WO2016176938A1 - 铝电解电容器用电解液及使用该电解液的铝电解电容器 - Google Patents

铝电解电容器用电解液及使用该电解液的铝电解电容器 Download PDF

Info

Publication number
WO2016176938A1
WO2016176938A1 PCT/CN2015/089166 CN2015089166W WO2016176938A1 WO 2016176938 A1 WO2016176938 A1 WO 2016176938A1 CN 2015089166 W CN2015089166 W CN 2015089166W WO 2016176938 A1 WO2016176938 A1 WO 2016176938A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
solution
cation
organic solvent
aluminum electrolytic
Prior art date
Application number
PCT/CN2015/089166
Other languages
English (en)
French (fr)
Inventor
刘阳
王明杰
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to JP2016534675A priority Critical patent/JP2017516287A/ja
Priority to US15/038,041 priority patent/US20170110253A1/en
Priority to KR1020167016517A priority patent/KR20170138913A/ko
Publication of WO2016176938A1 publication Critical patent/WO2016176938A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to the field of electrolyte technology, and in particular to an electrolyte for an aluminum electrolytic capacitor and an aluminum electrolytic capacitor using the same.
  • An electrolyte solution containing an electrolyte composed of tetrafluoroaluminate ions and an organic solvent is known as the electrolyte solution for the aluminum electrolytic capacitor (JP-A-2003-142346).
  • the electrolyte solution has the following problems, but has a problem of PTFE. Hydrolysis of aluminate produces hydrogen fluoride, which etches alumina as an anode foil of an electrolytic capacitor.
  • An electrolyte containing an electrolyte composed of an alkyl phosphate anion and an organic solvent is also known, which uses an alkyl phosphate anion as an anion component of the electrolyte, which may be a single alkyl phosphate anion or a mixed alkyl phosphate anion.
  • An electrolyte solution which is essentially a single component of an alkyl phosphate anion, although there is no problem of corrosion as an anode foil of an electrolytic capacitor, there is a defect that the electrical conductivity and the spark voltage are not sufficiently high.
  • the present invention provides an electrolytic solution for an aluminum electrolytic capacitor which effectively increases a specific spark ratio while ensuring a higher specific conductivity, and an aluminum electrolytic capacitor using the electrolytic solution.
  • an electrolyte for an aluminum electrolytic capacitor comprising an electrolyte (A) and an organic solvent (B), the electrolyte (A) comprising an electrolyte (C) and an electrolyte (D)
  • the above electrolyte (C) is composed of a cation (E) and an alkyl phosphate anion
  • the above electrolyte (D) is composed of a cation (F) and an phthalic acid anion.
  • an aluminum electrolytic capacitor formed using the electrolytic solution of the first aspect.
  • the electrolyte in the electrolyte of the present invention contains both an alkyl phosphate anion and an phthalic acid anion It can simultaneously obtain high specific conductivity and spark voltage.
  • the specific electrolyte and the spark voltage of the electrolyte of the present invention are higher than those of the alkyl phosphate anion single component electrolyte.
  • the electrolytic solution of the present invention can simultaneously realize an aluminum electrolytic capacitor which does not require corrosion of a capacitor component. Therefore, it has a very large market value in the high-voltage competition in which the power source is used in the market.
  • an electrolyte containing an alkyl phosphate anion and an electrolyte containing an anion of phthalic acid are mixed as an electrolyte component of an electrolytic solution for an aluminum electrolytic capacitor, and it is surprisingly found that the mixed electrolyte phase of the present invention A higher specific conductivity than a single component electrolyte (ie, an electrolyte containing an alkyl phosphate anion or an electrolyte containing a phthalate anion) while ensuring a higher spark voltage, indicating alkyl phosphate in the electrolyte of the present invention
  • the synergistic effect of the anion with the phthalic acid anion is good.
  • the electrolytic solution contains an electrolyte (A) containing an electrolyte (C) and an electrolyte (D), and an organic solvent (B) comprising the cation (E) and
  • the alkyl phosphate anion composition, the above electrolyte (D) consists of a cation (F) and a phthalic acid anion.
  • the content of the electrolyte (C) is preferably from 10% to 65%, based on the weight of the electrolyte (A) and the organic solvent (B), for example, 10.2%, 11%, 12%, 12.5%, 13.5%, 14.5. %, 15%, 18%, 18.5%, 20.5%, 22.5%, 25%, 28%, 30%, 32%, 35%, 38%, 40%, 42%, 45%, 47%, 50%, 52%, 55%, 56%, 58%, 60%, 62%, 63.5%, 64.5% or 64.8%, more preferably 15% to 45%, most preferably 18.5% to 25.5%.
  • the content of the electrolyte (D) is preferably from 1% to 35%, based on the weight of the electrolyte (A) and the organic solvent (B), for example, 1.2%, 1.5%, 1.8%, 2%, 2.5%, 4 %, 5%, 6%, 7%, 8%, 10%, 12%, 12.5%, 15%, 18%, 20%, 22.5%, 25%, 26%, 28%, 30%, 31.5%, 32%, 33%, 33.5%, 34%, 34.5% or 34.8%, more preferably 5% to 30%, most preferably 15.5 to 25.5%.
  • the cation (E) and the cation (F) are each independently selected from a phosphonium cation or a quaternary ammonium salt cation.
  • 1,2,3,4-tetramethylimidazole 1,3,4-trimethyl-2-ethylimidazole, 1,3-dimethyl-2,4-diethylimidazole, 1,2- Dimethyl-3,4-diethylimidazole, 1-methyl-2,3,4-triethylimidazole, 1,2,3,4-tetraethylimidazole, 1-ethyl-2,3 - dimethylimidazole, 1,3-dimethyl-2-ethylimidazole, 4-cyano-1,2,3-trimethylimidazole, 3-cyanomethyl-1,2-dimethyl Imidazole, 2-cyanomethyl-1,3-dimethylimidazole, 4-acetyl-1,2,3-trimethylimidazole, 3-acetylmethyl-1,2-dimethylimidazole, 4-acetyl-1,2,3-trimethylimidazole, 3-acetylmethyl-1,2-dimethylimidazole, 4-acetyl-1
  • the quaternary ammonium salt cation may, for example, be a tetraalkylammonium cation having an alkyl group having 1 to 4 carbon atoms (for example, tetramethylammonium, tetraethylammonium or triethylmethylammonium).
  • onium cations may be used alone or in combination of two or more.
  • the above ruthenium cation is preferably a 1,2,3,4-tetramethylimidazolium cation or a 1-ethyl-3-methylimidazolium cation.
  • the cation (E) for forming the electrolyte (C) and the cation (F) for forming the electrolyte (D) may be the same or different.
  • the cation (E) is the same as the cation (F), and the case where the cation (E) and the cation (F) are found to be identical has a better effect than the case of the difference.
  • the alkyl phosphate anion has an alkyl group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms. It should be noted that the smaller the number of carbon atoms, the higher the specific conductivity and the spark voltage.
  • alkyl phosphate anion a monoalkyl phosphate or a dialkyl phosphate can be used.
  • Monoalkyl phosphates can be listed as monomethyl phosphate, monoethyl phosphate, monopropyl phosphate [mono (n-propyl) phosphate, mono (isopropyl) phosphate], monobutyl phosphate [Single (n-butyl) phosphate, mono (isobutyl) phosphate], monopentyl phosphate, monohexyl phosphate, and the like.
  • Dialkyl phosphates may list dimethyl phosphate, diethyl phosphate, dipropyl phosphate [di(n-propyl) phosphate, di(isopropyl) phosphate], dibutyl phosphate [Di(n-butyl)phosphate, di(isobutyl)phosphate], dipentyl phosphate, dihexyl phosphate, and the like.
  • alkyl phosphate anions may be used singly or in combination of two or more kinds; and may be a mixture of a monoalkyl phosphate and a dialkyl phosphate.
  • the alkyl phosphate anion is selected from the group consisting of diethyl phosphate or dimethyl phosphate anion.
  • the electrolyte (C) containing an alkyl phosphate anion can be synthesized by first dissolving an imidazoline or a quaternary salt in a methanol solution and reacting with dimethyl carbonate under certain conditions to form an imidazole (or quaternary ammonium). Dimethyl carbonate salt; then adding alkyl phosphate ester and the above-obtained salt of methanol solution salt exchange reaction to obtain imidazole (or quaternary ammonium) ⁇ alkyl phosphate salt; finally through a series of rectification purification A desired alkyl phosphate containing electrolyte.
  • the electrolyte (D) containing a phthalic acid anion can be synthesized by the following method: similarly to the above reaction, the imidazoline or the quaternary salt is first dissolved in a methanol solution, and reacted with dimethyl carbonate under certain conditions to form Imidazole (quaternary ammonium) ⁇ dimethyl carbonate salt, then adding phthalic acid to the salt solution of the salt obtained above to form a salt exchange reaction to obtain imidazole (or quaternary ammonium) phthalate; The rectification purification provides the desired electrolyte containing phthalic acid.
  • the organic solvent (B) may be selected from the group consisting of (1) an alcohol, (2) an ether, (3) an amide, (4) a lactone, (5) a nitrile, a (6) carbonate, and (7) a sulfone. And (8) other organic solvents.
  • Monohydric alcohol such as methanol, ethanol, propanol, butanol, diacetone alcohol, benzyl alcohol, amino alcohol, sugar alcohol, etc.
  • glycol such as ethylene glycol, propylene glycol, diethylene glycol, hexanediol, etc.
  • a triol for example, glycerol or the like
  • a tetravalent or higher alcohol for example, hexitol or the like
  • Monoether eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, etc.
  • diether eg, ethylene glycol dimethyl ether, B
  • triether e.g., diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc.
  • Formamide eg N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, etc.
  • acetamide eg N-methylacetamide
  • propionamide eg N,N-dimethylpropionamide, etc.
  • pyrrolidone eg N-methylpyrrolidone, N-ethylpyrrolidone
  • ammonium hexamethylphosphate Wait eg N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, etc.
  • GBL ⁇ -butyrolactone
  • GBL ⁇ -butyrolactone
  • ⁇ -acetyl- ⁇ -butyrolactone ⁇ -butyrolactone
  • ⁇ -valerolactone ⁇ -valerolactone
  • 1,3-Dimethyl-2-imidazolidinone 1,3-Dimethyl-2-imidazolidinone, an aromatic solvent (for example, toluene, xylene, etc.), an alkane solvent (for example, a normal alkane, an isoparaffin, etc.).
  • aromatic solvent for example, toluene, xylene, etc.
  • alkane solvent for example, a normal alkane, an isoparaffin, etc.
  • organic solvents may be used alone or in combination of two or more.
  • organic solvents preferred are alcohols, lactones and sulfones, more preferably ⁇ -butyrolactone, sulfolane or ethylene glycol.
  • the content of the organic solvent (B) is preferably 30% to 85%, such as 30.5%, 32%, 33.5%, 35%, 36%, based on the weight of the electrolyte (A) and the organic solvent (B).
  • the electrolyte solution further contains an additive selected from the group consisting of o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol, and At least one of nitrobenzyl alcohol and m-nitroacetophenone.
  • an additive selected from the group consisting of o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol, and At least one of nitrobenzyl alcohol and m-nitroacetophenone.
  • the content thereof is preferably 0.1 to 3%, for example, 0.12%, 0.15%, 0.18%, 0.2%, 0.25%, 0.3%, 0.4%, 0.5%, based on the weight of the electrolyte (A) and the organic solvent (B). 0.8%, 0.9%, 1%, 1.2%, 1.3%, 1.5%, 1.8%, 2.0%, 2.2%, 2.3%, 2.4%, 2.5%, 2.8%, 2.85%, 2.95% or 2.98%, more preferably It is from 0.5% to 2.5%, and most preferably from 0.8% to 1.3%.
  • the content of each component is 100% based on the total weight of the electrolyte (A) and the organic solvent (B).
  • the present invention also provides an aluminum electrolytic capacitor formed using the electrolytic solution in the above embodiment, preferably a ⁇ -butyrolactone system aluminum electrolytic capacitor.
  • 2,4-dimethylimidazoline was added dropwise to a methanol solution of dimethyl carbonate, and the mixture was stirred at 100 ° C for 48 hours, thereby obtaining 1,2,3,4-tetramethylimidazolinium ⁇ carbonate.
  • a solution of the methyl ester salt in methanol was obtained.
  • a methanol solution of ruthenium phthalate the solution is heated to a reduced pressure of 1.0 kPa or less, and methanol is heated and distilled at 50 ° C until methanol is no longer distilled, and then the temperature is slowly raised from 50 ° C to 100 ° C. After heating at ° C for 30 minutes, monomethyl carbonate, methanol and carbon dioxide were distilled, whereby Electrolyte 2 was obtained.
  • Example 1 25 g of the electrolyte 1 synthesized in Example 1 and 25 g of the electrolyte 4 synthesized in Example 2 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 1 and the solution 4 were prepared, and then 5 g of the solution 4 and 100 g of the solution 1 were uniformly mixed to obtain an electrolytic solution 3 for experiments, and the moisture content was 0.1% by weight.
  • Example 2 25 g of the electrolyte 3 synthesized in Example 2 and 25 g of the electrolyte 2 synthesized in Example 1 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 3 and the solution 2 were prepared, and then 5 g of the solution 2 and 100 g of the solution 3 were uniformly mixed to obtain an electrolytic solution 4 for experiments, and the moisture content was 0.1% by weight.
  • 25 g of the electrolyte 1 synthesized in Example 1 and 25 g of the electrolyte 2 synthesized in Example 1 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 1 and the solution 2 were prepared, and then 5 g of the solution 2 and 100 g of the solution 1 were uniformly mixed, and 1 g of p-nitrobenzoic acid was further added to prepare an experimental electrolyte 6, and the moisture content was 0.1% by weight.
  • the triethyl phosphate was used instead of the triethyl phosphate in Example 2, and a salt exchange reaction with a solution of 1-ethyl-3-methylimidazolium dimethyl carbonate in methanol was carried out to obtain 1-ethyl-3- Methylimidazolium dimethyl phosphate salt as electrolyte 6.
  • Example 1 25 g of the electrolyte 1 synthesized in Example 1 and 25 g of the electrolyte 2 synthesized in Example 1 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 1 and the solution 2 were prepared, and then 10 g of the solution 2 and 95 g of the solution 1 were uniformly mixed to obtain an experimental electrolyte 9 having a moisture content of 0.1% by weight.
  • Example 1 25 g of the electrolyte 1 synthesized in Example 1 and 25 g of the electrolyte 2 synthesized in Example 1 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 1 and the solution 2 were prepared, and then 20 g of the solution 2 and 85 g of the solution 1 were uniformly mixed to obtain an experimental electrolyte 10 having a moisture content of 0.1% by weight.
  • Example 1 25 g of the electrolyte 1 synthesized in Example 1 and 25 g of the electrolyte 2 synthesized in Example 1 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 1 and the solution 2 were prepared, and then 40 g of the solution 2 and 65 g of the solution 1 were uniformly mixed to obtain an experimental electrolyte 12 having a moisture content of 0.1% by weight.
  • Example 1 25 g of the electrolyte 1 synthesized in Example 1 and 25 g of the electrolyte 2 synthesized in Example 1 were dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) and 75 g of an organic solvent 2 (GBL), respectively.
  • the solution 1 and the solution 2 were prepared, and then 50 g of the solution 2 and 55 g of the solution 1 were uniformly mixed to obtain an experimental electrolyte 13 having a moisture content of 0.1% by weight.
  • Example 2 25 g of the electrolyte 1 synthesized in Example 1 was dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL) And 15 g of ethylene glycol), the electrolytic solution 3 for comparison was obtained, and the moisture content was 0.1 wt%.
  • Example 2 25 g of the electrolyte 3 synthesized in Example 2 was dissolved in 75 g of an organic solvent 1 (containing 60 g of GBL and 15 g of ethylene glycol) to obtain an electrolytic solution 4 for comparison, and the moisture content was 0.1% by weight.
  • an organic solvent 1 containing 60 g of GBL and 15 g of ethylene glycol
  • the specific conductivity at 30 ° C was measured using a DJS-1C platinum black conductivity meter.
  • An aluminum foil was formed by using a high pressure of 10 cm 2 at the anode, and a flat aluminum foil of 10 cm 2 was used for the cathode, and the discharge voltage of the electrolytic solution at a constant current method (20 mA) was measured at 30 ° C.
  • Moisture test Refer to the standard GB/T6283 for moisture testing using the Karl Fischer method.
  • a lead-type aluminum electrolytic capacitor (rated voltage: 100 WV, electrostatic capacity: 100 ⁇ F, size: ⁇ 10 mm ⁇ L20 mm) was produced for the electrolytic solutions obtained in the above Examples 1-15 and Comparative Examples 1-4.
  • the produced aluminum electrolytic capacitor was subjected to a load test, and the tangent (tan ⁇ ) and the leak current (LC) of the loss angle at the initial and after standing at 115 ° C for 2000 h were measured, and the results are shown in Table 1.
  • Comparative Example 1 and Comparative Example 2 show that the electrolyte prepared using a single phthalate as the electrolyte anion has lower specific conductivity and spark voltage, and the anode foil is prone to short circuit at a rated voltage of 100 WV, which makes the capacitor The loss angle becomes large, and the leakage becomes high, which seriously affects the service life of the capacitor.
  • Comparative Example 3 and Comparative Example 4 show that the electrolyte prepared using a single alkyl phosphate salt as the electrolyte anion has a lower specific conductivity and a lower flash voltage than the mixed salt as the electrolyte anion. .
  • the alkyl phosphate and the phthalic acid anion have a good synergistic effect in the electrolyte, and can effectively increase the specific conductivity while ensuring a higher spark voltage.
  • Example 3 and Example 4 show that the electrolyte having the electrolyte cation portion prepared by using the mixed cation has a specific conductivity at 30 ° C of about 7.2-7.7 mS/cm, compared with the electrolyte prepared by a single type of cation electrolyte. It is lower than the conductivity.
  • An electrolyte prepared by an electrolyte of a single type of cation is preferred.
  • Example 5 and Example 6 show that the use of the additive (hydrogen abatement agent) has a certain influence on the specific conductivity of the electrolyte, and the addition of p-nitrobenzoic acid changes the acid-base environment of the electrolyte. The conductivity is reduced. However, the specific electrical conductivity of the electrolytic solutions of Examples 5 and 6 is still high, and the requirements for use of the capacitor can be satisfied.
  • the additive hydrogen abatement agent
  • the electrolyte of the present invention can simultaneously obtain high specific conductivity and spark voltage, and can realize an aluminum electrolytic capacitor which does not require corrosion of capacitor components. Therefore, it has a very large market value in the high-voltage competition in which the power source is used in the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种铝电解电容器用电解液及使用该电解液的铝电解电容器,该电解液含有电解质(A)和有机溶剂(B),电解质(A)包含电解质(C)和电解质(D),电解质(C)由阳离子(E)和烷基磷酸酯阴离子组成,电解质(D)由阳离子(F)和邻苯二甲酸阴离子组成。该电解液能够同时获得高比电导率及火花电压,同时能实现无需担心电容器部件腐蚀的铝电解电容器。

Description

铝电解电容器用电解液及使用该电解液的铝电解电容器 技术领域
本发明涉及电解液技术领域,尤其涉及一种铝电解电容器用电解液及使用该电解液的铝电解电容器。
背景技术
近年来,车载电装电源和通讯设备的使用电压日趋上升,人们越来越要求将铝电解电容尤其是贴片电容的比电导率在现有4mS/cm基础上能够有更高的提升同时火花电压高的电解液。
作为上述铝电解电容器用电解液,已知含有四氟铝酸离子构成的电解质和有机溶剂的电解液(日本特开2003-142346),该电解液虽然火花电压高,但具有以下问题,四氟铝酸水解产生氟化氢,腐蚀作为电解电容器的阳极箔的氧化铝。
还已知含有烷基磷酸酯阴离子构成的电解质和有机溶剂的电解液,该电解液以烷基磷酸酯阴离子作为电解液阴离子成分,其中可以是单一烷基磷酸酯阴离子或混合烷基磷酸酯阴离子,本质上是烷基磷酸酯阴离子单成分的电解液,虽然不存在腐蚀作为电解电容器的阳极箔的问题,但是还存在比电导率和火花电压均不够高的缺陷。
发明内容
本发明提供一种有效提高比电导率同时保证较高的火花电压的铝电解电容器用电解液及使用该电解液的铝电解电容器。
根据本发明的第一方面,本发明提供一种铝电解电容器用电解液,该电解液含有电解质(A)和有机溶剂(B),上述电解质(A)包含电解质(C)和电解质(D),上述电解质(C)由阳离子(E)和烷基磷酸酯阴离子组成,上述电解质(D)由阳离子(F)和邻苯二甲酸阴离子组成。
根据本发明的第二方面,本发明提供一种铝电解电容器,该铝电解电容器使用第一方面的电解液形成。
本发明的电解液中的电解质同时含有烷基磷酸酯阴离子和邻苯二甲酸阴离 子,能够同时获得高比电导率及火花电压。尤其相比烷基磷酸酯阴离子单成分的电解液,本发明的电解液的比电导率和火花电压均较高。本发明的电解液同时能实现无需担心电容器部件腐蚀的铝电解电容器。因此,在市场上使用电源的高耐压竞争中,具有非常大的市场价值。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。
本发明的关键构思之一在于,将含有烷基磷酸酯阴离子的电解质和含有邻苯二甲酸阴离子的电解质混合作为铝电解电容器用电解液的电解质成分,并出人意料的发现,本发明的混合电解质相比单一成分的电解质(即含有烷基磷酸酯阴离子的电解质或含有邻苯二甲酸阴离子的电解质)具有更高的比电导率同时保证较高的火花电压,说明本发明的电解质中烷基磷酸酯阴离子与邻苯二甲酸阴离子的协同作用良好。
在本发明的一个实施方案中,电解液含有电解质(A)和有机溶剂(B),上述电解质(A)包含电解质(C)和电解质(D),上述电解质(C)由阳离子(E)和烷基磷酸酯阴离子组成,上述电解质(D)由阳离子(F)和邻苯二甲酸阴离子组成。
在上述实施方案中,电解质(C)的含量基于电解质(A)和有机溶剂(B)的重量优选为10%~65%,例如10.2%、11%、12%、12.5%、13.5%、14.5%、15%、18%、18.5%、20.5%、22.5%、25%、28%、30%、32%、35%、38%、40%、42%、45%、47%、50%、52%、55%、56%、58%、60%、62%、63.5%、64.5%或64.8%,更优选为15%~45%,最优选为18.5%~25.5%。
在上述实施方案中,电解质(D)的含量基于电解质(A)和有机溶剂(B)的重量优选为1%~35%,例如1.2%、1.5%、1.8%、2%、2.5%、4%、5%、6%、7%、8%、10%、12%、12.5%、15%、18%、20%、22.5%、25%、26%、28%、30%、31.5%、32%、33%、33.5%、34%、34.5%或34.8%,更优选为5%~30%,最优选为15.5~25.5%。
在上述实施方案中,阳离子(E)和阳离子(F)各自独立地选自脒鎓阳离子或季铵盐阳离子。
作为脒鎓阳离子,包含(1)咪唑阳离子及(2)咪唑鎓阳离子。
(1)咪唑阳离子
1,2,3,4-四甲基咪唑、1,3,4-三甲基-2-乙基咪唑、1,3-二甲基-2,4-二乙基咪唑、1,2-二甲基-3,4-二乙基咪唑、1-甲基-2,3,4-三乙基咪唑、1,2,3,4-四乙基咪唑、1-乙基-2,3-二甲基咪唑、1,3-二甲基-2-乙基咪唑、4-氰基-1,2,3-三甲基咪唑、3-氰基甲基-1,2-二甲基咪唑、2-氰基甲基-1,3-二甲基咪唑、4-乙酰基-1,2,3-三甲基咪唑、3-乙酰基甲基-1,2-二甲基咪唑、4-乙酰基-1,2,3-三甲基咪唑、3-乙酰基甲基-1,2-二甲基咪唑、4-甲基羧基甲基-1,2,3-三甲基咪唑、3-甲基羧基甲基-1,2-二甲基咪唑、4-甲氧基-1,2,3-三甲基咪唑、3-甲基羧基甲基-1,2-二甲基咪唑、4-甲酰基-1,2,3-三甲基咪唑、3-甲酰基甲基-1,2-二甲基咪唑、3-羟基乙基-1,2-二甲基咪唑、4-羟基甲基-1,2,3-三甲基咪唑、2-羟基乙基-1,3-二甲基咪唑等。
(2)咪唑鎓阳离子
1,3-二甲基咪唑鎓、1,3-二乙基咪唑鎓、1-乙基-3-甲基咪唑鎓、1,2,3-三甲基咪唑鎓、1,2,3,4-四甲基咪唑鎓、1,3-二甲基-2-乙基咪唑鎓、1-乙基-2,3-二甲基咪唑鎓、1,2,3-三乙基咪唑鎓、1,2,3,4-四乙基咪唑鎓、1,3-二甲基-2-苯基咪唑鎓、1,3-二甲基-2-苄基咪唑鎓、1-苄基-2,3-二甲基咪唑鎓、4-氰基-1,2,3-三甲基咪唑鎓、3-氰基甲基-1,2-二甲基咪唑鎓、2-氰基甲基-1,3-二甲基咪唑鎓、4-乙酰基-1,2,3-三甲基咪唑鎓、3-乙酰基甲基-1,2-二甲基咪唑鎓、4-甲基羧基甲基-1,2,3-三甲基咪唑鎓、3-甲基羧基甲基-1,2-二甲基咪唑鎓、4-甲氧基-1,2,3-三甲基咪唑鎓、3-甲酰基甲基-1,2-二甲基咪唑鎓、3-羟基乙基-1,2-二甲基咪唑鎓、4-羟基甲基-1,2,3-三甲基咪唑鎓、2-羟基乙基-1,3-二甲基咪唑鎓等。
(3)季铵盐阳离子
作为季铵盐阳离子可以举出具有碳原子数为1~4的烷基的四烷基铵阳离子(例如四甲基铵、四乙基铵及三乙基甲基铵等)。
上述脒鎓阳离子可以单独使用一种,也可以混合使用两种以上。上述脒鎓阳离子优选1,2,3,4-四甲基咪唑鎓阳离子或1-乙基-3-甲基咪唑鎓阳离子。
用于形成电解质(C)的阳离子(E)与用于形成电解质(D)的阳离子(F)二者可以相同,也可以不同。本发明一个优选实施例中,阳离子(E)与阳离子(F)相同,并且发现阳离子(E)与阳离子(F)相同的情况比二者不同的情况具有更好的效果。
在上述实施方案中,烷基磷酸酯阴离子的烷基碳原子数为1~10,优选为1~4, 需要说明的是,碳原子数越少,比电导率和火花电压越高。
作为烷基磷酸酯阴离子,可以选用单烷基磷酸酯或二烷基磷酸酯。
单烷基磷酸酯可以列出单甲基磷酸酯、单乙基磷酸酯、单丙基磷酸酯[单(正丙基)磷酸酯、单(异丙基)磷酸酯]、单丁基磷酸酯[单(正丁基)磷酸酯、单(异丁基)磷酸酯]、单戊基磷酸酯、单己基磷酸酯等。
二烷基磷酸酯可以列出二甲基磷酸酯、二乙基磷酸酯、二丙基磷酸酯[二(正丙基)磷酸酯、二(异丙基)磷酸酯]、二丁基磷酸酯[二(正丁基)磷酸酯、二(异丁基)磷酸酯]、二戊基磷酸酯、二己基磷酸酯等。
上述烷基磷酸酯阴离子可以单独使用一种,也可以混合使用两种以上;可以是单烷基磷酸酯与二烷基磷酸酯的混合。作为本发明实施方案的优选,烷基磷酸酯阴离子选自二乙基磷酸酯或二甲基磷酸酯阴离子。
本发明中,含有烷基磷酸酯阴离子的电解质(C)可以通过如下方法合成:首先将咪唑啉或季盐溶解于甲醇溶液中,在一定条件下与碳酸二甲酯反应生成咪唑(或季铵)·碳酸二甲酯盐;然后加入烷基磷酸酯与以上得到的盐的甲醇溶液发生盐交换反应,得到咪唑(或季铵)·烷基磷酸酯盐;最后经过一系列的精馏提纯得到需要的含有烷基磷酸酯的电解质。
本发明中,含有邻苯二甲酸阴离子的电解质(D)可以通过如下方法合成:与上述反应相似,首先将咪唑啉或季盐溶解于甲醇溶液中,在一定条件下与碳酸二甲酯反应生成咪唑(季铵)·碳酸二甲酯盐,然后加入邻苯二甲酸与以上得到的盐的甲醇溶液发生盐交换反应,得到咪唑(或季铵)·邻苯二甲酸盐;最后经过一系列的精馏提纯得到需要的含有邻苯二甲酸的电解质。
在上述实施方案中,有机溶剂(B)可以选自(1)醇、(2)醚、(3)酰胺、(4)内酯、(5)腈、(6)碳酸酯、(7)砜和(8)其它有机溶剂。
(1)醇
一元醇(例如甲醇、乙醇、丙醇、丁醇、二丙酮醇、苄醇、氨基醇、糖醇等)、二元醇(例如乙二醇、丙二醇、二甘醇、己二醇等)、三元醇(例如丙三醇等)、四元以上的醇(例如己糖醇等)等。
(2)醚
单醚(例如乙二醇单甲醚、乙二醇单乙基醚、乙二醇单苯基醚、四氢呋喃、3-甲基四氢呋喃等)、二醚(例如乙二醇二甲基醚、乙二醇二乙基醚、二甘醇单 甲基咪、二甘醇单以及醚等)、三醚(例如二甘醇二甲基醚、二甘醇二乙基醚等)等。
(3)酰胺
甲酰胺(例如N-甲基甲酰胺、N,N-二甲基甲酰胺、N-乙基甲酰胺、N,N-二乙基甲酰胺等)、乙酰胺(例如N-甲基乙酰胺、N,N-二乙基乙酰胺等)、丙酰胺(例如N,N-二甲基丙酰胺等)、吡咯烷酮(例如N-甲基吡咯烷酮、N-乙基吡咯烷酮)、六甲基磷酸铵等。
(4)内酯
γ-丁内酯(以下记为GBL)、α-乙酰基-γ-丁内酯、β-丁内酯、γ-戊内酯、δ-戊内酯等。
(5)腈
乙腈、丙腈、丁腈、丙烯腈、甲基丙烯腈、苯腈等。
(6)碳酸酯
碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯等。
(7)砜
环丁砜、二甲基亚砜、二甲基砜等。
(8)其它有机溶剂
1,3-二甲基-2-咪唑啉酮、芳香族溶剂(例如甲苯、二甲苯等)、链烷溶剂(例如正链烷、异链烷等)等。
上述有机溶剂可以单独使用一种,也可以混合使用两种以上。上述有机溶剂中,优选醇、内酯及砜,更优选为γ-丁内酯、环丁砜或乙二醇。
在上述实施方案中,有机溶剂(B)的含量基于电解质(A)和有机溶剂(B)的重量优选为30%~85%,例如30.5%、32%、33.5%、35%、36%、40%、41.5%、42%、43.5%、45%、47%、48%、50%、52%、55%、56%、57.5%、58%、60%、62.5%、64%、65%、67.5%、70%、72%、75%、78%、80%、82%、83%、84.5%或84.8%,更优选为45%~75%,最优选为55%~65.5%。
作为本发明的进一步改进的技术方案,上述电解液还含有添加剂,上述添加剂选自邻硝基苯甲酸、对硝基苯甲酸、间硝基苯甲酸、邻硝基苯酚、对硝基苯酚、对硝基苯甲醇和间硝基乙酰苯中的至少一种。这些添加剂能够提高电解液本身的吸氢效果,可以有效地防止制作的电容器出现鼓底等不良状况。需要 说明的是,本发明的电解液可以含有添加剂,也可以不含添加剂。从提高电解液吸氢效果的角度考虑,可以添加上述添加剂。
作为添加剂,其含量基于电解质(A)和有机溶剂(B)的重量优选为0.1~3%,例如0.12%、0.15%、0.18%、0.2%、0.25%、0.3%、0.4%、0.5%、0.8%、0.9%、1%、1.2%、1.3%、1.5%、1.8%、2.0%、2.2%、2.3%、2.4%、2.5%、2.8%、2.85%、2.95%或2.98%,更优选为0.5%~2.5%,最优选为0.8%~1.3%。
本发明中,各种成分的含量基于电解质(A)和有机溶剂(B)的重量总和为100%。
本发明还提供使用上述实施方案中的电解液形成的铝电解电容器,优选γ-丁内酯体系铝电解电容器。
以下是本发明的具体实施例,本领域的技术人员应理解以下实施例仅是示例性的,本发明并不受限于以下实施例。
实施例1
在碳酸二甲酯的甲醇溶液中滴入2,4-二甲基咪唑啉,在100℃条件下搅拌48小时,由此得到1,2,3,4-四甲基咪唑啉鎓·碳酸二甲酯盐的甲醇溶液。
将磷酸三乙酯加入1,2,3,4-四甲基咪唑啉鎓·碳酸二甲酯盐的甲醇溶液中,进行盐交换反应,得到1,2,3,4-四甲基咪唑啉鎓·二乙基磷酸酯阴离子的甲醇溶液,将上述溶液在1.0kPa以下的减压度、50℃下加热蒸馏甲醇,直至不再蒸馏出甲醇为止,然后,使温度从50℃缓慢升温到100℃,加热30分钟,蒸馏碳酸单甲酯(HOCO2CH3)、甲醇及二氧化碳,由此得到电解质1。
将邻苯二甲酸加入1,2,3,4-四甲基咪唑啉鎓·碳酸二甲酯盐的甲醇溶液中,进行盐交换反应,得到1,2,3,4-四甲基咪唑啉鎓·邻苯二甲酸盐的甲醇溶液,将上述溶液在1.0kPa以下的减压度,50℃下加热蒸馏甲醇,直至不再蒸馏出甲醇为止,然后,使温度从50℃缓慢升温到100℃,加热30分钟,蒸馏碳酸单甲酯、甲醇及二氧化碳,由此得到电解质2。
将25g的电解质1和25g的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将5g的溶液2与100g的溶液1混合均匀,得到实验用电解液1,水分含量为0.1wt%。
实施例2
在碳酸二甲酯的甲醇溶液中滴入1-乙基-3-甲基咪唑啉,在100℃条件下加热搅拌48小时,由此得到1-乙基-3-甲基咪唑鎓·碳酸二甲酯盐的甲醇溶液。
然后使用1-乙基-3-甲基咪唑鎓·碳酸二甲酯盐代替实施例1中的1,2,3,4-四甲基咪唑啉鎓·碳酸二甲酯盐,分别使用磷酸三乙酯和邻苯二甲酸进行盐交换反应,分别得到1-乙基-3-甲基咪唑鎓·二乙基磷酸酯阴离子和1-乙基-3-甲基咪唑鎓·邻苯二甲酸盐,分别作为电解质3和电解质4。
将25g的电解质3和25g的电解质4,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液3和溶液4,然后将5g的溶液4与100g的溶液3混合均匀,得到实验用电解液2,水分含量为0.1wt%。
实施例3
将25g实施例1中合成的电解质1和25g实施例2中合成的电解质4,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液4,然后将5g的溶液4与100g的溶液1混合均匀,得到实验用电解液3,水分含量为0.1wt%。
实施例4
将25g实施例2中合成的电解质3和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液3和溶液2,然后将5g溶液2与100g的溶液3混合均匀,得到实验用电解液4,水分含量为0.1wt%。
实施例5
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将5g的溶液2与100g的溶液1混合均匀,另加入1g对硝基苯甲酸,配制成实验电解液6,水分含量为0.1wt%。
实施例6
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将5g的溶液2与100g的溶液1混合均匀,另加入1g对硝基苯甲醇和1g的间硝基乙酰苯,配制成实验电解液6, 水分含量为0.1wt%。
实施例7
使用磷酸三甲酯代替实施例1中的磷酸三乙酯,与1,2,3,4-四甲基咪唑啉鎓·碳酸二甲酯盐的甲醇溶液进行盐交换反应,得到1,2,3,4-四甲基咪唑鎓·二甲基磷酸盐,作为电解质5。
将25g的电解质5和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液5和溶液2,然后将5g的溶液2与100g的溶液5混合均匀,得到实验用电解液7,水分含量为0.1wt%。
实施例8
使用磷酸三甲酯代替实施例2中的磷酸三乙酯,与1-乙基-3-甲基咪唑鎓·碳酸二甲酯盐的甲醇溶液进行盐交换反应,得到1-乙基-3-甲基咪唑鎓·二甲基磷酸酯盐,作为电解质6。
将25g的电解质6和25g实施例2中合成的电解质4,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液6和溶液4,然后将5g的溶液4与100g的溶液6混合均匀,得到实验用电解液8,水分含量为0.1wt%。
实施例9
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将10g的溶液2与95g的溶液1混合均匀,得到实验用电解液9,水分含量为0.1wt%。
实施例10
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将20g的溶液2与85g的溶液1混合均匀,得到实验用电解液10,水分含量为0.1wt%。
实施例11
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂 2(GBL)中,配制成溶液1和溶液2,然后将30g的溶液2与75g的溶液1混合均匀,得到实验用电解液11,水分含量为0.1wt%。
实施例12
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将40g的溶液2与65g的溶液1混合均匀,得到实验用电解液12,水分含量为0.1wt%。
实施例13
将25g实施例1中合成的电解质1和25g实施例1中合成的电解质2,分别溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)和75g有机溶剂2(GBL)中,配制成溶液1和溶液2,然后将50g的溶液2与55g的溶液1混合均匀,得到实验用电解液13,水分含量为0.1wt%。
实施例14
将40g实施例1中合成的电解质1和40g实施例1中合成的电解质2,分别溶解在60g有机溶剂1(包含60g的GBL以及15g的乙二醇)和60g有机溶剂2(GBL)中,配制成溶液7和溶液8,然后将60g的溶液8与45g的溶液7混合均匀,得到实验用电解液14,水分含量为0.1wt%。
实施例15
将40g实施例1中合成的电解质1和40g实施例1中合成的电解质2,分别溶解在60g有机溶剂1(包含60g的GBL以及15g的乙二醇)和60g有机溶剂2(GBL)中,配制成溶液7和溶液8,然后将25g的溶液8与80g的溶液7混合均匀,得到实验用电解液15,水分含量为0.1wt%。
对比例1
将12g实施例1中合成的电解质2溶解至88g有机溶剂2(GBL)中,得到用于比较的电解液1,水分含量为0.1wt%。
对比例2
将12g实施例2中合成的电解质4溶解至88g有机溶剂2(GBL)中,得到用于比较的电解液2,水分含量为0.1wt%。
对比例3
将25g实施例1中合成的电解质1溶解在75g有机溶剂1(包含60g的GBL 以及15g的乙二醇)中,得到用于比较的电解液3,水分含量为0.1wt%。
对比例4
将25g实施例2中合成的电解质3溶解在75g有机溶剂1(包含60g的GBL以及15g的乙二醇)中,得到用于比较的电解液4,水分含量为0.1wt%。
对上述实施例1-15和对比例1-4得到的电解液,测定比电导率、火花电压,其结果示于表1。
比电导率:使用DJS-1C铂黑电导率仪,测定在30℃下的比电导率。
火花电压:在阳极使用10cm2的高压用化成蚀刻铝箔,在阴极使用10cm2的平面铝箔,在30℃下测定负荷定电流法(20mA)时的电解液放电电压。
水分测试:引用标准GB/T6283,使用卡尔·费歇法进行水分测试。
对上述实施例1-15和对比例1-4得到的电解液,制作导针型铝电解电容器(额定电压100WV、静电容量100μF、尺寸:Φ10mm×L20mm)。
将制作的铝电解电容器进行负荷试验,分别测定初始以及在115℃下放置2000h后的损耗角的正切(tanδ)、漏电流(LC),记录结果于表1。
表1
Figure PCTCN2015089166-appb-000001
Figure PCTCN2015089166-appb-000002
表1的结果表明,本发明实施例制备的电解液,30℃下的比电导率能够维持在8mS/cm以上,并且火花电压足够高。
对比例1和对比例2的结果显示,使用单一邻苯二甲酸盐作为电解质阴离子配制的电解液比电导率和火花电压均较低,100WV的额定电压下阳极箔容易发生短路,这使得电容器的损耗角变大,漏电变高,严重影响电容器的使用寿命。
对比例3和对比例4的结果显示,使用单一烷基磷酸酯盐作为电解质阴离子配制的电解液,相较于混合盐作为电解质阴离子配制的电解液比电导率偏低,且闪火电压较低。
结果说明,本发明中烷基磷酸酯和邻苯二甲酸阴离子同时存在于电解液中具有良好的协同作用,能够有效提高比电导率同时保证较高的火花电压。
实施例3和实施例4的测试结果表明,电解质阳离子部分使用混合阳离子配制的电解液在30℃的比电导率在7.2-7.7mS/cm左右,相较于单一种类阳离子的电解质配制的电解液比电导率要低一些。说明单一种类阳离子的电解质配制的电解液较好。
实施例5和实施例6的测试结果表明,添加剂(消氢剂)的使用对电解液的比电导率有一定的影响,其中对硝基苯甲酸的加入改变了电解液的酸碱环境,比电导率有降低。但是实施例5和实施例6的电解液的比电导率依然较高,能够满足电容器使用的要求。
综上所述,本发明的电解液能够同时获得高比电导率及火花电压,并能实现无需担心电容器部件腐蚀的铝电解电容器。因此,在市场上使用电源的高耐压竞争中,具有非常大的市场价值。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种铝电解电容器用电解液,其特征在于,所述电解液含有电解质(A)和有机溶剂(B),所述电解质(A)包含电解质(C)和电解质(D),所述电解质(C)由阳离子(E)和烷基磷酸酯阴离子组成,所述电解质(D)由阳离子(F)和邻苯二甲酸阴离子组成。
  2. 根据权利要求1所述的电解液,其特征在于,所述电解质(C)的含量基于所述电解质(A)和有机溶剂(B)的重量为10%~65%,优选为15%~45%,更优选为18.5%~25.5%。
  3. 根据权利要求1所述的电解液,其特征在于,所述电解质(D)的含量基于所述电解质(A)和有机溶剂(B)的重量为1%~35%,优选为5%~30%,更优选为15.5~25.5%。
  4. 根据权利要求1所述的电解液,其特征在于,所述阳离子(E)和阳离子(F)各自独立地选自脒鎓阳离子或季铵盐阳离子;
    优选地,所述脒鎓阳离子选自1,2,3,4-四甲基咪唑鎓阳离子或1-乙基-3-甲基咪唑鎓阳离子。
  5. 根据权利要求1所述的电解液,其特征在于,所述阳离子(E)与所述阳离子(F)相同。
  6. 根据权利要求1所述的电解液,其特征在于,所述烷基磷酸酯阴离子的烷基碳原子数为1~10,优选为1~4;
    优选地,所述烷基磷酸酯阴离子为二乙基磷酸酯阴离子或二甲基磷酸酯阴离子。
  7. 根据权利要求1所述的电解液,其特征在于,所述有机溶剂(B)选自γ-丁内酯、环丁砜或乙二醇;
    优选地,所述有机溶剂(B)的含量基于所述电解质(A)和有机溶剂(B)的重量为30%~85%,优选为45%~75%,更优选为55%~65.5%。
  8. 根据权利要求1所述的电解液,其特征在于,所述电解液还含有添加剂,所述添加剂选自邻硝基苯甲酸、对硝基苯甲酸、间硝基苯甲酸、邻硝基苯酚、对硝基苯酚、对硝基苯甲醇和间硝基乙酰苯中的至少一种;
    优选地,所述添加剂的含量基于所述电解质(A)和有机溶剂(B)的重量为0.1~3%,优选为0.5%~2.5%,更优选为0.8%~1.3%。
  9. 一种铝电解电容器,其特征在于,所述铝电解电容器使用权利要求1-8 任一项所述的电解液形成。
  10. 根据权利要求9所述的铝电解电容器,其特征在于,所述铝电解电容器为γ-丁内酯体系铝电解电容器。
PCT/CN2015/089166 2015-05-04 2015-09-08 铝电解电容器用电解液及使用该电解液的铝电解电容器 WO2016176938A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016534675A JP2017516287A (ja) 2015-05-04 2015-09-08 アルミニウム電解コンデンサ用電解液、及び、これを用いたアルミニウム電解コンデンサ
US15/038,041 US20170110253A1 (en) 2015-05-04 2015-09-08 Electrolyte Solution for Aluminum Electrolytic Capacitor and Aluminum Electrolytic Capacitor Using the Electrolyte Solution
KR1020167016517A KR20170138913A (ko) 2015-05-04 2015-09-08 알루미늄 전해 콘덴서용 전해액 및 그 전해액을 사용한 알루미늄 전해 콘덴서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510221424.5A CN104952621A (zh) 2015-05-04 2015-05-04 铝电解电容器用电解液及使用该电解液的铝电解电容器
CN201510221424.5 2015-05-04

Publications (1)

Publication Number Publication Date
WO2016176938A1 true WO2016176938A1 (zh) 2016-11-10

Family

ID=54167209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089166 WO2016176938A1 (zh) 2015-05-04 2015-09-08 铝电解电容器用电解液及使用该电解液的铝电解电容器

Country Status (5)

Country Link
US (1) US20170110253A1 (zh)
JP (1) JP2017516287A (zh)
KR (1) KR20170138913A (zh)
CN (1) CN104952621A (zh)
WO (1) WO2016176938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807601B2 (en) 2020-10-23 2023-11-07 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551802B (zh) * 2015-12-22 2018-08-17 东莞市久制电子有限公司 一种无水体系高电导长寿命铝电解电容器用电解液及其制备方法
CN105761938B (zh) * 2016-02-25 2019-02-15 深圳新宙邦科技股份有限公司 一种铝电解质电容器及其制备方法
CN107868104A (zh) * 2016-09-22 2018-04-03 深圳新宙邦科技股份有限公司 一种磷酸二烃基酯盐的制备方法
CN106449104A (zh) * 2016-09-27 2017-02-22 江苏国泰超威新材料有限公司 一种阻燃型铝电解电容器用电解液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169016A (ja) * 1987-01-06 1988-07-13 松下電器産業株式会社 電解コンデンサ駆動用電解液
CN1624833A (zh) * 2003-12-05 2005-06-08 广东风华高新科技集团有限公司 电解电容器用电解液及采用该电解液的电容器
CN101283421A (zh) * 2005-10-17 2008-10-08 松下电器产业株式会社 电解电容器
CN101473391A (zh) * 2006-06-20 2009-07-01 三洋化成工业株式会社 铝电解电容器用电解液及使用该电解液的铝电解电容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118432B2 (ja) * 1987-04-20 1995-12-18 松下電器産業株式会社 電解コンデンサ駆動用電解液
JPH11274011A (ja) * 1998-03-23 1999-10-08 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
JP3542492B2 (ja) * 1998-04-13 2004-07-14 三洋化成工業株式会社 電解液およびそれを用いた電気化学素子
JP5305506B2 (ja) * 2008-07-29 2013-10-02 三洋化成工業株式会社 アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP4991799B2 (ja) * 2008-07-30 2012-08-01 三洋化成工業株式会社 アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP6186351B2 (ja) * 2012-04-26 2017-08-23 三洋化成工業株式会社 アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169016A (ja) * 1987-01-06 1988-07-13 松下電器産業株式会社 電解コンデンサ駆動用電解液
CN1624833A (zh) * 2003-12-05 2005-06-08 广东风华高新科技集团有限公司 电解电容器用电解液及采用该电解液的电容器
CN101283421A (zh) * 2005-10-17 2008-10-08 松下电器产业株式会社 电解电容器
CN101473391A (zh) * 2006-06-20 2009-07-01 三洋化成工业株式会社 铝电解电容器用电解液及使用该电解液的铝电解电容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807601B2 (en) 2020-10-23 2023-11-07 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor

Also Published As

Publication number Publication date
CN104952621A (zh) 2015-09-30
KR20170138913A (ko) 2017-12-18
US20170110253A1 (en) 2017-04-20
JP2017516287A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2016176938A1 (zh) 铝电解电容器用电解液及使用该电解液的铝电解电容器
JP4964680B2 (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP2012074528A (ja) 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ
JP6403006B2 (ja) 電解コンデンサ用電解液及び電解コンデンサ
CN104134544A (zh) 一种高频耐纹波铝电解电容器电解液
JP2009182275A (ja) 電解コンデンサの駆動用電解液および電解コンデンサ
EP2034497B1 (en) Electrolyte solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same
JP6104809B2 (ja) アルミニウム電解コンデンサ用電解液、及びそれを用いたアルミニウム電解コンデンサ
JP2007184303A (ja) 電解コンデンサの駆動用電解液、および電解コンデンサ
JP3860303B2 (ja) 電気二重層コンデンサ用電解液およびそれを用いた電気二重層コンデンサ
JP2011003813A (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP2007194311A (ja) 電気二重層キャパシタ
JP2005093595A (ja) 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP4536436B2 (ja) 電解液およびそれを用いた電解コンデンサ
JPH11283880A (ja) 電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP4258586B2 (ja) 電解コンデンサ用電解液
JP2009032876A (ja) 電気二重層コンデンサ
JP4016218B2 (ja) 電解コンデンサ用電解液
JP2011155093A (ja) 電解液およびそれを用いた電気化学素子
JP3885836B2 (ja) 電解コンデンサ用電解液
JP2701875B2 (ja) 電解コンデンサ用電解液
JP4081615B2 (ja) 電解コンデンサ用電解液
JP3037704B2 (ja) 電解コンデンサ用電解液
JP4081617B2 (ja) 電解コンデンサ用電解液
JP4081616B2 (ja) 電解コンデンサ用電解液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15038041

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016534675

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167016517

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891189

Country of ref document: EP

Kind code of ref document: A1