WO2016178461A2 - 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편 - Google Patents

몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편 Download PDF

Info

Publication number
WO2016178461A2
WO2016178461A2 PCT/KR2015/008957 KR2015008957W WO2016178461A2 WO 2016178461 A2 WO2016178461 A2 WO 2016178461A2 KR 2015008957 W KR2015008957 W KR 2015008957W WO 2016178461 A2 WO2016178461 A2 WO 2016178461A2
Authority
WO
WIPO (PCT)
Prior art keywords
cast
mold flux
slab
molten steel
steel
Prior art date
Application number
PCT/KR2015/008957
Other languages
English (en)
French (fr)
Other versions
WO2016178461A3 (ko
Inventor
정태인
한상우
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP15891325.1A priority Critical patent/EP3292925B1/en
Priority to JP2017556953A priority patent/JP6788611B2/ja
Priority to CN201580079640.9A priority patent/CN107530769B/zh
Publication of WO2016178461A2 publication Critical patent/WO2016178461A2/ko
Publication of WO2016178461A3 publication Critical patent/WO2016178461A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a mold flux and a continuous casting method using the same, and a cast made therefrom. More particularly, the present invention relates to a mold flux capable of suppressing surface defects of the cast, a continuous casting method using the same, and a cast made thereof.
  • the cast steel is produced while the molten steel contained in the mold is cooled through the cooling table.
  • the continuous casting process injects molten steel into a mold having a constant internal shape, and continuously draws the reacted slabs into the lower side of the mold to produce semi-finished products of various shapes such as slabs, blooms, billets, beam blanks, and the like. It is a process.
  • the cast steel is first cooled in the mold, and after passing through the mold, solidification proceeds through a process in which water is injected into the cast steel and secondly cooled.
  • Primary cooling occurring in the mold is greatly affected by the flow of molten steel in the mold, the melting behavior of the mold flux, and the ability to uniformly penetrate between the mold and the slab.
  • the cast produced by the casting process is caused by a variety of causes, such defects may occur due to the flow of molten steel in the mold, the load by the roll during the casting, the load by drawing. Among them, defects caused by molten steel flow are mostly in the form of inclusions and slag mixed.
  • defects caused by the load by the roll during the casting, the load due to the drawing is mainly caused by the surface crack of the cast steel, cracks formed on the surface of the cast steel may occur in the process of the primary cooling of the molten steel in the mold.
  • the steel is cast as alpha ferrite ( ⁇ ( ⁇ )) at a temperature of 1400 ° C. or higher in a low carbon region to exhibit stable solidification behavior.
  • ⁇ ( ⁇ ) alpha ferrite
  • the nickel content is less than 3% by weight, as shown in FIG. 2, the gamma austenite ( ⁇ -Fe) range may be widened, resulting in an apolytic reaction in which the liquid phase and the delta phase are transformed into a delta phase and a gamma phase.
  • This apotable reaction is a reaction that transforms into a solid phase without a residual liquid below the pore temperature, and the coagulation shrinkage is large and sensitive to cracks.
  • the cast slab prepared by the apolytic reaction may promote uneven solidification in the mold due to severe solidification shrinkage, thereby forming a surface crack by forming an uneven structure on the surface of the cast steel.
  • the present invention provides a mold flux capable of forming a high Ni concentration layer (hereinafter referred to as Ni enrichment layer) on the surface of a cast steel, a continuous casting method using the same, and a cast steel produced therefrom.
  • Ni enrichment layer a high Ni concentration layer
  • the present invention provides a mold flux capable of suppressing and preventing the penetration of copper in the grain boundaries, a continuous casting method using the same, and a cast steel produced therefrom.
  • the present invention provides a mold flux and a continuous casting method using the same and the cast slab produced therein that can reduce the amount of the raw material for suppressing the defect of cast steel injected into the molten steel.
  • the present invention provides a mold flux that can increase the productivity and efficiency of the cast production process, a continuous casting method using the same and casts produced therefrom.
  • Mold flux according to an embodiment of the present invention comprises a composition containing SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O, F and nickel (Ni) oxide, the nickel (Ni) oxide is the composition It is contained in the range of 5 wt% to 40 wt% based on the total weight of.
  • the MgO comprises 1.0 to 1.5 wt%, the Al 2 O 3 5 to 7 wt%, the Na 2 O 3 to 5wt%, the F 5 to 7wt%,
  • the others may include CaO and SiO 2 .
  • the CaO / SiO 2 may be composed of a ratio of 0.8 to 1.4.
  • the continuous casting method of manufacturing molten steel by supplying molten steel to the mold according to an embodiment of the present invention SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O, F and nickel (Ni) oxide on the molten steel while supplying a mold flux comprising a coating layer formed by the nickel oxide on the surface of the cast, the nickel oxide is contained in the range of 5 wt% to 40 wt% based on the total weight of the mold flux.
  • the molten steel may include copper.
  • the mold flux is wt% based on the total weight, 1.0 to 1.5 wt% of MgO, 5 to 7 wt% of Al 2 O 3 , 3 to 5 wt% of Na 2 O, and 5 to 7 wt% of F. And others may include SiO 2 and CaO.
  • the CaO and SiO 2 may be composed of a ratio of 0.8 to 1.4.
  • the mold flux may be added in the range of 0.1 kg to 1 kg per ton of the molten steel.
  • the cast steel produced by the casting of molten steel according to the embodiment of the present invention includes a surface portion from the outermost side of the cast steel to the inner side and a central portion from the surface portion to the center of the cast steel in the thickness direction, the surface The portion has a higher Ni concentration than the central portion.
  • Ni concentration of the surface portion may be 1.5 times or more of Cu content.
  • the steel may be composed of Fe: balance, C: 0.01 to 0.4 wt%, Cu: 0.1 to 2 wt%, Si: 0.1 to 2 wt%, Mn: 0.1 to 2 wt% and other unavoidable components.
  • the continuous casting method using the same, and the cast produced therefrom the solidification behavior of the surface of the cast can be controlled to suppress or prevent defects such as cracks formed in the cast.
  • production of the crack formed in the slab surface by a copper component can be suppressed. That is, the solidification behavior of the steel is controlled so that a concentrated layer of Ni oxide having a low oxygen affinity is formed on the surface of the cast steel so that the superstable reaction with less solidification shrinkage occurs on the surface of the cast steel. Accordingly, defects that may occur due to the concentration of copper in the molten steel on the surface of the cast steel can be suppressed.
  • the amount of metal-containing material used can be reduced compared to the conventional art of mixing metal-containing material such as Ni with molten steel in order to suppress defects caused by copper, thereby suppressing an increase in production cost due to the use of expensive metal-containing material. have.
  • FIG. 2 is a view showing a change in Fe-C state diagram when Ni is added to molten steel.
  • Figure 3 is a photograph of the cast steel produced by the continuous casting method according to the prior art.
  • FIG. 4 is an oxygen affinity graph for explaining a metal-containing material forming a mold flux according to an embodiment of the present invention.
  • FIG. 6 is a graph comparing the maximum depth of oxidation by oxidation during casting and the concentration of NiO with increasing distance from the surface of cast steel according to the content of NiO in the mold flux.
  • Figure 7 is a graph showing the oxide layer formation thickness and oxidized slab thickness at high temperature oxidation.
  • FIG. 8 is a view schematically showing a continuous casting device for explaining the continuous casting method according to an embodiment of the present invention.
  • FIG. 9 is a view showing the distribution of Ni concentration layer on the surface of the cast slab produced by the mold flux and the continuous casting method using the same according to an embodiment of the present invention.
  • FIG. 10 is a photograph and a schematic view comparing the cast steel produced by the continuous casting method according to the embodiment of the present invention and the continuous casting method according to the prior art.
  • 4 is an oxygen affinity graph for explaining a metal-containing material forming a mold flux according to an embodiment of the present invention.
  • 5 is a graph showing a change in melting point of NiO in molten steel according to the NiO content in the mold flux.
  • 6 is a graph comparing the maximum depth of oxidation by oxidation during casting and NiO concentration with increasing distance from the surface of cast steel according to the NiO content in the mold flux.
  • 7 is a graph showing the oxide layer formation thickness and the oxidized slab thickness during high temperature oxidation.
  • 8 is a view schematically showing a continuous casting apparatus for explaining a continuous casting method according to an embodiment of the present invention.
  • 9 is a view showing the distribution of Ni concentration layer on the surface of the cast slab manufactured by the mold flux and the continuous casting method using the same according to an embodiment of the present invention.
  • 10 is a photograph and a schematic diagram comparing the cast steel produced by the continuous casting method according to the prior art and the continuous casting method according to an embodiment of the present invention.
  • the mold flux P according to the embodiment of the present invention is injected into the mold 10 during casting of the molten steel M in order to suppress surface defects of the cast steel produced by continuous casting. More specifically, it is an additive which is added to molten steel in order to form a high Ni concentration layer (hereinafter referred to as Ni enriched layer) by reduction of nickel oxide (NiO) on the surface of the cast steel when the cast steel is produced.
  • Ni enriched layer a high Ni concentration layer
  • NiO nickel oxide
  • the mold flux P of the present invention when the cast steel is cast using molten steel containing Cu (copper) by forming a Ni rich layer on the surface of the cast steel during casting of the cast steel, the copper component of the molten steel is cast. It can be concentrated to the surface and put into molten steel to suppress and prevent the occurrence of slag cracks due to the grain boundary penetration of copper.
  • the mold flux (P) of the present invention includes a composition containing SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O, F and nickel oxide (NiO), nickel oxide relative to the total weight of the composition 5 wt% to 40 wt%. That is, the mold flux (P) means a composition containing a predetermined component in a predetermined range, the composition is a first composition consisting of SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O and F and nickel oxide (NiO) Comprising a second composition consisting of, the second composition is included in the range of 5 wt% to 40 wt% based on the total weight of the first composition and the second composition combined.
  • the first composition includes 1.0 to 1.5 wt% of MgO, 5 to 7 wt% of Al 2 O 3 , 3 to 5 wt% of Na 2 O, and 5 to 7 wt% of F.
  • CaO and SiO 2 may include CaO / SiO 2 so that the analogy value is 0.8 to 1.4.
  • Nickel oxide is added to the mold flux to improve the solubility of copper in the cast steel and at the same time affects the lubrication function that is the basic function of the mold flux.
  • nickel (Ni) is a metal having a low oxygen affinity, which is injected into molten steel through a mold flux to control the solidification behavior of molten steel such that superstable reaction with less solidification shrinkage occurs on the surface of the cast steel.
  • Such nickel oxide is contained in the mold flux and injected into the molten steel, and when the molten steel is cast, it is reduced to metallic nickel (Ni) at the surface portion of the cast steel and diffused a predetermined depth from the surface of the cast steel to a high concentration on the surface of the cast steel. Serves to form a layer.
  • molten steel is almost free of oxygen, and when nickel oxide is added to molten steel, nickel is reacted by reaction with calcium (Ca), aluminum (Al), silicon (Si), iron (Fe), etc. in the molten steel. It is reduced to exist in ionic state. At this time, the heating surface of the molten steel can be obtained by the reaction heat generated, the nickel in the ionic state can be diffused to the surface portion of the cast steel to form a high Ni concentration layer on the surface portion.
  • the nickel oxide may be included in the mold flux in the range of 5 wt% to 40 wt%.
  • the reason for the above range will be described.
  • the melting point temperature of the mold flux when the melting point temperature of the mold flux is lower than 1150, the flow rate between the solidification shell and the mold may be increased to cause mold flux inclusion defects in molten steel.
  • the melting point temperature of the mold flux when the melting point temperature of the mold flux is higher than 1300, it cannot be easily melted due to the heat of molten steel, so that the proper flow rate of the mold flux cannot be obtained, and an increase in the frictional resistance in the mold increases the possibility of operation accidents such as restrictive breakout. can do. Therefore, the appropriate melting point section of the mold flux P in molten steel is 1150 to 1300.
  • the melting temperature (° C) according to the change of the nickel oxide content (wt%) based on the appropriate melting point section (1150 to 1300) of the molten steel in the molten steel, the content of the nickel oxide in the mold powder of the present invention It can be confirmed that the melting temperature of the mold flux is 1300 or more when it is added over the upper limit of 40 wt%.
  • the lubrication function which is a basic function of the mold flux, is deteriorated, which causes a problem that casting cannot be performed.
  • FIG. 7 shows the cast steel for 7200 seconds to 21600 seconds, which is the heating time of a typical cast steel. Shows the oxidized depth at.
  • the heating time is a time for reheating in order to roll the produced cast steel, it is determined according to the size.
  • the minimum reheating temperature of a typical cast steel is 7200 seconds (sec), in which a cast layer of about 150 ⁇ m is formed of an oxide layer.
  • the maximum reheating time the surface of the slab is formed of an oxide layer to a depth of 260 ⁇ m.
  • the concentration of Ni in the slab gradually decreases as the distance from the slab surface increases.
  • Ni is formed at about 150 ⁇ m, which is a depth at which the oxide layer (T ( Oxid ) ) generated from the surface of the slab is reduced.
  • a thickened layer is formed. That is, the NiO content in the mold powder is very small, and the distance diffused from the surface portion of the cast steel after reduction to Ni ions is reduced, so that the Ni thickening layer formed a predetermined depth from the surface of the cast steel is an oxide layer (T ( Oxid ) ) of the cast steel . Form nearby. Therefore, the minimum content of nickel oxide in the mold flux must be 5 wt% to realize the effect of the present technology at the minimum heating time upon reheating.
  • the content of nickel oxide may be contained in the mold flux in a range of more than 10 wt% to 40 wt%. That is, by including the nickel oxide in the mold flux to exceed 10 wt%, it is possible to cause the Ni enriched layer to be formed near 260 ⁇ m, which is an oxide layer depth formed when the reheating time of the cast steel is 21600 seconds or more.
  • the reason for limiting the parabolic value of CaO / SiO 2 to 0.8 to 1.4 is that CaO / SiO 2 affects the viscosity of molten steel. That is, if the CaO / SiO 2 value is less than 0.8, the viscosity of molten steel is excessively increased, thereby reducing the mixing of the molten flux to the surface of the cast steel. Because there is.
  • Al 2 O 3 serves to increase the viscosity of the mold flux (P) and at the same time serves to increase the solidification temperature. Since the amount of inevitable oxide contained in the molten slag is added by the oxidation reaction due to the addition of Al, the addition amount should be reduced and added in conjunction with Al 2 O 3 .
  • MgO increases the solidification temperature of the mold flux or controls physical properties such as crystallization characteristics during solidification. At this time, when MgO exceeds 1.5 wt%, the solidification temperature becomes too high to reduce the incorporation of the molten flux to the surface of the cast steel, and the crystallization during solidification becomes unstable, making it difficult to control stable heat transfer from the mold, resulting in uneven solidification of molten steel. Brings about. In addition, when the MgO is less than 1.0 wt%, there is a problem that the solidification temperature is not sufficiently secured.
  • Na 2 O and F are meshwork modifiers that serve to lower the viscosity and solidification temperature by cutting the structure of the silicate.
  • the Na 2 O and F content exceeds 5 wt% and 7 wt%, respectively, the viscosity and solidification temperature are too low to increase the inflow of the mold flux, but the oscillation mark is deepened and the molten iron of the immersion nozzle is increased. Can be.
  • Na 2 O and F content is less than 3 wt% and 5 wt%, respectively, the viscosity and solidification temperature are excessively high, thereby reducing the melting flux to the surface of the cast steel.
  • Na 2 O and F may be added in the above range.
  • the mold flux formed as described above can be used during casting of molten steel containing copper (Cu).
  • Continuous casting method is a continuous casting method for manufacturing a cast by supplying molten steel (M) to the mold 10, SiO 2 , CaO, MgO, Al 2 O 3 , While supplying a mold flux (P) containing Na 2 O, F and nickel (Ni) oxide, a coating layer (hereinafter referred to as Ni rich layer) by nickel oxide is formed on the surface of the cast steel (S). It may be contained in the range of 5 wt% to 40 wt% with respect to the total weight of the flux (P).
  • the molten steel (M) is provided, the molten steel (M) is supplied into the mold 10 of the continuous casting facility to be produced into the cast (S) through the casting process.
  • the molten steel (M) that can use the mold flux (P) according to the embodiment of the present invention is composed of Fe, C, Si, Mn, Cu and other inevitable components, wt% Fe: balance, C: 0.01 to 0.4 wt%, Cu: 0.1 to 2 wt% or less, Si: 0.1 to 2 wt% or less, Mn: 0.1 to 2 wt% or less.
  • the molten steel (M) having the above component range is a molten steel that has a toughness that can be used in a cryogenic environment when manufactured as a product, in particular, has a high toughness in a welded portion, and thus, the mold flux of the present invention It is a molten steel that can produce cast steel that exhibits the effect of inhibiting and preventing elution.
  • SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O, F, and nickel (Ni) oxides are included as the hot surfaces of the molten steel M in the mold 10.
  • the mold flux having the above-described nickel oxide content range is supplied onto the hot water surface of the molten steel M in the continuous casting process of the molten steel M, so that the element and the nickel oxide in the molten steel M react.
  • the Ni ions are reduced to Ni ions and diffused from the surface of the slab S to form a Ni rich layer having a high Ni concentration on the surface of the slab S.
  • the cast steel (S) produced by the continuous casting method of the present invention is the surface portion of the predetermined region from the outermost angle (that is, the surface of the cast steel) to the inner side with respect to the thickness direction based on the thickness direction of the cast steel (S) It may have a high Ni content compared to the central portion from the center to the surface portion.
  • nickel oxide in the mold flux can suppress surface defects caused by the solidification behavior of the copper component and molten steel in the cast steel S. More specifically, the nickel contained in the nickel oxide increases the solubility of copper in the cast steel (S), and super-crystalline tablets in which the liquid phase and the delta phase are converted into a gamma phase and a liquid phase at the surface portion of the cast steel (S) in which the Ni thick layer is formed. The reaction can be caused to reduce the solidification shrinkage of the cast S, and the surface cracks can be suppressed.
  • the Ni thick layer using the mold flux is easily formed on the surface of the cast steel produced in the continuous casting process of the present invention, and deeper than the layer (T ( Oxid ) ) oxidized from the surface of the cast steel formed during casting.
  • the mold flux P may be added at 0.1 kg to 1 kg per ton of molten steel. That is, when the mold flux is injected at less than 0.1 kg per ton of molten steel, it is not easy to form a Ni-rich layer uniformly on the entire surface portion of the cast steel, and the Ni-rich layer is locally formed on the surface of the cast steel. Can be formed.
  • a mold flux containing nickel oxide in a range of 5 wt% to 40 wt% may be added at 0.1 kg to 1 kg per ton of molten steel to be cast.
  • the outer surface of the cast steel S is based on the thickness direction of the cast steel S according to the embodiment of the present invention manufactured by the above-described mold flux P and the continuous casting method.
  • the surface portion toward the side has a higher Ni concentration than the central portion from the surface portion to the center of the cast steel.
  • the surface portion means a predetermined region from the surface of the cast steel (S) in the inner side direction of the cast steel (S), and is the region where the solidified shell is first formed during casting of molten steel.
  • the center part is the remaining area
  • the center part means an area
  • the concentration of Ni in the surface portion of the cast (S) may be 1.5 times or more of the Cu content contained in the base material.
  • the Ni content is 1.5 times or less of the Cu content, the liquid phase formation of Cu appears at the heating temperature.
  • a solid phase in which Ni is Gamma phase of 1.5 times or more of the Cu content appears, it is possible to prevent the formation of a single liquid phase containing Cu.
  • Ni ions in which the nickel oxide in the mold flux P is reduced are diffused from the surface to be contained in the surface. This can be confirmed through FIG. 9, in which the Ni-rich layer is shown as a red region on the surface of the cast steel.
  • a layer having a concentration of Ni at least twice the Cu content is formed on the surface thereof, thereby preventing the occurrence of defects due to the grain boundary penetration of the above-described Cu and compensating the cast oxide layer.
  • Figure 10 (a) is a photograph and a schematic view of a conventional mold flux and the cast produced by the continuous casting method using the same
  • Figure 10 (b) is a schematic diagram showing the state of the cast prepared according to an embodiment of the present invention.
  • the cast steel was manufactured by using a mold flux containing 20 wt% nickel oxide.
  • the steel grade was 0.35 wt% copper, and the representative components were 0.1 wt% carbon, 0.3 wt% Si, and 1.5 wt% Mn. , 0.02% by weight Ni, 0.03% by weight Ti.
  • nickel (Ni) contained in the steel is contained due to contamination by ferroalloy, and although very low content is contained in molten steel by other ferroalloy, in order for Ni to express the effect of the present invention (Ni rich layer formation), Since it should contain 1.5 times more than copper, the effect of Ni already contained in molten steel can be ignored.
  • the conventional cast is grain boundary in the SEM and SEM, which is a scanning microscope for observing the cross section of the cast, and the EPMA result of the method for analyzing the concentration of Ni formed on the surface of the cast. It can be confirmed that the copper component has penetrated the inside.
  • the cast steel produced using the mold flux of the present invention can be seen that the oxide layer and the Ni rich layer is formed overlapping the surface layer of the cast (S), in the case of copper in the EPMA image weakly appears in the outermost innermost of the Ni thickening layer grain boundary You can see that it did not penetrate the.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편에 관한 것으로, SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 함유하는 조성물을 포함한다. 니켈(Ni) 산화물은 조성물의 전체 중량에 대해서 5 wt% 내지 40 wt% 범위로 함유하는 몰드 플럭스를 용강 상부에 공급하면서 주편의 표면에 니켈 산화물에 의한 코팅층을 형성한다. 이에, 주편의 두께방향을 기준으로 주편의 최외각으로부터 안측으로의 표면부 및 표면부로부터 주편의 중심까지의 중심부보다 표면부의 Ni 농도가 높은 표면 결함이 억제된 주편을 제공할 수 있다. 즉, 주편의 표면에 산소 친화도가 낮은 Ni 산화물의 농화층을 형성하여 주편 표면에서 응고수축이 적은 과포정 반응이 일어나도록 강의 응고 거동을 제어한다. 이에, 용강 중 구리가 주편 표면에 농화되어 발생할 수 있는 결함을 억제할 수 있다. 이에 구리에 의한 결함을 억제하기 위해 용강에 Ni 등과 같은 금속 함유 물질을 혼합하는 종래 기술에 비해 금속 함유 물질의 사용량을 저감시킬 수 있어 고가의 금속 함유 물질 사용에 따른 생산 비용의 증대를 억제할 수 있다.

Description

몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편
본 발명은 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편에 관한 것으로서, 더욱 상세하게는 주편의 표면 결함을 억제할 수 있는 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편에 관한 것이다.
일반적으로, 주편은 주형에 수용된 용강이 냉각대를 거쳐 냉각되면서 제조된다. 예컨대, 연속주조공정은 일정한 내부 형상을 갖는 주형에 용강을 주입하고, 주형 내에서 반응고된 주편을 연속적으로 주형의 하측으로 인발하여 슬라브, 블룸, 빌렛, 빔 블랭크 등과 같은 다양한 형상의 반제품을 제조하는 공정이다.
이러한 주조공정에서 주편은 주형 내에서 1차 냉각되고, 주형을 통과한 후 주편에 물이 분사되어 2차 냉각되는 과정을 거쳐 응고가 진행된다. 이 중 주형 내에서 일어나는 1차 냉각은 주형 내 용강의 유동과, 몰드 플럭스의 용융 거동 및 주형과 주편 사이로의 균일한 침투 능력에 의해 많은 영향을 받는다.
한편, 주조공정으로 제조된 주편에는 다양한 원인에 의해 결함이 발생하게 되는데, 이러한 결함은 주형 내에서의 용강 유동이나 주조 중 롤에 의한 하중, 인발에 의한 하중 등에 의해 발생할 수 있다. 그 중, 용강 유동에 의해 발생하는 결함은 개재물과 슬래그가 혼입된 형태가 대부분이다. 한편, 주조 중 롤에 의한 하중, 인발에 의한 하중으로 발생하는 결함은 주로 주편의 표면 크랙으로 발생되며, 주편 표면에 형성되는 크랙은 주형 내에서 용강이 1차 냉각되는 과정에서 발생할 수도 있다.
최근 해양구조용 강은 용접성 및 저온 인성 확보를 목적으로 구리(Cu)를 첨가하고 있다. 그런데 1500℃ 정도의 고온에서 주편을 주조하는 과정에서 주편 표면부로 구리가 용출된 후 강의 결정입계로 침투하여 크랙을 유발한다. 또한, 강 중 구리에 의해 크랙 민감도는 급격히 증가하며 그 주된 요인은 주조 중 또는 압연을 위한 가열 중 고온에서 선택적인 산화에 의한 구리의 농화때문이다. 구리는 산화 정련 시에도 산소 친화도가 매우 낮아 제거하기 어렵고, 이에 고철이 된 후에도 제품에 지속적으로 농축되고, 이러한 고철을 제선공정에서 스크랩으로 사용하는 경우 전술한 바와 같은 현상이 반복적으로 발생하게 된다. 이에 강에 함유된 구리의 함량에 대하여 1.5 내지 2배 가량의 니켈(Ni)을 첨가하면, 주편 내 구리의 용해도가 증가하여 구리가 주편 표면으로 용출되는 현상을 억제하는 방법이 사용되고 있다.
도 1에 도시된 Fe-C 상태도를 참조하면, 강은 저탄소영역에서 1400℃ 이상의 온도에서 알파 페라이트(α(δ))로 주조되어 안정적인 응고 거동을 보인다. 그러나, 도 2에 도시된 것처럼 니켈 함량이 3중량% 미만인 경우에는 감마 오스테나이트(γ-Fe) 범위가 넓어져 액상과 델타상이 델타상과 감마상으로 변태하는 아포정 반응으로 나타날 수 있다.
이러한 아포정 반응은 포정 온도 이하에서 잔류 액상없이 고상으로 변태하는 반응이며, 응고 수축이 크고 크랙에 민감하다. 이에, 도 3에 도시된 바와 같이 아포정 반응으로 제조된 주편은 심각한 응고 수축에 의해 주형 내 불균일 응고가 조장되어 주편 표면에 요철 구조가 형성됨으로써 표면 크랙을 유발할 수 있다.
본 발명은 주편 표면부에 Ni 고농도 층(이하, Ni농화층)을 형성할 수 있는 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편을 제공한다.
본 발명은 주편 입계 내 구리의 침투를 억제 및 방지할 수 있는 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편을 제공한다.
본 발명은 용강에 투입되는 주편 결함 억제용 원료의 사용량을 감소시킬 수 있는 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편을 제공한다.
본 발명은 주편 제조 공정의 생산성 및 효율성을 증가시킬 수 있는 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편을 제공한다.
본 발명의 실시 형태에 따른 몰드 플럭스는 SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 함유하는 조성물을 포함하며, 상기 니켈(Ni) 산화물은 상기 조성물의 전체 중량에 대해서 5 wt% 내지 40 wt% 범위로 함유된다.
상기 조성물의 전체 중량에 대해서, 상기 MgO를 1.0 ~ 1.5 wt%, 상기 Al2O3를 5 ~ 7 wt%, 상기 Na2O를 3 ~ 5wt%, 상기 F를 5 ~ 7wt% 포함하며, 그 외는 CaO 및 SiO2를 포함할 수 있다.
상기 CaO/SiO2는 0.8 ~ 1.4의 비로 구성될 수 있다.
본 발명의 실시 예에 따른 몰드에 용강을 공급하여 주편을 제조하는 연속주조방법은, 상기 용강 상부에 SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 포함하는 몰드 플럭스를 공급하면서 주편의 표면에 상기 니켈 산화물에 의한 코팅층을 형성하며, 상기 니켈 산화물은 상기 몰드 플럭스의 전체 중량에 대해 5 wt% 내지 40 wt% 범위로 함유된다.
상기 용강은 구리를 포함할 수 있다.
상기 몰드 플럭스는 전체 중량에 대하여 wt%로, 상기 MgO를 1.0 ~ 1.5 wt%, 상기 Al2O3를 5 ~ 7 wt%, 상기 Na2O를 3 ~ 5wt%, 상기 F를 5 ~ 7wt% 및 그 외는 상기 SiO2 및 CaO를 포함할 수 있다.
상기 CaO 및 SiO2는 0.8 ~ 1.4의 비로 구성될 수 있다.
상기 몰드 플럭스는 상기 용강의 톤당 0.1㎏ 내지 1㎏ 범위로 투입될 수 있다.
본 발명의 실시 형태에 따른 용강의 주조로 제작된 주편은, 두께방향을 기준으로 상기 주편의 최외곽으로부터 안측으로의 표면부 및 상기 표면부로부터 상기 주편의 중심까지의 중심부를 포함하며, 상기 표면부는 상기 중심부보다 Ni 농도가 높다.
상기 표면부의 Ni 농도는 Cu 함유량의 1.5배 이상일 수 있다.
상기 강은 Fe : 잔부, C : 0.01~0.4 wt%, Cu : 0.1 ~ 2 wt%, Si : 0.1 ~ 2 wt%, Mn : 0.1 ~ 2 wt% 및 기타 불가피한 성분으로 구성될 수 있다.
본 발명의 실시 형태에 따른 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편에 의하면, 주편 표면의 응고 거동을 제어하여 주편에 형성되는 크랙 등과 같은 결함을 억제 혹은 방지할 수 있다. 예컨대, 구리(Cu)를 함유하는 용강을 이용하여 주편을 제조하는 경우, 구리 성분에 의해 주편 표면에 형성되는 크랙의 발생을 억제할 수 있다. 즉, 주편의 표면에 산소 친화도가 낮은 Ni 산화물의 농화층을 형성하여 주편 표면에서 응고수축이 적은 과포정 반응이 일어나도록 강의 응고 거동을 제어한다. 이에, 용강 중 구리가 주편 표면에 농화되어 발생할 수 있는 결함을 억제할 수 있다. 이에 구리에 의한 결함을 억제하기 위해 용강에 Ni 등과 같은 금속 함유 물질을 혼합하는 종래 기술에 비해 금속 함유 물질의 사용량을 저감시킬 수 있어 고가의 금속 함유 물질 사용에 따른 생산 비용의 증대를 억제할 수 있다.
도 1은 종래기술에 따른 연속주조방법의 문제점을 설명하기 위한 Fe-C 상태도.
도 2는 용강에 Ni를 첨가한 경우 Fe-C 상태도의 변화를 보여주는 도면.
도 3은 종래기술에 따른 연속주조방법으로 제조된 주편의 사진.
도 4는 본 발명의 실시 예에 따른 몰드 플럭스를 형성하는 금속 함유 물질을 설명하기 위한 산소친화도 그래프.
도 5는 몰드 플럭스 내 NiO 함량에 따른 용강 내 NiO의 융점 변화를 나타내는 그래프.
도 6은 몰드 플럭스 내 NiO 함량에 따른 주편 표면에서의 거리 증가에 따른 NiO 농도와 주조중 산화에 의한 산화 최대 깊이를 비교하는 그래프.
도 7은 고온 산화시 산화층 형성 두께와 산화된 주편 두께를 나타낸 그래프.
도 8은 본 발명의 실시 예에 따른 연속주조방법을 설명하기 위한 연속주조장치를 개략적으로 보여주는 도면.
도 9은 본 발명의 실시 예에 따른 몰드 플럭스 및 이를 이용한 연속 주조 방법을 통해 제작된 주편 표면부에서의 Ni 농화층 분포 결과를 보여주는 도면.
도 10은 종래기술에 따른 연속주조방법과 본 발명의 실시 예에 따른 연속주조방법으로 제조된 주편을 비교한 사진 및 모식도.
이하, 도 4 내지 도 10을 참조하여 본 발명에 따른 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편의 바람직한 실시의 예들을 상세히 설명한다.
여기서, 도 4는 본 발명의 실시 예에 따른 몰드 플럭스를 형성하는 금속 함유 물질을 설명하기 위한 산소친화도 그래프이다. 도 5는 몰드 플럭스 내 NiO 함량에 따른 용강 내 NiO의 융점 변화를 나타내는 그래프이다. 도 6은 몰드 플럭스 내 NiO 함량에 따른 주편 표면에서의 거리 증가에 따른 NiO 농도와 주조중 산화에 의한 산화 최대 깊이를 비교하는 그래프이다. 도 7은 고온 산화시 산화층 형성 두께와 산화된 주편 두께를 나타낸 그래프이다. 도 8은 본 발명의 실시 예에 따른 연속주조방법을 설명하기 위한 연속주조장치를 개략적으로 보여주는 도면이다. 도 9는 본 발명의 실시 예에 따른 몰드 플럭스 및 이를 이용한 연속 주조 방법을 통해 제작된 주편 표면부에서의 Ni 농화층 분포 결과를 보여주는 도면이다. 도 10은 종래기술에 따른 연속주조방법과 본 발명의 실시 예에 따른 연속주조방법으로 제조된 주편을 비교한 사진 및 모식도이다.
본 발명의 실시 형태에 따른 몰드 플럭스(P)는 연속주조에 의해 제작되는 주편의 표면 결함을 억제하기 위해 용강(M)의 주조시 몰드(10) 내에 투입되는 것이다. 더욱 상세하게는, 주편을 제작할 때 주편의 표면에 니켈 산화물(NiO)의 환원에 의한 Ni 고농도층(이하, Ni 농후층)을 형성하기 위해 용강에 투입되는 첨가제이다.
특히, 본 발명의 몰드 플럭스(P)는 주편의 주조시에 주편의 표면에 Ni 농후층을 형성함으로써, Cu(구리)를 함유하는 용강을 이용하여 주편을 주조하는 경우, 용강 중 구리 성분이 주편 표면으로 농화되고, 구리의 입계 침투에 의한 주편 크랙 발생을 억제 및 방지하기 위해 용강에 투입될 수 있다.
이에, 본 발명의 몰드 플럭스(P)는 SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈 산화물(NiO)를 함유하는 조성물을 포함하며, 조성물 전체 중량에 대해서 니켈 산화물을 5 wt% 내지 40 wt% 범위로 포함한다. 즉, 몰드 플럭스(P)은 소정 성분을 소정 범위로 함유하는 조성물을 의미하며, 조성물은 SiO2, CaO, MgO, Al2O3, Na2O 및 F로 이루어진 제1 조성물과, 니켈산화물(NiO)로 이루어진 제2 조성물을 포함하며, 제2 조성물은 제1 조성물과 제2 조성물을 합한 전체 중량에 대해서, 5 wt% 내지 40 wt% 범위로 포함된다. 그리고, 제1 조성물은 조성물의 전체 중량에 대해서 MgO를 1.0 ~ 1.5wt%, Al2O3를 5 ~ 7 wt%, Na2O를 3 ~ 5 wt% 및 F를 5 ~ 7 wt% 포함하며, 그 외는 CaO와 SiO2는 CaO/SiO2의 비유 값이 0.8 ~ 1.4를 갖도록 포함할 수 있다.
이하, 본 발명의 실시 형태에 따른 몰드 플럭스를 구성하는 각 성분과, 이를 첨가하는 이유 및 이들의 함량 범위에 대하여 설명한다.
1) NiO : 5 wt% ~ 40 wt%
니켈산화물은 몰드 플럭스에 투입되어 주편 내 구리의 용해도를 향상시키는 것과 동시에 몰드 플럭스의 기본 기능인 윤활 기능에 영향을 미친다. 이때, 도 4를 참조하면, 니켈(Ni)은 산소 친화도가 낮은 금속으로써 몰드 플럭스를 통해 용강에 투입됨으로써 주편 표면에서 응고수축이 적은 과포정 반응이 일어나도록 용강의 응고 거동을 제어한다.
이와 같은, 니켈 산화물은 몰드 플럭스에 포함되어 용강에 투입되어, 용강을 주조할 때에 주편의 표면 부분에서 금속 니켈(Ni)로 환원되어 주편의 표면으로부터 내부로 소정 깊이 확산되어, 주편 표면에 Ni 고농도 층을 형성하는 역할을 수행한다. 이를 자세히 설명하면, 용강은 자유산소가 거의 없는 상태이며, 니켈 산화물이 용강에 투입되면 용강 내 칼슘(Ca), 알루미늄(Al), 실리콘(Si) 및 철(Fe) 등과의 반응에 의해 니켈은 환원되어 이온상태로 존재한다. 이때, 발생하는 반응열에 의해 용강의 탕면 보온 효과를 얻을 수 있으며, 이온상태의 니켈은 주편의 표면 부분으로 확산되어 표면 부분에 Ni 고농도 층을 형성할 수 있다.
이때, 니켈 산화물은 5 wt% 내지 40 wt% 범위로 몰드 플럭스에 포함될 수 있다. 이하에서 상기 범위의 이유에 대해 설명하기로 한다.
도 5는 몰드 플럭스 내 니켈 산화물(NiO)의 함유량(wt%)에 따른 몰드 플럭스의 용융온도를 나타내며, 몰드 플럭스 내 니켈 산화물의 함량을 0 에서 80 wt%까지 변화시켰을 때의 용강에서의 몰드 플럭스 용융온도(℃)를 나타내었다.
여기서, 몰드 플럭스의 융점 온도가 1150보다 낮을 경우에는 응고쉘(Shell)과 몰드 사이에서의 유입량이 증대되어 용강 내 몰드 플럭스성 개재물 결함이 발생할 수 있다. 또한, 몰드 플럭스의 융점 온도가 1300보다 높은 경우 용강의 열에 의해 쉽게 용융이 되지 못하여 적절한 몰드 플럭스의 유입량을 가져오지 못해, 몰드 내 마찰 저항의 증가로 구속성 브레이크 아웃과 같은 조업 사고가 발생할 가능성이 증가할 수 있다. 따라서, 용강에서의 몰드 플럭스(P)의 적정 융점 구간은 1150 내지 1300이다.
상기의 용강 내 몰드 플럭스의 적정 융점 구간(1150 내지 1300)을 기준으로 니켈 산화물의 함유량(wt%)의 변화에 따른 용융온도(℃)를 살펴보면, 본 발명에서 제시한 니켈 산화물의 몰드파우더 내 함유량 상한치인 40wt%을 초과하여 투입될 때에 몰드 플럭스의 용융온도가 1300 이상인 것을 확인할 수 있다. 그리고, 몰드 플럭스의 기본 기능인 윤활기능이 악화되어 주조를 실시하지 못하는 문제가 발생하게 된다. 또한, 니켈 산화물의 몰드 플럭스 내 함유량 하한치인 5wt%의 미만으로 투입될 때는 몰드 플럭스를 사용하며 주조된 주편의 표면부에 Ni의 고농도 층이 균일하게 형성되는 것이 용이하지 않게 될 수 있다.
도 6 및 도 7을 참조하여 자세하게 설명하면, 도 6의 몰드 플럭스 내 NiO 함량에 따라서 주편 표면에서의 Ni 농도의 변화를 나타낸 것이며, 도 7은 일반적인 주편의 가열 시간인 7200초에서 21600초 동안 주편에서의 산화된 깊이를 나타낸 것이다. 여기서, 가열 시간은 제조된 주편을 압연하기 위하여 재가열하는 시간으로 그 크기에 따라 결정한다.
도 7을 참조하면, 일반적인 주편의 최소 재가열 온도는 7200초(sec)이고 이때 약 150㎛의 주편층이 산화층으로 형성한다. 최대 재가열 시간인 21600초에서는 260㎛ 깊이까지 주편의 표면이 산화층으로 형성된다.
도 6에서는 주편 표면에서의 거리가 증가함에 따라 주편 내 Ni의 농도는 점차적으로 감소하는 것을 알 수 있다. 이때, 몰드 플럭스 내 니켈 산화물의 함량이 5 wt% 미만으로 투입된 A의 경우에는 주편의 제작시 주편 표면으로부터 발생되는 산화가 발생하는 층(T( Oxid ))이 감소된 깊이인 150㎛ 근처로 Ni 농화층이 형성된다. 즉, 몰드 파우더 내 NiO 함량이 매우 작아, Ni이온으로의 환원 후에 주편의 표면부로부터 확산하는 거리가 감소되며, 이에 주편의 표면으로부터 소정깊이 형성된 Ni 농화층이 주편의 산화층(T( Oxid )) 근처로 형성한다. 따라서, 몰드 플럭스 내 니켈 산화물의 최소 함량은 5 wt% 은 되어야 재가열시 최소 가열 시간에서의 본 기술의 효과를 구현할 수 있다.
한편, 니켈 산화물의 함량은 10 wt% 초과 내지 40 wt% 범위로 몰드 플럭스에 함유될 수 있다. 즉, 니켈 산화물이 10 wt%를 초과하도록 몰드 플럭스에 포함됨으로써, 주편의 재가열 시간이 21600초 이상일 경우에 형성된 산화층 깊이인 260㎛ 근처로 Ni 농화층이 형성되도록 할 수 있다.
2) CaO/SiO2 : 0.8 ~ 1.4
CaO/SiO2의 비유 값을 0.8 ~ 1.4로 한정하는 이유는 CaO/SiO2가 용강의 점도에 영향을 미치기 때문이다. 즉, CaO/SiO2 값이 0.8 미만에서는 용강의 점도가 지나치게 증가하여 주편 표면으로 용융된 플럭스의 혼입이 감소하게 되고, 이에 따른 유입량 감소에 의해 구속성 브레이크 아웃(Break out)이라는 조업 사고가 발생할 수 있기 때문이다.
그리고, CaO/SiO2의 값이 1.4를 초과하는 경우에는, 몰드 플럭스(P)의 응고 온도가 높아져서 주조중 몰드 상면의 미반응 몰드 플럭스층을 안정되게 유지하는 것이 불가능하다. 이러한 현상은 주조 중에 용강 나탕이 간헐적으로 노출됨에 따른 재산화로 개재물의 발생량이 국부적으로 증대되어 주편의 표면 결함으로 이어질 수 있다.
3) Al2O3 : 5 ~ 7 wt%
Al2O3는 몰드 플럭스(P)의 점도를 상승시키는 역할과 동시에 응고 온도를 상승시키는 역할을 한다. Al 첨가에 따른 산화반응에 의해 용융 슬래그로 함유되는 불가피한 산화물의 양이 추가되기 때문에 Al2O3와 연동해서 첨가량을 감소시켜 투입하여야 한다.
이때, Al2O3가 5 wt% 미만인 경우에는 점도 및 응고 온도 상승 효과가 미비하다. 또한, Al2O3가 7 wt%를 초과할 경우에는 점도와 응고 온도가 지나치게 높아져 주편 표면으로 용융 플럭스의 권입이 감소된다. 이에, 응고시의 결정화가 불안정해져서 몰드로의 안정적인 열전달 제어가 어려워지므로 용강의 응고 불균형을 초래해 제품 결함 발생이 증가하는 문제가 야기될 수 있다.
4) MgO : 1.0 ~ 1.5 wt%
MgO는 몰드 플럭스의 응고 온도를 상승시키거나 응고시의 결정화 특성 등의 물성을 제어하는 역할을 한다. 이때, MgO는 1.5 wt%를 초과할 경우에는 응고 온도가 지나치게 높아져 주편 표면으로 용융된 플럭스의 혼입이 감소하게 되고, 응고시의 결정화가 불안정해져서 몰드로부터의 안정적인 열전달 제어가 어려워져 용강의 응고 불균형을 초래한다. 또한, MgO가 1.0 wt% 미만인 경우에는 응고 온도가 충분히 확보되지 못하는 문제가 발생한다.
5) Na2O : 3 ~ 5 wt% 및 F : 5 ~ 7 wt%
Na2O 및 F는 망목수식제(metwork modifier)로서 실리게이트(Silicate)의 구조를 절단하여 점도와 응고온도를 낮추는 역할을 한다. 그러나, Na2O 및 F의 함량이 각각 5 wt% 및 7 wt% 초과하는 경우에는 점도와 응고온도가 지나치게 낮아져 몰드 플럭스의 유입량이 증가하나, 오실레이션 마크가 깊어지고 침지노즐의 용선이 증가할 수 있다.
또한, Na2O 및 F의 함량이 각각 3 wt% 및 5 wt% 미만인 경우에는 점도와 응고온도가 지나치게 높아져 주편 표면으로 용융 플럭스의 권입이 감소하며, 유입량 감소에 의해 구속성 브레이크 아웃과 같은 조업 사고의 가능성이 커질 수 있다. 따라서, Na2O 및 F는 상기 범위로 투입될 수 있다.
이하에서는, 도 9을 통해 본 발명의 실시 예에 따른 몰드 플럭스를 이용한 연속주조방법 및 이로 제작된 주편에 대해 자세하게 설명하기로 한다. 상기와 같이 형성되는 몰드 플럭스는 구리(Cu)를 함유하는 용강의 주조시에 사용할 수 있다.
본 발명의 실시 예에 따른 연속주조방법은 몰드(10)에 용강(M)을 공급하여 주편을 제조하는 연속주조방법으로서, 용강(M) 상부에 SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 포함하는 몰드 플럭스(P)를 공급하면서 주편(S)의 표면부에 니켈 산화물에 의한 코팅층(이하, Ni 농후층)을 형성하며, 니켈 산화물은 몰드 플럭스(P)의 전체 중량에 대해 5 wt% 내지 40 wt% 범위로 함유될 수 있다.
우선, 용강(M)을 마련하고, 마련된 용강(M)은 주조과정을 통해 주편(S)으로 제작되기 위해 연속주조설비의 몰드(10)내로 공급된다. 이때, 본 발명의 실시 예에 따른 몰드 플럭스(P)를 사용할 수 있는 용강(M)은 Fe, C, Si, Mn, Cu 및 기타 불가피하게 함유된 성분으로 구성되며, wt%로 Fe : 잔부, C : 0.01~0.4 wt%, Cu : 0.1 ~ 2 wt% 이하, Si : 0.1 ~ 2 wt% 이하, Mn : 0.1 ~ 2 wt% 이하를 함유할 수 있다. 즉, 상기 성분 범위를 갖는 용강(M)은 제품으로 제조되었을 때 극저온 환경에서 사용될 수 있는 인성을 갖고, 특히 용접부에서 높은 인성을 갖는 특징을 갖는 용강으로, 이에 본 발명의 몰드 플럭스에 의해 Cu의 용출을 억제 및 방지할 수 있는 효과가 발현되는 주편을 제작할 수 있는 용강이다.
그리고, 몰드(10) 내 주조가 진행되는 과정에서 몰드(10) 내 용강(M)의 탕면으로 SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 함유하는 조성물을 포함하며, 니켈 산화물이 조성물의 전체 중량에 대해서 5 wt% 내지 40 wt% 범위로 함유된 몰드 플럭스(P)를 투입한다.
이와 같은 연속주조방법은 전술한 니켈 산화물의 함량 범위를 갖는 몰드 플럭스를 용강(M)의 연속주조과정에서 용강(M)의 탕면상에 공급하여, 용강(M) 내 원소와 니켈 산화물이 반응하여 Ni 이온으로 환원되고, 환원된 Ni 이온은 주편(S) 표면부로부터 확산되어 주편(S) 표면부에 Ni의 농도가 높은 Ni 농후층을 형성하게 된다. 이에, 본 발명의 연속주조방법을 통해 제작된 주편(S)은 두께방향을 기준으로 최외각(즉, 주편의 표면)으로부터 안측으로의 소정영역의 표면부는 주편(S)의 두께방향을 기준으로 중심으로부터 표면부까지인 중심부에 비해 높은 Ni 함량을 가질 수 있다.
또한, 몰드 플럭스 내 니켈 산화물은 주편(S) 내의 구리 성분 및 용강의 응고 거동에 의해 발생하는 표면 결함을 억제할 수 있다. 더욱 상세하게는 니켈 산화물에 포함된 니켈은 주편(S) 내 구리의 용해도를 증대시키고, Ni 농후층이 형성되는 주편(S)의 표면부에서 액상 및 델타상이 감마상 및 액상으로 변태하는 과포정 반응을 일으켜 주편(S)의 응고 수축을 저감시키는 동시에, 그에 따른 표면 크랙을 억제할 수 있다.
이때, 본 발명의 연속주조과정에서 제작된 주편의 표면부에 몰드 플럭스를 이용한 Ni 농후층을 용이하게 형성하고, 주조시에 형성되는 주편 표면부로부터의 산화되는 층(T( Oxid ))보다 깊은 Ni 농후층 깊이를 갖도록 하기 위해서는 몰드 플럭스(P)는 용강의 톤(ton)당 0.1 kg 내지 1 kg 로 투입될 수 있다. 즉, 몰드 플럭스가 용강의 톤(ton)당 0.1 kg 미만으로 투입되는 경우에는, 주편의 표면부 전체에 균일하게 Ni 농후층이 형성되는 것이 용이하지 않고, 주편 표면부에 국부적으로 Ni 농후층이 형성될 수 있다. 또한, 몰드 플럭스가 용강의 톤(ton)당 1 kg 를 초과하여 투입되는 경우에는, 주편 내 Ni 농도가 큰 폭으로 증가하게 됨으로써, 원하는 주편의 특성과 다른 특성을 갖는 주편이 주조될 수 있다. 따라서, 본 발명의 실시 형태에 따라 니켈 산화물을 5 wt% 내지 40wt% 범위로 포함하는 몰드 플럭스는 주조되는 용강의 톤(ton)당 0.1 kg 내지 1 kg 로 투입될 수 있다.
도 8의 아래 도면을 참조하면, 전술한 몰드 플럭스(P) 및 연속주조방법을 통해 제작된 본 발명의 실시 형태에 따른 주편(S)의 두께방향을 기준으로 주편(S)의 최외곽으로부터 안측으로의 표면부는 표면부로부터 주편의 중심까지의 중심부보다 Ni 농도가 높다.
여기서, 표면부는 주편(S)의 표면으로부터 주편(S)의 안측방향으로의 소정 영역을 의미하며, 용강의 주조 시에 가장 먼저 응고쉘이 형성되는 영역이다. 그리고, 중심부는 주편(S)의 표면부를 제외한 나머지 영역이며, 주편(S)의 중심으로부터 외측방향으로의 소정 영역을 의미한다. 그리고, 중심부는 용강의 주조 시에 가장먼저 응고쉘이 형성되는 영역을 제외한 영역을 의미한다. 더욱 상세하게는, 본 발명에서의 주편(S)의 표면부는 용강(M)의 상부에 투입된 몰드 플럭스(P) 중 니켈 산화물이 환원된 니켈 이온이 확산되는 주편(S)의 표면으로부터의 안측으로 소정 영역을 의미하며, 중심부는 니켈 산화물로부터 환원된 니켈 이온의 확산되지 않은 주편의 중심으로부터의 외측으로의 소정 영역을 의미한다.
이때, 주편(S)의 표면부에의 Ni의 농도는 모재에 함유된 Cu 함량의 1.5 배 이상 일 수 있다. 이때, Ni의 함량이 Cu 함량의 1.5 배 이하이면 Cu 의 액상 형성이 가열온도에서 나타난다. 그러나 Ni이 Cu 함량의 1.5배 이상 Gamma 상인 고상이 나타나므로 Cu를 포함하는 단독 액상 형성을 방지할 수 있다. 즉, 표면부는 몰드 플럭스(P) 내 니켈 산화물이 환원된 Ni 이온이 표면에서부터 확산되어 표면부 내에 함유된다. 이는 도 9를 통해 확인할 수 있는데, 주편의 표면부에 Ni 농후층이 붉은 영역으로 나타나 있다. 이처럼, 본 발명의 주편(S)은 표면부에 Ni가 Cu 함유량의 2배 이상의 농도를 갖는 층이 형성됨으로써, 전술한 Cu의 주편 입계 침투로 인한 결함 발생을 방지하고, 주편 산화층을 보상할 수 있다.
즉, 도 10을 참조하면, 본 발명의 실시 예에 따른 몰드 플럭스 및 이를 이용한 연속주조방법을 통해 제조된 주편의 성능을 종래의 주편과 비교할 수 있다.
도 10의 (a)는 종래의 몰드 플럭스 및 이를 이용한 연속주조방법으로 제조된 주편의 사진 및 모식도이며, 도 10의 (b)는 본 발명의 실시 예에 따라 제조된 주편 상태를 보여주는 모식도이다.
본 실험 예에서는 니켈 산화물을 20wt% 첨가한 몰드 플럭스를 이용하여 주편을 제조하였고, 이때 강종은 구리를 0.35wt% 함유한 강종이며 대표 성분은 탄소 0.1중량%, Si 0.3중량%, Mn 1.5중량%, Ni 0.02중량%, Ti, 0.03중량%이다. 이때, 강 중에 함유된 니켈(Ni)은 합금철에 의한 오염으로 함유된 것으로, 다른 합금철에 의해 매우 낮은 함량이 용강에 들어있지만 Ni이 본 발명의 효과(Ni 농후층 형성)를 발현하기 위해서는 구리 대비 1.5배 이상 함유되어야 하므로 용강에 이미 포함되어 있는 Ni의 효과는 무시할 수 있다.
종래와 본 발명의 주조된 주편 상태를 살펴보면, 주편의 단면을 관찰하는 주사 현미경인 SEM 및 주편 표층에 Ni에 의한 농화층이 형성되었는지 확인하는 전자성분분석 방법인 EPMA 결과에서, 종래의 주편은 입계 내에 구리 성분이 침투된 것을 확인할 수 있다. 반면, 본 발명의 몰드 플럭스를 사용하여 제조된 주편은 주편(S)의 표층에 산화층과 Ni 농후층이 중첩 형성된 것을 확인할 수 있으며, EPMA 이미지에서는 구리의 경우 Ni 농화층 안쪽 최외곽에 약하게 나타나 입계에 침투되지 못한 것을 확인할 수 있다.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (11)

  1. 몰드 플럭스로서,
    SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 함유하는 조성물을 포함하며,
    상기 니켈(Ni) 산화물은 상기 조성물의 전체 중량에 대해서 5 wt% 내지 40 wt% 범위로 함유되는 몰드 플럭스.
  2. 청구항 1 에 있어서,
    상기 조성물의 전체 중량에 대해서, 상기 MgO를 1.0 ~ 1.5 wt%, 상기 Al2O3를 5 ~ 7 wt%, 상기 Na2O를 3 ~ 5wt%, 상기 F를 5 ~ 7wt% 포함하며, 그 외는 CaO 및 SiO2를 포함하는 몰드 플럭스.
  3. 청구항 2 에 있어서,
    상기 CaO/SiO2는 0.8 ~ 1.4의 비로 구성되는 몰드 플럭스.
  4. 몰드에 용강을 공급하여 주편을 제조하는 연속주조방법으로서,
    상기 용강 상부에 SiO2, CaO, MgO, Al2O3, Na2O, F 및 니켈(Ni) 산화물을 포함하는 몰드 플럭스를 공급하면서 주편의 표면에 상기 니켈 산화물에 의한 코팅층을 형성하며,
    상기 니켈 산화물은 상기 몰드 플럭스의 전체 중량에 대해 5 wt% 내지 40 wt% 범위로 함유되는 연속주조방법.
  5. 청구항 4 에 있어서,
    상기 용강은 구리를 포함하는 연속주조방법.
  6. 청구항 5 에 있어서,
    상기 몰드 플럭스는 전체 중량에 대하여 wt%로, 상기 MgO를 1.0 ~ 1.5 wt%, 상기 Al2O3를 5 ~ 7 wt%, 상기 Na2O를 3 ~ 5wt%, 상기 F를 5 ~ 7wt% 및 그 외는 상기 SiO2 및 CaO를 포함하는 연속주조방법.
  7. 청구항 6 에 있어서,
    상기 CaO 및 SiO2는 0.8 ~ 1.4의 비로 구성되는 연속주조방법.
  8. 청구항 4 에 있어서,
    상기 몰드 플럭스는 상기 용강의 톤당 0.1 kg 내지 1kg 범위로 투입되는 연속주조방법.
  9. 용강의 주조로 제작된 주편으로서,
    두께방향을 기준으로 상기 주편의 최외곽으로부터 안측으로의 표면부 및 상기 표면부로부터 상기 주편의 중심까지의 중심부;를 포함하며,
    상기 표면부는 상기 중심부보다 Ni 농도가 높은 주편.
  10. 청구항 9 에 있어서,
    상기 표면부의 Ni 농도는 Cu 함유량의 1.5배 이상인 주편.
  11. 청구항 10 에 있어서,
    상기 강은 Fe : 잔부, C : 0.01~0.4 wt%, Cu : 0.1~2 wt% 이하, Si : 0.1~ 2 wt% 이하, Mn : 0.1~2 wt% 이하와 기타 불가피한 성분으로 구성되는 주편.
PCT/KR2015/008957 2015-05-04 2015-08-26 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편 WO2016178461A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15891325.1A EP3292925B1 (en) 2015-05-04 2015-08-26 A continious casting method using the mold flux
JP2017556953A JP6788611B2 (ja) 2015-05-04 2015-08-26 モールドフラックス及びこれを用いた連続鋳造方法、及びこれで製作された鋳片
CN201580079640.9A CN107530769B (zh) 2015-05-04 2015-08-26 使用结晶器保护渣的连铸方法,及使用该方法制造的板坯

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0062686 2015-05-04
KR1020150062686A KR101742077B1 (ko) 2015-05-04 2015-05-04 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편

Publications (2)

Publication Number Publication Date
WO2016178461A2 true WO2016178461A2 (ko) 2016-11-10
WO2016178461A3 WO2016178461A3 (ko) 2017-05-18

Family

ID=57218322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008957 WO2016178461A2 (ko) 2015-05-04 2015-08-26 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편

Country Status (5)

Country Link
EP (1) EP3292925B1 (ko)
JP (1) JP6788611B2 (ko)
KR (1) KR101742077B1 (ko)
CN (1) CN107530769B (ko)
WO (1) WO2016178461A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102034424B1 (ko) * 2017-11-24 2019-10-18 주식회사 포스코 몰드플럭스, 강재, 및 강재 제조방법
KR102034448B1 (ko) * 2017-12-20 2019-10-18 주식회사 포스코 강재 및 이의 제조 방법
KR102179557B1 (ko) * 2018-10-29 2020-11-16 주식회사 포스코 주형 및 주조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3062658D1 (en) * 1979-02-23 1983-05-19 Mobay Chemical Corp Particulate slagging agent and process for the continuous casting of steel
JPS6072653A (ja) * 1983-09-30 1985-04-24 Kawasaki Steel Corp 連続鋳造用モ−ルドパウダ−
JP3261554B2 (ja) * 1994-04-01 2002-03-04 新日本製鐵株式会社 含Cu,Sn鋼の連続鋳造パウダー
JP2917824B2 (ja) 1994-08-11 1999-07-12 住友金属工業株式会社 鋼の連続鋳造用モールドパウダー
JPH08290235A (ja) * 1995-04-18 1996-11-05 Nippon Steel Corp 連鋳鋳片の製造方法
JP3574427B2 (ja) * 2001-09-19 2004-10-06 日本冶金工業株式会社 TiおよびAl含有鋼用連続鋳造パウダーおよび連続鋳造方法
KR20040051175A (ko) * 2002-12-12 2004-06-18 주식회사 포스코 저탄소강 주편의 표면 결함을 방지하기 위한 연속 주조용몰드 플럭스
JP4207562B2 (ja) * 2002-12-24 2009-01-14 Jfeスチール株式会社 連続鋳造方法及び該方法で製造された連続鋳造鋳片
JP4483662B2 (ja) 2005-04-06 2010-06-16 住友金属工業株式会社 鋼の連続鋳造用モールドフラックス。
KR101331320B1 (ko) * 2011-12-23 2013-11-20 주식회사 포스코 용융 몰드 플럭스를 이용한 고속 주조 방법
CN104353796A (zh) * 2014-11-13 2015-02-18 武汉钢铁(集团)公司 含多种玻璃着色剂的包晶钢保护渣

Also Published As

Publication number Publication date
EP3292925B1 (en) 2020-02-12
CN107530769A (zh) 2018-01-02
KR20160130648A (ko) 2016-11-14
EP3292925A2 (en) 2018-03-14
JP6788611B2 (ja) 2020-11-25
KR101742077B1 (ko) 2017-05-31
WO2016178461A3 (ko) 2017-05-18
EP3292925A4 (en) 2018-03-28
JP2018520004A (ja) 2018-07-26
CN107530769B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN105562641B (zh) 一种高锰高铝钢连铸用结晶器保护渣及其制备方法
CN104308104A (zh) 一种新型保护渣及其应用
WO2016178461A2 (ko) 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편
CN105316558A (zh) 一种防止铸坯角裂含硼钢的制备方法
CN113215476A (zh) 一种生产工业纯铁的方法
CN106011671B (zh) 一种h13连铸方坯的生产方法
CN110538973B (zh) 轻量无氟环保的搪瓷钢专用连铸保护渣
WO2015122602A1 (ko) 몰드 플럭스, 이를 이용한 연속주조방법 및 이를 이용하여 제조된 주편
KR20120080249A (ko) 용강 표면 보온제와 용강 표면 보온 방법
KR101828185B1 (ko) 연속 주조용 몰드 플럭스 및 이를 이용한 연속 주조 방법
CN104874755A (zh) 一种含铬钢用中间包覆盖剂及其应用
CN108273966A (zh) 一种高铬铸铁管的加工工艺
JP4855552B2 (ja) 溶鋼表面保温方法
KR20090129660A (ko) 니오븀이 첨가된 스테인리스강의 제조방법
JP3399378B2 (ja) 鋼の連続鋳造用モールドパウダおよび連続鋳造方法
CN112808975A (zh) 一种两层复合高速钢轧辊及其铸造方法
WO2017188539A1 (ko) 몰드 플럭스 및 이를 이용한 주조방법
KR100530338B1 (ko) 극저탄소 냉연강판 제조용 몰드 플럭스
WO2021006476A1 (ko) 몰드 플럭스 및 이를 이용한 주조 방법
CN116673452B (zh) 一种控制铸造过程钢中镁含量方法
WO2018080110A1 (ko) 주조용 구조물 및 이를 이용한 주조방법
CN113351843B (zh) 一种铁铬铝合金的连铸方法及装置
KR100579396B1 (ko) 질화티타늄 개재물 흡수능이 높은 턴디쉬 플럭스
CN114535524B (zh) 一种铜铁合金用半连铸结晶器覆盖剂
KR20010027741A (ko) 고탄소 합금 공구강의 연속주조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891325

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2017556953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE