WO2016176947A1 - 一种铁系催化剂及其制备方法和用途 - Google Patents

一种铁系催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2016176947A1
WO2016176947A1 PCT/CN2015/089858 CN2015089858W WO2016176947A1 WO 2016176947 A1 WO2016176947 A1 WO 2016176947A1 CN 2015089858 W CN2015089858 W CN 2015089858W WO 2016176947 A1 WO2016176947 A1 WO 2016176947A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
catalyst
slurry
coal
carrier
Prior art date
Application number
PCT/CN2015/089858
Other languages
English (en)
French (fr)
Inventor
李苏安
邓清宇
王坤朋
Original Assignee
北京中科诚毅科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科诚毅科技发展有限公司 filed Critical 北京中科诚毅科技发展有限公司
Publication of WO2016176947A1 publication Critical patent/WO2016176947A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof

Definitions

  • the invention relates to a catalyst for slurry bed hydrogenation, in particular to an iron-based catalyst and a preparation, design method and application thereof, and belongs to the fields of petrochemical and coal chemical industry.
  • Heavy oil hydrogenation technology can not only effectively use petroleum resources, but also improve the economic benefits of petroleum processing enterprises.
  • heavy oil processing mainly includes processes such as delayed coking, heavy oil catalytic cracking and residue hydrogenation.
  • the quality of the liquid product of the delayed coker is poor and the coke yield is high.
  • Heavy oil catalytic cracking has high requirements on raw materials and cannot handle inferior residual oil.
  • Residue hydrogenation can treat high-sulfur, high-carbon, high-metal inferior residual oil, while improving liquid yield and quality of liquid products.
  • Residue fixed bed hydrogenation requires high content of heavy metals in the residue, and slurry slurry bed hydrogenation can effectively remove sulfur, nitrogen and heavy metals from the residue.
  • China is a country rich in coal and oil.
  • making full use of coal resources is an important choice to ensure energy security.
  • the use of coal liquefaction technology and oil-coal mixing technology to refine coal and inferior residual oil is an important method to solve China's energy dilemma. Both technologies require the use of a slurry bed hydrogenation reactor.
  • Catalysts are the core of slurry bed hydrogenation technology.
  • homogeneous catalysts for slurry bed hydrogenation are mainly divided into two categories: oil-soluble and water-soluble catalysts.
  • the oil-soluble catalyst has good dispersibility but contains toxicity and is rarely used at present.
  • the water-soluble catalyst has poor dispersibility in the residue and the reaction is not uniform enough. Therefore, there is an urgent need to develop a slurry bed catalyst which is excellent in dispersion and catalytic performance and non-toxic.
  • inferior heavy oil hydrogenation process, oil-coal mixing process and coal direct liquefaction process due to the limitation of process and raw materials, there are many solid products, and the catalyst is difficult to recover.
  • it is mostly after reaction and waste. Abandoned directly together, and the existing catalyst has a high precious metal content, so the production cost is high.
  • the current comprehensive performance of the catalyst does not ideally limit its application in the above fields.
  • the present invention provides an iron-based catalyst for slurry bed hydrogenation, which has good dispersing property, large contact area with raw materials, and remarkable improvement of catalytic performance, and meets the requirements of slurry bed hydrogenation. .
  • An iron-based catalyst for slurry-bed hydrogenation which comprises the following raw materials:
  • Iron-based procatalyst iron oxyhydroxide FeOOH
  • Activating agent water-soluble molybdenum salt
  • Carrier dry coal powder or activated carbon powder
  • Mo and Fe constitute a double center of the metal
  • the mass ratio of the metal element Mo element to the metal center Fe element is 1:350 to 1:175
  • the mass ratio of the metal center Fe element to the carrier is 1:30 to 1:3.
  • the catalyst contains less than 8% water, the main catalyst particle diameter is 100 nm or less, and the carrier has a particle diameter of 200 ⁇ m or less.
  • the catalyst contains less than 1% of water, the main catalyst has a particle diameter of 8 to 50 nm, and the carrier has a particle diameter of 10 to 50 ⁇ m.
  • the molybdenum salt is preferably ammonium molybdate.
  • the raw material may further include a vulcanizing agent.
  • the vulcanizing agent uses liquid sulfur or an unstable sulfide which can be decomposed into H 2 S under sulfurized conditions, such as CS 2 and dimethyl disulfide.
  • a method for preparing the above iron-based catalyst for slurry-bed hydrogenation comprising the steps of:
  • Step 1 dissolving iron oxyhydroxide in distilled water and stirring uniformly to obtain a hydroxy iron oxide slurry
  • Step 2 adding a 5-40 wt% aqueous solution of molybdenum salt to the iron oxyhydroxide slurry, and stirring uniformly to obtain a slurry of iron oxyhydroxide dispersed with molybdenum;
  • Step 3 adding a carrier to the molybdenum oxyhydroxide slurry dispersed in molybdenum, stirring uniformly, and filtering to obtain a filter cake;
  • Step 4 The filter cake was dried in an N 2 atmosphere and ground to 200 ⁇ m or less to obtain an iron-based catalyst for slurry bed hydrogenation.
  • the catalyst is vulcanized during the production process or the catalyst is vulcanized prior to entering the apparatus at a vulcanization temperature of 200 ° C or higher.
  • the preferred preparation process of iron oxyhydroxide in the first step comprises the following steps:
  • the slurry containing iron oxyhydroxide is filtered and washed to remove the ammonium salt to obtain an iron oxyhydroxide filter cake.
  • the ferrous salt is ferrous sulfate
  • the mixed slurry has a pH of 5.0 to 7.5
  • the iron oxyhydroxide-containing slurry has a pH of 6.0 to 9.0.
  • the drying temperature is divided into two stages, the first stage being 200-300 ° C, the drying time being 1-10 hours, the second stage being 20-90 ° C, and the drying time being 1-24 hours.
  • an iron-based catalyst for slurry-bed hydrogenation is characterized in that it is used in a heavy oil hydrogenation process, a coal direct liquefaction process or a coal-oil mixing process, and the heavy oil includes heavy crude oil, residual oil, and catalytic oil slurry.
  • the heavy oil includes heavy crude oil, residual oil, and catalytic oil slurry.
  • One or more of deoiled asphalt and coal tar; the coal includes one or more of lignite, bituminous coal, and non-stick coal.
  • the amount of the catalyst added is from 0.1% by weight to 10% by weight based on the metal center Fe.
  • the iron-based catalyst for slurry-bed hydrogenation of the invention is compounded with an iron-based main catalyst FeOOH and a co-agent H 8 MoN 2 O 4 to form an active center of Fe-Mo bimetal, which acts synergistically on hydrocarbons such as heavy oil or coal.
  • the raw material and the catalyst are easily made into nano-sized particles, have a large specific surface area, and are easily attached to the carrier, and have a strong catalytic action.
  • the sulfided iron oxyhydroxide catalyst forms a special structure, so that the oxygen group element easily attracts weak electrons of the macromolecule, and the electron cloud shifts, thereby exciting electron transfer, causing CH fracture, macromolecular hydrocarbon cracking, and iron oxyhydroxide.
  • the iron element acts as the metal center of the catalyst, and is more active with ammonium molybdate.
  • Another metal center Mo excites hydrogen to form hydrogen radicals, on the other hand, excites hydrocarbon molecules to form "fragmented free radicals" and hydrogenation occurs.
  • the reaction removes sulfur, nitrogen and heavy metals from the hydrocarbon feedstock.
  • the catalyst uses dry coal powder or activated carbon powder as a carrier, so that the catalyst is pre-dispersed before entering the reaction system, thereby greatly improving the dispersibility of the catalyst.
  • the catalyst synthesized by the method has a high crystal content of ⁇ -FeOOH, is suitable for being made into nanometer-sized particles, has a large specific surface area, is easy to adhere to a carrier, and has a relatively low activation temperature, so that the catalyst is more stable.
  • the vulcanization process may be in-line vulcanization (the catalyst is vulcanized in the production process with the production process) or non-in-line vulcanization (the vulcanization of the catalyst before the device is introduced), and the key condition for vulcanization is vulcanization temperature of 200 ° C or more, vulcanization. It is a complex of Fe-S series.
  • the vulcanization process of iron oxyhydroxide may occur before the slurry bed reaction; or a mixture of iron oxyhydroxide, ammonium molybdate and activated carbon may be prepared first, and a vulcanizing agent may be separately added in the reaction; or the direct use of the sulfur content is high. Sulfur in the raw material.
  • the iron-based catalyst for slurry-bed hydrogenation of the present invention has good dispersibility and catalytic activity, and heavy oil (including Hydrocarbon raw materials such as heavy crude oil, coal, oil-coal mixture, etc. are fully contacted, effectively exhibiting catalytic hydrogenation performance of iron oxyhydroxide and active metal molybdenum, improving conversion rate and liquid yield, and lower precious metal content, reducing disposable type
  • the cost of the catalyst is more suitable for the slurry bed process of heavy crude oil, inferior weight, residue hydrogenation, coal liquefaction or oil-coal mixing with more solid reactants.
  • the filter cake prepared in step 9 is ground to 100 ⁇ m to obtain an iron-based catalyst for slurry bed hydrogenation, numbered 2#;
  • the filter cake prepared in step 9 is ground to 100 ⁇ m to obtain an iron-based catalyst for slurry bed hydrogenation, numbered 3#;
  • Catalyst number Residue/coal/oil coal conversion rate Liquid yield Biofocus rate
  • the iron-based catalyst for slurry bed hydrogenation obtained by the present invention achieves high in residue hydrogenation, direct coal liquefaction and oil-coal mixing.
  • the conversion rate and liquid yield can significantly improve the efficiency and have high catalytic activity, which can make a great contribution to the national mitigation of crude oil shortage and energy saving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明的一种铁系催化剂及其制备方法和用途,催化剂原料包括以下组分:铁系主催化剂:FeOOH;活性助剂:钼酸铵;载体:干煤粉或活性炭粉,金属中心Mo与Fe的质量比为1:350~1:175,金属中心Fe与载体的质量比为1:30~1:3。制备方法包括以下步骤:将羟基氧化铁溶于蒸馏水中,搅拌均匀,得到羟基氧化铁浆液;向羟基氧化铁浆液中加入钼酸铵水溶液,搅拌均匀,得到分散有钼的羟基氧化铁浆液;分散有钼的羟基氧化铁浆液中加入载体,搅拌均匀后过滤,得到滤饼;在N2环境下干燥滤饼,研磨至10~200μm,得到浆态床加氢用铁系催化剂。本发明的浆态床加氢用铁系催化剂在渣油加氢、煤直接液化和油煤混炼中都实现了很高的转化率和液体收率,显著地提高效益。

Description

一种铁系催化剂及其制备方法和用途 技术领域
本发明涉及一种浆态床加氢用催化剂,具体涉及一种铁系催化剂及其制备、设计方法和用途,属于石油化工和煤化工领域。
背景技术
近年来,世界石油资源日益短缺,而且石油资源的重质化和劣质化问题越来越明显,与此同时,市场对轻质油的需求不断增加以及人们环保意识的不断增强,环保法律法规对发动机尾气排放要求更加严格,各种燃油标准要求S、N的含量也更加苛刻。如何将硫、氮等杂质含量较高的中间馏分加工成满足环保要求的产品是各炼厂所面临的重要问题。在此现实环境下,重油加氢技术、煤直接液化技术和油煤混炼技术越来越受到重视。
重油加氢技术不但可以有效利用石油资源,而且能够提高石油加工企业的经济效益。目前重油加工主要有延迟焦化、重油催化裂化和渣油加氢等工艺。延迟焦化装置的液体产物的质量差、焦炭产率高。重油催化裂化对原料的要求较高,无法处理劣质的渣油。渣油加氢可以处理高硫、高残炭、高金属的劣质渣油,同时提高液收率和液体产物的质量。渣油固定床加氢对渣油中的重金属含量要求较高,渣油浆态床加氢可以有效的脱除渣油中的硫、氮和重金属。
我国是一个富煤贫油的国家,在应对当今石油供需矛盾和贯彻节能减排政策中,充分利用煤炭资源是保障能源安全的重要选择。采用煤液化技术和油煤混炼技术,炼制煤和劣质渣油,是解决我国能源困境的重要方法,这两种技术都需要采用浆态床加氢反应器。
催化剂是浆态床加氢技术的核心,目前浆态床加氢用的均相催化剂主要分为两类:油溶性和水溶性催化剂。油溶性催化剂的分散性较好,但是含有毒性,目前很少使用。水溶性催化剂在渣油中的分散性不好,反应不够均匀。因此,亟需开发一种分散和催化性能良好且无毒的浆态床催化剂。此外对于重质原油、劣质重油加氢工艺、油煤混炼工艺以及煤直接液化工艺而言,由于工艺和原料的限制,固体生成物较多,催化剂很难回收,目前多为反应后与废物一起直接抛弃,而现有的催化剂贵金属含量均较高,因此生产成本很高。目前的催化剂的综合性能不理想限制了其在以上领域的应用。
发明内容
为了解决现有技术中的问题,本发明提供了一种浆态床加氢用铁系催化剂,分散性能好,与原料接触面积大,使催化性能显著提高,达到浆态床加氢的工艺要求。
本发明的技术方案:
一种浆态床加氢用铁系催化剂,其特征在于包括以下原料:
铁系主催化剂:羟基氧化铁FeOOH;
活性助剂:水溶性钼盐;
载体:干煤粉或活性炭粉;
其中Mo和Fe构成金属双中心,金属中心Mo元素与金属中心Fe元素的质量比为1:350~1:175,金属中心Fe元素与所述载体的质量比为1:30~1:3。
优选的所述催化剂中含有的水分小于8%,主催化剂粒径为纳米级100nm以下,所述载体的粒径为200μm以下。
进一步优选的所述催化剂中含有的水分小于1%,所述主催化剂的粒径为8-50nm,所述载体的粒径为10-50μm。
所述钼盐优选为钼酸铵。
所述原料还可以进一步包括硫化剂。
优选的所述硫化剂使用液态硫或能在硫化条件下分解成H2S的不稳定硫化物,如CS2和二甲基二硫醚等。
制备上述的一种浆态床加氢用铁系催化剂的方法,其特征在于包括以下步骤:
步骤一:将羟基氧化铁溶于蒸馏水中,搅拌均匀,得到羟基氧化铁浆液;
步骤二:向所述羟基氧化铁浆液中加入浓度为5-40wt%的钼盐水溶液,搅拌均匀,得到分散有钼的羟基氧化铁浆液;
步骤三:向所述分散有钼的羟基氧化铁浆液中加入载体,搅拌均匀后过滤,得到滤饼;
步骤四:在N2环境下干燥所述滤饼,研磨至200μm以下,得到浆态床加氢用铁系催化剂。
优选的还包括以下步骤:
将催化剂在生产过程中进行硫化或将催化剂在进装置之前进行硫化,硫化温度为200℃以上。
优选的步骤一中的羟基氧化铁的制备过程包括以下步骤:
配置浓度为20-60%的亚铁盐水溶液;
向所述亚铁盐水溶液中加入浓度为1.0-10.0%的氨水,发生复分解反应生成含有Fe(OH)2 沉淀和铵盐的混合浆液;
向所述混合浆液中通入空气,将所述Fe(OH)2氧化成羟基氧化铁,得到含有羟基氧化铁的浆液;
将所述含有羟基氧化铁的浆液过滤、洗涤去除铵盐,得到羟基氧化铁滤饼。
优选的所述亚铁盐为硫酸亚铁,所述混合浆液的pH为5.0-7.5,所述含有羟基氧化铁的浆液pH为6.0-9.0。
优选的所述干燥的温度分为两段,第一段为200-300℃,干燥时间为1-10小时;第二段为20-90℃,干燥时间为1-24小时。
上述一种浆态床加氢用铁系催化剂的用途,其特征在于用于重油加氢工艺、煤直接液化工艺或油煤混炼工艺,所述重油包括重质原油、渣油、催化油浆、脱油沥青、煤焦油的一种或者多种;所述煤包括褐煤、烟煤、不粘煤中的一种或者多种。
所述催化剂的添加量,以金属中心Fe计为占烃原料的0.1wt%以上~10wt%以下。
本发明的技术效果:
本发明的一种浆态床加氢用铁系催化剂,采用铁系主催化剂FeOOH与活性助剂H8MoN2O4复合,形成Fe-Mo双金属活性中心,协同作用于重油或煤等烃原料,催化剂容易制成纳米级颗粒,比表面积大,容易附着到载体上,催化作用强。硫化后的羟基氧化铁催化剂形成特殊结构,使得其中的氧族元素容易吸引大分子的薄弱电子,电子云发生偏移,进而激发电子转移,使得C-H断裂,大分子烃发生裂解,羟基氧化铁中的铁元素作为催化剂的金属中心,与钼酸铵中的活性更强另一金属中心Mo,一方面激发氢气形成氢自由基,另外一方面激发烃分子形成“碎片式自由基”,发生加氢反应,脱除烃原料中的硫、氮以及重金属。另外,本催化剂以干煤粉或活性炭粉为载体,使得催化剂在进入反应体系之前进行一次预分散,大幅提高催化剂的分散性。使用本方法合成的催化剂中γ-FeOOH晶型含量高,适合做成纳米级颗粒,比表面积大,容易附着到载体上,活化温度相对低,使催化剂更稳定。
硫化过程可以为在线硫化(将催化剂在生产装置中随着生产过程进行硫化)也可以为非在线硫化(将催化剂在进装置之前进行硫化),硫化的关键条件是硫化温度为200℃以上,硫化为Fe-S系列的络合物。对羟基氧化铁的硫化过程可以发生在浆态床反应前;也可以先制备好羟基氧化铁、钼酸铵和活性炭的混合物后,在反应中另行加入硫化剂;或者直接利用含硫量较高的原料中的硫。
因此,本发明的浆态床加氢用铁系催化剂具有良好的分散性和催化活性,与重油(包括 重质原油)、煤、油煤混合物等烃原料充分接触,有效发挥羟基氧化铁和活性金属钼的催化加氢性能,提高转化率和液体收率,而且贵金属含量较低,降低了可弃型催化剂的成本,较现有催化剂更适用于固态反应物较多的重质原油、劣质重、渣油加氢、煤液化或油煤混炼的浆态床过程。
具体实施方式
为了充分理解本发明的技术方案,将通过具体实施例详细介绍本发明。
实例1:渣油加氢试验
(1)配置浓度为40%的FeSO4水溶液;
(2)向步骤1制得的溶液中注入氨水,氨水浓度为2.0wt%,生成Fe(OH)2和(NH4)2SO4的浆液,PH=7.0;
(3)向步骤2制得的浆液中通入空气,将Fe(OH)2氧化成FeOOH(羟基氧化铁),反应温度为45℃,PH=6.8;
(4)将步骤3制得的浆液过滤,获得主要成分为FeOOH的滤饼;
(5)向步骤4制得的滤饼中加入去离子水并搅拌均匀,制成浆液;
(6)向步骤5制得的浆液中加入10%的钼酸铵溶液,搅拌均匀。加入量以Mo/Fe物质的量计为1:500,搅拌混合;
(7)向步骤6制得的浆液中加入磨制50μm的干煤粉,搅拌均匀。加入量以Fe/煤粉质量计为1:10,使催化剂附着在煤粉上;
(8)将步骤7制得的浆液进行过滤,制成滤饼;
(9)将步骤8制得的滤饼在N2环境下干燥;
(10)将步骤9制得的滤饼研磨至50μm,得到浆态床加氢用铁系催化剂,编号1#。
(11)采用催化剂1#,在具有以下基本参数的试浆态床工艺条件下,进行重油加氢试验,试验用的渣油性质见表1:
温度:440-460℃;实验压力:17-19Mpa;氢油比:900:1-1000:1;空速:0.5h-1;催化剂中含有的Fe的质量与进料渣油质量之比:1:100(wt);硫化剂/进料渣油:2.5:100(wt);硫化剂采用液态硫。
表1.试验用渣油性质表
比重(20℃)g/cm3 1.044
运动粘度(100℃)mm2/s 2658.7
凝点℃ 45
残炭wt% 24.89
灰分wt% 0.13
酸值mg KON/g 1.81
   
组分分析 含量wt%
C 86.79
H 10.34
C/H摩尔比 1.39
S 2.39
N 0.83
   
四组分分析 含量wt%
饱和分 23.24
芳香分 39.5
胶质 24.61
沥青质 12.59
   
重金属 含量μg/g
Ni 108.2
V 40.2
Na 33.1
Fe 14.2
Cu 0.25
实例2:煤直接液化试验
(1)配置浓度为20wt%的FeSO4水溶液;
(2)向步骤1制得的溶液中注入氨水,氨水浓度为1.0wt%,生成Fe(OH)2和(NH4)2SO4的浆液,PH=5.0;
(3)向步骤2制得的浆液中通入空气,将Fe(OH)2氧化成FeOOH(羟基氧化铁)沉淀,反应温度为20℃,PH=6.0;
(4)将步骤3制得的浆液过滤并洗涤去除(NH4)2SO4,得到主要成分为FeOOH的滤饼;
(5)向步骤4制得的滤饼中加入蒸馏水并搅拌均匀,制成浆液;
(6)向步骤5制得的浆液中加入20%的钼酸铵水溶液,搅拌均匀,加入量的范围以Mo/Fe物质的量计为1/600,搅拌混合;
(7)向步骤6制得的浆液中加入粒径100μm的活性碳粉,搅拌均匀,加入量的范围以Fe元素的质量与活性碳粉的质量比为1:3,使含有钼的FeOOH催化剂附着在活性粉上;
(8)将步骤7制得的浆液进行过滤,制成滤饼;
(9)将步骤8制得的滤饼在N2环境下干燥;
(10)将步骤9制得的滤饼研磨至100μm,得到浆态床加氢用铁系催化剂,编号为2#;
(11)采用催化剂2#,在具有以下基本参数的试浆态床工艺条件下,进行煤直接液化试验,试验用的煤粉的性质见表2,试浆态床的基本工艺参数如下:
温度:440-465℃;实验压力:17-20Mpa;氢油比:1200:1~1600:1;空速:0.35~0.50h-1;油/煤进料/循环溶剂质量比:10:10:1;催化剂中含有的Fe的质量/进料煤:1.2/100(wt);硫化剂/进料煤:2.5/100(wt),硫化剂采用CS2;浆态床化学耗氢量(氢气/进料):5/100(wt)。
表2.煤粉性质表
项目 单位 数值
工业分析  
空气干燥基水分 Mad 19.56
收到基灰分 Aar 11.22
干基灰分 Ad 17.03
干基挥发分 Vd 36.07
干燥无灰基挥发分 Vdaf 43.47
干基固定炭 FCd 46.93
发热量 MJ/Kg  
干基低位发热量 Qgr,d 21.8
干燥无灰基低位发热量 Qgr,daf 26.3
空气干燥基低位发热量 Qnet,ad 17.9
收到基低位发热量 Qnet,ar 14.4
元素分析  
碳含量 Car 39.71
  Cd 60.26
  Cdaf 72.62
氢含量 Har 2.59
  Hd 3.93
  Hdaf 4.74
氮含量 Nar 0.62
  Nd 0.94
  Ndaf 1.13
硫含量 St,ar 1
  Sd 1.52
  Sdaf  
氧含量 Oar 10.79
  Od 16.37
  Odaf  
可磨性 HGI 50
实例3:油煤混炼试验
(1)配置浓度为60wt%的FeSO4水溶液;
(2)向步骤1制得的溶液中注入氨水,氨水浓度为5.0wt%,生成Fe(OH)2和(NH4)2SO4的浆液,PH=7.5;
(3)向步骤2制得的浆液中通入空气,将Fe(OH)2氧化成FeOOH(羟基氧化铁)沉淀,反应温度为20℃,PH=9.0;
(4)将步骤3制得的浆液过滤并洗涤去除(NH4)2SO4,得到主要成分为FeOOH的滤饼;
(5)向步骤4制得的滤饼中加入蒸馏水并搅拌均匀,制成浆液;
(6)向步骤5制得的浆液中加入10wt%的钼酸铵水溶液,搅拌均匀,加入量的范围以Mo/Fe物质的量计为1/300,搅拌混合;
(7)向步骤6制得的浆液中加入粒径150μm的干煤粉,搅拌均匀,加入量的范围以Fe元素的质量与煤粉的质量比为1:30,使含有钼的FeOOH催化剂附着在煤粉上;
(8)将步骤7制得的浆液进行过滤,制成滤饼;
(9)将步骤8制得的滤饼在N2环境下干燥;
(10)将步骤9制得的滤饼研磨至100μm,得到浆态床加氢用铁系催化剂,编号为3#;
(11)采用催化剂3#,在具有以下基本参数的试浆态床工艺条件下,进行油煤混炼试验,试验用的,试验用的渣油性质见表1,煤粉的性质见表2,试浆态床的基本工艺参数如下:
温度:440-460℃;实验压力:17-20Mpa;氢油比:1000:1-1400:1;空速:0.40-0.50h-1;油/煤进料/回炼蜡油质量比:9:10:2;催化剂中含有的Fe的质量/进料油煤浆:1/100(wt);硫化剂/进料油煤浆:2.5/100(wt),硫化剂采用二甲基二硫醚;浆态床化学耗氢量(氢气/进料):4.5/100(wt)。
实施例1-3中的催化剂1#、2#、3#进行渣油加氢试验、煤直接液化试验以及油煤混炼试验的试验结果见表3。
表3.试验结果
催化剂编号 渣油/煤/油煤转化率 液体收率 生焦率
催化剂1# 96.3% 92% 3.7%
催化剂2# 88.2% 58.3% 11.8%
催化剂3# 91.2% 71.3% 8.8%
结论:
从实施例1-3以及表3可以看出,本发明制得的浆态床加氢用铁系催化剂,在渣油加氢、煤直接液化和油煤混炼中,都实现了很高的转化率和液体收率,可以显著地提高效益,具有较高的催化活性,可以为国家缓解原油紧张和节能降耗做出巨大的贡献。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,例如硫化剂和硫化方式的选择,反应物在限定范围内的量的配比以及粒径等,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

  1. 一种浆态床加氢用铁系催化剂,其特征在于包括以下原料:
    铁系主催化剂:羟基氧化铁FeOOH;
    活性助剂:钼盐;
    载体:干煤粉或活性炭粉;
    其中Mo元素与Fe元素的质量比为1:350~1:175,Fe元素与所述载体的质量比为1:30~1:3。
  2. 根据权利要求1所述的催化剂,其特征在于所述催化剂中含有的水分小于8%,主催化剂粒径为纳米级100nm以下,所述载体的粒径为200μm以下。
  3. 根据权利要求2所述的催化剂,其特征在于所述催化剂中含有的水分小于1%,所述主催化剂的粒径为8-50nm,所述载体的粒径为10-50μm。
  4. 根据权利要求1所述的催化剂,其特征在于所述钼盐为钼酸铵。
  5. 根据权利要求1所述的催化剂,其特征在于所述原料还包括硫化剂。
  6. 制备权利要求1-3任一的一种浆态床加氢用铁系催化剂的方法,其特征在于包括以下步骤:
    步骤一:将羟基氧化铁溶于蒸馏水中,搅拌均匀,得到羟基氧化铁浆液;
    步骤二:向所述羟基氧化铁浆液中加入浓度为5-40wt%的钼盐水溶液,搅拌均匀,得到分散有钼的羟基氧化铁浆液;
    步骤三:向所述分散有钼的羟基氧化铁浆液中加入载体,搅拌均匀后过滤,得到滤饼;
    步骤四:在N2环境下干燥所述滤饼,研磨至200μm以下,得到浆态床加氢用铁系催化剂。
  7. 根据权利要求6所述的方法,其特征在于还包括以下步骤:
    将催化剂在生产过程中进行硫化或将催化剂在进装置之前进行硫化,硫化温度为200℃以上。
  8. 根据权利要求6所述的方法,其特征在于步骤一中的羟基氧化铁的制备过程包括以下步骤:
    配置浓度为20-60%的亚铁盐水溶液;
    向所述亚铁盐水溶液中加入浓度为1.0-10.0%的氨水,发生复分解反应生成含有Fe(OH)2沉淀和铵盐的混合浆液;
    向所述混合浆液中通入空气,将所述Fe(OH)2氧化成羟基氧化铁,得到含有羟基氧化铁的 浆液;
    将所述含有羟基氧化铁的浆液过滤、洗涤去除铵盐,得到羟基氧化铁滤饼。
  9. 权利要求1-5任一所述的一种浆态床加氢用铁系催化剂的用途,其特征在于用于重油加氢工艺、煤直接液化工艺或油煤混炼工艺,所述重油包括重质原油、渣油、催化油浆、脱油沥青、煤焦油的一种或者多种;所述煤包括褐煤、烟煤、不粘煤中的一种或者多种。
  10. 一种浆态床加氢用铁系催化剂的设计方法,其特征在于设计该催化剂包括以下原料:
    铁系主催化剂:羟基氧化铁FeOOH;
    活性助剂:水溶性钼盐;
    载体:干煤粉或活性炭粉;
    其中Mo元素与Fe元素的质量比为1:350~1:175,Fe元素与所述载体的质量比为1:30~1:3。
PCT/CN2015/089858 2015-05-06 2015-09-17 一种铁系催化剂及其制备方法和用途 WO2016176947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510227054.6A CN104826662A (zh) 2015-05-06 2015-05-06 一种浆态床加氢用铁系催化剂及其制备、设计方法和用途
CN201510227054.6 2015-05-06

Publications (1)

Publication Number Publication Date
WO2016176947A1 true WO2016176947A1 (zh) 2016-11-10

Family

ID=53805071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089858 WO2016176947A1 (zh) 2015-05-06 2015-09-17 一种铁系催化剂及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN104826662A (zh)
WO (1) WO2016176947A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686731A (zh) * 2020-06-05 2020-09-22 中北大学 一种α-FeOOH/GAC催化剂的制备方法及其在超重力场中降解硝基苯废水的应用
CN113058611A (zh) * 2021-02-09 2021-07-02 中科合成油技术有限公司 一种煤加氢液化铁基催化剂的预处理方法
CN113058612A (zh) * 2021-02-09 2021-07-02 中科合成油技术有限公司 重质和/或劣质油浆态床加氢提质铁基催化剂的预处理方法
CN114669300A (zh) * 2022-03-28 2022-06-28 中国神华煤制油化工有限公司 煤液化催化剂及其制备方法和应用
CN114849723A (zh) * 2022-03-24 2022-08-05 上海尼普敦环境科技有限公司 一种纳米级含钼脱硫催化剂及其制备方法
CN115007148A (zh) * 2022-04-18 2022-09-06 陕西延长石油(集团)有限责任公司 一种以再生木质废活性炭为载体的负载型α-FeOOH催化剂及其制备方法和应用
CN116948683A (zh) * 2023-09-15 2023-10-27 克拉玛依市先能科创重油开发有限公司 以环烷基渣油与乙烯裂解焦油为原料的浆态床反应在线切换方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826662A (zh) * 2015-05-06 2015-08-12 北京中科诚毅科技发展有限公司 一种浆态床加氢用铁系催化剂及其制备、设计方法和用途
CN105268488B (zh) * 2015-10-23 2018-03-06 北京中科诚毅科技发展有限公司 一种催化剂的载体及其负载方法和用途
CN105664946B (zh) * 2016-01-07 2018-06-01 新疆大学 一种煤直接液化铁系催化剂的固相制备方法
CN106000413B (zh) * 2016-06-15 2018-07-27 河南大学 一种钼掺杂正方针铁矿纳米微粒的制备方法
CN108080004B (zh) * 2016-11-21 2021-04-06 北京华石联合能源科技发展有限公司 一种加氢催化剂组合物及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570028A1 (en) * 2002-12-10 2005-09-07 Petroleo Brasileiro S.A. - PETROBRAS Process for the upgrading of raw hydrocarbon streams
CN102380396A (zh) * 2010-09-03 2012-03-21 煤炭科学研究总院 双金属或多金属高分散复合型煤焦油加氢催化剂及其制备方法
CN102732295A (zh) * 2011-04-14 2012-10-17 中国石油化工股份有限公司 一种油煤加氢共炼油煤浆的制备方法及其油煤浆和其共炼方法
CN102786984A (zh) * 2011-05-16 2012-11-21 北京三聚创洁科技发展有限公司 一种利用中低温焦油制备针状焦原料的工艺
CN104826662A (zh) * 2015-05-06 2015-08-12 北京中科诚毅科技发展有限公司 一种浆态床加氢用铁系催化剂及其制备、设计方法和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274415C (zh) * 2003-08-12 2006-09-13 煤炭科学研究总院北京煤化工研究分院 一种高分散铁基煤直接液化催化剂及其制备方法
CN1778871A (zh) * 2004-11-22 2006-05-31 煤炭科学研究总院 一种煤直接加氢液化的高分散铁系催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570028A1 (en) * 2002-12-10 2005-09-07 Petroleo Brasileiro S.A. - PETROBRAS Process for the upgrading of raw hydrocarbon streams
CN102380396A (zh) * 2010-09-03 2012-03-21 煤炭科学研究总院 双金属或多金属高分散复合型煤焦油加氢催化剂及其制备方法
CN102732295A (zh) * 2011-04-14 2012-10-17 中国石油化工股份有限公司 一种油煤加氢共炼油煤浆的制备方法及其油煤浆和其共炼方法
CN102786984A (zh) * 2011-05-16 2012-11-21 北京三聚创洁科技发展有限公司 一种利用中低温焦油制备针状焦原料的工艺
CN104826662A (zh) * 2015-05-06 2015-08-12 北京中科诚毅科技发展有限公司 一种浆态床加氢用铁系催化剂及其制备、设计方法和用途

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686731A (zh) * 2020-06-05 2020-09-22 中北大学 一种α-FeOOH/GAC催化剂的制备方法及其在超重力场中降解硝基苯废水的应用
CN113058611A (zh) * 2021-02-09 2021-07-02 中科合成油技术有限公司 一种煤加氢液化铁基催化剂的预处理方法
CN113058612A (zh) * 2021-02-09 2021-07-02 中科合成油技术有限公司 重质和/或劣质油浆态床加氢提质铁基催化剂的预处理方法
CN113058612B (zh) * 2021-02-09 2023-06-06 中科合成油技术股份有限公司 重质和/或劣质油浆态床加氢提质铁基催化剂的预处理方法
CN113058611B (zh) * 2021-02-09 2023-07-14 中科合成油技术股份有限公司 一种煤加氢液化铁基催化剂的预处理方法
CN114849723A (zh) * 2022-03-24 2022-08-05 上海尼普敦环境科技有限公司 一种纳米级含钼脱硫催化剂及其制备方法
CN114669300A (zh) * 2022-03-28 2022-06-28 中国神华煤制油化工有限公司 煤液化催化剂及其制备方法和应用
CN114669300B (zh) * 2022-03-28 2024-02-13 中国神华煤制油化工有限公司 煤液化催化剂及其制备方法和应用
CN115007148A (zh) * 2022-04-18 2022-09-06 陕西延长石油(集团)有限责任公司 一种以再生木质废活性炭为载体的负载型α-FeOOH催化剂及其制备方法和应用
CN116948683A (zh) * 2023-09-15 2023-10-27 克拉玛依市先能科创重油开发有限公司 以环烷基渣油与乙烯裂解焦油为原料的浆态床反应在线切换方法
CN116948683B (zh) * 2023-09-15 2023-12-12 克拉玛依市先能科创重油开发有限公司 以环烷基渣油与乙烯裂解焦油为原料的浆态床反应在线切换方法

Also Published As

Publication number Publication date
CN104826662A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016176947A1 (zh) 一种铁系催化剂及其制备方法和用途
CN107754820B (zh) 一种重油悬浮床加氢裂化催化剂及制备方法
CN102732295B (zh) 一种油煤加氢共炼油煤浆的制备方法及其油煤浆和其共炼方法
CN107866278B (zh) 一种重油加氢裂化催化剂及其制备方法
CN102380396B (zh) 双金属或多金属高分散复合型煤焦油加氢催化剂及其制备方法
CN104907078B (zh) 一种加氢催化剂及其制备方法和用途
Li et al. Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing
CN102309972B (zh) 一种油煤加氢共炼催化剂及其共炼方法
CN110508285B (zh) Fe基悬浮床加氢裂化催化剂的制备方法
CN109304183B (zh) 处理劣质油料的加氢处理催化剂及其制备方法与应用
WO2018053890A1 (zh) 一种劣质重油悬浮床加氢裂化催化剂及其制备方法
CN104689836A (zh) 一种高分散纳米二硫化钼催化剂的合成方法
CN1579623A (zh) 一种高分散铁基煤直接液化催化剂的制备方法
CN104888860A (zh) 一种环烷酸盐催化剂、制备方法及其用途
CN102585895A (zh) 一种催化油浆固体颗粒的分离方法
CN107868108B (zh) 一种有机钼盐及其制备方法
CN108970614B (zh) 铁系催化剂、其制备方法及应用
CN111644208A (zh) 一种油溶性悬浮床加氢催化剂的制备方法及其应用
WO2017088198A1 (zh) 一种油溶性加氢催化剂及其制备方法和用途
CN110257117B (zh) 一种负载催化剂的煤液化油煤浆制备方法
CN111686735A (zh) 一种载体煤改性制备高分散型煤/重油加氢共炼催化剂
CN103877999B (zh) 一种煤焦油重油加氢催化剂及其制备方法
CN107649182B (zh) 油溶性钨基浆态床加氢裂化催化剂的循环利用方法
WO2023185208A1 (zh) 催化剂油煤浆及其制备方法和煤直接液化的方法及应用
CN109647535A (zh) 一种煤担载型铁基催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891198

Country of ref document: EP

Kind code of ref document: A1