WO2016174781A1 - インバータ制御装置 - Google Patents

インバータ制御装置 Download PDF

Info

Publication number
WO2016174781A1
WO2016174781A1 PCT/JP2015/071378 JP2015071378W WO2016174781A1 WO 2016174781 A1 WO2016174781 A1 WO 2016174781A1 JP 2015071378 W JP2015071378 W JP 2015071378W WO 2016174781 A1 WO2016174781 A1 WO 2016174781A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
switch
inverters
control
control device
Prior art date
Application number
PCT/JP2015/071378
Other languages
English (en)
French (fr)
Inventor
祐司 松岡
嗣大 田中
ポール ビクセル
達明 安保
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2017515356A priority Critical patent/JP6516835B2/ja
Priority to EP15890764.2A priority patent/EP3291434B1/en
Priority to CN201580079307.8A priority patent/CN107636949B/zh
Publication of WO2016174781A1 publication Critical patent/WO2016174781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/77Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means arranged for operation in parallel

Definitions

  • the present invention relates to an inverter control device that controls an inverter.
  • a power supply system in which multiple inverters are connected in parallel.
  • a charging current larger than the current that normally flows from the initially charged capacitor to another uncharged capacitor flows.
  • an element such as a fuse, the element may be damaged.
  • a power supply device in which a series body in which a conductor and an inrush current prevention resistor are connected in series is connected between a power conversion circuit and an input voltage source. (See Patent Document 1).
  • An object of the present invention is to provide an inverter control device that prevents an overcurrent flowing between capacitors provided in each inverter without increasing the size of the power supply system.
  • An inverter control device controls a plurality of inverters each provided with a capacitor on the DC side, each provided with a first switch on the DC side, and connected in parallel on the DC side and the AC side.
  • the first switch of the first inverter among the plurality of inverters is turned on, and the capacitors of the plurality of inverters are charged.
  • a first start time control unit that performs a first start time control to turn on at least a first switching element provided in the first inverter, and the first start time control unit to perform the first start time control unit.
  • the first switch of each of the plurality of inverters is turned on And a second start control section for the second start control that.
  • FIG. 1 is a configuration diagram showing the configuration of the power supply system according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing the configuration of the power supply system according to the second embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing the configuration of the power supply system according to the third embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a configuration of a power supply system according to the fourth embodiment of the present invention.
  • FIG. 5 is a configuration diagram showing a configuration of a power supply system according to the fifth embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing a configuration of a power supply system according to the sixth embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a configuration of a power supply system 10 according to the first embodiment of the present invention.
  • symbol is attached
  • the power supply system 10 is arbitrarily disconnected from the three-phase AC power system 4 by the switches 9a, 9b, and 9c.
  • the power supply system 10 includes a control device 1, four inverter units 2a, 2b, 2c and 2d, and a PV (photovoltaic) array 3.
  • the PV array 3 is an aggregate of PV cells that generate power by the energy of sunlight.
  • the PV array 3 supplies the generated DC power to the inverter units 2a to 2d.
  • a direct current power supply not only the PV array 3 but what kind of thing may be sufficient.
  • a distributed power source such as a wind power generator or a hydroelectric power generator may be used, or a converter that converts AC power into DC power may be used.
  • the inverter units 2a to 2d are connected in parallel. Specifically, the DC sides and AC sides of the inverter units 2a to 2d are short-circuited (connected in parallel).
  • the PV array 3 is connected to the DC side
  • the power system 4 is connected to the AC side.
  • the inverter units 2a to 2d convert the DC power output from the PV array 3 into three-phase AC power synchronized with the system voltage of the power system 4.
  • the inverter units 2a to 2d supply the converted AC power to the power system 4.
  • the inverter unit 2a includes a positive-side switch 5pa, a capacitor 6a, three-phase reactors 7ua, 7va, 7wa, two fuses 8a, six switching elements 11a, 12a, 13a, 14a, 15a, 16a, and six inverses.
  • Parallel diodes 21a, 22a, 23a, 24a, 25a, and 26a are provided.
  • the inverter unit 2b includes a positive-side switch 5pb, a capacitor 6b, three-phase reactors 7ub, 7vb, 7wb, two fuses 8b, six switching elements 11b, 12b, 13b, 14b, 15b, 16b, and six inverses.
  • Parallel diodes 21b, 22b, 23b, 24b, 25b, and 26b are provided.
  • the inverter unit 2c includes a positive-side switch 5pc, a capacitor 6c, three-phase reactors 7uc, 7vc, 7wc, two fuses 8c, six switching elements 11c, 12c, 13c, 14c, 15c, 16c, and six inverses.
  • Parallel diodes 21c, 22c, 23c, 24c, 25c, and 26c are provided.
  • the inverter unit 2d includes a positive-side switch 5pd, a capacitor 6d, three-phase reactors 7ud, 7vd, and 7wd, two fuses 8d, six switching elements 11d, 12d, 13d, 14d, 15d, and 16d, and six inverses.
  • Parallel diodes 21d, 22d, 23d, 24d, 25d, and 26d are provided.
  • each of the inverter units 2a to 2d is configured in the same manner, hereinafter, the inverter unit 2a will be mainly described, and the other inverter units 2b to 2d are configured in the same manner and will be described as appropriate. Omitted.
  • the six switching elements 11a to 16a and the six antiparallel diodes 21a to 26a constitute a power conversion circuit that converts DC power into three-phase AC power.
  • the antiparallel diodes 21a to 26a are connected in antiparallel with the switching elements 11a to 16a, respectively.
  • Switching element 11a and antiparallel diode 21a constitute the upper arm (positive arm) of the U phase.
  • the arm is a circuit that constitutes a part of the power conversion circuit.
  • Switching element 12a and anti-parallel diode 22a constitute the lower arm (negative arm) of the U phase.
  • Switching element 13a and antiparallel diode 23a constitute an upper arm of V phase.
  • Switching element 14a and antiparallel diode 24a constitute a lower arm of the V phase.
  • Switching element 15a and antiparallel diode 25a constitute the upper arm of the W phase.
  • Switching element 16a and antiparallel diode 26a constitute a lower arm of the W phase.
  • connection point of the two switching elements 11a and 12a constituting the U-phase arm is connected to the electric power system 4 via the U-phase reactor 7ua.
  • the connection point of the two switching elements 13a and 14a constituting the V-phase arm is connected to the power system 4 via the V-phase reactor 7va.
  • the connection point of the two switching elements 15a and 16a constituting the W-phase arm is connected to the power system 4 via the W-phase reactor 7wa. From each reactor 7ua, 7va, 7wa, the alternating current of each phase is output.
  • the capacitor 6a is connected between the positive electrode and the negative electrode on the DC side of the power conversion circuit.
  • the capacitor 6a is an element that smoothes the DC voltage.
  • the positive side switch 5pa is provided on the positive side of the DC side of the power conversion circuit. By opening the positive electrode side switch 5pa, the positive electrode of the PV array 3 and the positive electrode of the power conversion circuit are electrically disconnected. When operating the inverter unit 2a, the positive switch 5pa is turned on. When stopping the inverter unit 2a, the positive electrode side switch 5pa is opened.
  • the fuses 8a are respectively provided on the positive and negative electrodes on the DC side of the power conversion circuit.
  • the fuse 8a is an element that protects the power conversion circuit from overcurrent.
  • the fuse 8a may also be provided on the AC side of the power conversion circuit.
  • Control device 1 controls each inverter unit 2a to 2d.
  • the control device 1 performs switching control of the positive switch 5pa, switching control of the interconnection AC switches 9a to 9c, switching control of the switching elements 11a to 16a, and the like for the inverter unit 2a.
  • the control device 1 controls the AC power output from the inverter unit 2a by driving (switching) the switching elements 11a to 16a.
  • control when the power supply system 10 is started by the control device 1 will be described.
  • the control device 1 turns on the positive-side switch 5pa of the inverter unit 2a. At this time, the positive side switches 5pb to 5pd of the other inverter units 2b to 2d are opened. Furthermore, the control device 1 turns on at least one switching element 11a, 13a, 15a constituting the upper arm of the inverter unit 2a. Any switching element 11a, 13a, 15a may be turned on, or all the switching elements 11a, 13a, 15a may be turned on. Here, it is assumed that only the switching element 11a of the upper arm of the U phase is turned on.
  • the capacitor 6a of the inverter unit 2a When the positive electrode side switch 5pa is turned on, the capacitor 6a of the inverter unit 2a is charged by the PV array 3. Further, when the switching element 11a is turned on, the positive electrode of the output voltage of the PV array 3 is applied to the positive electrodes of the capacitors 6b to 6d of the other inverter units 2b to 2d. The negative electrode of the PV array 3 is connected to the negative electrodes of the capacitors 6b to 6d of the inverter units 2b to 2d from the beginning. Accordingly, when the positive switch 5pa is turned on and the switching element 11a is turned on, the capacitors 6b of the inverter units 2b to 2d in which the positive switches 5pb to 5pd are not turned on (opened). .About.6d are also charged by the PV array 3.
  • the control device 1 After the capacitors 6a to 6d of all the inverter units 2a to 2d are charged, the control device 1 turns on the positive side switches 5pb to 5pd of the remaining inverter units 2b to 2d as the control at the second start-up. . Thereby, the operation of the power supply system 10 is started.
  • any method may be used for determining that all the capacitors 6a to 6d have been charged. For example, it may be determined by detecting the voltages of the capacitors 6a to 6d, or it may be considered that all the capacitors 6a to 6d are charged after a preset time has elapsed. Further, as long as the charging current flowing between the capacitors 6a to 6d does not become an overcurrent, even if all the capacitors 6a to 6d are not fully charged, the positive side switches of the remaining inverter units 2b to 2d are used. 5 pb to 5 pd may be input.
  • inverter unit 2b when positive switch 5pa of inverter unit 2a is turned on and switching element 11a of the U-phase upper arm is turned on, inverter unit 2b is not connected with positive switch 5pb.
  • the principle of charging the capacitor 6b will be described.
  • the capacitors 6c and 6d of the other inverter units 2c and 2d are charged in the same manner.
  • the arrows in FIG. 1 indicate the flow of current for charging the capacitors 6a to 6d of the inverter units 2a to 2d.
  • the current output from the PV array 3 is input to the DC side of the inverter unit 2a, and sequentially passes through the positive-side switch 5pa, the turned-on U-phase upper arm switching element 11a, and the U-phase reactor 7ua. It is output to the AC side of the inverter unit 2a.
  • the current output from the AC side of the inverter unit 2a is input to the AC side of the inverter unit 2b.
  • the current input from the AC side of the inverter unit 2b is sequentially input to the positive electrode of the capacitor 6b via the U-phase reactor 7ub and the U-phase upper arm antiparallel diode 21b.
  • the current output from the negative electrode of the capacitor 6 b is input to the negative electrode of the PV array 3.
  • the capacitor 6b of the inverter unit 2b is charged by the flowing current.
  • the fuses 8a and 8b provided in the electric path through which the charging current flows may be deteriorated or blown.
  • the upper arm of the inverter unit 2a that first turns on the positive switch 5pa (the arm on the same polarity side as the positive switch 5pa).
  • the capacitors 6b to 6d of the inverter units 2b to 2d in which the positive-side switches 5pb to 5pd are not turned on can be charged.
  • control device 1 switches the switching element 11a of the inverter unit 2a with the switch 5pa turned on so that the capacitors 6b to 6d of the inverter units 2b to 2d that have not turned on the switches 5pb to 5pd are also charged. Control to turn on any of .about.16a. Thereby, it is possible to prevent a charging current (short-circuit current) from flowing between the capacitors 6a to 6d when the positive-side switches 5pb to 5pd are turned on.
  • the control device 1 can turn on the interconnection AC switches 9a to 9c and start power generation.
  • FIG. 2 is a configuration diagram showing a configuration of a power supply system 10A according to the second embodiment of the present invention.
  • the power supply system 10A is obtained by replacing the inverter units 2a to 2d with the inverter units 2aA to 2dA and replacing the control device 1 with the control device 1A in the power supply system 10 according to the first embodiment shown in FIG.
  • the inverter units 2aA to 2dA are obtained by adding negative-side switches 5ma to 5md to the inverter units 2a to 2d according to the first embodiment, respectively.
  • 10 A of power supply systems are the same as that of 1st Embodiment.
  • the control device 1A is basically the same as the control device 1 according to the first embodiment, and therefore, different parts from the control device 1 will be mainly described here.
  • the control device 1A As the first starting control, all the connected AC switches 9a to 9c are opened first, and the control device 1A first turns on the negative side switches 5ma to 5md of all the inverter units 2aA to 2dA. . Thereafter, the control is the same as the control by the control device 1 according to the first embodiment. That is, the positive side switch 5pa of the inverter unit 2aA is turned on to turn on at least one switching element 11a, 13a, 15a constituting the upper arm of the inverter unit 2aA. Thereby, the capacitors 6a to 6d of all the inverter units 2aA to 2dA are charged. Thereafter, as the control at the time of the second start, the control device 1A turns on the positive side switches 5pb to 5pd of the remaining inverter units 2bA to 2dA. Thereby, the operation of the power supply system 10A is started.
  • the arrows in FIG. 2 indicate the flow of current for charging the capacitors 6a to 6d of 2aA to 2dA of each inverter unit before the positive side switches 5pb to 5pd of the inverter units 2bA to 2dA are turned on.
  • a current for charging the capacitors 6a to 6d flows through the power supply system 10A, as in the first embodiment shown in FIG.
  • the same functions and effects as those of the first embodiment are obtained. Obtainable.
  • FIG. 3 is a configuration diagram showing the configuration of a power supply system 10B according to the third embodiment of the present invention.
  • the power supply system 10B is obtained by replacing the control device 1A with the control device 1B in the power supply system 10A according to the second embodiment shown in FIG.
  • the power supply system 10B is the same as that of the second embodiment.
  • the control device 1B is basically the same as the control device 1A according to the second embodiment, and therefore, different parts from the control device 1A will be mainly described here.
  • the control device 1B turns on the positive side switch 5pa and the negative side switch 5ma of the inverter unit 2aA.
  • the positive side switches 5pb to 5pd and the negative side switches 5mb to 5md of the other inverter units 2bA to 2dA are opened.
  • the control device 1B turns on any one of the switching elements 11a, 13a, and 15a constituting the upper arm of the inverter unit 2aA.
  • the switching element 11a of the upper arm of the U phase is turned on.
  • control device 1B turns on one of the switching elements 12a, 14a, 16a constituting the lower arm of the inverter unit 2aA that has a phase different from the phase (U phase) of the upper arm switching element 11a. Accordingly, the control device 1B turns on either the V-phase switching element 14a or the W-phase switching element 16a. Here, it is assumed that the switching element 14a of the lower arm of the V phase is turned on.
  • the capacitor 6a of the inverter unit 2aA is charged by the PV array 3 by turning on the positive electrode side switch 5pa and the negative electrode side switch 5ma. Further, when the upper arm switching element 11a and the lower arm switching element 14a are turned on, the output voltage of the PV array 3 is applied to the capacitors 6b to 6d of the other inverter units 2bA to 2dA.
  • the control device 1B controls the positive side switches 5pb to 5pd and the negative side of the remaining inverter units 2bA to 2dA as the control at the second start. Turn on the switches 5mb to 5md. Thereby, the operation of the power supply system 10B is started.
  • the positive side switch 5pa and the negative side switch 5ma of the inverter unit 2aA are turned on, and the U-phase upper arm switching element 11a and the V-phase lower arm switching element 14a are turned on.
  • the principle of charging the capacitor 6b of the inverter unit 2bA in which the positive electrode side switch 5pb and the negative electrode side switch 5mb are not turned on will be described.
  • the capacitors 6c and 6d of the other inverter units 2cA and 2dA are charged in the same manner.
  • the arrows in FIG. 3 indicate the flow of current for charging the capacitors 6a to 6d of 2aA to 2dA of each inverter unit.
  • the current output from the positive electrode of the PV array 3 is input to the DC side of the inverter unit 2aA, and sequentially passes through the positive electrode side switch 5pa, the U-phase upper arm switching element 11a turned on, and the U-phase reactor 7ua. And output from the U phase on the AC side of the inverter unit 2aA.
  • the current output from the U phase of the inverter unit 2aA is input to the U phase of the inverter unit 2bA.
  • the current input from the U phase of the inverter unit 2bA is input to the positive electrode of the capacitor 6b through the U phase reactor 7ub and the U-phase upper arm antiparallel diode 21b sequentially.
  • the current output from the negative electrode of the capacitor 6b is output from the V-phase on the AC side of the inverter unit 2bA via the V-phase lower arm antiparallel diode 24b and the V-phase reactor 7vb sequentially.
  • the current output from the V phase of the inverter unit 2bA is input to the V phase of the inverter unit 2aA.
  • the current input from the V phase of the inverter unit 2aA is input to the negative electrode of the PV array 3 via the V phase reactor 7va and the switching element 14a of the lower arm of the V phase that is turned on sequentially.
  • the capacitor 6b of the inverter unit 2bA is charged by the flowing current.
  • the switching element 14a of the arm By turning on the switching element 14a of the arm, the capacitors 6b to 6d of the inverter units 2b to 2d not having the switches 5pb to 5pd and 5mb to 5md turned on can be charged. Thereby, it is possible to prevent a charging current (short-circuit current) from flowing between the capacitors 6a to 6d when the switches 5pb to 5pd and 5mb to 5md are turned on.
  • FIG. 4 is a configuration diagram showing a configuration of a power supply system 10C according to the fourth embodiment of the present invention.
  • the power supply system 10C is obtained by replacing the inverter units 2a to 2d with the inverter units 2aC to 2dC and replacing the control device 1 with the control device 1C in the power supply system 10 according to the first embodiment shown in FIG.
  • the power supply system 10C is arbitrarily disconnected from the single-phase AC power system 4C by the switches 9a and 9b. In other respects, the power supply system 10C is the same as that of the first embodiment.
  • the inverter units 2aC to 2dC are obtained by changing the configuration of the inverter units 2a to 2d according to the first embodiment from a three-phase inverter circuit to a single-phase inverter circuit.
  • the inverter units 2aC to 2dC are, in the inverter units 2a to 2d, the reactors 7wa to 7wd, the switching elements 15a to 15d, 16a to 16d, and the anti-parallel diodes 25a to 25d and 26a, which are W-phase configurations.
  • the configuration is the same as that obtained by removing .about.26d.
  • the control device 1C is basically the same as the control device 1 according to the first embodiment, and therefore, here, different parts from the control device 1 will be mainly described.
  • the control device 1C turns on the positive-side switch 5pa of the inverter unit 2aC.
  • the positive side switches 5pb to 5pd of the other inverter units 2bC to 2dC are opened.
  • the control device 1C turns on at least one switching element 11a, 13a constituting the upper arm of the inverter unit 2aC. Either switching element 11a, 13a may be turned on, or both switching elements 11a, 13a may be turned on. Here, it is assumed that only the switching element 11a of the upper arm of the U phase is turned on.
  • the capacitor 6a of the inverter unit 2aC is charged by the PV array 3. Further, when the switching element 11a is turned on, the positive electrode of the output voltage of the PV array 3 is applied to the positive electrodes of the capacitors 6b to 6d of the other inverter units 2bC to 2dC.
  • the negative electrode of the PV array 3 is connected to the negative electrodes of the capacitors 6b to 6d of the inverter units 2bC to 2dC from the beginning. Accordingly, when the positive side switch 5pa is turned on and the switching element 11a is turned on, the capacitors 6b of the inverter units 2bC to 2dC in which the positive side switches 5pb to 5pd are not turned on (opened). .About.6d are also charged by the PV array 3.
  • the control device 1C After the capacitors 6a to 6d of all the inverter units 2aC to 2dC are charged, the control device 1C inputs the positive side switches 5pb to 5pd of the remaining inverter units 2bC to 2dC as the control at the time of the second start. . Thereby, the operation of the power supply system 10C is started.
  • the arrows in FIG. 4 indicate the flow of current for charging the capacitors 6a to 6d of 2aC to 2dC of each inverter unit before the positive side switches 5pb to 5pd of the inverter units 2bC to 2dC are turned on.
  • a current for charging the capacitors 6a to 6d flows through the power supply system 10C, as in the first embodiment shown in FIG.
  • the same operational effects as those of the first embodiment can be obtained.
  • FIG. 5 is a configuration diagram showing a configuration of a power supply system 10D according to the fifth embodiment of the present invention.
  • the power supply system 10D is obtained by replacing the inverter units 2aC to 2dC with the inverter units 2aD to 2dD and replacing the control device 1C with the control device 1D.
  • the inverter units 2aD to 2dD are obtained by adding negative-side switches 5ma to 5md to the inverter units 2aC to 2dC according to the fourth embodiment, respectively.
  • the power supply system 10D is the same as that of the fourth embodiment.
  • the control device 1D is basically the same as the control device 1C according to the fourth embodiment, and therefore, different parts from the control device 1C will be mainly described here.
  • the control device 1D turns on the negative side switches 5ma-5md of all the inverter units 2aD-2dD. To do. Thereafter, the control is the same as the control by the control device 1C according to the fourth embodiment. That is, the positive switch 5pa of the inverter unit 2aD is turned on to turn on at least one switching element 11a, 13a that constitutes the upper arm of the inverter unit 2aD. Thereby, the capacitors 6a to 6d of all the inverter units 2aD to 2dD are charged. Thereafter, as control at the time of the second start, the control device 1D turns on the positive side switches 5pb to 5pd of the remaining inverter units 2bD to 2dD. Thereby, the operation of the power supply system 10D is started.
  • FIG. 5 indicates the flow of current for charging the capacitors 6a to 6d of 2aD to 2dD of each inverter unit before the positive side switches 5pb to 5pd of the inverter units 2bD to 2dD are turned on.
  • a current for charging the capacitors 6a to 6d flows through the power supply system 10D, as in the fourth embodiment shown in FIG.
  • the same functions and effects as in the fourth embodiment are obtained. Obtainable.
  • FIG. 6 is a configuration diagram showing a configuration of a power supply system 10E according to the sixth embodiment of the present invention.
  • the power supply system 10E replaces the inverter units 2aA to 2dA with the inverter units 2aD to 2dD according to the fifth embodiment, and replaces the control device 1B with the control device 1E. It has been replaced.
  • the power supply system 10E is linked to a single-phase AC power system 4C. In other respects, the power supply system 10E is the same as that of the third embodiment.
  • the control device 1E is basically the same as the control device 1B according to the third embodiment, and therefore, different parts from the control device 1B will be mainly described here.
  • control device 1E turns on the positive side switch 5pa and the negative side switch 5ma of the inverter unit 2aD.
  • the positive side switches 5pb to 5pd and the negative side switches 5mb to 5md of the other inverter units 2bD to 2dD are opened.
  • Control device 1E turns on one of switching elements 11a and 13a that constitute the upper arm of inverter unit 2aD. Here, it is assumed that the switching element 11a of the upper arm of the U phase is turned on.
  • control device 1E turns on the switching element 12a, 14a constituting the lower arm of the inverter unit 2aD that has a phase different from the phase (U phase) of the upper arm switching element 11a. Therefore, here, the switching element 14a of the lower arm of the V phase is turned on.
  • the capacitor 6a of the inverter unit 2aD is charged by the PV array 3 by turning on the positive electrode side switch 5pa and the negative electrode side switch 5ma. Further, when the upper arm switching element 11a and the lower arm switching element 14a are turned on, the output voltage of the PV array 3 is applied to the capacitors 6b to 6d of the other inverter units 2bD to 2dD.
  • the positive switch 5pa and the negative switch 5ma are turned on, and the switching element 11a of the upper arm and the switching element 14a of the lower arm are turned on, so that the switches 5pb to 5pd, 5mb
  • the capacitors 6b to 6d of the inverter units 2bD to 2dD in which ⁇ 5 md is not input (opened) is also charged by the PV array 3.
  • the control device 1E controls the positive side switches 5pb to 5pd and the negative side of the remaining inverter units 2bD to 2dD as the control at the second start. Turn on the switches 5mb to 5md. Thereby, the operation of the power supply system 10E is started.
  • the arrows in FIG. 6 indicate the flow of current for charging the capacitors 6a to 6d of 2aD to 2dD of each inverter unit. As indicated by the arrows in FIG. 6, a current for charging the capacitors 6a to 6d flows through the power supply system 10E, as in the third embodiment shown in FIG.
  • the same effect as that of the third embodiment can be obtained in the power supply system 10E that outputs single-phase AC power.
  • the switching element 11a in the control at the time of starting the power supply system 10, the switching element 11a is first turned on only by one inverter unit 2a. However, two or more inverter units 2a to 2d have the same location.
  • the switching elements 11a to 11d may be turned on.
  • the switching elements 11a, 13a, 15a,..., 11d, 13d, 15d of the upper arms of all phases may be turned on in all the inverter units 2a to 2d.
  • the impedance of the circuit through which the current for charging the capacitors 6a to 6d flows can be reduced.
  • the impedance can be reduced by turning on the switching elements at the same place with two or more inverter units.
  • any switching is possible as long as the switching element of the inverter unit with the switch turned on is turned on so as to charge the capacitor of the inverter unit without the switch turned on.
  • the element may be turned on.
  • the same control may be performed by replacing the positive electrode and the negative electrode.
  • the positive side switches 5pa to 5pd of all the inverter units 2aA to 2dA are turned on, and one inverter unit 2aA
  • the negative electrode side switch 5ma is turned on, and at least one of the switching elements 12a, 14a, 16a of the lower arm on the same polarity side as the negative electrode side switch 5ma is turned on, and the capacitors 6a of all the inverter units 2aA to 2dA ⁇ 6d may be charged.
  • the positive-side switch 5pa of the inverter unit 2a is turned on, at least one switching element 11a, 13a, 15a constituting the upper arm of the inverter unit 2a is provided.
  • the positive electrode side switch 5pa may be turned on after the switching elements 11a, 13a, and 15a are turned on.
  • either turning on the switch or turning on the switching element may be performed first.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

並列に接続された複数のインバータ(2a~2d)を制御するインバータ制御装置(1)であって、前記複数のインバータ(2a~2d)の始動時に、第1のインバータの開閉器(5pa)を投入し、複数のインバータ(2a~2d)のコンデンサ(6a~6d)を充電するように、第1のインバータ(2a)に設けられた第1のスイッチング素子(13a)をオンし、コンデンサが充電された後、他の開閉器(5pb~5pd)を投入する。

Description

インバータ制御装置
 本発明は、インバータを制御するインバータ制御装置に関する。
 一般に、複数のインバータを並列に接続した電源システムがある。各インバータの直流側にコンデンサが設けられた電源システムの運転を開始するとき、最初に充電されたコンデンサから他の充電されていないコンデンサに通常流れる電流よりも大きな充電電流が流れる。このような充電電流がヒューズなどの素子に流れると、素子がダメージを受ける可能性がある。
 これに対して、コンデンサ間で流れる過電流を防止するために、コンダクタと突入電流防止用抵抗とを直列接続した直列体を電力変換回路と入力電圧源との間に接続した電源装置が開示されている(特許文献1参照)。
 しかしながら、コンデンサ間で流れる過電流を防止するための回路を電源システムに組み込むと、電源システムの大型化又は製造コストの増加を招く。
特開2009-195048号公報
 本発明の目的は、電源システムを大型化せずに、各インバータに設けられたコンデンサ間で流れる過電流を防止するインバータ制御装置を提供することにある。
 本発明の観点に従ったインバータ制御装置は、直流側にそれぞれコンデンサが設けられ、直流側にそれぞれ第1の開閉器が設けられ、直流側及び交流側が並列に接続された複数のインバータを制御するインバータ制御装置であって、前記複数のインバータの始動時に、前記複数のインバータのうち第1のインバータの前記第1の開閉器を投入し、前記複数のインバータのそれぞれの前記コンデンサを充電するように、少なくとも前記第1のインバータに設けられた第1のスイッチング素子をオンする第1の始動時制御をする第1の始動時制御部と、前記第1の始動時制御部による前記第1の始動時制御により、前記複数のインバータのそれぞれの前記コンデンサが充電された後、前記複数のインバータのそれぞれの前記第1の開閉器を投入する第2の始動時制御をする第2の始動時制御部とを備える。
図1は、本発明の第1の実施形態に係る電源システムの構成を示す構成図である。 図2は、本発明の第2の実施形態に係る電源システムの構成を示す構成図である。 図3は、本発明の第3の実施形態に係る電源システムの構成を示す構成図である。 図4は、本発明の第4の実施形態に係る電源システムの構成を示す構成図である。 図5は、本発明の第5の実施形態に係る電源システムの構成を示す構成図である。 図6は、本発明の第6の実施形態に係る電源システムの構成を示す構成図である。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る電源システム10の構成を示す構成図である。なお、図面における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。
 電源システム10は、開閉器9a,9b,9cにより、三相交流の電力系統4から任意に切り離される。
 電源システム10は、制御装置1、4つのインバータユニット2a,2b,2c,2d、及びPV(photovoltaic)アレイ3を備える。
 PVアレイ3は、太陽光のエネルギーにより発電するPVセルの集合体である。PVアレイ3は、発電した直流電力をインバータユニット2a~2dに供給する。なお、直流電源であれば、PVアレイ3に限らず、どのようなものでもよい。例えば、風力発電機又は水力発電機などの分散型電源でもよいし、交流電力を直流電力に変換するコンバータでもよい。
 インバータユニット2a~2dは、並列に接続されている。具体的には、各インバータユニット2a~2dの直流側同士と交流側同士がそれぞれ短絡(並列接続)されている。インバータユニット2a~2dは、直流側にPVアレイ3が接続され、交流側に電力系統4が接続されている。インバータユニット2a~2dは、PVアレイ3から出力される直流電力を電力系統4の系統電圧と同期する三相交流電力に変換する。インバータユニット2a~2dは、変換した交流電力を電力系統4に供給する。
 インバータユニット2aは、正極側開閉器5pa、コンデンサ6a、3相分のリアクトル7ua,7va,7wa、2つのヒューズ8a、6つのスイッチング素子11a,12a,13a,14a,15a,16a、及び6つの逆並列ダイオード21a,22a,23a,24a,25a,26aを備える。
 インバータユニット2bは、正極側開閉器5pb、コンデンサ6b、3相分のリアクトル7ub,7vb,7wb、2つのヒューズ8b、6つのスイッチング素子11b,12b,13b,14b,15b,16b、及び6つの逆並列ダイオード21b,22b,23b,24b,25b,26bを備える。
 インバータユニット2cは、正極側開閉器5pc、コンデンサ6c、3相分のリアクトル7uc,7vc,7wc、2つのヒューズ8c、6つのスイッチング素子11c,12c,13c,14c,15c,16c、及び6つの逆並列ダイオード21c,22c,23c,24c,25c,26cを備える。
 インバータユニット2dは、正極側開閉器5pd、コンデンサ6d、3相分のリアクトル7ud,7vd,7wd、2つのヒューズ8d、6つのスイッチング素子11d,12d,13d,14d,15d,16d、及び6つの逆並列ダイオード21d,22d,23d,24d,25d,26dを備える。
 なお、各インバータユニット2a~2dは、同様に構成されているため、以降では、主にインバータユニット2aについて説明し、他のインバータユニット2b~2dは同様に構成されているものとして、適宜説明を省略する。
 6つのスイッチング素子11a~16a及び6つの逆並列ダイオード21a~26aは、直流電力を三相交流電力に変換する電力変換回路を構成する。逆並列ダイオード21a~26aは、それぞれスイッチング素子11a~16aと逆並列に接続されている。スイッチング素子11a及び逆並列ダイオード21aは、U相の上アーム(正極側アーム)を構成する。アームは、電力変換回路の一部を構成する回路である。スイッチング素子12a及び逆並列ダイオード22aは、U相の下アーム(負極側アーム)を構成する。スイッチング素子13a及び逆並列ダイオード23aは、V相の上アームを構成する。スイッチング素子14a及び逆並列ダイオード24aは、V相の下アームを構成する。スイッチング素子15a及び逆並列ダイオード25aは、W相の上アームを構成する。スイッチング素子16a及び逆並列ダイオード26aは、W相の下アームを構成する。
 U相のアームを構成する2つのスイッチング素子11a,12aの接続点は、U相リアクトル7uaを介して電力系統4と接続されている。V相のアームを構成する2つのスイッチング素子13a,14aの接続点は、V相リアクトル7vaを介して電力系統4と接続されている。W相のアームを構成する2つのスイッチング素子15a,16aの接続点は、W相リアクトル7waを介して電力系統4と接続されている。各リアクトル7ua,7va,7waからは、それぞれの相の交流が出力される。
 コンデンサ6aは、電力変換回路の直流側の正極と負極との間に接続されている。コンデンサ6aは、直流電圧を平滑化する素子である。
 正極側開閉器5paは、電力変換回路の直流側の正極に設けられている。正極側開閉器5paを開放することで、PVアレイ3の正極と電力変換回路の正極とが電気的に切り離される。インバータユニット2aを運転するときは、正極側開閉器5paが投入される。インバータユニット2aを停止するときは、正極側開閉器5paが開放される。
 ヒューズ8aは、電力変換回路の直流側の正極と負極にそれぞれ設けられている。ヒューズ8aは、電力変換回路を過電流から保護する素子である。なお、ヒューズ8aは、電力変換回路の交流側にも設けられていてもよい。
 制御装置1は、各インバータユニット2a~2dを制御する。例えば、制御装置1は、インバータユニット2aに対して、正極側開閉器5paの開閉制御、連系交流開閉器9a~9cの開閉制御、及び各スイッチング素子11a~16aのスイッチング制御などを行う。制御装置1は、スイッチング素子11a~16aを駆動(スイッチング)することで、インバータユニット2aから出力される交流電力を制御する。
 次に、制御装置1による電源システム10の始動時の制御について説明する。
 第1の始動時の制御として、全ての連系交流開閉器9a~9cが最初に開放され、制御装置1は、インバータユニット2aの正極側開閉器5paを投入する。このとき、他のインバータユニット2b~2dの正極側開閉器5pb~5pdは開放されている。さらに、制御装置1は、インバータユニット2aの上アームを構成する少なくとも1つのスイッチング素子11a,13a,15aをオンする。いずれのスイッチング素子11a,13a,15aをオンしてもよいし、全てのスイッチング素子11a,13a,15aをオンしてもよい。ここでは、U相の上アームのスイッチング素子11aのみをオンしたものとする。
 正極側開閉器5paが投入されることで、PVアレイ3によりインバータユニット2aのコンデンサ6aが充電される。さらに、スイッチング素子11aがオンされることで、PVアレイ3の出力電圧の正極は、他のインバータユニット2b~2dのそれぞれのコンデンサ6b~6dの正極に印加される。また、PVアレイ3の負極は、初めからインバータユニット2b~2dのそれぞれのコンデンサ6b~6dの負極と接続されている。従って、正極側開閉器5paが投入され、かつスイッチング素子11aがオンされることで、正極側開閉器5pb~5pdが投入されていない(開放されている)インバータユニット2b~2dのそれぞれのコンデンサ6b~6dも、PVアレイ3により充電される。
 全てのインバータユニット2a~2dのコンデンサ6a~6dが充電された後、第2の始動時の制御として、制御装置1は、残りのインバータユニット2b~2dの正極側開閉器5pb~5pdを投入する。これにより、電源システム10の運転が開始される。
 なお、全てのコンデンサ6a~6dが充電されたことを判断する方法は、どのようにしてもよい。例えば、各コンデンサ6a~6dの電圧を検出して判断してもよいし、予め設定された時間が経過したら、全てのコンデンサ6a~6dが充電されたものとみなしてもよい。また、コンデンサ6a~6d間に流れる充電電流が過電流とならない範囲であれば、必ずしも全てのコンデンサ6a~6dが満充電の状態でなくても、残りのインバータユニット2b~2dの正極側開閉器5pb~5pdを投入してもよい。
 図1を参照して、インバータユニット2aの正極側開閉器5paが投入され、かつU相の上アームのスイッチング素子11aがオンされたときに、正極側開閉器5pbが投入されていないインバータユニット2bのコンデンサ6bが充電される原理を説明する。なお、他のインバータユニット2c,2dのコンデンサ6c,6dも同様にして充電される。図1中の矢印は、各インバータユニットの2a~2dのコンデンサ6a~6dを充電する電流の流れを示している。
 PVアレイ3から出力される電流は、インバータユニット2aの直流側に入力され、正極側開閉器5pa、オンされたU相の上アームのスイッチング素子11a、及びU相リアクトル7uaを順次に介して、インバータユニット2aの交流側に出力される。
 各インバータユニット2a~2dの交流側間は、相毎に短絡されているため、インバータユニット2aの交流側から出力された電流は、インバータユニット2bの交流側に入力される。インバータユニット2bの交流側から入力された電流は、U相リアクトル7ub及びU相の上アームの逆並列ダイオード21bを順次に介して、コンデンサ6bの正極に入力される。コンデンサ6bの負極から出力された電流は、PVアレイ3の負極に入力される。このように流れる電流により、インバータユニット2bのコンデンサ6bは充電される。
 ここで、電源システム10の始動時に、全ての連系交流開閉器9a~9cが最初に開放され、まず、にインバータユニット2aの正極側開閉器5paを投入し、次に、上アームのスイッチング素子11a,13a,15aをオンせずに、インバータユニット2bの正極側開閉器5pbを投入した場合について説明する。
 まず、インバータユニット2aの正極側開閉器5paを投入すると、インバータユニット2aのコンデンサ6aが充電される。このとき、正極側開閉器5pbが投入されていないインバータユニット2bのコンデンサ6bは、ほぼ放電された状態である。
 この状態で、インバータユニット2bの正極側開閉器5pbを投入すると、2つのインバータユニット2a,2bの直流側は短絡されているため、インバータユニット2aのコンデンサ6aとインバータユニット2bのコンデンサ6bで閉回路ができる。即ち、充電されたコンデンサ6aと充電されていないコンデンサ6bを直結した状態になる。従って、正極側開閉器5pbを投入すると、既に充電済みのコンデンサ6aからまだ充電されていないコンデンサ6bに過大な充電電流(短絡電流)が流れる。
 この充電電流は、電源システム10の通常の運転時に流れる電流よりも過大であるため、この充電電流が流れる電気経路に設けられたヒューズ8a,8bは、劣化又は溶断の恐れがある。
 本実施形態によれば、三相交流電力を出力する電源システム10の始動時に、最初に正極側開閉器5paを投入するインバータユニット2aの上アーム(正極側開閉器5paと同極性側のアーム)の少なくとも1つのスイッチング素子11a,13a,15aをオンすることで、正極側開閉器5pb~5pdを投入していない各インバータユニット2b~2dのコンデンサ6b~6dも充電することができる。換言すれば、制御装置1は、開閉器5pb~5pdを投入していない各インバータユニット2b~2dのコンデンサ6b~6dも充電されるように、開閉器5paを投入したインバータユニット2aのスイッチング素子11a~16aのいずれかをオンするように制御する。これにより、正極側開閉器5pb~5pdの投入時に、コンデンサ6a~6d間で充電電流(短絡電流)が流れることを防止することができる。
 従って、各インバータユニット2a~2dに設けられたヒューズ8a~8dがこのような充電電流により劣化又は溶断することを防止することができる。また、ヒューズ8a~8dに限らず、他の素子などが設けられている場合にも、このような充電電流により劣化又は破損することを防止することができる。充電が完了するとすぐに、制御装置1は、連系交流開閉器9a~9cを投入し、発電を開始することができる。
(第2の実施形態)
 図2は、本発明の第2の実施形態に係る電源システム10Aの構成を示す構成図である。
 電源システム10Aは、図1に示す第1の実施形態に係る電源システム10において、インバータユニット2a~2dをインバータユニット2aA~2dAに代え、制御装置1を制御装置1Aに代えたものである。インバータユニット2aA~2dAは、第1の実施形態に係るインバータユニット2a~2dに、それぞれ負極側開閉器5ma~5mdを追加したものである。その他の点については、電源システム10Aは、第1の実施形態と同様である。また、制御装置1Aは、第1の実施形態に係る制御装置1と基本的に同様であるため、ここでは、制御装置1と異なる部分について主に説明する。
 次に、制御装置1Aによる電源システム10Aの始動時の制御について説明する。
 第1の始動時の制御として、全ての連系交流開閉器9a~9cが最初に開放され、まず、制御装置1Aは、全てのインバータユニット2aA~2dAの負極側開閉器5ma~5mdを投入する。この後は、第1の実施形態に係る制御装置1による制御と同様である。即ち、インバータユニット2aAの正極側開閉器5paを投入して、インバータユニット2aAの上アームを構成する少なくとも1つのスイッチング素子11a,13a,15aをオンする。これにより、全てのインバータユニット2aA~2dAのコンデンサ6a~6dが充電される。その後、第2の始動時の制御として、制御装置1Aは、残りのインバータユニット2bA~2dAの正極側開閉器5pb~5pdを投入する。これにより、電源システム10Aの運転が開始される。
 図2中の矢印は、インバータユニット2bA~2dAの正極側開閉器5pb~5pdが投入される前の各インバータユニットの2aA~2dAのコンデンサ6a~6dを充電する電流の流れを示している。図2の矢印で示すように、電源システム10Aには、図1に示す第1の実施形態と同様に、各コンデンサ6a~6dを充電する電流が流れる。
 本実施形態によれば、各インバータユニット2aA~2dAに正極側開閉器5pa~5pdと負極側開閉器5ma~5mdが設けられている電源システム10Aにおいて、第1の実施形態と同様の作用効果を得ることができる。
(第3の実施形態)
 図3は、本発明の第3の実施形態に係る電源システム10Bの構成を示す構成図である。
 電源システム10Bは、図2に示す第2の実施形態に係る電源システム10Aにおいて、制御装置1Aを制御装置1Bに代えたものである。その他の点については、電源システム10Bは、第2の実施形態と同様である。また、制御装置1Bは、第2の実施形態に係る制御装置1Aと基本的に同様であるため、ここでは、制御装置1Aと異なる部分について主に説明する。
 次に、制御装置1Bによる電源システム10Bの始動時の制御について説明する。
 第1の始動時の制御として、全ての連系交流開閉器9a~9cが最初に開放され、制御装置1Bは、インバータユニット2aAの正極側開閉器5pa及び負極側開閉器5maを投入する。このとき、他のインバータユニット2bA~2dAの正極側開閉器5pb~5pd及び負極側開閉器5mb~5mdは開放されている。また、制御装置1Bは、インバータユニット2aAの上アームを構成するスイッチング素子11a,13a,15aのうちいずれか1つをオンする。ここでは、U相の上アームのスイッチング素子11aをオンしたものとする。さらに、制御装置1Bは、インバータユニット2aAの下アームを構成するスイッチング素子12a,14a,16aのうちオンした上アームのスイッチング素子11aの相(U相)と異なる相のものをオンする。従って、制御装置1Bは、V相のスイッチング素子14a又はW相のスイッチング素子16aのいずれかをオンする。ここでは、V相の下アームのスイッチング素子14aをオンしたものとする。
 正極側開閉器5pa及び負極側開閉器5maが投入されることで、PVアレイ3によりインバータユニット2aAのコンデンサ6aが充電される。さらに、上アームのスイッチング素子11aと下アームのスイッチング素子14aがオンされることで、PVアレイ3の出力電圧は、他のインバータユニット2bA~2dAのそれぞれのコンデンサ6b~6dに印加される。従って、インバータユニット2aAにおいて、正極側開閉器5pa及び負極側開閉器5maが投入され、かつ上アームのスイッチング素子11a及び下アームのスイッチング素子14aがオンされることで、開閉器5pb~5pd,5mb~5mdが投入されていない(開放されている)インバータユニット2bA~2dAのそれぞれのコンデンサ6b~6dも、PVアレイ3により充電される。
 全てのインバータユニット2aA~2dAのコンデンサ6a~6dが充電された後、第2の始動時の制御として、制御装置1Bは、残りのインバータユニット2bA~2dAの正極側開閉器5pb~5pd及び負極側開閉器5mb~5mdを投入する。これにより、電源システム10Bの運転が開始される。
 図3を参照して、インバータユニット2aAの正極側開閉器5pa及び負極側開閉器5maが投入され、かつU相の上アームのスイッチング素子11a及びV相の下アームのスイッチング素子14aがオンされたときに、正極側開閉器5pb及び負極側開閉器5mbが投入されていないインバータユニット2bAのコンデンサ6bが充電される原理を説明する。なお、他のインバータユニット2cA,2dAのコンデンサ6c,6dも同様にして充電される。図3中の矢印は、各インバータユニットの2aA~2dAのコンデンサ6a~6dを充電する電流の流れを示している。
 PVアレイ3の正極から出力される電流は、インバータユニット2aAの直流側に入力され、正極側開閉器5pa、オンされたU相の上アームのスイッチング素子11a、及びU相リアクトル7uaを順次に介して、インバータユニット2aAの交流側のU相から出力される。
 各インバータユニット2a~2dの交流側間は、相毎に短絡されているため、インバータユニット2aAのU相から出力された電流は、インバータユニット2bAのU相に入力される。インバータユニット2bAのU相から入力された電流は、U相リアクトル7ub及びU相の上アームの逆並列ダイオード21bを順次に介して、コンデンサ6bの正極に入力される。コンデンサ6bの負極から出力された電流は、V相の下アームの逆並列ダイオード24b及びV相リアクトル7vbを順次に介して、インバータユニット2bAの交流側のV相から出力される。
 インバータユニット2bAのV相から出力された電流は、インバータユニット2aAのV相に入力される。インバータユニット2aAのV相から入力された電流は、V相リアクトル7va及びオンされたV相の下アームのスイッチング素子14aを順次に介して、PVアレイ3の負極に入力される。このように流れる電流により、インバータユニット2bAのコンデンサ6bは充電される。
 本実施形態によれば、電源システム10Bの始動時に、最初に正極側開閉器5pa及び負極側開閉器5maを投入するインバータユニット2aAの上アームのスイッチング素子11aとこのスイッチング素子11aと異なる相の下アームのスイッチング素子14aをオンすることで、開閉器5pb~5pd,5mb~5mdを投入していない各インバータユニット2b~2dのコンデンサ6b~6dも充電することができる。これにより、開閉器5pb~5pd,5mb~5mdの投入時に、コンデンサ6a~6d間で充電電流(短絡電流)が流れることを防止することができる。
 従って、第2の実施形態と同様の作用効果を得ることができる。
(第4の実施形態)
 図4は、本発明の第4の実施形態に係る電源システム10Cの構成を示す構成図である。
 電源システム10Cは、図1に示す第1の実施形態に係る電源システム10において、インバータユニット2a~2dをインバータユニット2aC~2dCに代え、制御装置1を制御装置1Cに代えたものである。電源システム10Cは、開閉器9a,9bにより、単相交流の電力系統4Cから任意に切り離される。その他の点については、電源システム10Cは、第1の実施形態と同様である。
 インバータユニット2aC~2dCは、第1の実施形態に係るインバータユニット2a~2dを、三相のインバータ回路から単相のインバータ回路に構成を変更したものである。具体的には、インバータユニット2aC~2dCは、インバータユニット2a~2dにおいて、W相の構成である、リアクトル7wa~7wd、スイッチング素子15a~15d,16a~16d、及び逆並列ダイオード25a~25d,26a~26dを取り除いたものと同等の構成である。
 制御装置1Cは、第1の実施形態に係る制御装置1と基本的に同様であるため、ここでは、制御装置1と異なる部分について主に説明する。
 次に、制御装置1Cによる電源システム10Cの始動時の制御について説明する。
 第1の始動時の制御として、全ての連系交流開閉器9a,9bが最初に開放され、制御装置1Cは、インバータユニット2aCの正極側開閉器5paを投入する。このとき、他のインバータユニット2bC~2dCの正極側開閉器5pb~5pdは開放されている。さらに、制御装置1Cは、インバータユニット2aCの上アームを構成する少なくとも1つのスイッチング素子11a,13aをオンする。いずれのスイッチング素子11a,13aをオンしてもよいし、両方のスイッチング素子11a,13aをオンしてもよい。ここでは、U相の上アームのスイッチング素子11aのみをオンしたものとする。
 正極側開閉器5paが投入されることで、PVアレイ3によりインバータユニット2aCのコンデンサ6aが充電される。さらに、スイッチング素子11aがオンされることで、PVアレイ3の出力電圧の正極は、他のインバータユニット2bC~2dCのそれぞれのコンデンサ6b~6dの正極に印加される。また、PVアレイ3の負極は、初めからインバータユニット2bC~2dCのそれぞれのコンデンサ6b~6dの負極と接続されている。従って、正極側開閉器5paが投入され、かつスイッチング素子11aがオンされることで、正極側開閉器5pb~5pdが投入されていない(開放されている)インバータユニット2bC~2dCのそれぞれのコンデンサ6b~6dも、PVアレイ3により充電される。
 全てのインバータユニット2aC~2dCのコンデンサ6a~6dが充電された後、第2の始動時の制御として、制御装置1Cは、残りのインバータユニット2bC~2dCの正極側開閉器5pb~5pdを投入する。これにより、電源システム10Cの運転が開始される。
 図4中の矢印は、インバータユニット2bC~2dCの正極側開閉器5pb~5pdが投入される前の各インバータユニットの2aC~2dCのコンデンサ6a~6dを充電する電流の流れを示している。図4の矢印で示すように、電源システム10Cには、図1に示す第1の実施形態と同様に、各コンデンサ6a~6dを充電する電流が流れる。
 本実施形態によれば、単相交流電力を出力する電源システム10Cにおいて、第1の実施形態と同様の作用効果を得ることができる。
(第5の実施形態)
 図5は、本発明の第5の実施形態に係る電源システム10Dの構成を示す構成図である。
 電源システム10Dは、図4に示す第4の実施形態に係る電源システム10Cにおいて、インバータユニット2aC~2dCをインバータユニット2aD~2dDに代え、制御装置1Cを制御装置1Dに代えたものである。インバータユニット2aD~2dDは、第4の実施形態に係るインバータユニット2aC~2dCに、それぞれ負極側開閉器5ma~5mdを追加したものである。その他の点については、電源システム10Dは、第4の実施形態と同様である。また、制御装置1Dは、第4の実施形態に係る制御装置1Cと基本的に同様であるため、ここでは、制御装置1Cと異なる部分について主に説明する。
 次に、制御装置1Dによる電源システム10Dの始動時の制御について説明する。
 第1の始動時の制御として、全ての連系交流開閉器9a,9bが最初に開放され、最初に、制御装置1Dは、全てのインバータユニット2aD~2dDの負極側開閉器5ma~5mdを投入する。この後は、第4の実施形態に係る制御装置1Cによる制御と同様である。即ち、インバータユニット2aDの正極側開閉器5paを投入して、インバータユニット2aDの上アームを構成する少なくとも1つのスイッチング素子11a,13aをオンする。これにより、全てのインバータユニット2aD~2dDのコンデンサ6a~6dが充電される。その後、第2の始動時の制御として、制御装置1Dは、残りのインバータユニット2bD~2dDの正極側開閉器5pb~5pdを投入する。これにより、電源システム10Dの運転が開始される。
 図5中の矢印は、インバータユニット2bD~2dDの正極側開閉器5pb~5pdが投入される前の各インバータユニットの2aD~2dDのコンデンサ6a~6dを充電する電流の流れを示している。図5の矢印で示すように、電源システム10Dには、図4に示す第4の実施形態と同様に、各コンデンサ6a~6dを充電する電流が流れる。
 本実施形態によれば、各インバータユニット2aD~2dDに正極側開閉器5pa~5pdと負極側開閉器5ma~5mdが設けられている電源システム10Dにおいて、第4の実施形態と同様の作用効果を得ることができる。
(第6の実施形態)
 図6は、本発明の第6の実施形態に係る電源システム10Eの構成を示す構成図である。
 電源システム10Eは、図3に示す第3の実施形態に係る電源システム10Bにおいて、インバータユニット2aA~2dAを第5の実施形態に係るインバータユニット2aD~2dDに代え、制御装置1Bを制御装置1Eに代えたものである。電源システム10Eは、単相交流の電力系統4Cと連系する。その他の点については、電源システム10Eは、第3の実施形態と同様である。また、制御装置1Eは、第3の実施形態に係る制御装置1Bと基本的に同様であるため、ここでは、制御装置1Bと異なる部分について主に説明する。
 次に、制御装置1Eによる電源システム10Eの始動時の制御について説明する。
 第1の始動時の制御として、全ての連系交流開閉器9a,9bが最初に開放され、制御装置1Eは、インバータユニット2aDの正極側開閉器5pa及び負極側開閉器5maを投入する。このとき、他のインバータユニット2bD~2dDの正極側開閉器5pb~5pd及び負極側開閉器5mb~5mdは開放されている。また、制御装置1Eは、インバータユニット2aDの上アームを構成するスイッチング素子11a,13aのいずれか1つをオンする。ここでは、U相の上アームのスイッチング素子11aをオンしたものとする。さらに、制御装置1Eは、インバータユニット2aDの下アームを構成するスイッチング素子12a,14aのうちオンした上アームのスイッチング素子11aの相(U相)と異なる相のものをオンする。従って、ここでは、V相の下アームのスイッチング素子14aをオンすることになる。
 正極側開閉器5pa及び負極側開閉器5maが投入されることで、PVアレイ3によりインバータユニット2aDのコンデンサ6aが充電される。さらに、上アームのスイッチング素子11aと下アームのスイッチング素子14aがオンされることで、PVアレイ3の出力電圧は、他のインバータユニット2bD~2dDのそれぞれのコンデンサ6b~6dに印加される。従って、インバータユニット2aDにおいて、正極側開閉器5pa及び負極側開閉器5maが投入され、かつ上アームのスイッチング素子11a及び下アームのスイッチング素子14aがオンされることで、開閉器5pb~5pd,5mb~5mdが投入されていない(開放されている)インバータユニット2bD~2dDのそれぞれのコンデンサ6b~6dも、PVアレイ3により充電される。
 全てのインバータユニット2aD~2dDのコンデンサ6a~6dが充電された後、第2の始動時の制御として、制御装置1Eは、残りのインバータユニット2bD~2dDの正極側開閉器5pb~5pd及び負極側開閉器5mb~5mdを投入する。これにより、電源システム10Eの運転が開始される。
 図6中の矢印は、各インバータユニットの2aD~2dDのコンデンサ6a~6dを充電する電流の流れを示している。図6の矢印で示すように、電源システム10Eには、図3に示す第3の実施形態と同様に、各コンデンサ6a~6dを充電する電流が流れる。
 本実施形態によれば、単相交流電力を出力する電源システム10Eにおいて、第3の実施形態と同様の作用効果を得ることができる。
 なお、第1の実施形態では、電源システム10の始動時の制御において、最初に、1つのインバータユニット2aでのみ、スイッチング素子11aをオンしたが、2以上のインバータユニット2a~2dで同一箇所のスイッチング素子11a~11dをオンしてもよい。例えば、始動時の制御で、最初に、全てのインバータユニット2a~2dで、全ての相の上アームのスイッチング素子11a,13a,15a,…,11d,13d,15dをオンしてもよい。これにより、各コンデンサ6a~6dを充電する電流が流れる回路のインピーダンスを小さくすることができる。他の実施形態についても同様に、2以上のインバータユニットで同一箇所のスイッチング素子をオンすることで、インピーダンスを小さくすることができる。
 各実施形態において、第1の始動時の制御では、開閉器を投入していないインバータユニットのコンデンサを充電するように、開閉器を投入したインバータユニットのスイッチング素子をオンするのであれば、どのスイッチング素子をオンしてもよい。例えば、正極と負極を入れ替えて同様の制御を行ってもよい。具体的には、図2に示す第2の実施形態に係る電源システム10Aにおいて、始動時に、全てのインバータユニット2aA~2dAの正極側開閉器5pa~5pdを投入して、1つのインバータユニット2aAの負極側開閉器5maを投入し、負極側開閉器5maと同極性側にある下アームのスイッチング素子12a,14a,16aのうち少なくとも1つをオンして、全てのインバータユニット2aA~2dAのコンデンサ6a~6dを充電するようにしてもよい。他の実施形態についても同様である。
 第1の実施形態では、第1の始動時の制御として、インバータユニット2aの正極側開閉器5paを投入した後に、インバータユニット2aの上アームを構成する少なくとも1つのスイッチング素子11a,13a,15aをオンしたが、スイッチング素子11a,13a,15aをオンした後に、正極側開閉器5paを投入してもよい。他の実施形態についても同様に、それぞれの実施形態と同様の作用効果を得られるのであれば、開閉器の投入とスイッチング素子のオンは、どちらを先に行ってもよい。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims (10)

  1.  直流側にそれぞれコンデンサが設けられ、直流側にそれぞれ第1の開閉器が設けられ、直流側及び交流側が並列に接続された複数のインバータを制御するインバータ制御装置であって、
     前記複数のインバータの始動時に、前記複数のインバータのうち第1のインバータの前記第1の開閉器を投入し、前記複数のインバータのそれぞれの前記コンデンサを充電するように、少なくとも前記第1のインバータに設けられた第1のスイッチング素子をオンする第1の始動時制御をする第1の始動時制御部と、
     前記第1の始動時制御部による前記第1の始動時制御により、前記複数のインバータのそれぞれの前記コンデンサが充電された後、前記複数のインバータのそれぞれの前記第1の開閉器を投入する第2の始動時制御をする第2の始動時制御部と
    を備えるインバータ制御装置。
  2.  前記第1の始動時制御部は、前記第1の始動時制御に、前記第1のインバータの前記第1の開閉器を投入し、前記第1のインバータの前記第1の開閉器が設けられている極性と同極性側に設けられた前記第1のスイッチング素子をオンする第1の始動時制御をすること
    を含む請求項1に記載のインバータ制御装置。
  3.  前記第1の始動時制御部は、前記第1の始動時制御に、前記第1のインバータの前記第1の開閉器を投入し、前記複数のインバータのそれぞれの前記第1の開閉器が設けられている極性と同極性側にそれぞれ設けられた前記第1のスイッチング素子をオンする第1の始動時制御をすること
    を含む請求項1に記載のインバータ制御装置。
  4.  前記複数のインバータは、それぞれ前記第1の開閉器と逆極性側に設けられた第2の開閉器を備え、
     前記第1の始動時制御部は、前記第1の始動時制御に、前記複数のインバータのそれぞれの前記第2の開閉器を投入すること
    を含む請求項1に記載のインバータ制御装置。
  5.  前記複数のインバータは、それぞれ前記第1の開閉器と逆極性側に設けられた第2の開閉器を備え、
     前記第1の始動時制御部は、前記第1の始動時制御に、前記第1のインバータの前記第1の開閉器及び前記第2の開閉器を投入し、前記第1のインバータの前記第1のスイッチング素子及び前記第1のスイッチング素子と逆極性側で異なる相に設けられた第2のスイッチング素子をオンすること
    を含む請求項1に記載のインバータ制御装置。
  6.  前記複数のインバータは、それぞれ前記第1の開閉器と逆極性側に設けられた第2の開閉器を備え、
     前記第1の始動時制御部は、前記第1の始動時制御に、前記第1のインバータの前記第1の開閉器及び前記第2の開閉器を投入し、前記複数のインバータのそれぞれの前記第1のスイッチング素子及び前記第1のスイッチング素子と逆極性側で異なる相にそれぞれ設けられた第2のスイッチング素子をオンすること
    を含む請求項1に記載のインバータ制御装置。
  7.  前記複数のインバータは、直流電力を三相交流電力に変換すること
    を含む請求項1に記載のインバータ制御装置。
  8.  前記複数のインバータは、直流電力を単相交流電力に変換すること
    を含む請求項1に記載のインバータ制御装置。
  9.  直流側にそれぞれコンデンサが設けられ、直流側にそれぞれ第1の開閉器が設けられ、直流側及び交流側が並列に接続された複数のインバータを制御するインバータ制御方法であって、
     前記複数のインバータの始動時に、前記複数のインバータのうち第1のインバータの前記第1の開閉器を投入し、前記複数のインバータのそれぞれの前記コンデンサを充電するように、少なくとも前記第1のインバータに設けられた第1のスイッチング素子をオンする第1の始動時制御をし、
     前記第1の始動時制御により、前記複数のインバータのそれぞれの前記コンデンサが充電された後、前記複数のインバータのそれぞれの前記第1の開閉器を投入する第2の始動時制御をすること
    を含むインバータ制御方法。
  10.  直流電力を出力する電源と、
     前記電源から出力される直流電力を交流電力に変換し、直流側にそれぞれコンデンサが設けられ、直流側にそれぞれ第1の開閉器が設けられ、直流側及び交流側が並列に接続された複数のインバータと、
     前記複数のインバータの始動時に、前記複数のインバータのうち第1のインバータの前記第1の開閉器を投入し、前記複数のインバータのそれぞれの前記コンデンサを充電するように、少なくとも前記第1のインバータに設けられた第1のスイッチング素子をオンする第1の始動時制御をする第1の始動時制御部と、
     前記第1の始動時制御部による前記第1の始動時制御により、前記複数のインバータのそれぞれの前記コンデンサが充電された後、前記複数のインバータのそれぞれの前記第1の開閉器を投入する第2の始動時制御をする第2の始動時制御部と
    を備える電源システム。
PCT/JP2015/071378 2015-04-29 2015-07-28 インバータ制御装置 WO2016174781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017515356A JP6516835B2 (ja) 2015-04-29 2015-07-28 インバータ制御装置
EP15890764.2A EP3291434B1 (en) 2015-04-29 2015-07-28 Inverter control device
CN201580079307.8A CN107636949B (zh) 2015-04-29 2015-07-28 逆变器控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/698,897 US9762143B2 (en) 2015-04-29 2015-04-29 Devices and methods for controlling current in inverters
US14/698,897 2015-04-29

Publications (1)

Publication Number Publication Date
WO2016174781A1 true WO2016174781A1 (ja) 2016-11-03

Family

ID=57199248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071378 WO2016174781A1 (ja) 2015-04-29 2015-07-28 インバータ制御装置

Country Status (6)

Country Link
US (1) US9762143B2 (ja)
EP (1) EP3291434B1 (ja)
JP (1) JP6516835B2 (ja)
CN (1) CN107636949B (ja)
TW (1) TWI571036B (ja)
WO (1) WO2016174781A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314099B2 (ja) * 2015-02-24 2018-04-18 株式会社日立製作所 電力変換装置
JP6717239B2 (ja) * 2017-03-07 2020-07-01 トヨタ自動車株式会社 昇圧コンバータ装置
DE102017206579A1 (de) * 2017-04-19 2018-10-25 Robert Bosch Gmbh Konverter zum Steuern von Leistungsflüssen zwischen Gleichstromquellen
US10554149B2 (en) * 2017-11-20 2020-02-04 Solaredge Technologies Ltd. Providing positional awareness information and increasing power quality of parallel connected inverters
ES2717345A1 (es) * 2017-12-20 2019-06-20 Power Electronics Espana S L Convertidor de potencia con puesta en marcha en frio y metodo de puesta en marcha en frio para el convertidor de potencia
US10381951B1 (en) * 2018-11-30 2019-08-13 The Florida International University Board Of Trustees Family of modular quasi-resonant inverters
CN109787464B (zh) * 2019-03-27 2022-07-12 阳光电源股份有限公司 一种拓扑单元并联保护方法、装置及系统
CN115398790A (zh) * 2021-03-05 2022-11-25 东芝三菱电机产业系统株式会社 电力变换器
DE102021119899B4 (de) * 2021-07-30 2023-05-25 Sma Solar Technology Ag Verfahren zum betrieb eines wechselrichters und wechselrichter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074916A (ja) * 2004-09-02 2006-03-16 Toshiba Corp 待機2重系車両用電源装置
JP2008167532A (ja) * 2006-12-27 2008-07-17 Toshiba Mitsubishi-Electric Industrial System Corp 半導体電力変換装置
JP2009195048A (ja) * 2008-02-15 2009-08-27 Mitsubishi Electric Corp Dc/dc電力変換装置
JP2014027826A (ja) * 2012-07-30 2014-02-06 Mitsubishi Electric Corp 電力変換装置、電源切替装置、住宅及び電力変換方法
JP2014158340A (ja) * 2013-02-15 2014-08-28 Mitsubishi Electric Corp 電力変換装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243555A (ja) * 1997-02-21 1998-09-11 Oki Electric Ind Co Ltd 突入電流制限回路
JP3826614B2 (ja) * 1999-04-14 2006-09-27 セイコーエプソン株式会社 スイッチング電源装置および周辺機器
JP2005341732A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 電圧変換装置ならびにそれを備えた負荷駆動装置および車両
EP1852964B1 (en) * 2005-02-25 2012-01-18 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
JP4552904B2 (ja) * 2006-06-23 2010-09-29 トヨタ自動車株式会社 車両の電源装置およびそれを搭載する車両
JP4760723B2 (ja) * 2006-11-20 2011-08-31 トヨタ自動車株式会社 電源回路の制御装置
JP2010041840A (ja) * 2008-08-06 2010-02-18 Toyo Electric Mfg Co Ltd 車両用電源装置
JP5234050B2 (ja) * 2010-04-27 2013-07-10 株式会社デンソー 車両用電源装置
JP5177245B2 (ja) * 2010-10-25 2013-04-03 トヨタ自動車株式会社 車両およびその制御方法
WO2012133706A1 (ja) * 2011-03-31 2012-10-04 三洋電機株式会社 電源システム、電源装置及び電源システム又は電源装置を備える車両
JP5522329B1 (ja) * 2012-09-11 2014-06-18 中西金属工業株式会社 垂直搬送機を含む駆動系の駆動制御装置
US9281761B2 (en) * 2013-01-18 2016-03-08 General Electric Company Control scheme for current balancing between parallel bridge circuits
US9602025B2 (en) * 2013-07-12 2017-03-21 Infineon Technologies Austria Ag Multiphase power converter circuit and method
DE102013110240B4 (de) * 2013-09-17 2017-09-07 Sma Solar Technology Ag Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
EP2869445A1 (en) * 2013-11-01 2015-05-06 DET International Holding Limited Adaptable rectifier arrangement for operation with different AC grids
US20150145462A1 (en) * 2013-11-25 2015-05-28 Rockwell Automation Technologies, Inc. Method and apparatus for current auto balancing for parallel converter systems
CN204190626U (zh) * 2014-04-25 2015-03-04 广州智光电气股份有限公司 四象限二极管箝位式三电平功率变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074916A (ja) * 2004-09-02 2006-03-16 Toshiba Corp 待機2重系車両用電源装置
JP2008167532A (ja) * 2006-12-27 2008-07-17 Toshiba Mitsubishi-Electric Industrial System Corp 半導体電力変換装置
JP2009195048A (ja) * 2008-02-15 2009-08-27 Mitsubishi Electric Corp Dc/dc電力変換装置
JP2014027826A (ja) * 2012-07-30 2014-02-06 Mitsubishi Electric Corp 電力変換装置、電源切替装置、住宅及び電力変換方法
JP2014158340A (ja) * 2013-02-15 2014-08-28 Mitsubishi Electric Corp 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291434A4 *

Also Published As

Publication number Publication date
US20160322917A1 (en) 2016-11-03
TWI571036B (zh) 2017-02-11
TW201639282A (zh) 2016-11-01
CN107636949B (zh) 2020-03-20
EP3291434B1 (en) 2020-09-09
JPWO2016174781A1 (ja) 2018-02-15
JP6516835B2 (ja) 2019-05-22
CN107636949A (zh) 2018-01-26
EP3291434A1 (en) 2018-03-07
US9762143B2 (en) 2017-09-12
EP3291434A4 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
WO2016174781A1 (ja) インバータ制御装置
Rajakaruna et al. Steady-state analysis and designing impedance network of Z-source inverters
JP6099951B2 (ja) 電力変換装置
JP5049964B2 (ja) 電力変換装置
JP6174498B2 (ja) 電力変換装置
JP5226873B2 (ja) 太陽光発電用パワーコンディショナ
WO2015198447A1 (ja) 無停電電源装置
JP2004229493A (ja) インバータ駆動システム
JP2013085325A (ja) 3レベル電力変換回路システム
JP2015073423A (ja) 電動車用電力変換システム
DK2807738T3 (en) Multicell CONVERT
JP5805118B2 (ja) 電力変換装置
JP5095330B2 (ja) インバータ装置
JP6666636B2 (ja) 電力変換装置
JP7193634B2 (ja) 無停電電力供給マイクログリッドシステム
JP2013081309A (ja) 電力変換装置
JP5369047B2 (ja) 電力変換装置
JP2008283729A (ja) 無停電電源装置
JP6670438B2 (ja) 電力変換装置
JP6746046B1 (ja) 電力変換装置
WO2017216914A1 (ja) 電力変換装置および電力供給システム
JP7186070B2 (ja) パワーコンディショナ装置
Nikouie et al. Operation under fault conditions of the stacked polyphase bridges converter
JP6512710B2 (ja) 電力変換装置
RU2609770C1 (ru) Устройство гарантированного электропитания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE