber 3. Further, the inlet oil pressure is increased, and the lubrication environment of the eccentric portion 2 and the piston 205 is improved.
  • crankshaft 300 for a rotary compressor 1000 in accordance with various embodiments of the present invention will now be described with reference to FIGS. 7-17.
  • the eccentric portion 2 is provided with a flexible structure 21 having a first end 211 and a second end 212.
  • the first end 211 of the flexible structure 21 is connected to the side wall of the eccentric portion 2, and is flexible.
  • the second end 212 of the structure 21 is spaced apart from the side walls of the eccentric portion 2 from each other.
  • the first end 211 of the flexible structure 21 is connected to the side wall of the eccentric portion 2, and the second end 212 of the flexible structure 21 extends away from the side wall of the eccentric portion 2, such that when the piston 205 is in abnormal contact with the inner wall of the cylinder 202
  • the second end 212 of the flexible structure 21 is elastically deformed to absorb the abnormal contact force, the card machine problem of the rotary compressor 1000 is improved, and the flexible structure 21 of such a structure makes the outer peripheral surface of the entire eccentric portion 2 non-formed.
  • the circular shape can effectively reduce the contact area between the piston 205 and the eccentric portion 2, thereby effectively reducing the contact friction power, and the flexible structure 21 has a simple structure and is easy to process.
  • the central axes of the flexible structure 21 and the eccentric portion 2 are located on the same side of the central axis of the body 1, that is, the flexible structure 21 is disposed at a farther offset of the eccentric portion 2 from the body 1.
  • the flexible structure 21 is located on the side of the central axis of the eccentric portion 2 on the line connecting the central axis of the body 1 away from the central axis of the body 1.
  • the first end 211 and the second end 212 of the flexible structure 21 are respectively located on both sides of a reference surface (for example, the AA surface shown in FIG. 9).
  • a reference surface for example, the AA surface shown in FIG. 9
  • the first end 211 of the flexible structure 21 The distance from the reference plane is greater than 0, and the distance d1 between the second end 212 of the flexible structure 21 and the reference plane is also greater than 0, wherein the reference plane is defined by the central axis of the eccentric portion 2 and the central axis of the body 1.
  • the plane is defined by the central axis of the eccentric portion 2 and the central axis of the body 1.
  • the present invention is not limited thereto, and the distance d1 between the second end 212 of the flexible structure 21 and the reference surface may also be equal to 0, that is, the second end 212 of the flexible structure 21 may be flush with the reference surface.
  • the distance d2 between the point of the flexible structure 21 and the reference plane that is furthest from the central axis of the eccentric portion 2 and the central axis of the eccentric portion 2 satisfies: d2 ⁇ R0, where R0 is the eccentric portion 2
  • R0 is the eccentric portion 2
  • the oil pressure surface 22 is formed on the side wall of the eccentric portion 2 opposite to the second end 212 of the flexible structure 21, such that the second end 212 and the eccentric portion 2 of the flexible structure 21 are The side walls are spaced apart such that the second end 212 of the flexible structure 21 and the oil pressure surface 22 can be spaced apart in the inner and outer directions such that an oil storage space can be defined between the flexible structure 21 and the oil pressure surface 22.
  • the structure of the eccentric portion 2 is simple, compact, and easy to process, and the triple effect of absorbing the abnormal contact force, improving the lubricating effect, and reducing the contact wear between the eccentric portion 2 and the piston 205 can be reliably achieved.
  • the oil pressure surface 22 can be formed into a smooth curved surface to facilitate processing and manufacturing, and the processing cost is low.
  • the eccentric portion 2 is provided with a hydraulic surface 22, and the hydraulic surface 22 is formed with a communication oil hole 23 communicating with the center oil hole of the body 1, whereby the body 1 is in the center oil hole.
  • the lubricating oil can be supplied into the oil chamber 3 through the communication oil hole 23, and then flows into the wedge-shaped space 3a of the rear end 222 of the oil pressure surface 22 by the centrifugal force of the crankshaft 300.
  • the present invention is not limited thereto, and lubricating oil may be supplied between the piston 205 and the eccentric portion 2 by other means.
  • lubricating oil may be supplied between the piston 205 and the eccentric portion 2 through the oil supply pipe.
  • the both ends 22c of the oil pressure surface 22 in the axial direction of the eccentric portion 2 are directly adjacent to the corresponding end faces 2a of the eccentric portion 2, respectively, which is the eccentric portion 2 of the oil pressure surface 22.
  • the two ends 22c in the axial direction are respectively adjacent to a limit of the two corresponding end faces 2a of the eccentric portion 2, that is, the width of the oil pressure surface 22 in the axial direction of the body 1 and the eccentric portion 2 in the axial direction of the body 1.
  • the thicknesses are equal, and the both ends 22c of the oil pressure surface 22 in the axial direction are aligned with the two corresponding end faces 2a in the axial direction of the eccentric portion 2, so that not only the processing is facilitated, but the area of the oil pressure surface 22 is sufficiently large to make the lubricating oil It can flow more fully to the oil pressure surface 22 for better lubrication.
  • the structure of the first embodiment is substantially the same as that of the first embodiment, wherein the same components are denoted by the same reference numerals, except that the eccentric portion 2 of the third embodiment is not provided.
  • Flexible structure 21 is flexible
  • the eccentric portion 2 is provided with a flexible structure 21 having a first end 211 and a second end 212.
  • the first end 211 and the second end 212 of the flexible structure 21 are both connected to the eccentricity.
  • the portions of the flexible structure 21 other than the first end 211 and the second end 212 are spaced apart from the side walls of the eccentric portion 2, at this time, soft
  • a substantially crescent-shaped cavity may be defined between the structural structure 21 and the side wall of the eccentric portion 2, and the cavity may penetrate the eccentric portion 2 in the axial direction of the body 1.
  • portions of the flexible structure 21 other than the first end 211 and the second end 212 may be elastically deformed to absorb the contact force.
  • the flexible structure 21 has a simple structure and is easy to process, and the flexible structure 21 has high connection reliability with the side wall of the eccentric portion 2 and has a long service life.
  • the structure of the present embodiment is substantially the same as that of the third embodiment, wherein the same components are given the same reference numerals, except that the eccentric portion 2 is provided with the oil pressure surface 22 in this embodiment.
  • the eccentric portion 2 is provided with a hydraulic surface 22, and both ends 22c of the hydraulic surface 22 in the axial direction of the eccentric portion 2 are respectively adjacent to the two end faces 2a of the eccentric portion 2, and the oil pressure surface 22 is axially upward.
  • the two ends 22c are spaced apart from the two end faces 2a of the eccentric portion 2, that is, the both ends 22c in the axial direction of the oil pressure surface 22 are not directly adjacent to the corresponding end faces 2a of the eccentric portion 2, thereby facilitating processing. And can achieve better lubrication.
  • the structure of the present embodiment is substantially the same as that of the fourth embodiment, wherein the same components are given the same reference numerals, except for the following two aspects: the first aspect, the flexibility in the embodiment.
  • the shape of the structure 21 is different from the shape of the flexible structure 21 in the fourth embodiment. Specifically, the first end 211 and the second end 212 of the flexible structure 21 in the fourth embodiment are connected to the side wall of the eccentric portion 2 (see FIG. 15).
  • the oil pressure surface 22 in the embodiment is different from the shape of the oil pressure surface 22 in the fourth embodiment.
  • the oil pressure surface 22 is formed into a curved surface (as shown in FIG.
  • the oil pressure surface 22 includes two segments that are circumferentially connected, wherein the first segment 22a is formed as a combination of a curved surface and a plane, and the two ends 22c of the first segment 22a in the axial direction of the eccentric portion 2 are respectively adjacent to the eccentric portion 2
  • Two end faces 2a wherein the second segment 22b is formed as a curved surface, and the axis of the second segment 22b at the eccentric portion 2 22c both ends of the respectively adjacent the two end faces not adjacent to the eccentric portion 2. 2A, whereby the oil surface 22 and equally convenient manufacturing process, and can improve the lubricating effect between the piston 205 and the eccentric portion 2.
  • the structure of the oil pressure surface 22 can also be set according to actual requirements to better meet the actual requirements.
  • a rotary compressor 1000 according to an embodiment of the second aspect of the present invention includes: a housing 100, a compression mechanism 200, and a crankshaft 300 for a rotary compressor 1000 according to the first aspect of the present invention,
  • the compression mechanism 200 is disposed in the housing 100, the compression mechanism 200 has a working chamber, and one end of the crankshaft 300 passes through the compression mechanism 200.
  • Other configurations of the rotary compressor 1000 according to embodiments of the present invention, such as motors and the like, and operations are known to those of ordinary skill in the art and will not be described in detail herein.
  • the rotary compressor 1000 of the embodiment of the present invention by providing the crankshaft 300 for the rotary compressor 1000 of the first embodiment described above, the refrigeration capacity of the rotary compressor 1000 is increased, and the rotary compressor is lowered.
  • the motor input power of 1000 increases the cooling energy efficiency ratio of the rotary compressor 1000.
  • a refrigeration cycle apparatus (not shown) according to an embodiment of the third aspect of the present invention includes a rotary compressor 1000 according to the above second embodiment of the present invention.
  • the refrigeration cycle apparatus may further include a condenser (not shown), an expansion mechanism (not shown), an evaporator (not shown), and the like, wherein the rotary compressor 1000 and the expansion mechanism are both cold and cold The condenser is connected and the evaporator is connected to the expansion mechanism.
  • Other configurations and operations of the refrigeration cycle apparatus according to embodiments of the present invention are known to those of ordinary skill in the art and will not be described in detail herein.
  • the overall performance of the refrigeration cycle apparatus is improved.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or integrated; can be directly connected, or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
  • an intermediate medium which can be the internal communication of two elements or the interaction of two elements.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种用于旋转式压缩机的曲轴,包括:本体(1)和偏心部(2),偏心部(2)套设在本体(1)上,其中偏心部(2)上设有柔性结构(21)和油压面(22)中的至少一个,柔性结构(21)被构造成当受到向内方向的外力时候柔性结构(21)向内变形,油压面(22)被构造成绕曲轴(300)的旋转中心轴线的曲轴旋转反方向,油压面(22)的先端(221)与偏心部(2)的中心轴线之间的距离小于油压面(22)的尾端(222)与偏心部(2)的中心轴线之间的距离。还公开了一种旋转式压缩机和制冷循环装置。该曲轴可以有效解决因活塞与气缸异常接触而引起的旋转式压缩机卡机问题,并且可以在油腔尾部形成高压油楔,进而提高入口油压,改善偏心部与活塞的润滑环境。

Description

用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置 技术领域
本发明涉及压缩机制造技术领域,具体而言,涉及一种用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置。
背景技术
相关技术中,旋转式压缩机为保证压缩机构容积效率,气缸内壁和活塞外壁之间通常具有间隙。然而,如果装配后气缸内径变形或压缩机构内有杂质存在,则压缩机构常常会在最小间隙处卡机,从而造成旋转式压缩机发生堵转异常。
而且,活塞与曲轴的偏心部依靠偏心部上的油孔供油,存在油压低润滑不良等问题,同时曲轴的偏心部与活塞内壁的接触面积较大,摩擦因数较大,导致旋转式压缩机输入功率高。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明在于提出一种用于旋转式压缩机的曲轴,所述曲轴可以吸收活塞与曲轴的异常接触力或者改善曲轴与活塞的润滑情况。
本发明还提出一种具有上述曲轴的旋转式压缩机。
本发明又提出一种具有上述旋转式压缩机的制冷循环装置。
根据本发明第一方面实施例的用于旋转式压缩机的曲轴,包括:本体;和偏心部,所述偏心部套设在所述本体上,其中所述偏心部上设有柔性结构和油压面中的至少一个,所述柔性结构被构造成当受到向内方向的外力时所述柔性结构向内变形,所述油压面被构造成绕所述曲轴的旋转中心轴线旋转反方向所述油压面的先端与所述偏心部的中心轴线之间的距离小于所述油压面的尾端与所述偏心部的中心轴线之间的距离。
根据本发明实施例的用于旋转式压缩机的曲轴,当偏心部上设有上述结构特征的柔性结构时,可以有效地解决因活塞与气缸异常接触而引起的旋转式压缩机卡机问题;当偏心部上设有上述结构特征的油压面时,可以利用高速旋转曲轴的旋转离心力,在油腔尾部形成高压油楔,进而提高入口油压,改善偏心部与活塞的润滑环境。
根据本发明的一个示例,所述偏心部上设有所述柔性结构,所述柔性结构具有第一端和第二端,所述柔性结构的所述第一端连接在所述偏心部的侧壁上,所述柔性结构的所述第二端与所述偏心部的侧壁彼此间隔开。
根据本发明的一个示例,所述油压面形成在所述偏心部的与所述柔性结构的所述第二端相对的侧壁上。
根据本发明的一个示例,所述油压面形成为光滑曲面、或曲面与平面的结合。
根据本发明的一个示例,所述柔性结构和所述偏心部的中心轴线位于所述本体的中心轴 线的同一侧。
根据本发明的一个示例,所述柔性结构的所述第一端和所述第二端分别位于基准面的两侧,其中所述基准面为所述偏心部的中心轴线与所述本体的中心轴线所构成的平面。
根据本发明的一个示例,所述柔性结构与所述基准面的交点中距离所述偏心部的中心轴线最远的一点与所述偏心部的中心轴线之间的距离d2满足:d2≥R0,其中,所述R0为所述偏心部的外径。
根据本发明的一个示例,所述偏心部上设有所述柔性结构,所述柔性结构具有第一端和第二端,所述柔性结构的所述第一端和所述第二端均连接在所述偏心部的侧壁上,所述柔性结构的除所述第一端和所述第二端之外的其它部分与所述偏心部的侧壁彼此间隔开。
根据本发明的一个示例,所述偏心部上设有所述油压面,所述油压面的在所述偏心部的轴向上的两端分别邻近所述偏心部的两个端面。
根据本发明的一个示例,所述油压面的所述两端分别与所述偏心部的对应端面直接邻接。
根据本发明的一个示例,所述偏心部上设有所述油压面,且所述油压面上形成有与所述本体的中心油孔连通的连通油孔。
根据本发明第二方面实施例的旋转式压缩机,包括:壳体;压缩机构,所述压缩机构设在所述壳体内,所述压缩机构具有工作腔;以及根据本发明第一方面实施例的用于旋转式压缩机的曲轴,其中所述曲轴的一端贯穿所述压缩机构,且所述曲轴的所述偏心部位于所述工作腔内。
根据本发明实施例的旋转式压缩机,通过设置上述第一方面实施例的用于旋转式压缩机的曲轴,从而提高了旋转式压缩机的整体性能。
根据本发明第三方面实施例的制冷循环装置,包括根据本发明第二方面实施例的旋转式压缩机。
根据本发明实施例的制冷循环装置,通过设置上述第二方面实施例的旋转式压缩机,从而提高了制冷循环装置的整体性能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的旋转式压缩机的示意图;
图2是图1中所示的压缩机构的剖面示意图;
图3是图2中所示的压缩机构的部分轴向示意图;
图4是图2中所示的压缩机构的一个工作示意图;
图5是图2中所示的压缩机构的另一个工作示意图;
图6是图2中所示的曲轴和活塞的装配图;
图7是根据本发明实施例一的曲轴的立体图;
图8是图7中所示的曲轴的主视图;
图9和图10是图7中所示的曲轴的两个轴向图;
图11是根据本发明实施例二的曲轴的立体图;
图12是图11中所示的曲轴的轴向示意图;
图13是根据本发明实施例三的曲轴的立体图;
图14是图13中所示的曲轴的轴向示意图;
图15是根据本发明实施例四的曲轴的立体图;
图16是根据本发明实施例五的曲轴的立体图;
图17是图16中所示的曲轴的轴向示意图。
附图标记:
1000:旋转式压缩机;
100:壳体;
200:压缩机构;201:主轴承;202:气缸;203:副轴承;204:滑片;205:活塞;
300:曲轴;1:本体;2:偏心部;2a:对应端面;
21:柔性结构;211:第一端;212:第二端;
22:油压面;22a:第一段;22b:第二段;22c:两端;221:先端;222:尾端;
23:连通油孔;3:油腔;3a:楔形空间。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面参考图1-图17描述根据本发明第一方面实施例的用于旋转式压缩机1000的曲轴300。
具体地,旋转式压缩机1000还可以包括:壳体100和压缩机构200,如图1和图2所示,压缩机构200可以包括:主轴承201、气缸202、副轴承203、滑片204以及活塞205,主轴承201和副轴承203分别设在气缸202的轴向两端以与气缸202共同限定出工作腔,曲轴300贯穿主轴承201、气缸202以及副轴承203。
根据本发明第一方面实施例的用于旋转式压缩机1000的曲轴300,包括:本体1和偏心部2。具体地,参照图7,偏心部2套设在本体1上,其中,本体1大体形成为长圆柱形且穿过偏心部2。这里,需要说明的是,“套设”用于指示偏心部2与本体1的位置关系,而不是用于限定偏心部2和本体1的装配关系,例如,偏心部2与本体1可以为分别单独加工部件且通过后续装配固定在一起,偏心部2与本体1还可以为一体加工成型件。
参照图2、图3和图6,偏心部2上套设有活塞205且配合在工作腔内,气缸202上形成有沿其径向贯穿且连通至工作腔的滑片槽,滑片204可滑移地设在滑片204槽内,且滑片204的先端221始终止抵在活塞205的外周面上。由此,曲轴300转动的过程中,偏心部2可以带动活塞205沿气缸202的内周面滚动,同时推动滑片204沿气缸202的径向内外滑移,以对工作腔内的冷媒进行压缩。
具体地,如图7-图17所示,偏心部2上设有柔性结构21和油压面22中的至少一个,也就是说,偏心部2上可以仅设有柔性结构21,偏心部2上还可以仅设有油压面22,偏心部2上还可以既设有柔性结构21、又设有油压面22。
其中,柔性结构21构造成当受到向内方向(朝向本体1中心轴线方向)的外力时柔性结构21向内变形。例如在图4的示例中,气缸202加工时其内周面的轮廓为a1箭头线所指示的曲线,气缸202装配、变形后其内周面的轮廓为a2箭头线所指示的曲线,柔性结构21的原始外轮廓为b1箭头线所指示的曲线,当变形的气缸202内周面施加给活塞205异常接触力F时,柔性结构21向内(朝向活塞205中心轴线的方向)发生变形、其轮廓变为b2箭头线所指示的曲线。由此,柔性结构21可以通过变形来吸收活塞205与气缸202异常接触所产生的接触力。
这样,当偏心部2上设有上述结构特征的柔性结构21时,且当压缩机构200有杂质引入、气缸202内径变形形成凸点、零件尺寸加工超差等异常发生时,柔性结构21可以向内发生变形,以吸收来自活塞205与气缸202内周面之间因金属接触而产生的接触力,也就是说,通过柔性结构21的变形来吸收活塞205与气缸202之间因间隙过小、异常接触所产生的接触力,从而确保旋转式压缩机1000正常运转,避免运转卡死的问题。
如图5所示,油压面22被构造成绕曲轴300的旋转中心轴线旋转反方向(例如图5中R2箭头线所指示的方向)、油压面22的先端221与偏心部2的中心轴线之间的距离L1小于油压面22的尾端222与偏心部2的中心轴线之间的距离L2。其中,在曲轴300的旋转方向上,油压面22的先端221始终位于油压面22的尾端222的前方。
这样,当偏心部2上设有上述结构特征的油压面22时,由于油压面22与活塞205之间限定出的油腔3沿着曲轴300旋转方向(例如图5中R1箭头线所指示的方向)的相反方向(例如图5中R2箭头线所指示的方向)逐渐收敛,随着曲轴300高速旋转对油腔3内润滑油的离心作用力,油腔3内的润滑油可以聚集于楔形空间3a内,从而提高了滑动轴承入口入油压(例如图5中p箭头线所指示的曲线),以改善偏心部2的供油状态,也就是说,改善了活塞205与偏心部2的润滑情况。
另外,由于偏心部2上设有柔性结构21或者油压面22中的至少一个,从而偏心部2 的外周面可以形成为非圆形,例如图7所示的情况,即柔性结构21具有第一端211和第二端212,柔性结构21的第一端211连接在偏心部2的侧壁上,柔性结构21的第二端212与偏心部2的侧壁彼此间隔开,从而参照图5,偏心部2的外周面无法与活塞205的内周面充分、完全接触,这样可以减小偏心部2与活塞205内周面的接触面积,进而降低了接触面摩擦功耗,提升了旋转式压缩机1000的能效,经测试,当旋转式压缩机1000的电机运转频率为60Hz时,输入功率可以降低2%。
对于以二氧化碳为冷媒的旋转式压缩机1000,在中国国标性能条件下进行测试,安装现有技术中曲轴300(即偏心部2为完整圆柱形)的旋转式压缩机1000的制冷量为6297W,其对应的电机输入功率为1623W、制冷能效比(COP)为3.88,而安装有本文所述实施例的曲轴300(例如偏心部2具有柔性结构21和油压面22)的旋转式压缩机1000的制冷量为6523W,其对应的电机输入功率为1598W、制冷能效比(COP)为4.08,由此,相比之下,安装本文所述实施例的曲轴300的旋转式压缩机1000的制冷量提高了1.62%,电机输入功率降低了1.57%,制冷能效比(COP)提高了5.21%。
根据本发明实施例的用于旋转式压缩机1000的曲轴300,当偏心部2上设有上述结构特征的柔性结构21时,可以有效地解决旋转式压缩机1000因压缩机构200吸气侧、排气侧间隙小、或者因压缩机构200容积腔存在杂质等致使活塞205与气缸202异常接触而引起的旋转式压缩机1000卡机问题;当偏心部2上设有上述结构特征的油压面22时,活塞205与偏心部2之间的油腔3沿着曲轴300旋转反方向容积逐渐减小,从而可以有效地利用高速旋转曲轴300的旋转离心力,在油腔3尾部形成高压油楔空间,进而提高入口油压,改善偏心部2与活塞205的润滑环境。
下面将参考图7-图17描述根据本实用新型多个实施例的用于旋转式压缩机1000的曲轴300。
实施例一,
参照图7-图10,偏心部2上设有柔性结构21,柔性结构21具有第一端211和第二端212,柔性结构21的第一端211连接在偏心部2的侧壁上,柔性结构21的第二端212与偏心部2的侧壁彼此间隔开。具体地,柔性结构21的第一端211与偏心部2的侧壁相连,柔性结构21的第二端212朝向远离偏心部2侧壁的方向延伸,这样,当活塞205与气缸202内壁异常接触时,柔性结构21的第二端212可以发生弹性变形以吸收异常接触力,改善旋转式压缩机1000的卡机问题,且此种结构的柔性结构21使得偏心部2整体的外周面形成为非圆形,从而可以有效地减少活塞205与偏心部2的接触面积,进而有效地降低了接触摩擦功率,且此柔性结构21的结构简单、便于加工。
进一步地,参照图8-图10,柔性结构21和偏心部2的中心轴线位于本体1的中心轴线的同一侧,也就是说,柔性结构21设置在偏心部2的偏离本体1较远的一侧,或者说,柔性结构21位于偏心部2的中心轴线与本体1的中心轴线连线上的远离本体1的中心轴线的一侧。由此,通过将柔性结构21设置在偏心部2的偏离本体1较远的一侧时,不但可以方便加工,而且柔性结构21的弹性变形较大,吸收异常接触力的能力更强。
参照图9和图10,柔性结构21的第一端211和第二端212分别位于基准面(例如图9中所示的A-A面)的两侧,此时,柔性结构21的第一端211与基准面之间的距离大于0,柔性结构21的第二端212与基准面之间的距离d1也大于0,其中基准面为由偏心部2的中心轴线与本体1的中心轴线所限定出的平面。由此,柔性结构21的长度相对较长,可以更加有效地发生弹性变形,使得其吸收异常接触力的能力更强。当然,本发明不限于此,柔性结构21的第二端212与基准面之间的距离d1也可以等于0,也就是说,柔性结构21的第二端212与基准面可以平齐。
参照图9,柔性结构21与基准面的交点中距离偏心部2的中心轴线最远的一点与偏心部2的中心轴线之间的距离d2满足:d2≥R0,其中,R0为偏心部2的外径,由此,柔性结构21距离偏心部2的中心轴线足够远,从而可以发生更加有效的弹性变形,以更好地吸收异常接触力。
进一步地,参照图7和图9,油压面22形成在偏心部2的与柔性结构21的第二端212相对的侧壁上,这样,由于柔性结构21的第二端212与偏心部2的侧壁间隔开,从而柔性结构21的第二端212与油压面22在内外方向上可以间隔开,使得柔性结构21与油压面22之间可以限定出储油空间。由此,偏心部2的结构简单、紧凑、便于加工,可以可靠地实现吸收异常接触力、提高润滑效果以及减小其与活塞205之间接触磨损的三重功效。优选地,油压面22可以形成为光滑曲面,从而方便加工和制造,加工成本低。
参照图10并结合图5,偏心部2上设有油压面22,且油压面22上形成有与本体1的中心油孔连通的连通油孔23,由此,本体1中心油孔内的润滑油可以通过连通油孔23供入到油腔3内,然后在曲轴300旋转离心力的作用下流向油压面22尾端222的楔形空间3a内。由此,通过设置连通油孔23,可以便于向活塞205与偏心部2之间供给润滑油。当然,本发明不限于此,还可以通过其他方式向活塞205与偏心部2之间供给润滑油,例如可以通过供油管向活塞205与偏心部2之间供给润滑油。
具体地,如图7所示,油压面22的在偏心部2的轴向上的两端22c分别与偏心部2的对应端面2a直接邻接,这是油压面22的在偏心部2的轴向上的两端22c分别邻近偏心部2的两个对应端面2a的一种极限可能,也就是说,油压面22在本体1轴向上的宽度与偏心部2在本体1轴向上的厚度相等,且油压面22在轴向上的两端22c与偏心部2轴向上的两个对应端面2a对齐,从而不但方便加工,且油压面22的面积足够大,使得润滑油可以更加充分地流向油压面22,实现更好的润滑效果。
实施例二,
如图11和图12所示,本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,不同之处仅在于:本实施例三中偏心部2上不设有柔性结构21。
实施例三,
如图13和图14所示,偏心部2上设有柔性结构21,柔性结构21具有第一端211和第二端212,柔性结构21的第一端211和第二端212均连接在偏心部2的侧壁上,柔性结构21的除第一端211和第二端212之外的其它部分与偏心部2的侧壁彼此间隔开,此时,柔 性结构21与偏心部2的侧壁之间可以限定出大体月牙形的空腔,且该空腔可以沿本体1的轴向贯穿偏心部2。由此,当活塞205与气缸202内壁异常接触时,柔性结构21的除第一端211和第二端212之外的部分可以发生弹性变形以吸收接触力。由此,柔性结构21的结构简单、便于加工,且柔性结构21与偏心部2侧壁的连接可靠性高,使用寿命长。
实施例四,
如图15所示,本实施例与实施例三的结构大致相同,其中相同的部件采用相同的附图标记,不同之处在于:本实施例中的偏心部2上设有油压面22。具体地,偏心部2上设有油压面22,油压面22的在偏心部2的轴向上的两端22c分别邻近偏心部2的两个端面2a,且油压面22轴向上的两端22c与偏心部2的两个端面2a间隔开,也就是说,油压面22轴向上的两端22c并没有与偏心部2的对应端面2a直接邻接,由此,方便加工,且能达到较好的润滑效果。
实施例五,
如图16和图17所示,本实施例与实施例四的结构大致相同,其中相同的部件采用相同的附图标记,不同之处仅在于以下两方面:第一方面、本实施例中柔性结构21的形状与实施例四中柔性结构21的形状不同,具体地,实施例四中柔性结构21的第一端211和第二端212均连接在偏心部2的侧壁上(如图15所示),而本实施例中仅有柔性结构21的第一端211连接在偏心部2的侧壁上,而柔性结构21的第二端212与偏心部2的侧壁间隔开;第二方面、本实施例中油压面22的形状与实施例四中油压面22的形状不同,具体地,实施例四中油压面22形成为曲面(如图15所示),而本实施例中油压面22包括周向相连的两段,其中第一段22a形成为曲面与平面的结合,且第一段22a的在偏心部2的轴向上的两端22c分别邻接偏心部2的两个端面2a,其中第二段22b形成为曲面,且第二段22b的在偏心部2的轴向上的两端22c分别邻近而不邻接偏心部2的两个端面2a,由此,油压面22同样方便加工和制造,且可以提高活塞205与偏心部2之间的润滑效果。当然,油压面22的结构还可以根据实际要求设置,以更好地满足实际要求。
参照图1,根据本发明第二方面实施例的旋转式压缩机1000,包括:壳体100、压缩机构200以及根据本发明上述第一方面实施例的用于旋转式压缩机1000的曲轴300,其中,压缩机构200设在壳体100内,压缩机构200具有工作腔,曲轴300的一端贯穿压缩机构200。这里,需要说明的是,由于旋转式压缩机1000的结构已在上文中详述,这里不再赘述。根据本发明实施例的旋转式压缩机1000的其他构成例如电机等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
根据本发明实施例的旋转式压缩机1000,通过设置上述第一方面实施例的用于旋转式压缩机1000的曲轴300,从而提高了旋转式压缩机1000的制冷量,降低了旋转式压缩机1000的电机输入功率,提高了旋转式压缩机1000的制冷能效比。
根据本发明第三方面实施例的制冷循环装置(图未示出),包括根据本发明上述第二方面实施例的旋转式压缩机1000。具体地,制冷循环装置还可以包括冷凝器(图未示出)、膨胀机构(图未示出)、蒸发器(图未示出)等,其中旋转式压缩机1000和膨胀机构均与冷 凝器连接,蒸发器与膨胀机构连接。根据本发明实施例的制冷循环装置的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
根据本发明实施例的制冷循环装置,通过设置上述第二方面实施例的旋转式压缩机1000,从而提高了制冷循环装置的整体性能。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种用于旋转式压缩机的曲轴,其特征在于,包括:
    本体;和
    偏心部,所述偏心部套设在所述本体上,其中所述偏心部上设有柔性结构和油压面中的至少一个,所述柔性结构被构造成当受到向内方向的外力时所述柔性结构向内变形,所述油压面被构造成绕所述曲轴的旋转中心轴线旋转反方向所述油压面的先端与所述偏心部的中心轴线之间的距离小于所述油压面的尾端与所述偏心部的中心轴线之间的距离。
  2. 根据权利要求1所述的用于旋转式压缩机的曲轴,其特征在于,所述偏心部上设有所述柔性结构,
    所述柔性结构具有第一端和第二端,所述柔性结构的所述第一端连接在所述偏心部的侧壁上,所述柔性结构的所述第二端与所述偏心部的侧壁彼此间隔开。
  3. 根据权利要求2所述的用于旋转式压缩机的曲轴,其特征在于,所述油压面形成在所述偏心部的与所述柔性结构的所述第二端相对的侧壁上。
  4. 根据权利要求3所述的用于旋转式压缩机的曲轴,其特征在于,所述油压面形成为光滑曲面、或曲面与平面的结合。
  5. 根据权利要求2-4中任一项所述的用于旋转式压缩机的曲轴,其特征在于,所述柔性结构和所述偏心部的中心轴线位于所述本体的中心轴线的同一侧。
  6. 根据权利要求5所述的用于旋转式压缩机的曲轴,其特征在于,所述柔性结构的所述第一端和所述第二端分别位于基准面的两侧,其中所述基准面为所述偏心部的中心轴线与所述本体的中心轴线所构成的平面。
  7. 根据权利要求6所述的用于旋转式压缩机的曲轴,其特征在于,所述柔性结构与所述基准面的交点中距离所述偏心部的中心轴线最远的一点与所述偏心部的中心轴线之间的距离d2满足:d2≥R0,其中,所述R0为所述偏心部的外径。
  8. 根据权利要求1所述的用于旋转式压缩机的曲轴,其特征在于,所述偏心部上设有所述柔性结构,
    所述柔性结构具有第一端和第二端,所述柔性结构的所述第一端和所述第二端均连接在所述偏心部的侧壁上,所述柔性结构的除所述第一端和所述第二端之外的其它部分与所述偏心部的侧壁彼此间隔开。
  9. 根据权利要求1所述的用于旋转式压缩机的曲轴,其特征在于,所述偏心部上设有所述油压面,
    所述油压面的在所述偏心部的轴向上的两端分别邻近所述偏心部的两个端面。
  10. 根据权利要求9所述的用于旋转式压缩机的曲轴,其特征在于,所述油压面的所述两端分别与所述偏心部的对应端面直接邻接。
  11. 根据权利要求1-10中任一项所述的用于旋转式压缩机的曲轴,其特征在于,所述偏心部上设有所述油压面,且所述油压面上形成有与所述本体的中心油孔连通的连通油孔。
  12. 一种旋转式压缩机,其特征在于,包括:
    壳体;
    压缩机构,所述压缩机构设在所述壳体内,所述压缩机构具有工作腔;以及
    根据权利要求1-11中任一项所述的用于旋转式压缩机的曲轴,其中所述曲轴的一端贯穿所述压缩机构,且所述曲轴的所述偏心部位于所述工作腔内。
  13. 一种制冷循环装置,其特征在于,包括根据权利要求12所述的旋转式压缩机。
PCT/CN2015/078608 2015-05-08 2015-05-08 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置 WO2016179765A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/533,557 US20170335849A1 (en) 2015-05-08 2015-05-08 Crankshaft for rotatory compressor, rotatory compressor and refrigerating cycle device
JP2017531701A JP6467055B2 (ja) 2015-05-08 2015-05-08 回転式圧縮機用のクランクシャフト、回転式圧縮機及び冷凍サイクル装置
EP15891468.9A EP3211239A4 (en) 2015-05-08 2015-05-08 Crankshaft for rotary compressor, rotary compressor and refrigerating cycle device
PCT/CN2015/078608 WO2016179765A1 (zh) 2015-05-08 2015-05-08 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078608 WO2016179765A1 (zh) 2015-05-08 2015-05-08 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置

Publications (1)

Publication Number Publication Date
WO2016179765A1 true WO2016179765A1 (zh) 2016-11-17

Family

ID=57248761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078608 WO2016179765A1 (zh) 2015-05-08 2015-05-08 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置

Country Status (4)

Country Link
US (1) US20170335849A1 (zh)
EP (1) EP3211239A4 (zh)
JP (1) JP6467055B2 (zh)
WO (1) WO2016179765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217760A (zh) * 2021-10-15 2022-10-21 广州市德善数控科技有限公司 一种低压腔旋转式压缩机及空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033689B (zh) * 2021-10-27 2023-12-22 宁波德曼压缩机有限公司 一种变频螺杆空压机空滤堵塞程度的判断方法、系统、智能终端和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050070856A (ko) * 2003-12-31 2005-07-07 엘지전자 주식회사 이중용량 로터리 압축기
JP2006125384A (ja) * 2004-10-29 2006-05-18 Samsung Electronics Co Ltd 容量可変回転圧縮機
CN1896531A (zh) * 2005-07-12 2007-01-17 乐金电子(天津)电器有限公司 旋转式压缩机的叶片弹簧的设置结构
CN101799012A (zh) * 2010-02-05 2010-08-11 佛山粤海空调机有限公司 电动滚动活塞式汽车空调压缩机
CN103047140A (zh) * 2012-12-09 2013-04-17 马燕翔 一种滑片泵及具有类似结构的压缩机
CN104819155A (zh) * 2015-05-08 2015-08-05 广东美芝制冷设备有限公司 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
CN204627989U (zh) * 2015-05-08 2015-09-09 广东美芝制冷设备有限公司 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688987A (en) * 1979-12-19 1981-07-18 Hitachi Ltd Rotary compressor
JPS61192884A (ja) * 1984-11-29 1986-08-27 クルト・ゲ−・フイツケルシヤ− 流体を圧縮し搬送するための作動機械
JPS63196494U (zh) * 1987-06-04 1988-12-16
JPH03114589U (zh) * 1990-03-09 1991-11-25
DE69130222D1 (de) * 1990-06-29 1998-10-22 Whitemoss Inc Verstellbarer rotor für eine radialkolbenfluidmaschine
JP2894390B2 (ja) * 1992-01-10 1999-05-24 三菱電機株式会社 スクロール圧縮機
JPH06159278A (ja) * 1992-04-01 1994-06-07 Nippon Soken Inc ローリングピストン型圧縮機
KR100802017B1 (ko) * 2005-03-29 2008-02-12 삼성전자주식회사 용량가변 회전압축기
JP2007291996A (ja) * 2006-04-26 2007-11-08 Toshiba Kyaria Kk 密閉型回転式圧縮機及び冷凍サイクル装置
US20090235991A1 (en) * 2008-03-18 2009-09-24 Jen Fou Nieh Detergent releasing device for water tank
WO2014002970A1 (ja) * 2012-06-27 2014-01-03 株式会社豊田自動織機 スクロール型圧縮機
JP2014084823A (ja) * 2012-10-25 2014-05-12 Daikin Ind Ltd 圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050070856A (ko) * 2003-12-31 2005-07-07 엘지전자 주식회사 이중용량 로터리 압축기
JP2006125384A (ja) * 2004-10-29 2006-05-18 Samsung Electronics Co Ltd 容量可変回転圧縮機
CN1896531A (zh) * 2005-07-12 2007-01-17 乐金电子(天津)电器有限公司 旋转式压缩机的叶片弹簧的设置结构
CN101799012A (zh) * 2010-02-05 2010-08-11 佛山粤海空调机有限公司 电动滚动活塞式汽车空调压缩机
CN103047140A (zh) * 2012-12-09 2013-04-17 马燕翔 一种滑片泵及具有类似结构的压缩机
CN104819155A (zh) * 2015-05-08 2015-08-05 广东美芝制冷设备有限公司 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
CN204627989U (zh) * 2015-05-08 2015-09-09 广东美芝制冷设备有限公司 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211239A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217760A (zh) * 2021-10-15 2022-10-21 广州市德善数控科技有限公司 一种低压腔旋转式压缩机及空调器

Also Published As

Publication number Publication date
EP3211239A1 (en) 2017-08-30
JP2017538066A (ja) 2017-12-21
EP3211239A4 (en) 2018-08-08
JP6467055B2 (ja) 2019-02-06
US20170335849A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JP4911260B1 (ja) スクリュー圧縮機
US8602755B2 (en) Rotary compressor with improved suction portion location
CN104819155B (zh) 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
EP3078859B1 (en) Rotary compressor and compression unit thereof, and air conditioner
WO2016179765A1 (zh) 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
CN204627989U (zh) 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
CN210152898U (zh) 具有用于供油的凹槽的回转式压缩机
US10006460B2 (en) Hermetic compressor having enlarged suction inlet
CN207406488U (zh) 旋转式压缩机
CN203796562U (zh) 旋转活塞型压缩机
US8485805B2 (en) Rotary compressor
CN105765226A (zh) 涡旋式压缩机
CN107120281B (zh) 多缸旋转式压缩机
WO2014064974A1 (ja) ロータリ圧縮機
CN107091233B (zh) 旋转式压缩机
CN104832435B (zh) 密闭型压缩机
CN207297360U (zh) 多缸旋转式压缩机
CN107542661B (zh) 单缸旋转式压缩机
CN114033686B (zh) 压缩结构、压缩机以及具有其的空调器
EP2918773B1 (en) Rotary compressor
KR102004090B1 (ko) 누설 저감 구조가 적용된 로터리 압축기
CN110836183A (zh) 压缩机及其压缩机构
JP4142863B2 (ja) 気体圧縮機
CN209704848U (zh) 一种电动涡旋压缩机的径向补偿结构
WO2023098102A1 (zh) 压缩机转子、压缩机泵体、压缩机及温度调节系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891468

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015891468

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017531701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE