WO2016175332A1 - 希土類永久磁石および希土類永久磁石の製造方法 - Google Patents

希土類永久磁石および希土類永久磁石の製造方法 Download PDF

Info

Publication number
WO2016175332A1
WO2016175332A1 PCT/JP2016/063515 JP2016063515W WO2016175332A1 WO 2016175332 A1 WO2016175332 A1 WO 2016175332A1 JP 2016063515 W JP2016063515 W JP 2016063515W WO 2016175332 A1 WO2016175332 A1 WO 2016175332A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
group
permanent magnet
earth permanent
atoms
Prior art date
Application number
PCT/JP2016/063515
Other languages
English (en)
French (fr)
Inventor
秀和 伴野
春樹 江口
夏樹 米山
功 中野渡
佳祐 長尾
寛郎 高橋
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to AU2016253743A priority Critical patent/AU2016253743B2/en
Priority to KR1020177030987A priority patent/KR20180025844A/ko
Priority to CN201680024222.4A priority patent/CN107533893B/zh
Priority to JP2016575597A priority patent/JP6332479B2/ja
Priority to EP16786608.6A priority patent/EP3291251A4/en
Publication of WO2016175332A1 publication Critical patent/WO2016175332A1/ja
Priority to US15/797,841 priority patent/US20180047488A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present disclosure relates to a rare earth permanent magnet containing neodymium, iron, and boron.
  • Patent Document 1 As a technique for improving the magnetic properties of rare earth permanent magnets containing neodymium (Nd), iron (Fe), and boron (B), there is a magnet in which Fe is substituted with cobalt (Co) (Patent Document 1).
  • Patent Document 1 comprehensively measures the coercive force Hc, residual magnetic flux density Br, maximum energy product BH max, and the like of a permanent magnet in which Fe is replaced with another atom, and shows an improvement in the magnetic characteristics of the permanent magnet.
  • R is a weight percent and R (R is at least one rare earth element including Y, and Nd in R is 50 atomic% or more): 25 to 35%, B: 0.8 to 1.5% If necessary, M (at least one selected from Ti, Cr, Ga, Mn, Co, Ni, Cu, Zn, Nb, Al): 8% or less, and the rare earth containing the remainder T (Fe or Fe and Co) A sintered magnet is disclosed.
  • Another proposal for improving the magnetic properties of rare earth permanent magnets is a nano-structure with a two-phase composite structure in which the hard magnetic phase of nanoparticles composed of Nd, Fe, and B is the core and the soft magnetic phase of the specified nanoparticles is the shell.
  • a composite magnet There is a composite magnet.
  • the above-mentioned nanocomposite magnet has good exchange interaction between the hard / soft magnetic phase of the core / shell, particularly when the soft magnetic material is covered with a grain boundary consisting of ultrafine grains of 5 nm or less to form a shell. Saturation magnetization can be improved.
  • Patent Document 3 discloses a nanocomposite magnet having Nd 2 Fe 14 B compound particles as a core and Fe particles as a shell. By using FeCo alloy nanoparticles with high saturation magnetization as the shell component, the saturation magnetization of the nanocomposite magnet is further improved.
  • Patent Document 4 discloses a nanocomposite magnet in which a core of NdFeB hard magnetic phase is coated with a shell of FeCo soft magnetic phase.
  • Patent Document 5 in magnetically composition of the hard phase is R x T 100-xy M y ( formula defined in atomic percent, R is selected rare earths, yttrium, scandium, or combinations thereof, T is selected from one or more transition metals; M is selected from Group IIIA elements, Group IVA elements, Group VA elements, or combinations thereof; x is in the corresponding rare earth transition metal compound; Greater than the stoichiometric amount of R; y is from 0 to about 25), and at least one magnetically soft phase comprises at least one soft magnetic material containing Fe, Co, or Ni.
  • An anisotropic bulk nanocomposite rare earth permanent magnet is disclosed.
  • Non-Patent Document 1 discloses a method for producing FeCo nanoparticles at a high temperature. However, the coercive force H cj of the Nd 2 Fe 14 B particles produced at a high temperature is not good.
  • Non-Patent Document 2 to Non-Patent Document 5 it is known that rare earth permanent magnets in which B is replaced by C have a reduced Curie temperature, and a significant decrease in saturation magnetization and residual magnetic flux density Br.
  • the C atom or the N atom forms a covalent bond with the atoms existing around them.
  • Such rare earth permanent magnets have a low magnetic property, particularly a residual magnetic flux density Br, because unpaired electrons essential to the magnetic material are remarkably reduced.
  • the problem of the present disclosure is to improve the magnetic characteristics of a rare earth permanent magnet having a main phase containing Nd, Fe, and B.
  • One embodiment of the present disclosure includes one or more elements R selected from the group consisting of Nd and Pr, one or more elements L selected from the group consisting of Co, Be, Li, Al, and Si, and Tb and Sm.
  • This disclosure can improve the magnetic properties of a rare earth permanent magnet having a main phase containing Nd, Fe, and B.
  • One embodiment of the present disclosure includes one or more elements R selected from the group consisting of Nd and Pr, one or more elements L selected from the group consisting of Co, Be, Li, Al, and Si, and Tb and Sm.
  • the residual magnetic flux density Br can be improved by replacing some of the predetermined B atoms with the atoms of the element L.
  • the Fe atom occupying the 4c site not only the B atom occupying the 4f site, but also the Nd atom occupying the 4f site of the crystal belonging to P4 2 / mnm, the Fe atom occupying the 4c site, and 8j A part of atoms selected from the group consisting of Fe atoms occupying the site may be substituted with atoms of the element L. Even in such an embodiment, the residual magnetic flux density Br of the rare earth permanent magnet can be improved.
  • whether or not some of the predetermined atoms are replaced with the atoms of the element L can be determined by Rietveld analysis. That is, the presence or absence of the substitution is determined based on the space group of crystals forming the main phase specified by the analysis and the occupancy of each element in each site existing in the space group.
  • the present disclosure does not exclude determining whether or not the predetermined substitution is present in the crystal structure of the rare earth permanent magnet by a method different from the Rietveld analysis.
  • the crystals forming the main phase of the present disclosure belong to P4 2 / mnm.
  • the occupancy rate of the element L at the 4f site occupied by B atoms in the space group is defined as n.
  • n> 0.000 it can be determined that some of the B atoms occupying the 4f site are replaced with atoms of the element L.
  • the occupancy ratio of the B atom that occupies the 4f site together with the element L can be defined as 1.000-n.
  • the upper limit of the value of the element occupancy n of the element L is not limited.
  • n tends to be calculated within the range of 0.030 ⁇ n ⁇ 0.100.
  • the occupancy is expressed as a percentage, it is (n ⁇ 100)%.
  • the s value is 1.3 or less, and is preferably closer to 1. Most preferably 1.
  • the s value is a value obtained by dividing the R-weighted pattern (R wp ) of the reliability factor R by R-expected (R e ).
  • One embodiment of the present disclosure includes one or more elements R selected from the group consisting of Nd and Pr, one or more elements L selected from the group consisting of Co, Be, Li, Al, and Si, and Tb and Sm. And a main phase containing one or more elements A selected from the group consisting of Gd, Ho, and Er, Fe, and B.
  • the improvement of the residual magnetic flux density Br is particularly remarkable by containing Sm (samarium) and Gd (gadolinium).
  • the coercive force H cj can be improved by containing Tb (terbium), Ho (holmium), and Er (erbium). Therefore, by substituting B with the predetermined element L and containing the element A, it is possible to improve both the residual magnetic flux density Br and the coercive force H cj .
  • the crystal periodically has an R-Fe-B layer containing an element R selected from the group consisting of Nd and Pr, Fe, and B, an Fe layer, and a part of the B atoms.
  • the R-Fe-B layer is substituted with the element L atom, and the R-Fe-B layer contains the element A atom.
  • the space group P4 2 / mnm of the main phase crystal there are two 16k, two 8j, one 4g, two 4f, one 4e, and one 4c sites.
  • 16k when there are a plurality of sites such as 16k, they may be described as the first 16k and the second 16k.
  • the expressions such as “first”, “second”, and the like are attached to distinguish the sites, and do not characterize each site except in the case described in this specification.
  • the R atom that occupies the first 4f site, the 4g site, the Fe atom that occupies the 4c site, and the B atom that occupies the second 4f site are R -Fe-B layer is formed.
  • Fe atoms occupying two 16k sites, two 8j sites, and a 4e site form an Fe layer.
  • FIG. 1 is an example of a crystal structure model of a main phase of a rare earth permanent magnet according to one embodiment of the present disclosure corresponding to the above aspect.
  • 100 is a unit cell of the main phase
  • 101 is an Fe layer
  • 102 is an R—Fe—B layer.
  • the Fe layers 101 and the R—Fe—B layers 102 are alternately present along the c-axis direction.
  • the distance between two R-Fe-B layers 102 adjacent to each other with the Fe layer 101 interposed therebetween is 0.59 to 0.62 nm.
  • This embodiment uses the crystal structure model shown in FIG. 1 as a basic skeleton.
  • part of the B atoms constituting the basic skeleton is replaced with the element L (Co in FIG. 1).
  • the atoms of the element L can be substituted with Fe atoms.
  • the atom of the element L can be substituted with an Nd atom.
  • the number of atoms constituting the unit cell of the main phase represents 90 to 98 at% of the number of atoms of the rare earth permanent magnet particles.
  • impurities can be included in the main phase within a range in which the effect can be obtained.
  • This embodiment can suppress a decrease in the magnetic moment of the element R by reducing the B content. Further, the reduction of the B content makes the basic skeleton unstable, and other elements easily enter the basic skeleton and voids in the basic skeleton. In rare earth permanent magnets containing C as another element, B is easily replaced with C when the basic skeleton becomes unstable.
  • this embodiment does not contain C or contains a very small amount of C.
  • B is replaced with the element L and not C.
  • the portion substituted with C is less than the portion substituted with element L.
  • this embodiment in order to obtain a crystal structure in which B is substituted with the element L, this embodiment suppresses the B content and controls the amount of C so that C does not enter the crystal structure of the main phase.
  • the predetermined crystal structure of this embodiment can be obtained by eliminating as much as possible contact between the raw material alloy and paper, plastic, oil, or the like as the C source.
  • B in the raw material alloy is 0.94% and C is 0.03%, which is obtained by sintering this raw material alloy.
  • B may be 0.94% and C may be 0.074%.
  • B is 0.86% and C is 0.009% in the raw material alloy
  • B is 0.86% and C is 0.059% in the rare earth permanent magnet of this embodiment obtained by sintering this raw material alloy.
  • ICP emission spectrometer ICP-Emission Spectroscopy
  • the center in the grain that is, the main phase part was analyzed by a three-dimensional atom probe (3DAP).
  • 3DAP three-dimensional atom probe
  • the C content in the main phase was 0.02% or less of the detection limit value. Thereby, even if C is contained in this embodiment, it can be confirmed that most of C exists in the grain boundary phase, and the main phase contains only an amount of inevitable impurities.
  • C was analyzed, but N and O can be the same as C.
  • the element R is Nd, and a part of Nd may be substituted with Pr.
  • the atomic ratio between Nd and Pr is 80:20 to 70:30. From the viewpoint of cost reduction, it is preferable that the ratio of Pr is large and the ratio of Nd is small. However, if the ratio of Nd is smaller than 70 in the above-mentioned atomic ratio, the possibility that the residual magnetic flux density Br will decrease increases.
  • the element L can be substituted with Nd and Fe.
  • a part of B is substituted with an element L selected from one or more groups selected from the group consisting of Co, Be, Li, Al, and Si.
  • element L is preferably Co.
  • elements whose wave functions are adapted to the lattice gap or those having an atomic radius smaller than the atomic radius of B can be replaced with B.
  • the atomic ratio between B and element L (B: element L) is represented by (1-x): x, where x satisfies 0.01 ⁇ x ⁇ 0.25, and preferably 0.03 ⁇ x ⁇ 0.25.
  • x satisfies 0.01 ⁇ x ⁇ 0.25, and preferably 0.03 ⁇ x ⁇ 0.25.
  • Nd atoms to B atoms can be reduced by substituting B with a predetermined element.
  • the decrease in the number of unpaired electrons in Nd is suppressed, and the magnetic moment of Nd atoms can be improved.
  • the element L can be substituted with Nd and Fe.
  • the Nd atoms constituting the main phase of the present embodiment have a magnetic moment greater than that of Nd atoms in the Nd 2 Fe 14 B crystal. Magnetic moment is greater than at least 2.70 ⁇ B, preferably 3.75 ⁇ 3.85 ⁇ B, more preferably 3.80 ⁇ 3.85 ⁇ B.
  • the R—Fe—B layer 102 includes one or more elements A selected from the group consisting of Tb, Sm, Gd, Ho, and Er.
  • the residual magnetic flux density Br can be improved.
  • the coercive force H cj can be improved by adding Tb, Ho, or Er.
  • both the coercive force H cj and the residual magnetic flux density Br can be improved.
  • the element A can be substituted with Fe.
  • the elements R, Fe, and B are not substituted with the unsubstituted element L and element A, and other elements contained in the raw material alloy are either of the Nd-Fe-B layers. Includes aspects present on the site. Examples of other elements include known elements that improve the magnetic properties of rare earth permanent magnets.
  • an element that forms a grain boundary phase such as Cu, Nb, Zr, Ti, or Ga, or an element that forms a subphase such as O may enter any site of the crystal structure of the main phase.
  • the magnetic properties derived from Fe atoms and Nd atoms provide better magnetic properties.
  • the magnetic characteristics of this embodiment can be evaluated by the coercive force H cj and the residual magnetic flux density Br.
  • the magnetic characteristics of the present embodiment are improved by about 40 to 50% by increasing the number of unpaired electrons, compared with a rare earth permanent magnet made of a conventional Nd 2 Fe 14 B crystal.
  • the addition of element A provides a good residual magnetic flux density Br.
  • the rare earth permanent magnet of the present embodiment includes a main phase and a grain boundary phase formed between the main phases, and the content of element R with respect to the total weight of the rare earth permanent magnet is 20 to 35% by weight, preferably 22 to 33%. % By weight.
  • Nd and Pr are used as the element R, it is preferable that Nd is 15 to 40% by weight and Pr is 5 to 20% by weight.
  • the B content is 0.80 to 0.99% by weight, preferably 0.82 to 0.98% by weight.
  • the total content of one or more elements selected from the group consisting of Co, Be, Li, Al, Si, Cu, Nb, Zr, Ti and Ga is 0.8 to 2.0% by weight, preferably 0.8 to 1.5% by weight.
  • the total content of element A selected from the group consisting of Tb, Sm, Gd, Ho and Er is 2.0 to 10.0% by weight, preferably 2.6 to 5.4% by weight.
  • the balance is iron. Since each component has the above-described content, the present embodiment has the predetermined crystal structure described above. Thereby, good residual magnetic flux density Br and coercive force H cj can be obtained.
  • this embodiment preferably includes a grain boundary phase between the main phases.
  • the grain boundary phase formed between the main phases preferably contains one or more elements selected from the group consisting of Al, Cu, Nb, Zr, Ti, and Ga.
  • FIG. 2 is a schematic diagram illustrating an example of a microstructure of one embodiment of the present disclosure.
  • 200 is the main phase
  • 300 is the grain boundary phase
  • 400 is the subphase.
  • the spin electrons of the grain boundary phase component pin the spin electrons of the main phase component, and the inversion of the spin of the main phase component is suppressed. That is, the grain boundary phase breaks the magnetic exchange coupling of the main phase. As a result, the coercive force H cj can be improved.
  • the content of Al in the total weight of the rare earth permanent magnet is preferably 0.1 to 0.4% by weight, and more preferably 0.2 to 0.3% by weight.
  • the Cu content is preferably 0.01 to 0.1% by weight, more preferably 0.02 to 0.09% by weight.
  • Zr is added, the content of Zr is preferably 0.004 to 0.04% by weight, and more preferably 0.01 to 0.04% by weight.
  • This embodiment combines a high residual magnetic flux density Br, a high coercive force H cj, and a large maximum energy product BH max . Further, the magnetic properties can be further improved by reducing the sintered particle size of the sintered particles including the main phase. When element A contains Ho or the like, it also has excellent heat resistance.
  • the rare earth permanent magnet of this embodiment can be manufactured using sintered particles obtained by heat-treating a raw alloy powder of a rare earth permanent magnet.
  • Such raw material alloys include element R, one or more elements selected from the group consisting of Co, Be, Li, Al, Si, Cu, Nb, Zr, Ti, and Ga, elements A, Fe,
  • the powder particle size D 50 is 2 to 18 ⁇ m, preferably 2 to 13 ⁇ m, more preferably 2 to 9 ⁇ m. When it deviates from the above preferable range, it becomes difficult to obtain a rare earth permanent magnet having a preferable sintered particle diameter.
  • the powder particle size means the particle size of the powdery or particulate raw material alloy before the heat treatment step.
  • the powder particle size can be measured by a known method using a laser diffraction particle size distribution measuring apparatus.
  • the sintered particle size means the particle size of the powdery or particulate raw material alloy after the heat treatment step.
  • D 50 is the median diameter in the cumulative distribution of alloy fine particles on a volume basis.
  • the sintered particle size D 50 of the rare earth permanent magnet of this embodiment is preferably 2.2 to 20 ⁇ m, more preferably 2.2 to 15 ⁇ m, and even more preferably 2.2 to 10 ⁇ m.
  • the sintered particle size D 50 exceeds 20 ⁇ m, the coercive force is remarkably lowered.
  • the sintered particle size obtained by heat-treating the above raw material alloy is 110 to 300% of the powder particle size, more specifically 110 to 180%. Therefore, as a result of adjusting the raw material alloy using a known means such as a ball mill, a jet mill or the like until the powder particle size is within a predetermined value range, and molding, magnetizing, degreasing, heat treatment, etc. Sintered particles having a sintered particle size can be obtained.
  • the rare earth permanent magnet of this embodiment preferably has a sintered density of 6.0 to 8.0 g / cm 3 .
  • the higher the sintered density the larger the residual magnetic flux density Br. Therefore, the higher the sintered density is, the more preferable is 6.0 g / cm 3 or more.
  • the sintered density of this embodiment is determined by the powder particle size of the raw material alloy, the processing temperature in the heat treatment step described later, the sintering temperature, and the aging temperature.
  • the sintering density is 6.0 to 8.0 g / cm 3 , more preferably 7.0 to 7.9 g / cm 3 , and further preferably 7.2 to 7.7 g / cm 3 depending on the raw material alloy that can be prepared and the conditions of the heat treatment process.
  • cm 3 When the sintered density is smaller than 6.0 g / cm 3 , the voids increase in the sintered body, and the residual magnetic flux density Br and further the coercive force H cj are reduced, and the rare earth permanent having the predetermined magnetic characteristics of this embodiment It does not become a magnet.
  • the method for producing the rare earth permanent magnet of the present embodiment is not particularly limited as long as the effects of the present embodiment can be obtained.
  • a production method including a micronization step, a magnetization step, a degreasing step, and a heat treatment step may be mentioned.
  • the rare earth permanent magnet of this embodiment can be produced by cooling the product obtained in each of the above steps to room temperature in the cooling step.
  • micronization process In the micronization process, one or more elements R selected from the group consisting of Nd and Pr, and one or more elements selected from the group consisting of Co, Be, Li, Al, Si, Cu, Nb, Zr, Ti, and Ga are selected. And an element A selected from the group consisting of Tb, Sm, Gd, Ho, and Er, Fe, and B are dissolved in the stoichiometric ratio described above to obtain a raw material alloy.
  • the stoichiometric ratio blended in the raw material alloy is almost the same as the composition of the final product, which is the main phase compound of this embodiment. Therefore, what is necessary is just to mix
  • the raw material alloy is preferably not an amorphous alloy.
  • the obtained raw material alloy is roughly pulverized using a ball mill, a jet mill or the like.
  • the powder particle size D 50 is preferably 2 to 25 ⁇ m, and other preferred powder particle size D 50 is 2 to 18 ⁇ m.
  • the powder particle size D 50 is more preferably 2 to 15 ⁇ m or 2 to 13 ⁇ m.
  • the coarsely pulverized raw material alloy particles are dispersed in an organic solvent, and a reducing agent is added.
  • a reducing agent is added.
  • the total content of Tb, Sm, Gd, Ho and Er in the case of manufacturing using a raw material alloy having a powder particle size D 50 of 2 to 18 ⁇ m is defined as 100%, and Tb, Sm, Gd and Ho Even when the content of Er is reduced by 20 to 30%, the magnetic properties are the same as in the case of 100%.
  • the obtained raw material alloy fine particles are compression molded under an orientation magnetic field. Further, in the heat treatment step, the obtained molded body is sintered under vacuum, and then the sintered product is rapidly cooled to room temperature. Subsequently, it is aged in an inert gas atmosphere and cooled to room temperature.
  • a main phase and a grain boundary phase are formed by predetermined temperature management and time management.
  • the heat treatment conditions are determined based on the melting points of the contained components. That is, all the components are dissolved by raising the treatment temperature to the main phase formation temperature and holding it. Thereafter, in the process of lowering the temperature from the main phase formation temperature to the grain boundary phase formation temperature, the main phase component becomes a solid phase, and the grain boundary phase component starts to precipitate on the solid phase surface.
  • a grain boundary phase can be formed by holding at the grain boundary phase formation temperature.
  • one or more elements R selected from the group consisting of Nd and Pr, and one or more elements selected from the group consisting of Co, Be, Li, Al, Si, Cu, Nb, Zr, Ti, and Ga are selected.
  • this embodiment is an element R selected from one or more groups consisting of Nd and Pr, and a group consisting of Co, Be, Li, Al, Si, Cu, Nb, Zr, Ti, and Ga.
  • a raw material alloy containing at least one element selected from the group consisting of Tb, Sm, Gd, Ho, and Er, A, Fe, and B is maintained at the first processing temperature.
  • An R-Fe-B layer containing the elements R, Fe, and B, and an Fe layer periodically, and a part of B includes Co, Be, Li, Al, and Si.
  • a method for producing a rare earth permanent magnet in which the R-Fe-B layer forms a main phase containing the element A, which is substituted with one or more elements L selected from the group consisting of:
  • the method for producing a rare earth permanent magnet of the present embodiment includes a heat treatment step of lowering the treatment temperature to the second treatment temperature after the holding time of the first treatment temperature and holding at the second treatment temperature, and between the main phases. It is also preferable to form a grain boundary phase. That is, the heat treatment process of this embodiment includes a sintering process and may include an aging process.
  • the raw material alloy particles are heated to the first treatment temperature and held at the temperature until all the components are dissolved.
  • This stage in the heat treatment process is the sintering process of this embodiment, and the first treatment temperature may be rephrased as the sintering temperature.
  • the first treatment temperature is set in consideration of the melting points of the elements R, Fe, B, element L, element M, and element A contained in the raw material alloy particles.
  • the first treatment temperature 1000 to 1200 ° C is preferable, and 1010 to 1090 ° C is more preferable.
  • the first treatment temperature can be set to 1030 to 1080 ° C.
  • the first treatment temperature can be set to 1030 to 1060 ° C.
  • the heat treatment process shifts to an aging process.
  • the main phase component containing at least the elements R, Fe, B, element L, and element A forms a solid phase, and the grains Field phase components begin to precipitate on the solid surface.
  • any one or more elements selected from the group consisting of Al, Cu, Nb, Zr, and Ti form a solid phase together with other main phase components, and the other part of the solid phase It precipitates on the surface and forms a grain boundary phase.
  • a grain boundary phase and a main phase containing elements common to grain boundary phase components can be formed.
  • the second treatment temperature is set based on the grain boundary phase formation temperature.
  • temperature control is performed in one or more stages. Therefore, when performing n-stage temperature management, the second treatment temperature is maintained by changing the temperature stepwise from the first aging temperature to the n-th aging temperature.
  • the rare earth permanent magnet of this form can be manufactured.
  • the rare earth permanent magnet includes one or more elements R selected from the group consisting of Nd and Pr, one or more elements L selected from the group consisting of Co, Be, Li, Al, and Si, and Tb and Sm.
  • One or more selected atoms may be replaced with an atom of the element L.
  • the rare earth permanent magnet obtained by each of the above steps periodically has an R-Fe-B layer and an Fe layer containing the elements R, Fe, and B, and a part of B is replaced by the element L.
  • the sintered particle size of the rare earth permanent magnet crystals obtained by the heat treatment step may be 110 to 300% of the powder particle size of the raw material alloy fine particles before the heat treatment step, and may be 110 to 180%. Therefore, the sintered particle size D 50 is preferably 2.2 to 20 ⁇ m, more preferably 2.2 to 15 ⁇ m, and even more preferably 2.2 to 10 ⁇ m.
  • the rare earth permanent magnet of this embodiment obtained by the above steps has a sintered density of 6.0 to 8.0 g / cm 3 , more preferably 7.2 to 7.9 g / cm 3 .
  • Example 1 A raw material alloy containing each element with the composition shown in FIG. 3 was roughly pulverized by a ball mill to obtain alloy particles. Thereafter, the alloy particles were dispersed in a solvent. Additives were introduced into the dispersion and stirred to carry out a reduction reaction, whereby alloy particles were made fine.
  • the finely divided raw material alloys were filled in molding cavities, respectively, and compression molding, magnetization and degreasing were performed by applying a molding pressure of 2 t / cm 2 and a magnetic field of 19 kOe.
  • the obtained molded body was subjected to a heat treatment step under a heat treatment condition shown in FIG. 4 under a vacuum condition of 2 ⁇ 10 1 Torr. After completion of the heat treatment step, it was cooled to room temperature and taken out from the cavity to obtain rare earth permanent magnets of Example 1 and Example 2.
  • Example 1 and Example 2 are magnets in which the main phase is formed but the grain boundary phase is not completely formed.
  • Comparative Example 1 An alloy of Comparative Example 1 was obtained from a raw material alloy having the composition shown in FIG. Table 1 shows the analysis value of the midpoint of the alloy of Comparative Example 1 by ICP emission spectroscopic analysis.
  • the alloy was dispersed in a solvent, an additive was introduced into the dispersion solution, and the mixture was stirred and subjected to a reduction reaction to make the alloy fine particles.
  • D 50 of the particle size of the obtained alloy fine powder was 3 to 11 ⁇ m.
  • the particle size of the powder was measured using a product equivalent to SALD-2300, a laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation.
  • Comparative Example 1 is a magnet in which a main phase and a grain boundary phase are formed.
  • Example 1 Measure the magnetic properties of the rare earth permanent magnets of Example 1, Example 2 and Comparative Example 1 using a TPM-2-08S pulse excitation type magnet measuring device equivalent with a sample temperature variable device manufactured by Toei Kogyo Co., Ltd. did.
  • the measurement results are shown in FIG. 4 and FIG. In FIG. 5, the unit [kG] of the residual magnetic flux density Br shown in FIG. 4 is converted to [T].
  • the unit [kOe] of the coercive force H cj was converted to [MA / m].
  • Example 2 In order to precisely analyze the crystal structure of Example 2, an X-ray diffraction experiment and Rietveld analysis were performed. In the analysis, the existence of Nd 2 Fe 14 B phase and NdO which is one of the subphase components, which are prominent in the crystal, was assumed. Other components such as Sm and Tb contained in Example 2 were not considered in this analysis. The analysis apparatus and analysis conditions used for the analysis are described below. The analysis software was RIETAN-FP.
  • Analyzer Rigaku Corporation horizontal X-ray diffractometer SmartLab Analysis conditions: Target: Cu Monochromatic: Symmetric Johansson Ge crystal is used on the incident side (CuK ⁇ 1) Target output: 45kV-200mA Detector: One-dimensional detector (HyPix3000) (Normal measurement): ⁇ / 2 ⁇ scan Slit incidence system: Divergence 1/2 ° Slit light receiving system: 20mm Scanning speed: 1 ° / min Sampling width: 0.01 ° Measurement angle (2 ⁇ ): 10 ° ⁇ 110 °
  • FIG. 6 (a) shows the obtained lattice constant of Example 2 in FIG. 6 (a).
  • FIG. 6 (b) shows the referenced ICSD and literature values. From the analysis results shown in FIG. 6, it has been identified that the main phase crystal of this embodiment belongs to P4 2 / mnm.
  • the model pattern is a pattern obtained by combining the calculation results of the X-ray diffraction pattern of the NdO crystal and an arbitrary Nd 2 Fe 14 B crystal.
  • Arbitrary Nd 2 Fe 14 B crystal means that by changing an arbitrary crystal parameter of a known Nd 2 Fe 14 B crystal, an atom occupying any one site existing in the space group is changed to element L (Example 2).
  • the fitting index was the s value, and the analysis was advanced so that the s value was close to 1.
  • FIG. 7 (a) is an X-ray diffraction pattern of Example 2.
  • FIG. FIG. 7B is an example of a model pattern of Nd 2 Fe 14 B.
  • FIG. 7 (c) shows an example of a NdO model pattern.
  • FIG. 8 shows the fitting results of FIG. 7 (a), FIG. 7 (b), and FIG. 7 (c).
  • FIG. 9 shows the result of analysis by a well-fitted one of the plurality of model patterns, and shows the s value and the atomic occupancy in each model pattern.
  • “ ⁇ ” means that the atom occupying the site is replaced by the element L atom (Co atom in FIG. 9), and “ ⁇ ” occupies the site. This means that the atoms to be replaced were not replaced by the atoms of the element L (Co atoms in FIG. 9).
  • each Co atom site is 0.055 at the 4f site occupied by the B atom, 0.029 at the 4f site occupied by the Nd atom, and the 4c site occupied by the Fe atom. In this case, it is 1.000 and is 0.124 at the 8j site occupied by Fe atoms. That is, the Co atom occupancy at each of the above sites exceeds zero.
  • the crystal of Example 2 is an Nd 2 Fe 14 B crystal belonging to P4 2 / mnm, and the first 4f site occupied by B, the second 4f site occupied by Nd, and Fe are respectively Co atoms exist in the occupied 4c site and the first 8j site. That is, a part of the B atom of the first 4f site, a part of the Nd of the second 4f site, a part of the Fe atom of the 4c site, and a part of the Fe atom of the first 8j site, It was confirmed that it was substituted with a Co atom.
  • the Co atom occupancy is 0 or less at the 4g site occupied by Nd, the first and second 16k sites occupied by Fe, the second 8j site occupied by Fe, and the 4e site occupied by Fe. It was confirmed that the atoms present at the site were not substituted with Co atoms.
  • Examples 3 to 5 and Comparative Example 2 A raw material alloy containing each element with the composition shown in FIG. 10 was coarsely pulverized by a ball mill to obtain alloy particles. Thereafter, the alloy particles were dispersed in a solvent. Additives were introduced into the dispersion and stirred to carry out a reduction reaction, whereby alloy particles were made fine.
  • the finely divided raw material alloys were filled in molding cavities, respectively, and compression molding, magnetization and degreasing were performed by applying a molding pressure of 2 t / cm 2 and a magnetic field of 19 kOe.
  • the obtained molded body was subjected to a heat treatment step under a heat treatment condition shown in FIG. 17 under a vacuum condition of 2 ⁇ 10 1 Torr. After completion of the heat treatment step, the product was cooled to room temperature and taken out from the cavity to obtain rare earth permanent magnets of Examples 3 to 5.
  • Examples 3 to 5 are magnets in which the main phase is formed but the grain boundary phase is not completely formed.
  • FIG. 11 and FIG. 12 show the 3D atomic image obtained by 3DAP and its composition ratio.
  • FIG. 11 shows the analysis result of the needle-like object of Example 5.
  • FIG. 12 shows the analysis result of the needle-like object of Example 3. As shown in FIGS. 11 and 12, it can be seen that in this embodiment, the carbon content in the main phase is remarkably low.
  • FIG. 13 is an analysis result of the 3D atomic image including the grain boundary phase of Example 5 and the grain boundary phase profile.
  • an Nd 2 Fe 14 B phase was observed, and Tb and Ho as the element A and Co and Al as the element L were recognized.
  • the grain boundary phase was Nd rich phase. Further, Cu was precipitated at the interface between the main phase and the grain boundary phase.
  • FIG. 14 shows the analysis results of Example 3.
  • Each diagram in FIG. 14 is a diagram in which only specific elements are displayed, and which element is displayed is displayed at the bottom of each diagram.
  • a white circle ( ⁇ ) indicates Nd.
  • Elements that are displayed in combination with Nd are indicated by legends that are not white circles ( ⁇ ).
  • Nd is indicated by a white circle ( ⁇ )
  • B is indicated by a black circle ( ⁇ ) having the same diameter as the legend of Nd.
  • Example 5 is the same analysis result.
  • Example 5 the distribution of Nd, Ho, B, and Tb in the atomic layer in the c-axis direction of the crystal including the main phase of Example 3 and Example 5 was measured using Spatial Distribution function, respectively.
  • Spatial Distribution function For measurements, see Brian P. Geiser, Thomas F. Kelly, David J. Larson, Jason Schneir and Jay P. Roberts, “Spatial Distribution Maps for Atom Probe Tomography”, Microscopy and Microanalysis, 437 (447) I went there.
  • the measurement result of Example 5 is shown in FIG. 15, and the measurement result of Example 3 is shown in FIG.
  • Nd, Ho, B, and Tb all have a peak at a multiple of 0.6 nm.
  • the substitution of element B for element B occurs in this embodiment.
  • Comparative Example 2 was obtained from a raw material alloy having the composition shown in FIG. Table 2 shows the analysis values of the alloy of Comparative Example 2 by ICP emission spectroscopic analysis.
  • the alloy was dispersed in a solvent, and an additive was introduced into the dispersion solution and stirred to perform a reduction reaction, whereby the alloy was made into fine particles.
  • D 50 of the particle size of the obtained alloy fine powder was 3 to 11 ⁇ m.
  • the particle size was measured with a laser diffraction particle size distribution measuring device SALD-2300 or equivalent manufactured by Shimadzu Corporation.
  • the finely divided raw material alloy was filled into a molding cavity, and compression molding and magnetization were performed by applying a magnetic field of 19 kOe with a molding pressure of 2 t / cm 2 .
  • the obtained molded body was subjected to a heat treatment step in a 2 ⁇ 10 1 Torr Ar gas atmosphere under the heat treatment conditions shown in FIG. After completion of the heat treatment step, the product was cooled to room temperature and taken out from the cavity to obtain a rare earth permanent magnet of Comparative Example 2.
  • Comparative Example 2 is a magnet in which a main phase and a grain boundary phase are formed.
  • Example 3 Measure the magnetic properties of the rare earth permanent magnets of Example 3 to Example 5 and Comparative Example 2 using a TPM-2-08S pulse excitation type magnet measuring device equivalent with a sample temperature variable device manufactured by Toei Kogyo Co., Ltd. did.
  • the measurement results are shown in FIG. 17 and FIG. In FIG. 18, the unit [kG] of the residual magnetic flux density Br shown in FIG. 17 is converted to [T].
  • the unit [kOe] of the coercive force H cj was converted to [MA / m].
  • the residual magnetic flux density Br can be improved by suppressing the B content and replacing it with Co. Since the residual magnetic flux density Br is proportional to the saturation magnetization, the saturation magnetization of the present embodiment was measured, and the improvement effect of the residual magnetic flux density Br of the present embodiment was confirmed from the measurement result.
  • the magnetic field-magnetization curves of Reference Example 1 and Reference Example 2 were measured using a Lake® Shore® Cryotronics® 7400® Series® VSM. As shown in Table 3, the saturation magnetization of Reference Example 1 was 40.1557 (emu / g). The saturation magnetization of Reference Example 2 was 41.0184 (emu / g). That is, it is shown that the reference example 2 having a larger Co substitution amount than the reference example 1 has a larger saturation magnetization and a larger residual magnetic flux density Br.
  • both the residual magnetic flux density Br and the coercive force Hcj can be improved by substituting B with the element L and providing the main phase containing the element A in the R—Fe—B layer.
  • the improvement of the magnetic characteristics is as illustrated in FIGS.
  • the rare earth permanent magnet of this embodiment has a high magnetic moment and has good magnetic properties. Rare earth permanent magnets contribute to miniaturization, weight reduction, and cost reduction of electric motors, offshore wind power generators, industrial motors and the like.
  • the magnetic properties of a rare earth permanent magnet having a main phase containing Nd, Fe, and B can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素AとFeとBとを含有する主相を備え、主相を形成する結晶がP42/mnmに属し、4fサイトを占有するB原子の一部が元素Lの原子と置換されてなる希土類永久磁石である。

Description

希土類永久磁石および希土類永久磁石の製造方法
 本開示は、ネオジム、鉄、ホウ素を含有する希土類永久磁石に関する。
 ネオジム(Nd)、鉄(Fe)、ホウ素(B)を含有する希土類永久磁石の磁気特性を向上させる技術として、Feをコバルト(Co)で置換させた磁石がある(特許文献1)。特許文献1は、Feを他原子で置換させた永久磁石の保磁力Hc、残留磁束密度Br、最大エネルギー積BHmax等が網羅的に測定され、上記永久磁石の磁気特性の向上を示す。
 また特許文献2は、重量%で、R(RはYを含む希土類元素の少なくとも1種であり、Rに占めるNdが50原子%以上である):25~35%、B:0.8~1.5%、必要によりM(Ti、Cr、Ga、Mn、Co、Ni、Cu、Zn、Nb、Alから選ばれる少なくとも1種):8%以下、及び残部T(FeまたはFe及びCo)を含有する希土類焼結磁石を開示する。
 希土類永久磁石の磁気特性を向上させる他の提案として、Nd、Fe、Bからなるナノ粒子の硬磁性相をコアとし、所定のナノ粒子の軟磁性相をシェルとする2相複合構造を備えるナノコンポジット磁石がある。上記のナノコンポジット磁石は、特に軟磁性体の粒径を5nm以下の極微細粒からなる粒界で覆ってシェルとする場合に、コア/シェルの硬軟磁性相間に良好な交換相互作用が起き、飽和磁化を向上させることができる。
 特許文献3は、Nd2Fe14B化合物粒子をコアとし、Fe粒子をシェルとするナノコンポジット磁石を開示する。シェル成分として高飽和磁化を備えるFeCo合金ナノ粒子を用いることにより、ナノコンポジット磁石の飽和磁化は更に向上する。特許文献4は、NdFeB硬磁性相のコアにFeCo軟磁性相のシェルを被覆させたナノコンポジット磁石を開示する。
 特許文献5は、原子百分率にて規定される磁気的にハードな相の組成がRxT100-x-yMy(式中、Rは、希土類、イットリウム、スカンジウム、またはこれらの組み合わせ物から選択され;Tは1種以上の遷移金属から選択され;Mは、第IIIA族元素、第IVA族元素、第VA族元素、またはこれらの組み合わせ物から選択され;xは、対応する希土類遷移金属化合物におけるRの化学量論量より大きく;yは0~約25である)であり、少なくとも1種の磁気的にソフトな相が、Fe、Co、またはNiを含有する少なくとも1種の軟磁性材料を含む、異方性バルクナノコンポジット希土類永久磁石を開示する。
 しかし特許文献5に開示されるナノコンポジット希土類永久磁石は、冶金学的な手法でソフトな相が形成される。そのため該ソフトな相を形成する粒子の粒径が大きく、交換相互作用を十分に得られない可能性がある。また合金ナノ粒子は、還元力が弱いと単層ナノ粒子の単なる集合体になりやすく、所望のナノコンポジット構造を得られない。したがって上記のナノコンポジット希土類永久磁石の磁気特性は、効果的な向上が見られない場合があると推察される。
 非特許文献1は、高温でFeCoナノ粒子を作製する方法を開示する。しかし高温で作製された該Nd2Fe14B粒子の保磁力Hcjは、良好でない。
 また従来、希土類永久磁石に炭素Cを含有させ、BをCで置換させたものが知られている。しかし非特許文献2ないし非特許文献5によれば、BをCで置換させた希土類永久磁石は、キュリー温度が低下することや、飽和磁化、残留磁束密度Brが著しく低下することが知られる。また、第一原理計算による解析では、C原子やN原子をB原子の置換原子として導入すると、C原子やN原子は、それらの周囲に存在する原子と共有結合を形成する。そのような希土類永久磁石は、磁性体に不可欠な不対電子が顕著に減少するため、磁気特性、特に残留磁束密度Brが低い。
米国特許5645651号公報 特開2003-217918号公報 特開2008-117855号公報 特開2010-74062号公報 特表2008-505500号公報
G. S. Chaubey, J. P. Liu et al., J. Am. Chem. Soc. 129, 7214 (2007) F. Leccabue, J. L. Sanchez, L. Pareti, F. Bolzoni and R. Panizzieri, Phys Status Solidi A 91 (1985) K63 F. Bolzoni, F. Leccabue, L. Pareti, and J. L. Sanchez, J. Phys (Paris), 46 (1985) C6-305 M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura and Y. Matsuura, Jpn. J. Appl. Phys. 26(1987)785 X. C. Kou, X. K. Sun, Chuang R. Groessinger and H. R. Kirchmayr, J. Magn Magn Mater., 80 (1989) 31
 本開示の課題は、Nd、Fe、Bを含有する主相を備える希土類永久磁石の磁気特性を向上させることである。
 本開示の一態様は、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する主相を備え、主相を形成する結晶がP42/mnmに属し、結晶の4fサイトを占有するB原子の一部が元素Lの原子と置換されてなる希土類永久磁石である。
 本開示は、Nd、Fe、Bを含有する主相を備える希土類永久磁石の磁気特性を向上できる。
本開示の一形態の主相の結晶構造モデルを例示する図である。 本開示の一形態の微細組織の模式図である。 本開示の実施例の原料合金の組成を示す表である。 本開示の実施例の磁気特性の測定結果を示す図である。 本開示の実施例の磁気特性の測定結果を示す図である。 本開示の実施例の結晶構造のリートベルト解析の結果である。 本開示の実施例の結晶構造のリートベルト解析に用いたデータである。 本開示の実施例の結晶構造のリートベルト解析に用いたデータである。 本開示の実施例の結晶構造のリートベルト解析の結果である。 本開示の実施例の原料合金の組成を示す表である。 本開示の実施例の結晶構造の3DAPによる解析結果である。 本開示の実施例の結晶構造の3DAPによる解析結果である。 本開示の実施例の結晶構造の3DAPによる解析結果である。 本開示の実施例の結晶構造の3DAPによる解析結果である。 本開示の実施例の結晶構造のSpatial Distribution functionによる測定結果である。 本開示の実施例の結晶構造のSpatial Distribution functionによる測定結果である。 本開示の実施例の磁気特性の測定結果を示す図である。 本開示の実施例の磁気特性の測定結果を示す図である。
 本開示の一態様は、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する主相を備え、主相を形成する結晶がP42/mnmに属し、結晶の4fサイトを占有するB原子の一部が元素Lの原子と置換されてなる。本態様は、所定のB原子の一部が元素Lの原子で置換されることにより、残留磁束密度Brを向上できる。
 また本開示のいくつかの態様においては、4fサイトを占有するB原子だけでなく、P42/mnmに属する上記結晶の4fサイトを占有するNd原子と、4cサイトを占有するFe原子と、8jサイトを占有するFe原子とからなる群から一種以上選択される原子の一部が、元素Lの原子で置換されていてもよい。そのような態様においても、希土類永久磁石の残留磁束密度Brを向上させることができる。
 本開示のいくつかの態様の、所定の原子の一部が元素Lの原子と置換されているか否かは、リートベルト解析により判定され得る。すなわち当該置換の有無は、解析により特定された主相を形成する結晶の空間群と、その空間群に存在する各サイトにおける各元素の占有率に基づき判定される。ただし本開示は、希土類永久磁石の結晶構造における所定の置換の有無について、リートベルト解析と異なる方法によって判定することを排除しない。
 上記の元素Lの原子による置換の判定について、P42/mnmの4fサイトを占有するB原子が元素Lの原子で置換された態様を例として説明する。4fサイトを占有するNd原子と、4cサイトを占有するFe原子と、8jサイトを占有するFe原子が置換される場合においても、同様に判定できる。
 本開示の主相を形成する結晶はP42/mnmに属する。該空間群の、B原子が占有する4fサイトにおける元素Lの原子の占有率を、nと定義する。n>0.000であるとき、4fサイトを占有するB原子の一部が元素Lの原子と置換されたと判定できる。なお元素Lの原子と共に4fサイトを占有するB原子の占有率は、1.000-nと定義できる。
 主相の結晶構造が維持される限り、元素Lの原子の占有率nの値の上限は制限されない。4fサイトを占有するB原子と置換する元素Lに関しては、nは、0.030≦n≦0.100の範囲内で算出される傾向がある。なお、占有率を百分率で表す場合、(n×100)%になる。解析結果の信頼性の観点から、s値は、1.3以下であり、1に近いほど好ましい。最も好ましくは1である。s値は、信頼性因子RのR-weighted pattern(Rwp)をR-expected(Re)で除して得られる値である。
 本開示の一態様は、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する主相を備える。本開示のいくつかの態様はSm(サマリウム)、Gd(ガドリニウム)を含有させることで、特に残留磁束密度Brの向上が顕著である。またTb(テルビウム)、Ho(ホルミウム)、Er(エルビウム)を含有させることで、保磁力Hcjを向上できる。したがってBを所定の元素Lで置換させ、かつ元素Aを含有させることで、残留磁束密度Brと保磁力Hcjとをいずれも向上させることができる。
 上記結晶は、NdとPrとからなる群から一種以上選択される元素RとFeとBとを含むR-Fe-B層と、Fe層とを周期的に有し、B原子の一部が、前記元素Lの原子で置換され、R-Fe-B層が前記元素Aの原子を含む場合がある。
 当該主相の結晶の空間群P42/mnmには、2つの16kと、2つの8jと、1つの4gと、2つの4fと、1つの4eと、1つの4cとのサイトが存在する。以下の説明においては、16kのようにサイトが複数存在する場合、第一の16k、第二の16k、のように記載する場合がある。ただし、第一、第二、等の表現は、サイトを区別するために付するものであり、本明細書で説明する場合を除き、各サイトを特徴づけるものではない。
 上記の周期的層構造において、第一の4fサイトと、4gサイトとを占有する元素Rの原子と、4cサイトを占有するFe原子と、第二の4fサイトを占有するB原子とは、R-Fe-B層を形成する。2つの16kサイトと、2つの8jサイトと、4eサイトとを占有するFe原子は、Fe層を形成する。
 図1は、上記の態様に対応する本開示の一形態の希土類永久磁石の主相の結晶構造モデルの例である。図1において100は主相の単位格子、101はFe層、102はR-Fe-B層である。Fe層101とR-Fe-B層102とはc軸方向に沿って交互に存在する。Fe層101を挟んで隣り合う2つのR-Fe-B層102の層間距離は、0.59~0.62nmである。本形態は、図1に示される結晶構造モデルを基本骨格とする。
 また本形態は、基本骨格を構成するB原子の一部が元素L(図1ではCo)で置換される。これにより残留磁束密度Brを向上できる。また図1に例示されるように元素Lの原子は、Fe原子とも置換しうる。また図示しないが、元素Lの原子は、Nd原子とも置換しうる。本形態において主相の単位格子を構成する原子数は、希土類永久磁石の粒子の原子数の90~98at%を示す。なお本形態は、その作用効果を得られる範囲内で主相に不純物を含みうる。
 本形態は、Bの含有量を低減することで元素Rの磁気モーメントの減少を抑制できる。またBの含有量の低減により上記の基本骨格が不安定化し、他の元素が基本骨格や基本骨格内の空隙に入り込みやすくなる。他の元素としてCを含有する希土類永久磁石においては、基本骨格が不安定になるとBがCと置換しやすい。
 しかし本形態は、そのような希土類永久磁石と異なり、Cを含有しない、またはCの含有量が極めて微量である。その結果、Bは元素Lと置換され、Cとは置換しない。またCとの置換が認められる場合でも、Cと置換される部分は、元素Lと置換される部分と比較して少ない。
 本形態においては、Bを元素Lで置換させる結晶構造を得るため、本形態はBの含有量を抑制し、またCが主相の結晶構造に入り込まないようにCの量を制御する。例えば製造工程で、C源となる紙、プラスチック、油などと、原料合金との接触を極力排除することで、本形態の所定の結晶構造を得られる。
 上記に例示する方法でCの量の制御した場合の本形態の原料合金を元素分析した例として、原料合金中Bが0.94%、Cが0.03%であり、この原料合金を焼結させて得られる本形態の希土類永久磁石中、Bが0.94%、Cが0.074%である場合がある。他の例として、原料合金中、Bが0.86%、Cが0.009%であり、この原料合金を焼結させて得られる本形態の希土類永久磁石中、Bが0.86%、Cが0.059%である場合がある。なお上記の元素分析では、島津製作所製ICP発光分析装置(ICP Emission Spectroscopy) ICPS-8100を用いた。上記の単位(%)は、重量%を意味する。
 また、上記に例示する2つの希土類永久磁石の粒界部分を除き、粒内中央すなわち主相部分を3次元アトムプローブ(3DAP)により分析した。分析には、AMETEK社製LEAP3000XSi を用い、測定条件をレーザパルスモード(レーザ波長=532nm)、レーザパワー=0.5nJ、試料温度=50Kとした。2つの例はいずれも、主相におけるCの含有量は検出限界値の0.02%以下であった。これにより、本形態においてはCが含有される場合であっても、Cの大部分は粒界相に存在し、主相には不可避の不純物程度の量しか含有されないと確認できる。上記の例ではCについて分析したが、NやOについてもCと同じ態様になりうる。
 元素RはNdであり、Ndの一部をPrで置換させてもよい。NdとPrとの原子数比は、80:20~70:30である。低コスト化の観点からは、Prの割合が大きくNdの割合が小さいほど好ましい。しかしNdの割合が上記の原子数比で70より小さくなると、残留磁束密度Brが低下する可能性が高くなる。なお本形態においては、元素Lは、NdやFeとも置換しうる。
 本形態は、Bの一部をCoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lで置換させる。これにより本形態は、希土類永久磁石の残留磁束密度Brを向上させることができる。元素LはCoであることが好ましい。なお上記に例示した元素の他、その波動関数が格子間隙に適合するものや、Bの原子半径より小さい原子半径を有するものもBと置換させ得る。
 Bと元素Lとの原子数比(B:元素L)は、(1-x):xで表され、xは0.01≦x≦0.25を満たし、0.03≦x≦0.25が好ましい。x<0.01の場合、磁気モーメントが低下する。x>0.25の場合、所定の結晶構造を維持できない。
 本形態は、Bを所定の元素で置換させることで、Nd原子からB原子への電子供与を低減できる。その結果、Ndの不対電子数の減少が抑制され、Nd原子の磁気モーメントを向上させることができる。なお本形態においては、元素LはNdやFeとも置換しうる。
 本形態の主相を構成するNd原子は、その磁気モーメントが、Nd2Fe14B結晶中のNd原子の磁気モーメントより大きい。該磁気モーメントは少なくとも2.70μBより大きく、好ましくは3.75~3.85μBであり、より好ましくは3.80~3.85μBである。
 その他、本形態は、R-Fe-B層102にTbとSmとGdとHoとErとからなる群から一種以上選択される元素Aを含む。SmやGdを含有させることで、残留磁束密度Brを向上できる。またTbや、Hoや、Erを含有させることで、保磁力Hcjを向上できる。上記の各元素を併用することで、保磁力Hcjと残留磁束密度Brとをいずれも向上させることができる。なお本形態においては、元素AはFeとも置換しうる。
 本形態は、元素RとFeとBとのいずれとも置換しなかった未置換の元素Lや元素A、加えて原料合金に含有される他の元素が、Nd-Fe-B層のいずれかのサイトに存在する態様を包含する。他の元素の例としては、希土類永久磁石の磁気特性を向上させる公知の元素が挙げられる。また、Cu、Nb、Zr、Ti、Ga等の粒界相を形成する元素やO等の副相を形成する元素が主相の結晶構造のいずれかのサイトに入り込む場合もある。
 本形態はNd原子の磁性が発現するため、Fe原子とNd原子とに由来する磁性により良好な磁気特性を備える。本形態の磁気特性は、保磁力Hcjや残留磁束密度Brにより評価できる。本形態の磁気特性は、従来のNd2Fe14B結晶からなる希土類永久磁石と比較し、不対電子数の増加により40~50%程度向上する。とくに元素Aを添加することで良好な残留磁束密度Brを備える。
 本形態の希土類永久磁石は、主相と主相間に形成される粒界相とを備え、希土類永久磁石の総重量に対する元素Rの含有量は20~35重量%であり、好ましくは22~33重量%である。元素RとしてNdとPrとを用いる場合は、Ndが15~40重量%、Prが5~20重量%であることが好ましい。Bの含有量は0.80~0.99重量%であり、好ましくは0.82~0.98重量%である。CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素の含有量の合計が、0.8~2.0重量%であり、好ましくは、0.8~1.5重量%である。TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aの含有量の合計は2.0~10.0重量%であり、好ましくは2.6~5.4重量%である。残部は鉄である。各成分が上記の含有量を備えることで、本形態は上記に記載した所定の結晶構造となる。これにより、良好な残留磁束密度Brと保磁力Hcjとを得られる。
 本形態は、上記の主相を有する他、該主相間に粒界相を備えることが好ましい。主相間に形成される粒界相が、AlとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素を含有することが好ましい。
 図2は、本開示の一形態の微細組織の例を示す模式図である。図2において200は主相であり、300は粒界相であり、400は副相である。図2に例示される微細組織を備える希土類永久磁石に磁場をかけると、粒界相成分のスピン電子が主相成分のスピン電子をピン止めし、主相成分のスピンの反転が抑制される。すなわち粒界相が主相の磁気交換結合を切断する。その結果、保磁力Hcjを向上させることができる。
 本形態の粒界相成分がAlとCuとである場合、希土類永久磁石の総重量に占めるAlの含有量は0.1~0.4重量%が好ましく、0.2~0.3重量%がより好ましい。Cuの含有量は0.01~0.1重量%が好ましく、0.02~0.09重量%がより好ましい。Zrを添加する場合、Zrの含有量は、0.004~0.04重量%が好ましく、0.01~0.04重量%がより好ましい。
 本形態は、高い残留磁束密度Brと高い保磁力Hcjと大きな最大エネルギー積BHmaxとを兼ね備える。また主相を含む焼結粒子の焼結粒径を微細化することで、磁気特性をさらに向上させることができる。また元素AとしてHo等を含有する場合、耐熱性にも優れる。
 本形態の希土類永久磁石は、希土類永久磁石の原料合金の粉末を熱処理して得られる焼結粒子を用いて製造できる。そのような原料合金は、元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、元素Aと、Feと、Bとを含み、粉末粒径のD50が2~18μmであり、好ましくは2~13μmであり、より好ましくは2~9μmである。上記の好ましい範囲を外れる場合、好ましい焼結粒径を備える希土類永久磁石を得難くなる。
 本形態において粉末粒径とは、熱処理工程前の粉末状または粒子状の原料合金の粒径を意味する。粉末粒径は、レーザ回折式粒子径分布測定装置を用いて公知の方法で測定できる。また焼結粒径とは、熱処理工程後の上記の粉末状または粒子状の原料合金の粒径を意味する。本形態においてD50とは、体積基準での合金微粒子群の累積分布におけるメディアン径である。
 本形態の希土類永久磁石の焼結粒径のD50は、2.2~20μmが好ましく、2.2~15μmがより好ましく、2.2~10μmがさらに好ましい。焼結粒径のD50が20μmを超える場合、保磁力の低下が著しくなる。
 上記の原料合金を熱処理することで得られる焼結粒径は、粉末粒径の110~300%であり、より詳細には110~180%である。したがって、原料合金を、ボールミル、ジェットミル等公知の手段を用いて粉末粒径を所定の値の範囲内になるまで調節し、成型、着磁、脱脂、熱処理等した結果、上記の好ましい範囲の焼結粒径を備える焼結粒子を得られる。
 本形態の希土類永久磁石は、焼結密度が、6.0~8.0g/cm3であることが好ましい。本形態は、焼結密度が高いほど残留磁束密度Brが大きくなる。そのため焼結密度は、6.0g/cm3以上で大きいほど好ましい。ただし本形態の焼結密度は、原料合金の粉末粒径や、後に説明する熱処理工程での処理温度、焼結温度や時効温度により決定される。
 したがって、準備しうる原料合金や熱処理工程の条件から、当該焼結密度は6.0~8.0g/cm3になり、より好ましくは7.0~7.9g/cm3になり、さらに好ましくは7.2~7.7g/cm3になる。焼結密度が6.0g/cm3より小さい場合、焼結体中に空隙が多くなり残留磁束密度Br、さらには保磁力Hcjの低下がみられ、本形態の所定の磁気特性を備える希土類永久磁石にならない。
[希土類永久磁石の製造方法]
 本形態の希土類永久磁石の製造方法は、本形態の作用効果を得られる限り、特に制限されない。好ましい本形態の製造方法としては、微粒子化工程、着磁工程、脱脂工程、熱処理工程とを含む製造方法が挙げられる。上記の各工程により得られた生成物を冷却工程で室温になるまで冷却させて、本形態の希土類永久磁石を製造できる。
[微粒子化工程]
 微粒子化工程では、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを上記に説明する化学量論比で溶解させ、原料合金を得る。
 原料合金に配合される化学量論比は、最終生成物である本形態の主相となる化合物における組成とほぼ変わらない。したがって、所望の化合物の組成に応じて原材料を配合させればよい。なおDy等、上記に例示した元素と異なる元素を含有させる場合も、上記の原材料と共に配合させる。なお、この原料合金はアモルファス合金ではないことが好ましい。
 得られた原料合金はボールミル、ジェットミル等を用いて粗粉砕する。粉末粒径のD50は2~25μmが好ましく、他の好ましい粉末粒径のD50としては、2~18μmが挙げられる。粉末粒径のD50は、2~15μmまたは2~13μmがさらに好ましい。さらに粗粉砕した原料合金微粒子をボールミル、ジェットミル等を用いて微細化させることも好ましい。
 粗粉砕した原料合金粒子を有機溶媒に分散させ、還元剤を添加する。例えば、粉末粒径のD50が2~18μmの原料合金を用いて製造する場合のTbとSmとGdとHoとErとの含有量の合計を100%として、TbとSmとGdとHoとErとの含有量を20~30%低減させた場合でも、100%の場合と同等の磁気特性を備える。
[着磁工程]
 着磁工程においては、得られた原料合金微粒子を配向磁場下で圧縮成型する。さらに熱処理工程で、得られた成形体を真空下で焼結後、焼結物を室温まで急冷する。続いて不活性ガス雰囲気中で時効処理し、室温まで冷却する。
 本形態は、熱処理工程の前に脱脂工程を設けることも好ましい。脱脂工程を行うことで、原料合金が微量のCを含有する場合でも、CがBと置換することを抑制しうる。
[熱処理工程]
 熱処理工程においては、所定の温度管理と時間管理とにより主相や粒界相が形成される。熱処理条件は、含有成分の融点に基づいて決定される。すなわち処理温度を主相形成温度まで昇温させて保持することで全ての含有成分を溶解させる。その後、主相形成温度から粒界相形成温度まで温度を低下させる過程で主相成分が固相となり、粒界相成分が固相表面に析出し始める。粒界相形成温度で保持することにより粒界相を形成できる。
 本形態は、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する原料合金を、第一の処理温度で保持する熱処理工程を含み、前記元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、前記元素Aと、Feと、Bとを含有する主相を備え、主相を形成する結晶がP42/mnmに属し、前記結晶の4fサイトを占有するB原子の一部が元素Lの原子と置換されてなる希土類永久磁石の製造方法である。
 本形態は、別言すれば、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する原料合金を、第一の処理温度で保持する熱処理工程を含み、前記元素RとFeとBとを含むR-Fe-B層と、Fe層とを周期的に有し、Bの一部が、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lで置換され、R-Fe-B層が前記元素Aを含む主相を形成する希土類永久磁石の製造方法である。
 本形態の希土類永久磁石の製造方法は、第一の処理温度の保持時間経過後、処理温度を第二の処理温度まで低下させ、第二の処理温度で保持する熱処理工程を含み、主相間に粒界相を形成させることも好ましい。すなわち本形態の熱処理工程は、焼結工程を含み、時効工程を含みうる。
 熱処理工程では、まず原料合金粒子を第一の処理温度まで昇温させて、全ての含有成分を溶解するまで当該温度で保持する。熱処理工程におけるこの段階は本形態の焼結工程であり、第一の処理温度は、焼結温度と言い換えてもよい。第一の処理温度は、原料合金粒子に含有される元素RとFeとBと元素Lと元素Mと元素Aとの融点を勘案して設定する。
 第一の処理温度の例としては、1000~1200℃が好ましく、1010~1090℃がより好ましい。より詳細な例として、元素RとしてNdとPrを、元素LとしてCoを、元素AとしてTbとSmとを選択する場合、第一の処理温度を、1030~1080℃に設定できる。元素RとしてNdとPrを、元素LとしてCoを、元素AとしてTbとHoとを選択する場合、第一の処理温度を、1030~1060℃に設定できる。
 焼結工程後、該熱処理工程は時効工程に移行する。時効工程では、第一の処理温度から第二の処理温度まで温度を低下させる過程で、少なくとも元素RとFeとBと元素Lと元素Aとを含む主相成分が固相を形成し、粒界相成分が固相表面に析出し始める。本形態においてAlとCuとNbとZrとTiとからなる群から選択されるいずれか一種以上の元素は、一部が他の主相成分と共に固相を形成し、他の一部は固相表面に析出して粒界相を形成する。第二の処理温度で保持することにより、粒界相と粒界相成分と共通する元素を含有する主相とを形成できる。
 第二の処理温度は、粒界相形成温度に基づいて設定する。時効工程では、温度管理が一段階以上で行われる。したがってn段階の温度管理を行う場合、第二の処理温度は、第一の時効温度から第nの時効温度までで段階的に温度を変化させて保持する。
 上記の各工程を経ることにより、本形態の希土類永久磁石を製造できる。当該希土類永久磁石は、NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する主相を備え、主相を形成する結晶がP42/mnmに属し、少なくとも前記結晶の4fサイトを占有するB原子の一部が元素Lの原子と置換されてなる。また、原材料と処理温度とに応じて、P42/mnmに属する前記結晶の4fサイトを占有するNd原子と、4cサイトを占有するFe原子と、8jサイトを占有するFe原子とからなる群から一種以上選択される原子の一部が、元素Lの原子と置換されうる。
 上記の各工程により得られる希土類永久磁石は、元素RとFeとBとを含むR-Fe-B層とFe層とを周期的に有し、Bの一部が元素Lで置換され、元素RとFeとBとのうちいずれか一種以上の元素にTbと、Smと、Gdと、Hoと、Erとからなる群から一種以上選択される元素Aを含む主相を形成し、主相間に粒界相を備える。
 また、熱処理工程により得られた希土類永久磁石の結晶の焼結粒径は、熱処理工程前の原料合金微粒子の粉末粒径の110~300%になり、110~180%になり得る。したがって、焼結粒径のD50は、2.2~20μmが好ましく、2.2~15μmがより好ましく、2.2~10μmがさらに好ましい。
 上記の各工程により得られる本形態の希土類永久磁石は、焼結密度が6.0~8.0g/cm3になり、より好ましくは7.2~7.9g/cm3になる。
 以下に実施例を挙げて本形態をさらに説明する。ただし本形態は下記の実施例に限定されない。
[実施例1、実施例2、比較例1]
 図3に示す組成で各元素を含有する原料合金をボールミルで粗粉砕し、合金粒子を得た。その後合金粒子を溶媒に分散させた。分散溶液に、添加剤を導入して撹拌して還元反応を行い、合金粒子を微粒子化した。
 微粒子化した原料合金を、それぞれ成型キャビティに充填し、成型圧力2 t/cm2、19kOeの磁場をかけて圧縮成型と着磁と脱脂とを行った。得られた成形体を2×101Torrの真空条件で、図4に示す熱処理条件で熱処理工程を行った。熱処理工程終了後、室温まで冷却してキャビティから取り出し、実施例1と実施例2との希土類永久磁石を得た。実施例1と実施例2とは、主相が形成されたが、粒界相が完全には形成されていない状態の磁石である。
[比較例1]
 図3に示す組成で各元素を含有する原料合金から、急冷凝固装置により、比較例1の合金を得た。表1は、比較例1の合金のICP発光分光分析による中点の分析値である。
Figure JPOXMLDOC01-appb-T000001
 その後、合金を溶媒に分散させ、分散溶液に添加剤を導入し撹拌して還元反応を行い、合金を微粒子化した。得られた合金微粉末の粉末粒径のD50は、3~11μmであった。粉末粒径は、島津製作所製 レーザ回折式粒子径分布測定装置 SALD-2300相当品で測定した。
 微粒子化した原料合金を、成型キャビティに充填し、成型圧力2 t/cm2、19kOeの磁場をかけて圧縮成型と着磁を行った。得られた成形体を2×101TorrのArガス雰囲気中、図4に示す熱処理条件で熱処理工程を行った。熱処理工程終了後、室温まで冷却しキャビティから取り出し、比較例1の希土類永久磁石を得た。比較例1は、主相と粒界相とが形成された状態の磁石である。
 実施例1と実施例2と比較例1との希土類永久磁石の磁気特性を、東英工業株式会社製試料温度可変装置付TPM-2-08Sパルス励磁型磁石測定装置相当品を使用して測定した。測定結果を図4と図5とに示す。なお図5では、図4に示す残留磁束密度Brの単位[kG]を[T]に換算した。また保磁力Hcjの単位[kOe]を[MA/m]に換算した。
 実施例2の結晶構造を精密に解析するため、X線回折実験とリートベルト解析とを行った。解析に際し、結晶中に顕著にみられる、Nd2Fe14B相と副相成分の一つであるNdOとの存在を仮定した。実施例2に含有されるSm、Tb等他の成分は、本解析においては考慮しなかった。解析に用いた分析装置と分析条件を以下に記載する。解析ソフトは、RIETAN-FPを用いた。
分析装置:(株)リガク製 水平型X線回折装置 SmartLab
分析条件:
 ターゲット:Cu
 単色化:入射側に対称Johansson 型Ge 結晶を使用(CuKα1)
 ターゲット出力:45kV-200mA
 検出器:1次元検出器(HyPix3000)
 (通常測定):θ/2θ走査
 スリット入射系:発散1/2°
 スリット受光系:20mm
 走査速度:1°/min
 サンプリング幅:0.01°
 測定角度(2θ):10°~110°
 解析の結果、得られた実施例2の格子定数を図6(a)に示す。図6(b)は、参照したICSDおよび文献値である。図6に示す解析結果から、本形態の主相の結晶が、P42/mnmに属すると特定できた。
 続いて、実施例2のX線回折パターンとモデルパターンとのフィッティングを行った。モデルパターンとは、NdO結晶と任意のNd2Fe14B結晶とのX線回折パターンの計算結果を組み合わせたパターンである。任意のNd2Fe14B結晶とは、公知のNd2Fe14B結晶の任意の結晶パラメータを変更して、空間群に存在する任意の一つのサイトを占有する原子を元素L(実施例2では、Co)の原子に置換させるシミュレーションにより得られる結晶を意味する。フィッティングの指標はs値とし、s値が1に近い値になるように解析を進めた。s値は、s=Rwp/Reと定義される。
 図7(a)は、実施例2のX線回折パターンである。図7(b)は、Nd2Fe14Bのモデルパターンの例である。図7(c)は、NdOのモデルパターンの例である。図8は、図7(a)と図7(b)と図7(c)とのフィッティング結果を示す。図8に示す比較におけるR因子、s値は、それぞれRwp=1.747、Re=1.486、s=1.1757であった。
 図7(b)および図7(c)のモデルパターンよりも図7(a)にフィットするモデル、すなわちs値が小さいモデルを得るため、任意の一つのサイトの原子を元素Lの原子に置換させたNd2Fe14B結晶を用いて複数のモデルパターンを解析した。図9は、上記の複数のモデルパターンのうち、よくフィットしたものによる解析結果で、各モデルパターンにおけるs値と原子の占有率を示す。図9の「判定」において、"○"は、当該サイトを占有する原子が、元素Lの原子(図9ではCo原子)により置換されたことを意味し、"×"は、当該サイトを占有する原子が、元素Lの原子(図9ではCo原子)により置換されなかったことを意味する。
 図9に示すように、Co原子の各サイトにおける占有率は、B原子が占有する4fサイトにおいて、0.055であり、Nd原子が占有する4fサイトにおいて、0.029であり、Fe原子が占有する4cサイトにおいて、1.000であり、Fe原子が占有する8jサイトにおいて、0.124である。すなわち上記の各サイトにおけるCo原子の占有率は0を超える。
 すなわち、実施例2の結晶は、P42/mnmに属するNd2Fe14B結晶であって、Bが占有する第一の4fサイトと、Ndが占有する第二の4fサイトと、Feがそれぞれ占有する4cサイトと第一の8jサイトとにそれぞれCo原子が存在する。すなわち第一の4fサイトのB原子の一部と、第二の4fサイトのNdの一部と、4cサイトのFe原子の一部と、第一の8jサイトのFe原子の一部とが、Co原子で置換されていると確認できた。一方、Ndが占有する4gサイト、Feが占有する第一および第二の16kサイト、Feが占有する第二の8jサイト、Feが占有する4eサイトではCo原子の占有率が0以下であるため、当該サイトに存在する原子は、Co原子により置換されていないと確認できた。
[実施例3ないし実施例5、および比較例2]
 図10に示す組成で各元素を含有する原料合金をボールミルで粗粉砕し、合金粒子を得た。その後合金粒子を溶媒に分散させた。分散溶液に、添加剤を導入して撹拌して還元反応を行い、合金粒子を微粒子化した。
 微粒子化した原料合金を、それぞれ成型キャビティに充填し、成型圧力2 t/cm2、19kOeの磁場をかけて圧縮成型と着磁と脱脂とを行った。得られた成形体を2×101Torrの真空条件で、図17に示す熱処理条件で熱処理工程を行った。熱処理工程終了後、室温まで冷却してキャビティから取り出し、実施例3ないし実施例5の希土類永久磁石を得た。実施例3ないし実施例5は、主相が形成されたが、粒界相が完全には形成されていない状態の磁石である。
[3DAPによる結晶構造解析]
 実施例3と実施例5との希土類永久磁石の主相の結晶構造を観察するため、サンプル用に3DAP解析に用いる針状物を、下記の方法により加工した。まず実施例のサンプルは、集束イオンビーム加工観察装置(Forcused Ion Beam、FIB)にセットされた後、磁化容易方向を含む面を観察するための溝が加工された。溝を加工することで現れたサンプルの磁化容易方向を含む面に、電子線を照射した。照射により試料から放射される反射電子線をSEMで観察することで、主相(粒内)を特定した。特定された主相を、3DAPにより解析するため針状に加工した。
 3DAPによる結晶構造解析の条件は、下記のとおりである。
装置名 : LEAP3000XSi (AMETEK社製)
測定条件: レーザパルスモード(レーザ波長=532nm)
レーザパワー=0.5nJ、試料温度=50K
 各針状物を3DAPにより解析すると、いずれもNd[100]の格子面が検出された。層間距離は0.59~0.62nmであった。図11と図12とに、3DAPにより得られた3D原子像とその組成比を示す。図11は、実施例5の針状物の解析結果である。図12は、実施例3の針状物の解析結果である。図11と図12に示されるように、本形態では、主相における炭素の含有量が著しく少ないことがわかる。
 さらに実施例5については、3DAPにより粒界相プロファイルも解析した。図13は、実施例5の粒界相を含む3D原子像と、粒界相プロファイルとの解析結果である。図13に示されるように、実施例5の主相では、Nd2Fe14B相が認められ、さらに元素AとしてのTbやHo、および元素LとしてのCoやAlが認められた。粒界相はNdリッチ相であった。また、主相と粒界相との界面にはCuが析出していた。
 また実施例3と実施例5について、Nd-Fe-B層におけるB、Fe、Co、Al、Ho、Tbの分布を分析した。図14は、実施例3の解析結果である。図14中の各図は、それぞれ特定の元素だけを表示させた図であり、いずれの元素を表示したかは、各図の下部に表示した。各図において、白丸(○)は、Ndを示す。Ndと組み合わせて表示させた元素(B、Fe、Co、Al、Ho、Tbのうち図の下部の表示に対応するいずれかの元素)は、それぞれ白丸(○)でない凡例で示した。例えば、NdおよびBとを表示させた図では、Ndを白丸(○)で、BをNdの凡例と同程度の直径の黒丸(●)で示した。実施例5も同様の解析結果である。
 また、実施例3と実施例5との主相を含む結晶のc軸方向の原子層におけるNd、Ho、B、Tbの分布を、それぞれSpatial Distribution functionを用いて測定した。測定は、Brian P.  Geiser, Thomas F.  Kelly, David J.  Larson, Jason  Schneir and Jay P.  Roberts, “Spatial Distribution Maps for Atom Probe Tomography”,Microscopy and Microanalysis, 13(2007)pp 437-447を参照して行った。実施例5の測定結果を図15に、実施例3の測定結果を図16に示す。
 図15と図16とにそれぞれ示されるように、実施例3と実施例5とにおいては、Nd、Ho、B、Tbはいずれも0.6nmの倍数位置にピークがある。図15と図16とのいずれにおいても、Bの測定結果は他の元素と比較して測定値に乱れがあるため、本形態はBについて元素Lとの置換が発生していると推察できる。
[比較例2]
 図10に示す組成で各元素を含有する原料合金から、急冷凝固装置により、比較例2を得た。表2は、比較例2の合金のICP発光分光分析による分析値である。
Figure JPOXMLDOC01-appb-T000002
 その後、合金を溶媒に分散させ,分散溶液に添加剤を導入し撹拌して還元反応を行い、合金を微粒子化した。得られた合金微粉末の粉末粒径のD50は、3~11μmであった。粒径は、島津製作所製 レーザ回折式粒子径分布測定装置 SALD-2300相当品で測定した。
 微粒子化した原料合金を、成型キャビティに充填し、成型圧力2 t/cm2、19kOeの磁場をかけて圧縮成型と着磁を行った。得られた成形体を2×101TorrのArガス雰囲気中、図17に示す熱処理条件で熱処理工程を行った。熱処理工程終了後、室温まで冷却しキャビティから取り出し、比較例2の希土類永久磁石を得た。比較例2は、主相と粒界相とが形成された状態の磁石である。
 実施例3ないし実施例5と比較例2との希土類永久磁石の磁気特性を、東英工業株式会社製試料温度可変装置付TPM-2-08Sパルス励磁型磁石測定装置相当品を使用して測定した。測定結果を図17と図18とに示す。なお図18では、図17に示す残留磁束密度Brの単位[kG]を[T]に換算した。また保磁力Hcjの単位[kOe]を[MA/m]に換算した。
[参考例1、参考例2]
 本形態は、Bの含有量を抑制しCoで置換させることで残留磁束密度Brを向上できる。残留磁束密度Brは飽和磁化と比例するため、本形態の飽和磁化を測定し、その測定結果から本形態の残留磁束密度Brの向上効果を確認した。
 実験では、まず、表3に示すようにBの含有量を異ならせた2種類の原料合金を準備した。本形態所定の製造方法に基づくことにより、原料合金から希土類磁石を得ることができる。参考例2は、参考例1よりBの含有量を減少させており、その結果Co置換量が増加する。
 Lake Shore Cryotronics 7400 Series VSMを用いて、参考例1と参考例2との磁場―磁化曲線の測定を行った。表3に示すように、参考例1の飽和磁化は40.1557(emu/g)であった。参考例2の飽和磁化は41.0184(emu/g)であった。すなわち、参考例1よりCo置換量が多い参考例2の方が、飽和磁化が大きく残留磁束密度Brが大きいことが示される。
Figure JPOXMLDOC01-appb-T000003
 上記の残留磁束密度Brの向上効果は、本形態のように元素Aを含有する場合であっても損なわれない。すなわち本形態は、Bを元素Lで置換し、かつR-Fe-B層に元素Aを含有させる主相を備えることで、残留磁束密度Brと保磁力Hcjとをいずれも向上できる。その磁気特性の向上は、図17、図18に例示したとおりである。
 本形態の希土類永久磁石は、磁気モーメントが高く、良好な磁気特性を備える。希土類永久磁石は、電動機、海上風力発電機、産業用モータ等の小型化、軽量化、低コスト化に寄与する。
 本開示のいくつかの態様によれば、Nd、Fe、Bを含有する主相を備える希土類永久磁石の磁気特性を向上できる。
100 単位格子の結晶構造
101 Fe層
102 R-Fe-B層
200 主相
300 粒界相
400 副相

Claims (12)

  1.  NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する主相を備え、前記主相を形成する結晶がP42/mnmに属し、前記結晶の4fサイトを占有するB原子の一部が前記元素Lの原子と置換されてなる希土類永久磁石。
  2.  P42/mnmに属する前記結晶の4fサイトを占有するNd原子と、4cサイトを占有するFe原子と、8jサイトを占有するFe原子とからなる群から一種以上選択される原子の一部が、前記元素Lの原子と置換されてなる請求項1に記載される希土類永久磁石。
  3.  NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する主相を備える希土類永久磁石。
  4.  前記主相を形成する結晶が、NdとPrとからなる群から一種以上選択される前記元素RとFeとBとを含むR-Fe-B層と、Fe層とを周期的に有し、B原子の一部が、前記元素Lの原子で置換され、前記R-Fe-B層が前記元素Aの原子を含む、請求項3に記載される希土類永久磁石。
  5.  前記主相と主相間に形成される粒界相とを備える前記希土類永久磁石であって、前記希土類永久磁石の総重量に対する前記元素Rの含有量が20~35重量%であり、Bの含有量が0.80~0.99重量%であり、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素の含有量の合計が、0.8~2.0重量%であり、TbとSmとGdとHoとErとからなる群から一種以上選択される前記元素Aの含有量の合計が2.0~10.0重量%である、請求項1ないし請求項4のいずれか一項に記載される希土類永久磁石。
  6.  主相間に形成される粒界相が、AlとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素を含有する請求項1ないし請求項4のいずれか一項に記載される希土類永久磁石。
  7.  粉末粒径のD50が2~18μmである合金粒子を用いて製造された、請求項1ないし請求項4のいずれか一項に記載される希土類永久磁石。
  8.  焼結密度が、6~8g/cm3である、請求項1ないし請求項4のいずれか一項に記載される希土類永久磁石。
  9.  請求項1ないし請求項4のいずれか一項に記載される前記希土類永久磁石の原料合金であって、前記元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、前記元素Aと、Feと、Bとを含み、粉末粒径のD50が2~18μmである合金粒子。
  10.  NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する原料合金を、第一の処理温度で保持する熱処理工程を含み、
     前記元素Rと、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lと、前記元素Aと、Feと、Bとを含有する主相を備え、主相を形成する結晶がP42/mnmに属し、前記結晶の4fサイトを占有するB原子の一部が前記元素Lの原子と置換されてなる希土類永久磁石の製造方法。
  11.  NdとPrとからなる群から一種以上選択される元素Rと、CoとBeとLiとAlとSiとCuとNbとZrとTiとGaとからなる群から一種以上選択される元素と、TbとSmとGdとHoとErとからなる群から一種以上選択される元素Aと、Feと、Bとを含有する原料合金を、第一の処理温度で保持する熱処理工程を含み、
     前記元素RとFeとBとを含むR-Fe-B層と、Fe層とを周期的に有し、B原子の一部が、CoとBeとLiとAlとSiとからなる群から一種以上選択される元素Lの原子で置換され、R-Fe-B層が前記元素Aの原子を含む主相を形成する、希土類永久磁石の製造方法。
  12.  前記第一の処理温度の保持時間経過後、処理温度を第二の処理温度まで低下させ、前記第二の処理温度で保持する熱処理工程を含み、前記主相間に粒界相を形成する請求項10または請求項11に記載される希土類永久磁石の製造方法。
PCT/JP2016/063515 2015-04-30 2016-04-28 希土類永久磁石および希土類永久磁石の製造方法 WO2016175332A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016253743A AU2016253743B2 (en) 2015-04-30 2016-04-28 Rare earth permanent magnet and method for producing rare earth permanent magnet
KR1020177030987A KR20180025844A (ko) 2015-04-30 2016-04-28 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
CN201680024222.4A CN107533893B (zh) 2015-04-30 2016-04-28 稀土类永久磁铁及稀土类永久磁铁的制造方法
JP2016575597A JP6332479B2 (ja) 2015-04-30 2016-04-28 希土類永久磁石および希土類永久磁石の製造方法
EP16786608.6A EP3291251A4 (en) 2015-04-30 2016-04-28 Rare earth permanent magnet and method for producing rare earth permanent magnet
US15/797,841 US20180047488A1 (en) 2015-04-30 2017-10-30 Rare earth permanent magnet and production method of rare earth permanent magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-092885 2015-04-30
JP2015092885 2015-04-30
JP2015092887 2015-04-30
JP2015-092887 2015-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/797,841 Continuation US20180047488A1 (en) 2015-04-30 2017-10-30 Rare earth permanent magnet and production method of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
WO2016175332A1 true WO2016175332A1 (ja) 2016-11-03

Family

ID=57199346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063515 WO2016175332A1 (ja) 2015-04-30 2016-04-28 希土類永久磁石および希土類永久磁石の製造方法

Country Status (7)

Country Link
US (1) US20180047488A1 (ja)
EP (1) EP3291251A4 (ja)
JP (1) JP6332479B2 (ja)
KR (1) KR20180025844A (ja)
CN (1) CN107533893B (ja)
AU (1) AU2016253743B2 (ja)
WO (1) WO2016175332A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151245A1 (ja) * 2018-01-30 2019-08-08 Tdk株式会社 R-t-b系希土類永久磁石

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852351B2 (ja) 2016-10-28 2021-03-31 株式会社Ihi 希土類永久磁石の製造方法
WO2021048916A1 (ja) * 2019-09-10 2021-03-18 三菱電機株式会社 希土類磁石合金、その製造方法、希土類磁石、回転子及び回転機
CN111613405B (zh) * 2020-06-01 2022-02-11 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041338A1 (ja) * 2007-09-25 2009-04-02 Showa Denko K.K. 合金の製造装置
JP2009242936A (ja) * 2007-09-10 2009-10-22 Meiji Univ 希土類永久磁石合金及びその製造方法
JP2013080738A (ja) * 2011-09-30 2013-05-02 Nitto Denko Corp 希土類永久磁石及び希土類永久磁石の製造方法
JP2016040791A (ja) * 2014-08-12 2016-03-24 Tdk株式会社 永久磁石

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US685A (en) * 1838-04-07 Machine for mortising timber
US837A (en) * 1838-07-12 samuel carson
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same
MY142088A (en) * 2005-03-23 2010-09-15 Shinetsu Chemical Co Rare earth permanent magnet
US7919200B2 (en) * 2005-06-10 2011-04-05 Nissan Motor Co., Ltd. Rare earth magnet having high strength and high electrical resistance
WO2009122709A1 (ja) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b系焼結磁石およびその製造方法
JP2012015168A (ja) * 2010-06-29 2012-01-19 Showa Denko Kk R−t−b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP2013149862A (ja) * 2012-01-20 2013-08-01 Toyota Motor Corp 希土類磁石の製造方法
CN103887028B (zh) * 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
JPWO2014118971A1 (ja) * 2013-02-01 2017-01-26 株式会社日立製作所 希土類磁石、及びその製造方法
JP6274216B2 (ja) * 2013-08-09 2018-02-07 Tdk株式会社 R−t−b系焼結磁石、および、モータ
WO2015022946A1 (ja) * 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法
CN105706190B (zh) * 2013-11-05 2019-05-10 株式会社Ihi 稀土永磁材料以及稀土永磁材料的制造方法
JP6852351B2 (ja) * 2016-10-28 2021-03-31 株式会社Ihi 希土類永久磁石の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242936A (ja) * 2007-09-10 2009-10-22 Meiji Univ 希土類永久磁石合金及びその製造方法
WO2009041338A1 (ja) * 2007-09-25 2009-04-02 Showa Denko K.K. 合金の製造装置
JP2013080738A (ja) * 2011-09-30 2013-05-02 Nitto Denko Corp 希土類永久磁石及び希土類永久磁石の製造方法
JP2016040791A (ja) * 2014-08-12 2016-03-24 Tdk株式会社 永久磁石

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291251A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151245A1 (ja) * 2018-01-30 2019-08-08 Tdk株式会社 R-t-b系希土類永久磁石
JPWO2019151245A1 (ja) * 2018-01-30 2021-03-04 Tdk株式会社 R−t−b系希土類永久磁石
JP7222359B2 (ja) 2018-01-30 2023-02-15 Tdk株式会社 R-t-b系希土類永久磁石
US11798717B2 (en) 2018-01-30 2023-10-24 Tdk Corporation R-T-B based rare earth permanent magnet

Also Published As

Publication number Publication date
EP3291251A4 (en) 2018-12-12
KR20180025844A (ko) 2018-03-09
CN107533893A (zh) 2018-01-02
AU2016253743A1 (en) 2017-11-23
JP6332479B2 (ja) 2018-05-30
US20180047488A1 (en) 2018-02-15
EP3291251A1 (en) 2018-03-07
CN107533893B (zh) 2021-05-25
AU2016253743B2 (en) 2018-12-20
JPWO2016175332A1 (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
Cui et al. Current progress and future challenges in rare-earth-free permanent magnets
JP6451643B2 (ja) 希土類永久磁石および希土類永久磁石の製造方法
JP6521416B2 (ja) 磁性材料とその製造法
CN104078176A (zh) 稀土类磁体
JP6521415B2 (ja) 磁性材料とその製造方法
JP6332479B2 (ja) 希土類永久磁石および希土類永久磁石の製造方法
Jimenez-Villacorta et al. Advanced permanent magnetic materials
WO2019059256A1 (ja) 磁性材料とその製造法
JP2019087665A (ja) 磁性材料およびその製造方法
JP6728862B2 (ja) 希土類磁石
US11331721B2 (en) Magnetic material and process for manufacturing same
WO2018123988A1 (ja) 希土類-遷移金属系強磁性合金
JP6519300B2 (ja) 希土類永久磁石および希土類永久磁石の製造方法
Fliegans Coercivity of NdFeB-based sintered permanent magnets: experimental and numerical approaches
Lucis Microstructure and phase analysis in Mn-Al and Zr-Co permanent magnets
JP2019087664A (ja) 磁性材料およびその製造法
Wang Phase equilibria and permanent magnets in the Ce-Fe-Co-B system
Bessais et al. High magnetic moment CoFe nanoparticles
Lihua Development of High-performance Hot-deformed Nd-Fe-B Permanent Magnets by the Eutectic Grain Boundary Diffusion Process
Koylu-Alkan Mechanochemical synthesis of rare earth 3D transition metal submicron particles with the R2Fe14B structure
Zhong Synthesis of Nd-Fe-B based magnetic materials through the mechanochemical process
Golkar-Fard Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties
Kuchimanchi Effect of gallium and refractory metal substitution in 3: 29 intermetallic permanent magnetic materials
Bollero Real Isotropic nanocrystalline (Nd, Pr)(Fe, Co) B permanent magnets
Rai Structural, Magnetic Properties and Mssbauer Analysis of R2Fe17-xTMx (R: Dy, Er & Gd, TM: Nb & Cr) Compounds.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575597

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030987

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016786608

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016253743

Country of ref document: AU

Date of ref document: 20160428

Kind code of ref document: A