WO2016172997A1 - 一种轨道交通的实现方法以及用于该方法中的车辆 - Google Patents

一种轨道交通的实现方法以及用于该方法中的车辆 Download PDF

Info

Publication number
WO2016172997A1
WO2016172997A1 PCT/CN2015/078547 CN2015078547W WO2016172997A1 WO 2016172997 A1 WO2016172997 A1 WO 2016172997A1 CN 2015078547 W CN2015078547 W CN 2015078547W WO 2016172997 A1 WO2016172997 A1 WO 2016172997A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
line
vehicle
straight
change
Prior art date
Application number
PCT/CN2015/078547
Other languages
English (en)
French (fr)
Inventor
罗运明
Original Assignee
罗运明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗运明 filed Critical 罗运明
Publication of WO2016172997A1 publication Critical patent/WO2016172997A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/02Dead axles, i.e. not transmitting torque
    • B60B35/10Dead axles, i.e. not transmitting torque adjustable for varying track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/28Rail tracks for guiding vehicles when running on road or similar surface

Definitions

  • the invention relates to the technical field of rail transit, and in particular to a method for realizing rail transit and a vehicle used in the method.
  • Rail transit has the characteristics of large volume, fast speed, safety, on-time, environmental protection, energy conservation and land use.
  • countries all over the world have generally recognized that the fundamental way to solve urban traffic problems is to give priority to the development of urban public transport systems with rail transit as the backbone.
  • the existing rail transit adopts the rapid mass transit public transportation of the wheel-rail operation mode, and the running vehicle is usually an electric locomotive with multiple carriages, and the orbit of the operation is a rail with strong bearing.
  • this kind of rail transit is fast and has a large volume of traffic, its biggest drawback is that it can only be operated between fixed stations.
  • the line is simple, and usually only has two directions of operation. In terms of convenience, it is not able to achieve the efficacy of cars in road traffic.
  • the present inventors have been tempering to propose a new rail transit mode that combines the convenience of road traffic with rail transit, and introduces the convenience of the car into the track.
  • the vehicle has the advantages of rail transit at the same time, and has the convenience of automobile traffic.
  • the track of the rail transit is carried out on a horizontal plane. This requires that a larger range of space is required to achieve the transformation line, and it is difficult to achieve a variable line (such as bifurcation, confluence) in a limited space, or interlacing between tracks.
  • another shortcoming of rail transit is the high cost and high operating costs, which requires a lot of capital construction and maintenance.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a method for realizing rail transit.
  • the present invention adopts the following technical solution: the method includes a track and a vehicle, and the vehicle runs on a corresponding track, and when the vehicle is running normally, the wheel of the vehicle passes the track limit.
  • the system travels along the track, the width of the track and the track of the vehicle remain unchanged; when the vehicle needs to divide the line, the track will form a straight track and a variable line track, and the vehicle of the invariant line will continue to travel along the straight track, which needs to be changed.
  • the line vehicles enter the variable line track to change the line; the straight track and the variable line track are distributed up and down, starting from the straight track and the variable line track splitting mouth, and the track width of the straight track remains unchanged, the vehicle wheel of the invariant line The distance remains unchanged and continues along the straight track; starting from the straight track and the variable track orbit, the track width of the changed track gradually narrows, and when the track width of the changed track reaches the specified width, the changed track will sink.
  • the variable line vehicle enters the variable line orbit, its track becomes smaller at the same time, adapts to the width of the variable line track, and sinks along the line of the variable line, and changes the line along the distribution of the track; the vehicle needs to meet the line.
  • the vehicle of the invariant line continues to travel along the straight track until it enters the track after the intersection, the width of the straight track and the track of the vehicle.
  • the change line orbit is combined with the intersection, the line of orbit begins to rise to meet the straight track.
  • the track width of the line is gradually widened.
  • the track has a guiding slot
  • the vehicle wheel is located in the guiding slot and travels along the guiding slot.
  • the inner surface of the guiding groove is a circular arc surface
  • a friction plate is provided on the bottom surface of the inner surface of the groove, and the frictional force required for traveling or braking can be provided to the wheel of the vehicle through the friction plate, and the electric conductor for power supply is fixed to the friction plate.
  • the straight track and the change line track will meet, the straight track is the original straight track, or the straight track is a straight track of other paths; That is, the changed line tracks rejoin into the original track, or the changed line tracks meet into a track in a new path.
  • a warning facility is provided at the position and the intersection of the straight track and the change track track, to remind the traveling vehicle to travel in an orderly manner.
  • the warning facility may be a traffic light, reminding the traveling vehicle that there is a splitting mouth in front of the vehicle, and needs to slow down and slow down to ensure that the changed line vehicle starts to adjust to enter the variable line track.
  • use a traffic light to control the straight-through vehicles entering the interchange or the vehicles in the line to travel in an orderly manner to prevent traffic accidents.
  • the present invention realizes the vehicle change line by changing the wheel track of the wheel and the width of the corresponding track.
  • the present invention has the advantages of the orderly travel of the conventional rail transit, and can ensure that the vehicle does not pass the track restriction. Arbitrary change lines and intersperses can realize orderly traffic.
  • the present invention also breaks through the problem that it is difficult to change lines in the existing rail transit.
  • the present invention makes the line invariant by changing the wheel track and the width of the corresponding track.
  • the vehicle continues to advance along the straight track, and the changed line vehicle realizes turning, pitting, etc. through the variable line track.
  • the variation of the present invention changes the manner in which the existing rail transit is realized on a horizontal plane.
  • the present invention realizes the staggered transition of the vehicle in the vertical direction, so that the space required for rail transit can be greatly reduced.
  • the line changing track needs to change the track width, and then sinking the branching, or the variable line track first rises to the same horizontal plane as the straight track, and the width of the track is further changed. That is to say, the above technical solution adopts: when the vehicle branches, the first reduction rail is used, and then the sinking is performed; when the vehicles are merged, the method of first rising and then expanding the rail is adopted.
  • the change of the track width and the change of the track height position are separately performed, and the present invention can also perform the two operations simultaneously, that is, the present invention can also adopt the following technical solution: when the vehicle needs to divide the line, the track is branched.
  • a branching track is formed, and the branching track is a gradient track with one end wide and one end narrow, wherein the narrow end is connected with the track before the branching line, from the narrow end
  • the track width of the split port track will gradually widen inward until it is docked with the straight track and the change track at the wider end; when the vehicle needs to meet the change line, the straight track changes
  • the line track will meet, and one end intersection track will be set before the straight track intersects with the change line track.
  • the intersection track is a graded track with one end wide and one end narrow, wherein the wider end is simultaneously with the straight track and the variable line track. Docking, the width of the track of the intersection track will gradually narrow outward from the end of the lower end to the narrow end, until the narrow end Track after docking intersection.
  • the above technical solution is a further improvement of the foregoing technical solution, in order to make the change line (branch or intersection) excessively smoother, and increase the branching track and the intersection track, the branching track and the intersection track pass through itself The change in width, the vehicle that is changing the line will complete the change of the vehicle track in the branching track and the intersection track.
  • Another technical problem to be solved by the present invention is to provide a vehicle for use in an implementation method of rail transit.
  • the present invention solves the problem of how to realize the change of the track of the vehicle according to the change of the track width in time.
  • the technical solution adopted by the present invention is: A vehicle in a method, the vehicle includes a frame and a wheel set mounted on the frame, each set of wheels includes left and right wheels corresponding to the left and right, and the wheel set is driven by an electric motor to drive the left and right wheels to rotate.
  • the left and right wheels in each group of wheels are respectively fixed with one rotating shaft, and the two rotating shafts of the left and right wheels are linked by one sleeve, and the two rotating shafts of the left and right wheels are opposite in the axial direction of the sleeve. Or run in opposite directions to change the spacing between the left and right wheels.
  • a hydraulic device is disposed between the left and right wheels, and the two rotating shafts of the left and right wheels are driven by the hydraulic device to achieve relative or opposite operation along the axial direction of the sleeve.
  • the rotating shafts of the left and right wheels in the wheel set are respectively connected to the frame through a link mechanism.
  • the rotating shafts of the left and right wheels in the wheel set are respectively suspended under the frame by the suspension.
  • the rotating shaft of the corresponding left and right wheels in the wheel set is linked by a sleeve, wherein the connection relationship between the rotating shaft and the sleeve is a nested connection, that is, the rotating shaft is in the circumferential running direction and the sleeve Keeping it relatively fixed, the shaft can be moved in the axial direction along the sleeve, so that the spacing between the two wheels can be adjusted to accommodate the change in track width.
  • FIG. 1 is a schematic view of a portion of a split mouth according to an embodiment of the present invention.
  • Figure 2 is a schematic view of the junction of the first embodiment of the present invention.
  • Embodiment 3 is a front elevational view showing a track distribution according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic plan view showing a track distribution according to Embodiment 1 of the present invention.
  • Figure 5 is a cross-sectional view of A-A of Figure 1;
  • Figure 6 is a schematic cross-sectional view of B-B of Figure 1;
  • Figure 7 is a top plan view of the second embodiment of the present invention.
  • Figure 8 is a schematic view showing an embodiment of a vehicle in the present invention.
  • Figure 9 is a schematic view showing the second embodiment of the vehicle of the present invention.
  • Figure 10 is a schematic view showing the third embodiment of the vehicle of the present invention.
  • Figure 11 is a perspective view showing the structure of a fourth embodiment of the vehicle of the present invention.
  • Figure 12 is a perspective view showing the structure of another embodiment of the vehicle of the present invention.
  • Figure 13 is a perspective structural view showing a transmission portion of a fourth embodiment of the vehicle of the present invention.
  • Figure 14 is a front elevational view showing the transmission portion of the fourth embodiment of the vehicle of the present invention.
  • Figure 15 is a cross-sectional view of the track of the present invention.
  • Figure 16 is a perspective view of a split rail or intersection rail in the third embodiment of the present invention.
  • Figure 17 is a cross-sectional view showing a branching rail or an intersection rail in the third embodiment of the present invention.
  • the present invention mainly realizes how to realize the lane change and intersection of the vehicle when the vehicle enters the platform.
  • the invention comprises: a track 1 and a vehicle 2, the track 1 can be arranged in parallel, and the vehicle 2 runs in one direction along the corresponding track 1.
  • the track 1 has two rails, and each of the rails is formed with a concave arcuate guide groove 10 at the top end thereof.
  • the guide groove 10 serves as a guide running groove of the rail to restrict the wheel 20 from running along the guide groove.
  • the vehicle 2 employs an electric four-wheeled rail vehicle with its own power. When traveling, the wheel 20 just falls into the guide groove 10 at the top end of the rail, and a lateral stabilizing force is formed on the wheel 20 through the guide groove 10.
  • the bottom surface of the inner surface of the guide groove 10 is provided with a friction plate 101 through which the frictional force required for traveling or braking can be provided to the wheel 20 of the vehicle 2.
  • a conductor 102 for power supply is fixed to the friction plate 101.
  • the track of the vehicle 2 can be changed.
  • the wheelbase of the vehicle is L.
  • the track of the vehicle will be changed from L to L1, where L>L1.
  • the wheels 20 of the vehicle 2 are restricted from traveling along the track 1 by the grooves 10 of the track 1, the width of the track 1 and the track of the vehicle 2 remain unchanged, and the track and track width are both L.
  • the traffic operation state realized in the first embodiment is that several vehicles 2 are traveling on the track 1 and will enter the change line hub 5. All vehicles 2 will be diverted at the splitting port 3 in front of the changeover hub 5 for continuous driving and line changing. That is, these traveling vehicles include: a vehicle 21 that is invariant and a required vehicle 22 to be changed.
  • the track 1 will be branched by the splitting port 3 to form a straight track 11 and a line track 12, and the invariant line of the vehicle 21 is along the straight track. 11 continues to travel, and the vehicle 22 that needs to change the line enters the change line track 12 to perform operations such as changing lines and parking.
  • the straight track 11 and the variable line track 12 are distributed up and down, starting from the straight track 11 and the variable line track 12, and the track pitch of the straight track 11 remains unchanged, and the track L of the constant line vehicle 21 remains unchanged. And continuing along the straight track 11; starting from the straight track 11 and the variable track 12, the track pitch of the line track 12 is gradually narrowed, and the line track 12 will sink, and the line changing vehicle 22 is entering the line.
  • the track length L becomes smaller at the same time, adapts to the width of the variable line track 12, and at the same time starts to sink along the line track 12 until the track of the line track 12 and the track of the changed line vehicle 22 become L1. At this point, the vehicle has achieved staggered shunting.
  • the invariant line vehicle 21 continues to travel along the straight track 11, and the line changing vehicle 22 implements a line change along the line track 12.
  • the change line vehicle 22 entering the change line track 12 can be parked on the change line track 12 to achieve the purpose of the vehicle standing by the station and the passenger getting on and off the vehicle.
  • the straight track 11 and the change line track 12 will meet at the intersection 4, and the constant line vehicle 21 continues to travel along the straight track 11 until the track after entering the intersection 4 In 1 , the width of the straight track 11 and the track L of the vehicle do not change; during the process of joining the line track 12 with the intersection 4, the track pitch gradually widens from L1 to L.
  • the change line track 12 starts to rise to meet the straight track 11, and the changed line vehicle 22 traveling along the change line track 11 has a larger track length, changes from L2 to L, and starts to rise at the same time, along the change line track.
  • the distribution of 12 proceeds until it meets the straight track 11 at the intersection 4.
  • a changeover hub 5 is required at the split port 3 and the junction 4.
  • the straight track 11 and the change line track 12 are vertically staggered.
  • the change line hub 5 according to the present invention is equivalent to an overpass or a platform in the current highway traffic, and the vehicle realizes a branch line of branching and intersection in the change line hub 5.
  • the change line hub 5 can also serve as a platform, and the change line vehicle 22 that needs to stop to realize the passengers and passengers will enter the change line track 12 to stop, and the passengers can get on and off the vehicle here.
  • the line changing vehicle 22 will start to sink by the branching port 3, in order to ensure that the straight track 11 does not block the line changing vehicle, Starting from the split port 3, there is no foundation between the straight track 11, and the straight track 11 is directly disposed on the wall base 6 on both sides until the depth of the line track 12 sinks is higher than the height of the vehicle 2, and then the foundation is set. 7.
  • the straight-through vehicle 21 is directly suspended from the straight track 11 on both sides of the wall base 6 during the journey from the branch opening 3 to the change-line hub 5.
  • the straight track 11 and the variable line track 12 meet at the intersection 4, the straight track There is also no foundation between the roads 11, and the straight track 11 is directly disposed on the wall bases 6 on both sides, and the foundation 7 is set up after the change line track 12 rises and meets the straight track.
  • a warning facility is provided at the position of the straight track and the change track branching port 3 and at the intersection 4 to remind the traveling vehicle to travel in an orderly manner.
  • the warning facility may be a traffic light, reminding the traveling vehicle that there is a splitting mouth in front of the vehicle, and needs to slow down and slow down to ensure that the changed line vehicle starts to adjust to enter the variable line track. Or use a traffic light to control the straight-through vehicles entering the interchange or the vehicles in the line to travel in an orderly manner to prevent traffic accidents.
  • this is a schematic diagram of Embodiment 2 of the present invention, which realizes how to realize the turning of the vehicle at the intersection.
  • a north-south track 13 and an east-west track 14 there are two orbits in the running direction: a north-south track 13 and an east-west track 14.
  • the two tracks are staggered at the intersection 100, and are staggered by the existing overpass, and do not affect each other. .
  • What is needed in this embodiment is that the turning vehicle 23 traveling from the south to the north turns right after the intersection 100, and then merges into the vehicle 2 traveling from west to east. That is, the turning vehicle 23 that is to be changed in line needs to be incorporated into the track 14 by the track 13.
  • the implementation method of this embodiment is the same as that of the first embodiment. The difference is that in the first embodiment, the vehicle is changed along the same track, split, and then converted and merged into the same track. In the second embodiment, the turning vehicle 23 that is disguised is changed along a track, branched, and then converted and merged into another track.
  • the specific implementation is that several vehicles 2 travel on the track 13 from south to north and will enter the change line hub 5. All vehicles 2 will be diverted at the splitting port 3 in front of the changeover hub 5 for continuous driving and line changing. That is, these traveling vehicles include: a constant line vehicle 21 and a turning vehicle 23 that requires a line change.
  • the track 13 will be branched by the splitting port 3 to form a straight track 11 and a turning track 15, and the invariant line vehicle 21 continues to travel north along the straight track 11, and the turning vehicle 23 that needs to be changed enters the turning track 15 to perform a line changing operation.
  • the track pitch of the straight track 11 remains unchanged, the track of the constant line vehicle 21 remains unchanged, and continues along the straight track 11; the straight track 11 and the change track 12 Starting from the splitting port 3, the track pitch of the turning track 15 is gradually narrowed, and the turning track 15 will sink.
  • the turning vehicle 23 enters the turning track 15 the track distance L is simultaneously reduced, and the distance from the turning track 15 is adapted, and At the same time, it begins to sink along the turning track 15 until the width of the turning track 15 and the turning wheel 23 turn into L1, at which time the vehicle has achieved staggered shunting.
  • the invariant line vehicle 21 continues to travel along the straight track 11
  • the turning vehicle 23 realizes a line change along the turning track 15, and at this time, the turning track 12 is provided with a curve, and the turning vehicle 23 entering the turning track 12 is made to turn the vehicle right by the curve.
  • the turning vehicle 23 When the turning vehicle 23 turns on the turning track 15, it needs to be reincorporated into the track 14 from the west to the east, at which time the straight track 11' and the turning track 15 in the track 14 will meet at the intersection 4, and the normal traveling vehicle 2 continuing to travel along the straight track 11' of the track 14 until passing through the intersection 4, the width of the straight track 11' and the track L of the vehicle are not changed; during the process of combining the turning track 15 with the junction 4,
  • the track pitch gradually widens and changes from L1 to L.
  • the turning track 15 starts to rise to meet the straight track 11', and the turning vehicle 23 traveling along the turning track 15 has a larger wheel pitch, changes from L2 to L, and simultaneously starts to rise, and distributes along the turning track 15. It travels until it meets the straight track 11' at the intersection 4. Thereby, it is realized that the turning vehicle 23 traveling from the south to the north turns right after the intersection, and then merges into the straight track 11' traveling from west to east.
  • the present invention needs to perform two actions to realize the change of the vehicle, the pitch of the track needs to be changed, and at the same time, the height of the track needs to be changed to realize the interlacing of the track.
  • the pitch of the track needs to be changed, and at the same time, the height of the track needs to be changed to realize the interlacing of the track.
  • the lane change mode adopted by the vehicle that needs to be changed is the following manner: when the vehicle branches, the change of the track pitch is synchronous with the lower layer of the track; when the vehicles meet, the track pitch changes and the track The lower layers are also synchronized.
  • the shortcoming of this method is that when the track pitch change and the up and down height change are synchronously performed, the vehicle 2 also needs to change the track distance and enter the down or up track at the same time, and the two action synchronization operations are more troublesome and may be carried.
  • the present invention can adopt the sequential implementation to complete the two steps of the change line. The specific method is as follows:
  • the vehicle When the vehicle needs to divide and change the line, it starts from the straight track and the variable track orbit, and the track pitch of the changed track gradually narrows.
  • the track width of the changed track reaches the specified width, the changed track begins to sink and change.
  • the vehicle of the line enters the variable line orbit, its track becomes smaller at the same time, adapts to the spacing of the variable line track, and sinks along the line of the variable line, and changes the line along the distribution of the track of the variable line. That is to say, the scheme adopts changing the track width firstly when changing the line of the vehicle, and then changing the height of the track, that is, first shrinking the rail and then sinking.
  • the change line track When the vehicle needs to meet the change line, when the change line track is combined with the intersection, the change line track first starts to rise to meet the straight track, and when the change line track rises to the same level as the straight track, the change line track The track spacing begins to gradually widen until it meets the straight track, while the vehicle traveling along the variable line track has its wheelbase at the same time, and the distribution along the line of the change line continues until it intersects with the straight track. That is to say, the scheme adopts the change of the height of the track before changing the line of the vehicle, and then changes the spacing of the track, that is, first rises and then expands the track. As for other implementation methods, the same as the foregoing embodiments, and details are not described herein again.
  • the vehicle 2 of the present invention includes a frame 21 and a wheel set 22 mounted on the frame 21, each set of wheels.
  • the group 22 includes left and right wheels 23, 24 corresponding to the left and right, and the left and right wheels 23, 24 of each group of wheels 22 are fixed to one of the rotating shafts 25, 26, respectively, and the two rotating shafts 25 of the left and right wheels 23, 24, 26 is interlocked by a sleeve 27, and the two rotating shafts 25, 26 of the left and right wheels 23, 24 are operated in opposite or opposite directions along the axial direction of the sleeve 27 to change between the left and right wheels 23, 24. Pitch.
  • the structure shown in Fig. 8 is a first embodiment of the vehicle 2 of the present invention.
  • the left and right wheels 23, 24 of the vehicle 2 are of a telescopic structure, that is, the shafts of the left and right wheels 23, 24. 25, 26 and the sleeve 27 are inserted and fitted.
  • the shaft 27 serves as a transmission shaft of the vehicle 2, and is coupled to the left and right wheels 23, 24 in a spline-like manner to achieve torque transmission.
  • the rotation shafts 25, 26 of the left and right wheels 23, 24 are horizontally movable along the sleeve 27, so that the track between the left and right wheels 23, 24 is changed from L1 to L, or the track is changed from L to L1.
  • the manner in which the shafts 25, 26 are horizontally moved along the sleeve 27 can be achieved by hydraulic means.
  • a second embodiment of the vehicle 2 is a second embodiment of the vehicle 2:
  • the wheel of the vehicle 2 is of a swing type structure.
  • the rotating shafts 25, 26 of the left and right wheels 23, 24 in the wheel set are respectively connected to the frame 21 via the link mechanism 28, and when the rotating shafts 25, 26 are horizontally moved along the sleeve 27, they pass through the link mechanism 28.
  • the connection angle between the wheel set and the frame 21 is adjusted, thereby achieving smooth adjustment of the spacing between the left and right wheels.
  • a third embodiment of the vehicle 2 is a third embodiment of the vehicle 2:
  • the wheel 20 of the vehicle 2 is of a suspended structure.
  • the rotating shafts 25, 26 of the left and right wheels 23, 24 in the wheel set are suspended below the frame by suspension members 29, respectively.
  • the rotating shafts 25, 26 are horizontally moved along the sleeve 27, the height of the frame 21 is adjusted by the suspension member 29, thereby achieving smooth adjustment of the spacing between the left and right wheels.
  • the vehicle 2 in this embodiment includes: a frame 2 01 and a wheel set 202 mounted on the frame 201, each set of wheel sets 202 includes left and right wheels 202, 204 corresponding to the left and right, and left and right wheels 203, 204 of each set of wheel sets 202 are respectively coupled to a rotating shaft 205, 206 fixed, the two rotating shafts 205, 206 of the left and right wheels 23, 24 are connected by a sleeve 207, the two ends of the sleeve 207 are fixed to the frame 201 through the bearing seat, and the left and right wheels 203, 204
  • the two rotating shafts 205, 206 are operated in opposite or opposite directions along the axial direction of the sleeve 207 to change the spacing between the left and right wheels 203, 204.
  • the motor 210 can be rotated by the worm gear drive drive sleeve 207 to drive the left and right wheels 203, 204 fixed to the rotating shafts 205, 206.
  • the frame 201 provides primary support by supporting a suspension mechanism.
  • the support suspension mechanism includes: a fixing sleeve 208 fixed to the frame 201, left and right support shafts 211, 212 nested in the fixing sleeve 208, and opposite sides of the left and right support shafts 211, 212 are formed. The outer sides of the opposite sides are respectively rotatably suspended on the rotating shafts 205 and 206 by the connecting members 213.
  • Figure 13 is a schematic view of the internal structure after the fixing sleeve 208 and the sleeve 207 are removed.
  • the left and right support shafts 211, 212 and the left and right shafts 205, 206 are operated in opposite or opposite directions by the hydraulic device 220.
  • the hydraulic device 220 has a hydraulic cylinder having left and right piston rods 221 and 222 extending at both ends thereof, and the left and right piston rods 221 and 222 are fixed to the left and right support shafts 211 and 212, respectively.
  • the left and right piston rods 221, 222 achieve synchronized relative or opposing operation, thereby propelling the relative or opposing operation of the left and right support shafts 211, 212, thereby driving the relative or opposing operation of the left and right wheels 203, 204.
  • a shock absorbing device such as a damper spring may be attached to the connecting member 213 for the purpose of improving comfort.
  • the track when the vehicle needs to divide the line, the track will enter a branching track 110 before the branching forms a straight track and a line track, and the branching track 110 is a gradient track with one end wide and one end narrow.
  • the narrower end 1101 is connected to the track before the branching line, and the width of the track of the branching track will gradually widen from the narrower end to the wider end, until the wider end 1 102 is simultaneously docked with the straight track and the variable line track; when the vehicle needs to meet the change line, the straight track and the change line track will meet, and before the straight track and the change line track meet, one end intersection track will be set, and the intersection track is A gradient track with one end wide and one end narrow, wherein the wider end is simultaneously connected to the straight track and the variable line track, and the track width of the intersection track gradually changes outward from the wider end to the narrow end. Narrow until the narrower end meets the merged track.
  • the method of dividing and intersecting the straight track and the variable line track is realized by the branching track 110 or the intersection track, so as to ensure that the track of the changed line is directly in the track when the change occurs. Internally completed, no need to separate rails, which further enhances the safety of the vehicle during the orbital process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

一种轨道交通的实现方法以及用于该方法中的车辆(2)。通过改变车轮(20)的轮距以及对应轨道(1)的间距实现车辆(2)变线,需要变线的车辆(2)将改变车轮(20)的轮距,轮距变窄,然后下行进入变线轨道中,从而实现分岔变线,反之就可以实现交汇变线。通过改变车轮的轮距以及对应轨道的间距,令不变线车辆(2)沿直行轨道(11)继续前进,而变线车辆(2)通过变线轨道(12)实现转弯、进站等操作。在竖直方向上实现车辆的交错变线,改变现有轨道交通在水平面上实现的方式。

Description

一种轨道交通的实现方法以及用于该方法中的车辆 技术领域:
本发明涉及轨道交通技术领域,特指一种轨道交通的实现方法以及用于该方法中的车辆。
背景技术:
轨道交通具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点。面对日益堵塞的交通路线,世界各国都普遍认识到:解决城市的交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。
现有的轨道交通中采用的是轮轨运转方式的快速大运量公共交通,其运行的车辆通常为具有多节车厢的电力机车,并且其运行的轨道为具有较强承载的钢轨。这种轨道交通虽然速度快、运量大,但是其存在的最大缺陷就是只能在固定站点间运行,线路简单,通常只有正反两个运行方向。就便利性而言,其还无法达到公路交通中汽车的功效。
本发明人一直想提出一种将公路交通的便利性与轨道交通结合的新型轨道交通模式,将汽车的便利性引入到轨道中。令车辆在同时具有轨道交通的优点,又兼具汽车交通的便利,不会出现任意的变线、穿插,可实现交通的有序,但是轨道交通的轨道在变线是在水平面上进行的,这样就要求其需要更大范围的空间才可实现变线,难以实现在有限空间的变线(如分岔、汇合),或者轨道之间的交错。另外,轨道交通另一个不足就是造成成本以及运营成本高昂,需要投入大量的资金建设和维护。正式基于上述问题,本发明人经过不断的设计,提出以下技术方案。
发明内容:
本发明所要解决的技术问题就在于克服现有技术的不足,提供一种轨道交通的实现方法。
为了解决上述技术问题,本发明采用了下述技术方案:该方法中包括有轨道和车辆,车辆在对应的轨道上运行,车辆正常行驶时,车辆的车轮通过轨道的限 制沿轨道行进,轨道的宽度与车辆的轮距保持不变;车辆需要分岔变线时,轨道将分岔形成直行轨道与变线轨道,不变线的车辆沿直行轨道继续行进,需要变线的车辆进入变线轨道进行变线;所述的直行轨道与变线轨道采用上下分布,由直行轨道与变线轨道分岔口开始,直行轨道的轨道宽度保持不变,不变线的车辆轮距保持不变,沿直行轨道继续行进;由直行轨道与变线轨道分岔口开始,变线轨道的轨道宽度逐渐变窄,当变线轨道的轨道宽度达到指定宽度后,变线轨道将下沉,变线的车辆在进入变线轨道时,其轮距同时变小,与变线轨道的宽度适应,并沿变线轨道下沉,沿变线轨道的分布进行变线;车辆需要交汇变线时,直行轨道与变线轨道将进行交汇,不变线的车辆沿直行轨道持续行进,直至进入交汇后的轨道中,直行轨道的宽度和车辆的轮距不发生改变;变线轨道在与交汇处结合时,变线轨道开始升高,以与直行轨道交汇,当变线轨道升高到与直行轨道同一水平面时,变线轨道的轨道宽度逐渐的变宽,直至与直行轨道交汇,同时沿变线轨道行进的车辆其轮距同时变大,沿变线轨道的分布进行直至与直行轨道交汇。
进一步而言,上述技术方案中,所述的轨道具有一导向槽,所述的车辆车轮位于该导向槽内,并沿导向槽行进。
进一步而言,上述技术方案中,所述的导向槽内表面为圆弧面,所述的导
向槽内表面的底面设置有摩擦片,通过摩擦片可为车辆的车轮提供行进或制动所需要的摩擦力,于摩擦片上固定有用于供电用的导电体。
进一步而言,上述技术方案中,车辆需要交汇变线时,直行轨道与变线轨道将进行交汇,所述的直行轨道为原始的直行轨道,或者所述的直行轨道为其他路径的直行轨道;即,所述的变线轨道重新交汇进入原有的轨道中,或者所述的变线轨道交汇进入一条新的路径中的轨道中。
进一步而言,上述技术方案中,于所述直行轨道与变线轨道分岔口位置以及交汇处设置有警示设施,以提醒行驶车辆有序行进。该警示设施可以是交通信号灯,提醒行驶的车辆前方有分岔口,需要减速慢行,确保变线车辆开始进行调整,以进入变线轨道。或者通过交通信号灯控制进入交汇处的直行车辆或变线车辆有序行进,防止交通事故的发生。
本发明采用上述技术方案后,通过改变车轮的轮距以及对应轨道的宽度实现车辆变线,这样一来,本发明具有传统轨道交通的有序行进的优点,可以通过轨道限制,确保车辆不会出现任意的变线、穿插,可实现交通的有序,同时,本发明也突破现有轨道交通中难以变线的问题,本发明通过改变车轮的轮距以及对应轨道的宽度,令不变线车辆沿直行轨道继续前进,而变线车辆通过变线轨道实现转弯、进站等操作。本发明的变线改变现有轨道交通在水平面上实现的方式,本发明是在竖直方向上实现车辆的交错变线,这样一来就可以大大降低轨道交通所需要的空间。
上述技术方案中,车辆在变线过程中,首先变线轨道需要改变轨道宽度,然后再下沉分岔,或者变线轨道首先上升到与直行轨道相同的水平面,轨道的宽度再进行改变。即上述技术方案采用的是:当车辆分岔时,采用先缩轨,再下沉;当车辆汇合时,采用先上升,再扩轨的方式。轨道宽度的改变与轨道高低位置的改变是分别进行的,本发明也可将这两个作业同步进行,即本发明还可采用以下技术方案:当车辆需要分岔变线时,轨道在分岔形成直行轨道与变线轨道之前将进入一段分岔口轨道,该分岔口轨道为一段一端宽、一端窄的渐变轨道,其中较窄的一端与分岔变线之前的轨道连接,从较窄的一端向较宽的一端渐变过程中,分岔口轨道的轨道宽度将向内逐渐变宽,直至在较宽的一端同时与直行轨道和变线轨道对接;当车辆需要交汇变线时,直行轨道与变线轨道将进行交汇,在直行轨道与变线轨道交汇之前将设置一端交汇口轨道,该交汇口轨道为一段一端宽、一端窄的渐变轨道,其中较宽的一端同时与直行轨道和变线轨道对接,从较款的一端向较窄的一端渐变过程中,交汇口轨道的轨道宽度将向外逐渐变窄,直至较窄一端与交汇后的轨道对接。
上述的技术方案就是对前面所述技术方案的进一步改进,为了令变线(分岔或者交汇)时过度更加平稳,增加了分岔口轨道和交汇口轨道,该分岔口轨道和交汇口轨道通过自身宽度的变化,变线的车辆将在该分岔口轨道和交汇口轨道内完成车辆轮距的变化。
本发明所要解决的另一个技术问题就在于提供一种用于轨道交通的实现方法中的车辆。
为解决上述技术问题,本发明首要解决的及时如何实现车辆的轮距可根据轨道宽度的变化而进行变化的问题,针对于此,本发明的采用的技术方案为:一种用于轨道交通的实现方法中的车辆,该车辆包括车架以及安装在车架上的车轮组,每组车轮组包括左右对应的左、右车轮,所述的车轮组通过电动机驱动,带动左、右车轮转动,每组车轮组中的左、右车轮分别与一个转轴固定,左、右车轮的两个转轴之间通过一个轴套连动,且左、右车轮的两个转轴沿轴套的轴线方向实现相对或相向运行,以改变左、右车轮之间的间距。
进一步而言,上述技术方案中,所述的左右车轮之间设置有一液压装置,通过液压装置驱动左、右车轮的两个转轴沿轴套的轴线方向实现相对或相向运行。
进一步而言,上述技术方案中,所述的车轮组中的左、右车轮的转轴分别通过连杆机构与车架连接。
进一步而言,上述技术方案中,所述的车轮组中的左、右车轮的转轴分别通过悬挂件悬挂在车架下方。
本发明采用上述技术方案后,将车轮组中对应的左右车轮的转轴通过一个轴套连动,其中转轴与轴套之间的连接关系是嵌套连接,即转轴在圆周运转方向上与轴套保持相对固定,当时转轴可沿轴套实现轴向方向的移动,这样就可以调整两车轮之间的间距,从而适应轨道宽度的变化。
附图说明:
图1是本发明实施例一分岔口部分的示意图;
图2是本发明实施例一交汇口处的示意图;
图3是本发明实施例一的轨道分布主视示意图;
图4是本发明实施例一的轨道分布俯视示意图;
图5是图1中的A-A的剖面示意图;
图6是图1中的B-B的剖面示意图;
图7是本发明实施例二的俯视示意图;
图8是本发明中车辆的实施例一示意图;
图9是本发明中车辆的实施例二示意图;
图10是本发明中车辆的实施例三示意图;
图11是本发明中车辆的实施例四立体图结构示意图;
图12是本发明中车辆的实施例四另一视角的立体图结构示意图;
图13是本发明中车辆的实施例四中传动部分的立体结构示意图;
图14是本发明中车辆的实施例四中传动部分的主视结构示意图;
图15是本发明轨道的剖视图;
图16是本发明实施例三中分岔口轨道或交汇口轨道的立体图;
图17是本发明实施例三中分岔口轨道或交汇口轨道的剖视图。
具体实施方式:
下面结合具体实施例和附图对本发明进一步说明。
见图1-6,同时结合图15所示,这是本发明的实施例一,本发明主要实现的是在车辆进入站台中,如何实现车辆的变道和交汇。
本发明包括:轨道1和车辆2,轨道1可以并列设置多组,车辆2沿对应的轨道1单向运行。
轨道1具有两条铁轨,每条铁轨顶端都形成有一个凹下的圆弧导向槽10,该导向槽10作为铁轨的导向运行槽体限制车轮20沿该导向槽运行。车辆2采用自备动力的电动四轮轨道车辆,其行驶时,车轮20正好落入所述的铁轨顶端的导向槽10内,通过导向槽10对车轮20形成侧向的稳定力。所述的导向槽10内表面的底面设置有摩擦片101,通过摩擦片101可为车辆2的车轮20提供行进或制动所需要的摩擦力。于摩擦片101上固定有用于供电用的导电体102。
车辆2的轮距是可以实现变化的,正常行驶状态下,车辆的轮距为L,在需要变线时,车辆的轮距将由L渐变为L1,其中L>L1。
车辆正常行驶时,车辆2的车轮20通过轨道1的凹槽10限制沿轨道1行进,轨道1的宽度与车辆2的轮距保持不变,轮距和轨道宽度均为L。
本实施例一实现的交通运行状态为:若干车辆2在轨道1上行驶,并将进入变线枢纽5。所有车辆2将在变线枢纽5前的分岔口3处进行分流,实现持续行驶和变线。即这些行驶的车辆包括:不变线的车辆21和需要的变线车辆22。轨道1将由分岔口3开始分岔,形成直行轨道11和变线轨道12,不变线的车辆21沿直行轨道 11继续行进,需要变线停车的车辆22进入变线轨道12进行变线、停车等操作。
所述的直行轨道11与变线轨道12采用上下分布,由直行轨道11与变线轨道12分岔口3开始,直行轨道11的轨道间距保持不变,不变线车辆21轮距L保持不变,沿直行轨道11继续行进;由直行轨道11与变线轨道12分岔口3开始,变线轨道12的轨道间距逐渐变窄,同时变线轨道12将下沉,变线车辆22在进入变线轨道12时,其轮距L同时变小,与变线轨道12的宽度适应,并同时开始沿变线轨道12下沉,直至变线轨道12间距和变线车辆22轮距都变成L1,此时,车辆已经实现了交错分流。不变线车辆21沿直行轨道11持续行驶,变线车辆22沿变线轨道12实现变线。进入变线轨道12的变线车辆22可以在变线轨道12上停车,实现车辆靠站,乘客上下车的目的。
参见图2所示,当车辆需要交汇变线时,直行轨道11与变线轨道12将在交汇口4进行交汇,不变线车辆21沿直行轨道11持续行进,直至进入交汇口4后的轨道1中,直行轨道11的宽度和车辆的轮距L不发生改变;变线轨道12在与交汇口4处结合的过程中,其轨道间距逐渐的变宽,由L1变化到L。同时变线轨道12开始升高,以与直行轨道11交汇,沿变线轨道11行进的变线车辆22其轮距同时变大,由L2变化到L,并同时开始升高,沿变线轨道12的分布进行直至与直行轨道11在交汇口4处交汇。
为了便于控制,在分岔口3和交汇口4处需设置变线枢纽5。在变线枢纽5处直行轨道11与变线轨道12实现上下交错。本发明所述的变线枢纽5相当于目前公路交通中的立交桥或者站台,车辆在变线枢纽5中实现分岔、交汇的变线。同时在实施例一中,该变线枢纽5还可作为站台,需要停车实现上下客的变线车辆22将进入变线轨道12,进行停车,乘客在此实现上下车。
参见图4、5所示,由于所述的直行轨道11与变线轨道12采用上下分布,变线车辆22将由分岔口3开始下沉,为了确保直行轨道11不会对变线车辆形成阻挡,由分岔口3开始直行轨道11的之间是没有地基的,直行轨道11直接设置在两侧的墙基6上,直至变线轨道12下沉的深度高于车辆2的高度后,再设置地基7。直行车辆21在从分岔口3进入到变线枢纽5这段路程是直接悬挂在墙基6两侧的直行轨道11中。同样的道理,当直行轨道11与变线轨道12在交汇口4进行交汇时,直行轨 道11之间也是没有地基的,直行轨道11直接设置在两侧的墙基6上,直至变线轨道12上升与直行轨道交汇后,再设置地基7。
为了确保安全,于所述直行轨道与变线轨道分岔口3位置以及交汇处4设置有警示设施,以提醒行驶车辆有序行进。该警示设施可以是交通信号灯,提醒行驶的车辆前方有分岔口,需要减速慢行,确保变线车辆开始进行调整,以进入变线轨道。或者通过交通信号灯控制进入交汇处的直行车辆或变线车辆有序行进,防止交通事故的发生。
见图7所示,这是本发明实施例二的示意图,其实现的是在交叉路口如何实现车辆变线转弯的方式。
本实施例中,具有两个运行方向的轨道:南北向的轨道13和东西向的轨道14,这两条轨道在交叉口100通过上下交错,以现有立交桥的方式实现交错,并且互不影响。本实施例需要实现的是:由南向北行驶的转弯车辆23在交叉口100向右转弯后,再并入由西向东行驶的车辆2中。即进行变线的转弯车辆23需要由轨道13并入到轨道14中。
本实施例的实现方法与实施例一相同,所不同的是实施例一中车辆时沿同一轨道变线、分岔,然后再变线、汇入到同一轨道中。而本实施例二是进行变相的转弯车辆23沿一条轨道变线、分岔,然后再变线、汇入到另一轨道中。其具体实现方式为:若干辆车辆2在由南向北的轨道13上行驶,并将进入变线枢纽5。所有车辆2将在变线枢纽5前的分岔口3处进行分流,实现持续行驶和变线。即这些行驶的车辆包括:不变线车辆21和需要变线的转弯车辆23。轨道13将由分岔口3开始分岔,形成直行轨道11和转弯轨道15,不变线车辆21沿直行轨道11继续向北行进,需要变线的转弯车辆23进入转弯轨道15进行变线操作。
自直行轨道11与转弯轨道15分岔口3开始,直行轨道11的轨道间距保持不变,不变线车辆21轮距保持不变,沿直行轨道11继续行进;由直行轨道11与变线轨道12分岔口3开始,转弯轨道15的轨道间距逐渐变窄,同时转弯轨道15将下沉,转弯车辆23在进入转弯轨道15时,其轮距L同时变小,与转弯轨道15的间距适应,并同时开始沿转弯轨道15下沉,直至转弯轨道15宽度和转弯车辆23轮距都变成L1,此时,车辆已经实现了交错分流。不变线车辆21沿直行轨道11持续行驶 ,转弯车辆23沿转弯轨道15实现变线,此时转弯轨道12设置弯道,通过弯道令进入转弯轨道12的转弯车辆23实现车辆右转。
当转弯车辆23在转弯轨道15上转弯后,需要重新并入自西向东的轨道14中时,此时轨道14中直行轨道11′与转弯轨道15将在交汇口4进行交汇,正常行驶的车辆2将沿轨道14的直行轨道11′持续行进,直至通过交汇口4,直行轨道11′的宽度和车辆的轮距L不发生改变;转弯轨道15在与交汇口4处结合的过程中,其轨道间距逐渐的变宽,由L1变化到L。同时转弯轨道15开始升高,以与直行轨道11′交汇,沿转弯轨道15行进的转弯车辆23其轮距同时变大,由L2变化到L,并同时开始升高,沿转弯轨道15的分布行进,直至与直行轨道11′在交汇口4处交汇。从而实现了由南向北行驶的转弯车辆23在交叉口向右转弯后,再并入由西向东行驶的直行轨道11′中。
同理,车辆2如果需要实现向左转弯,采用实施例二类似的方式即可。
由上所述可以看出,本发明如果要实现车辆的变线需要完成两个动作,轨道的间距需要改变,同时,轨道的高度需要进行改变,以实现轨道的交错。以上两
个实施例中,需要变线的车辆采用的变线方式均为以下方式:当车辆分岔时,轨道间距的改变与轨道的下层是同步进行的;当车辆汇合时,轨道间距的改变与轨道的下层也是是同步进行的。这种方式存在的不足就是:轨道的间距改变和上下高度的改变同步进行时,车辆2也需要同时改变轮距和进入下行或上行轨道,这两个动作同步作业实现起来较为麻烦,可能会带来一定的安全隐患,为此,本发明可采用采取顺序实现的方式来完成变线的两个步骤。具体方式如下:
车辆需要分岔变线时,由直行轨道与变线轨道分岔口开始,变线轨道的轨道间距逐渐变窄,当变线轨道的轨道宽度达到指定宽度后,变线轨道才开始下沉,变线的车辆在进入变线轨道时,其轮距同时变小,与变线轨道的间距适应,并沿变线轨道下沉,沿变线轨道的分布进行变线。即本方案在车辆分岔变线时采用的是先改变轨道宽度,再改变轨道的高度,即先缩轨,再下沉。
当车辆需要交汇变线时,变线轨道在与交汇处结合时,变线轨道首先开始升高,以与直行轨道交汇,当变线轨道升高到与直行轨道同一水平面时,变线轨道 的轨道间距才开始逐渐的变宽,直至与直行轨道交汇,同时沿变线轨道行进的车辆其轮距同时变大,沿变线轨道的分布进行直至与直行轨道交汇。即本方案在车辆交汇变线时采用的是先改变轨道的高度,再改变轨道的间距,即先上升,再扩轨。至于其他实现方法与前面所述的实施例相同,这里不再赘述。
要实现本发明,需要解决的一个问题就是实现车辆2轮距的变化,参见图8所示,本发明的车辆2包括:车架21以及安装在车架21上的车轮组22,每组车轮组22包括左右对应的左、右车轮23、24,每组车轮组22中的左、右车轮23、24分别与一个转轴25、26固定,左、右车轮23、24的两个转轴25、26之间通过一个轴套27连动,且左、右车轮23、24的两个转轴25、26沿轴套27的轴线方向实现相对或相向运行,以改变左、右车轮23、24之间的间距。
图8所示的结构为本发明车辆2的第一种实施方式:本实施方式中,车辆2的左、右车轮23、24采用的是伸缩式结构,即左、右车轮23、24的转轴25、26与轴套27之间插嵌配合。该转轴27作为车辆2的传动轴,其与左、右车轮23、24之间可采用类似花键连动的方式连接,从而实现扭矩的传动。左、右车轮23、24的转轴25、26可沿轴套27实现水平移动,从而实现左、右车轮23、24之间的轮距从L1变更到L,或者轮距从L变更到L1。转轴25、26沿轴套27实现水平移动的方式可通过液压装置实现。
车辆2的第二种实施方式:
见图9所示,本实施方式中,车辆2的车轮采用的是平摆式结构。所述的车轮组中的左、右车轮23、24的转轴25、26分别通过连杆机构28与车架21连接,当转轴25、26沿轴套27实现水平移动时,通过连杆机构28调整车轮组与车架21之间的连接角度,从而实现左、右车轮之间间距的顺利调整。
车辆2的第三种实施方式:
见图10所示,本实施方式中,车辆2的车轮20采用的是悬挂式结构。述的车轮组中的左、右车轮23、24的转轴25、26分别通过悬挂件29悬挂在车架下方。当转轴25、26沿轴套27实现水平移动时,通过悬挂件29的调整车架21的高度,从而实现左、右车轮之间间距的顺利调整。
见图11-14,这是本发明车辆2的一较佳实施例。本实施例中车辆2包括:车架2 01以及安装在车架201上的车轮组202,每组车轮组202包括左右对应的左、右车轮202、204,每组车轮组202中的左、右车轮203、204分别与一个转轴205、206固定,左、右车轮23、24的两个转轴205、206之间通过一个轴套207连动,轴套207的两端通过轴承座与车架201固定,且左、右车轮203、204的两个转轴205、206沿轴套207的轴线方向实现相对或相向运行,以改变左、右车轮203、204之间的间距。
上述转轴205、206与轴套207的配合实现扭矩的传动。电动机210可通过蜗轮蜗杆传动驱动轴套207转动,从而带动与转轴205、206固定的左右车轮203、204运行。
为了确保强度,上述的转轴205、206与轴套207并不直接承载车架201。车架201是通过支撑悬挂机构来提供主要支撑的。该支撑悬挂机构包括:与车架201固定的固定套208,位于固定套208内并相互嵌套的左、右支撑轴211、212,该左、右支撑轴211、212的相对的一侧形成插接配合,二者相对的外侧分别通过连接件213可转动的悬挂在转轴205、206上。图13所示的就是在去掉固定套208和轴套207后的内部结构示意图。当转轴205、206相对或者相向运行时,左、右支撑轴211、212将在固定套208内实现对应的相对或者相向运行。
结合图14所示,本发明中是通过液压装置220实现左、右支撑轴211、212及左、右转轴205、206的相对或者相向运行的。该液压装置220具有一个液压缸,该液压缸两端分别延伸有左、右活塞杆221、222,该左、右活塞杆221、222分别与左、右支撑轴211、212固定。左、右活塞杆221、222实现同步的相对或相向运行,从而推动左、右支撑轴211、212的相对或相向运行,从而带动左、右车轮203、204的相对或相向运行。
另外,为了提高舒适性可在连接件213上安装减震装置,如减震弹簧。
参见图16、17,这是本发明的实施例三中分岔口轨道110或交汇口轨道。本实施例三中,当车辆需要分岔变线时,轨道在分岔形成直行轨道与变线轨道之前将进入一段分岔口轨道110,该分岔口轨道110为一段一端宽、一端窄的渐变轨道,其中较窄的一端1101与分岔变线之前的轨道连接,从较窄的一端向较宽的一端渐变过程中,分岔口轨道的轨道宽度将向内逐渐变宽,直至在较宽的一端1 102同时与直行轨道和变线轨道对接;当车辆需要交汇变线时,直行轨道与变线轨道将进行交汇,在直行轨道与变线轨道交汇之前将设置一端交汇口轨道,该交汇口轨道为一段一端宽、一端窄的渐变轨道,其中较宽的一端同时与直行轨道和变线轨道对接,从较宽的一端向较窄的一端渐变过程中,交汇口轨道的轨道宽度将向外逐渐变窄,直至较窄一端与交汇后的轨道对接。
本实施例三采用的这种方式将直行轨道与变线轨道分岔、交汇的过程通过分岔口轨道110或者交汇口轨道实现,这样就可以确保变线的车辆轮距在发生变化时直接在轨道内部完成,无需分轨,这样更进一步提升了车辆在变轨过程中的安全性。
当然,以上所述仅为本发明的具体实施例而已,并非来限制本发明实施范围,凡依本发明申请专利范围所述构造、特征及原理所做的等效变化或修饰,均应包括于本发明申请专利范围内。
技术问题
问题的解决方案
发明的有益效果

Claims (10)

  1. 一种轨道交通的实现方法,该方法中包括有轨道和车辆,车辆在对应的轨道上运行,其特征在于:
    车辆正常行驶时,车辆的车轮通过轨道的限制沿轨道行进,轨道的间距与车辆的轮距保持不变;
    车辆需要分岔变线时,轨道将分岔形成直行轨道与变线轨道,不变线的车辆沿直行轨道继续行进,需要变线的车辆进入变线轨道进行变线;所述的直行轨道与变线轨道采用上下分布,由直行轨道与变线轨道分岔口开始,直行轨道的轨道间距保持不变,不变线的车辆轮距保持不变,沿直行轨道继续行进;由直行轨道与变线轨道分岔口开始,变线轨道的轨道间距逐渐变窄,当变线轨道的轨道间距达到指定宽度后,变线轨道将下沉,变线的车辆在进入变线轨道时,其轮距同时变小,与变线轨道的间距适应,并沿变线轨道下沉,沿变线轨道的分布进行变线;
    车辆需要交汇变线时,直行轨道与变线轨道将进行交汇,不变线的车辆沿直行轨道持续行进,直至进入交汇后的轨道中,直行轨道的间距和车辆的轮距不发生改变;变线轨道在与交汇处结合时,变线轨道开始升高,以与直行轨道交汇,当变线轨道升高到与直行轨道同一水平面时,变线轨道的轨道间距逐渐的变宽,直至与直行轨道交汇,同时沿变线轨道行进的车辆其轮距同时变大,沿变线轨道的分布进行直至与直行轨道交汇。
  2. 根据权利要求1所述的一种轨道交通的实现方法,其特征在于:所述的轨道具有一导向槽,所述的车辆车轮位于该导向槽内,并沿导向槽行进。
  3. 根据权利要求2所述的一种轨道交通的实现方法,其特征在于:所述的导向槽内表面为圆弧面,所述的导向槽内表面的底面设置有摩擦片,于摩擦片上固定有用于供电用的导电体。
  4. 根据权利要求1所述的一种轨道交通的实现方法,其特征在于:车 辆需要交汇变线时,直行轨道与变线轨道将进行交汇,所述的直行轨道为原始的直行轨道,或者所述的直行轨道为其他路径的直行轨道;即,所述的变线轨道重新交汇进入原有的轨道中,或者所述的变线轨道交汇进入一条新的路径中的轨道中。
  5. 根据权利要求1-4所述的一种轨道交通的实现方法,其特征在于:于所述直行轨道与变线轨道分岔口位置以及交汇处设置有警示设施,以提醒行驶车辆有序行进。
  6. 根据权利要求1-4所述的一种轨道交通的实现方法,其特征在于:当车辆需要分岔变线时,轨道在分岔形成直行轨道与变线轨道之前将进入一段分岔口轨道,该分岔口轨道为一段一端宽、一端窄的渐变轨道,其中较窄的一端与分岔变线之前的轨道连接,从较窄的一端向较宽的一端渐变过程中,分岔口轨道的轨道宽度将向内逐渐变宽,直至在较宽的一端同时与直行轨道和变线轨道对接;当车辆需要交汇变线时,直行轨道与变线轨道将进行交汇,在直行轨道与变线轨道交汇之前将设置一端交汇口轨道,该交汇口轨道为一段一端宽、一端窄的渐变轨道,其中较宽的一端同时与直行轨道和变线轨道对接,从较款的一端向较窄的一端渐变过程中,交汇口轨道的轨道宽度将向外逐渐变窄,直至较窄一端与交汇后的轨道对接。
  7. 一种用于轨道交通的实现方法中的车辆,该车辆包括车架以及安装在车架上的车轮组,每组车轮组包括左右对应的左、右车轮,所述的车轮组通过电动机驱动,带动左、右车轮转动,其特征在于:每组车轮组中的左、右车轮分别与一个转轴固定,左、右车轮的两个转轴之间通过一个轴套连动,且左、右车轮的两个转轴沿轴套的轴线方向实现相对或相向运行,以改变左、右车轮之间的间距。
  8. 根据权利要求7所述的一种用于轨道交通的实现方法中的车辆,其特征在于:所述的左右车轮之间设置有一液压装置,通过液压装 置驱动左、右车轮的两个转轴沿轴套的轴线方向实现相对或相向运行。
  9. 根据权利要求8所述的一种用于轨道交通的实现方法中的车辆,其特征在于:所述的车轮组中的左、右车轮的转轴分别通过连杆机构与车架连接。
  10. 根据权利要求8所述的一种用于轨道交通的实现方法中的车辆,其特征在于:所述的车轮组中的左、右车轮的转轴分别通过悬挂件悬挂在车架下方。
PCT/CN2015/078547 2015-04-30 2015-05-08 一种轨道交通的实现方法以及用于该方法中的车辆 WO2016172997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015102180060 2015-04-30
CN201510218006.0A CN104787056A (zh) 2015-04-30 2015-04-30 一种轨道交通的实现方法以及用于该方法中的车辆

Publications (1)

Publication Number Publication Date
WO2016172997A1 true WO2016172997A1 (zh) 2016-11-03

Family

ID=53552354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078547 WO2016172997A1 (zh) 2015-04-30 2015-05-08 一种轨道交通的实现方法以及用于该方法中的车辆

Country Status (2)

Country Link
CN (1) CN104787056A (zh)
WO (1) WO2016172997A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106672014B (zh) * 2016-08-31 2019-07-19 齐鲁工业大学 高速列车不停车上下车机构
CN106808941A (zh) * 2016-10-14 2017-06-09 孙海旺 一种可变距公铁两用车、变距轨道车、组件及其交通系统
CN106864464B (zh) * 2017-02-23 2018-07-06 万普华 个人悬挂式双轨道双动力自动控制轻型轨道交通系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1143584A (zh) * 1995-06-06 1997-02-26 日本铁道建设公团 铁路车辆可变轮距转向架
US6139045A (en) * 1997-02-25 2000-10-31 Land O' Lakes, Inc. Wheel assembly having a mechanism to adjust the distance between the wheels
CN2918112Y (zh) * 2006-04-28 2007-07-04 吕增瑞 轮距调整装置
CN101020556A (zh) * 2006-02-16 2007-08-22 张静中 城市快送线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2262619A1 (en) * 1974-02-28 1975-09-26 Arthaud Marcel Passenger transport installation - has variable gauge track narrowing in stations which are higher or lower
CN1232105A (zh) * 1998-03-12 1999-10-20 帕朋佩斯-塔尔戈股份有限公司 用于轨距转换装置的轮平移控制系统
JP4137253B2 (ja) * 1998-10-01 2008-08-20 財団法人鉄道総合技術研究所 鉄道車両の軌間可変装置
CN2753635Y (zh) * 2004-10-11 2006-01-25 杨时兰 具有轮距调节功能的火车底盘及其配用的火车
GB2424630A (en) * 2005-03-30 2006-10-04 Househam Sprayers Ltd Vehicle with adjustable track width
GB0815314D0 (en) * 2008-08-22 2008-09-24 Chem Europ Bv Ag Agricultural application machine with variable width track
CN201761299U (zh) * 2010-03-22 2011-03-16 武小玉 车轮间距调节机构
US8950337B1 (en) * 2014-05-02 2015-02-10 William D. Davis Personal transportation rail system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1143584A (zh) * 1995-06-06 1997-02-26 日本铁道建设公团 铁路车辆可变轮距转向架
US6139045A (en) * 1997-02-25 2000-10-31 Land O' Lakes, Inc. Wheel assembly having a mechanism to adjust the distance between the wheels
CN101020556A (zh) * 2006-02-16 2007-08-22 张静中 城市快送线
CN2918112Y (zh) * 2006-04-28 2007-07-04 吕增瑞 轮距调整装置

Also Published As

Publication number Publication date
CN104787056A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
CN107161159B (zh) 一种带升降梯式轿箱组合空中巴士系统
WO2020047947A1 (zh) 一种移动舱、轨道及立体轨道交通系统
CN201634978U (zh) T字路口的道路立交系统
CN108340934A (zh) 一种可适应极大坡道的跨座式单轨列车双模式驱动转向架
WO2016172997A1 (zh) 一种轨道交通的实现方法以及用于该方法中的车辆
CN204774397U (zh) 汽车车轮的可调轮距结构
CN104309423B (zh) 陆空两用轨道汽车和空中轨道
CN204775219U (zh) 一种节能型双轨双车交通工具
CN204475095U (zh) 多层畅行立交桥
DE3841092A1 (de) Generalisierte kombinationsfahrzeuge (schiene/strasse), magnetische, mechanische fang- u. fuehrungsschienen, magnetantriebe, hochgeschwindigkeitsweichen u. generalisierte verkehrstrassen (schiene/strasse)
WO2024066826A1 (zh) 一种空中导向柱轨安全节能行车系统
CN208069658U (zh) 一种可适应极大坡道的跨座式单轨列车双模式驱动转向架
CN103241246A (zh) 一种城市有轨公共交通运输系统
CN104875747B (zh) 轨道交通线
CN102146649A (zh) 一种公共交通方法
CN101492904A (zh) 一种交通路口车道
CN116654033A (zh) 胶轮列车自导向、可融合电子导向多场景运行方法和系统
CN107740621A (zh) 一种多层泊车系统及泊车方法
CN202467856U (zh) 具有双向互通结构的超长公路隧道
WO2022001680A1 (zh) 一种智能高空巴士
CN101407220A (zh) 多轨道空中飞车组合技术
CN212357836U (zh) 一种城市空中轨道及轨道式共享电力单车
CN211139304U (zh) 一种空中轨道车、空中轨道和空中轨道交通系统
CN203402257U (zh) 一种可调后轮距窄体汽车
CN103088733B (zh) 防拥堵立体交通系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890376

Country of ref document: EP

Kind code of ref document: A1