WO2016172824A1 - 氧化锆复合陶瓷及其制备方法 - Google Patents

氧化锆复合陶瓷及其制备方法 Download PDF

Info

Publication number
WO2016172824A1
WO2016172824A1 PCT/CN2015/077512 CN2015077512W WO2016172824A1 WO 2016172824 A1 WO2016172824 A1 WO 2016172824A1 CN 2015077512 W CN2015077512 W CN 2015077512W WO 2016172824 A1 WO2016172824 A1 WO 2016172824A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
composite ceramic
zirconia composite
hours
solution
Prior art date
Application number
PCT/CN2015/077512
Other languages
English (en)
French (fr)
Inventor
杨辉
谭毅成
向其军
Original Assignee
深圳市商德先进陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市商德先进陶瓷有限公司 filed Critical 深圳市商德先进陶瓷有限公司
Priority to US15/567,057 priority Critical patent/US20180134624A1/en
Priority to PCT/CN2015/077512 priority patent/WO2016172824A1/zh
Publication of WO2016172824A1 publication Critical patent/WO2016172824A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • the invention relates to a zirconia composite ceramic and a preparation method thereof.
  • electrostatic When two objects rub against each other, the electrons in one object are weakly bound by the nucleus and run to another object, so that the electron-to-electron object exhibits a negative charge due to the negative charge being more than the positive charge.
  • An object that loses electrons is positively charged because it has more positive charges than negative charges, which is the phenomenon of triboelectric charging.
  • the electricity carried by the object is called “electrostatic", and when it accumulates to a certain extent, electrostatic discharge occurs.
  • Ceramic materials have the advantages of good wear resistance, corrosion resistance, high temperature resistance and good rigidity, and are ideal antistatic materials.
  • the method for manufacturing the antistatic ceramic material is mostly to reduce the electrical resistivity of the ceramic material to 10 5 to 10 9 ⁇ cm by adding a second phase, that is, a conductive phase, to the ceramic substrate, thereby achieving static dissipation. the goal of.
  • the current antistatic ceramic material is prepared by physically mixing ceramic matrix + conductive phase powder, it is necessary to add more conductive phase (general ratio is 20% to 40% mass fraction) to achieve the required resistance.
  • the rate which undoubtedly greatly increases the impurity content of the ceramic matrix, reduces the mechanical properties of the ceramic body itself.
  • a zirconia composite ceramic characterized by comprising: 65% to 80% of a zirconia matrix, 10% to 30% of a conductive material, and 2% to 11% of a nano-reinforcing material, wherein
  • the conductive material is selected from at least one of a non-ferrous metal oxide, a white metal oxide, a compound having a titanium mineral structure, and a compound having a spinel structure selected from the group consisting of CuO, Cu 2 O, and V 2 O.
  • the white oxide is selected from the group consisting of At least one of ZnO, SnO 2 , and TiO 2 , wherein the compound having a titanium mineral structure is at least one selected from the group consisting of CaTiO 3 , BaTiO 3 , LaCrO 3 , LaSr 0.1 Cr 0.9 O 3 , SrTiO 3 , and LaFeO 3 .
  • the compound having a spinel structure has a structural formula of AB 2 O 4 , wherein A is at least one selected from the group consisting of Mg, Fe, Zn, and Mn, and the B is at least one selected from the group consisting of Al, Cr, and Fe.
  • the zirconia matrix comprises from 2% to 10% of a stabilizer and from 90% to 98% of zirconium oxide by mass percent, the stabilizer being selected from the group consisting of cerium oxide, magnesium oxide, and oxidation. At least one of calcium and cerium oxide.
  • the nano-reinforcing material is selected from at least one of nano zirconia and nano-alumina.
  • a dispersant solution is provided, and the dispersant solution is heated to 60 ° C to 65 ° C, wherein the mass ratio of the dispersant in the dispersant solution to the zirconia matrix in the zirconium oxide matrix is from 0.5:99.5 to 1:99.
  • Ammonia water having a concentration of 2 mol/L to 3 mol/L and the mother liquor are simultaneously added to the dispersant solution for reaction, and the reaction temperature is controlled to be 60 ° C to 65 ° C, and the pH of the reaction is 8-10, and the reaction is aged after the reaction is completed. 2 hours to 5 hours, filtered and dried to obtain a precursor;
  • the precursor is sintered at 800 ° C to 1100 ° C for 1 hour to 5 hours to obtain a bulk material
  • the block material and the nano-reinforced material are ball milled for 24 hours to 48 hours to obtain a zirconia composite ceramic Porcelain powder;
  • the zirconia composite ceramic powder is granulated to form a green body
  • the green body is slowly heated to 1280 ° C to 1520 ° C for sintering to obtain the zirconia composite ceramic.
  • the temperature in the step of slowly heating the green body to 1280 ° C to 1520 ° C for sintering, the temperature is raised to 700 ° C at a temperature increase rate of 0.5 to 3 ° C / min, and then 4 to 5 ° C.
  • the heating rate of /min is raised to 1280 ° C ⁇ 1520 ° C.
  • the precipitate obtained after filtration is rinsed with deionized water, and the washed precipitate is freeze-dried at 10 to 40 Pa for 2 hours to 5 hours.
  • the precursor is obtained.
  • the dispersing agent in the dispersant solution is at least one selected from the group consisting of SD-05, D3005, D900, and ammonium polyacrylate, and the concentration of the dispersant solution is 10 g/L to 30 g/L. .
  • the zirconia composite ceramic powder in the step of granulating the zirconia composite ceramic powder into a green body, is spray granulated to obtain a particle size of 0.7 ⁇ m to 1 ⁇ m.
  • the step of sintering the precursor at 800 ° C to 1100 ° C for 1 hour to 5 hours to obtain a bulk material the temperature is raised to 800 ° C at a temperature increase rate of 1 to 3 ° C / min. 1100 ° C.
  • the conductive material added has the property of a conductor or a semiconductor, and after being added to the zirconia matrix, the electrical resistivity of the zirconia matrix itself can be remarkably reduced, and at the same time, the added conductive material does not sinter at a high temperature.
  • the nano-reinforced material can absorb The partial fracture energy is obtained, thereby achieving the dual effects of reinforcing and toughening;
  • the preparation method of the above zirconia composite ceramic adopts the coprecipitation method, using ammonia water as a precipitating agent, reacting to form a uniform precipitate, and then performing sintering, compared with In the traditional physical mixing method, the distribution of the conductive material in the zirconia matrix is more uniform, and even into the zirconia lattice, a continuous and conductive conductive loop is formed, thereby reducing the amount of the conductive material and improving the amount of the conductive material.
  • zirconia composite ceramics because the conductive materials are uniformly distributed in the zirconia matrix, the local resistivity of the entire zirconia composite ceramic is the same, which can avoid the formation of unsafe rapid discharge of static electricity on the surface of zirconia composite ceramics.
  • FIG. 1 is a schematic flow chart of a method for preparing a zirconia composite ceramic according to an embodiment.
  • a zirconia composite ceramic comprises, by mass percentage, a zirconia matrix of 65% to 80%, a conductive material of 10% to 30%, and a nano reinforcing material of 2% to 11%.
  • the conductive material is at least one selected from the group consisting of a colored metal oxide, a white metal oxide, a compound having a titanium mineral structure, and a compound having a spinel structure.
  • the colored oxide is selected from the group consisting of CuO, Cu 2 O, V 2 O 5 , NiO, MnO, MnO 2 , CoO, Co 2 O 3 , Co 3 O 4 , Fe 2 O 3 , FeO, Fe 3 O 4 and Cr 2 O. At least one of 3 .
  • the white oxide is at least one selected from the group consisting of ZnO, SnO 2 , and TiO 2 .
  • the compound having a titanium ore structure is at least one selected from the group consisting of CaTiO 3 , BaTiO 3 , LaCrO 3 , LaSr 0.1 Cr 0.9 O 3 , SrTiO 3 , and LaFeO 3 .
  • the compound having a spinel structure may be: MgAl 2 O 4 , FeAl 2 O 4 , ZnCr 2 O 4 , or MnFe 2 O 4 .
  • the zirconia matrix comprises, by mass%, from 2% to 10% of a stabilizer and from 90% to 98% of zirconium oxide, the stabilizer being selected from the group consisting of cerium oxide, magnesium oxide, calcium oxide and cerium oxide. At least one.
  • a stabilizer increases the toughness of the zirconia.
  • the nano-reinforcing material is selected from at least one of nano zirconia and nano-alumina.
  • the conductive material added has the property of a conductor or a semiconductor, and after being added to the zirconia matrix, the electrical resistivity of the zirconia matrix itself can be remarkably reduced; at the same time, the added conductive material does not sinter at a high temperature.
  • the resistivity of the zirconia composite ceramic can be reduced to about 10 5 -10 9 ⁇ cm; the addition of the nano-reinforced material utilizes the thermal expansion and the mismatch of the elastic modulus to increase the fracture stress while absorbing part of the fracture energy, thereby providing
  • the double effect of reinforcement and toughening, the presence of crack propagation, deflection and bending effects in the dispersion strengthening material, can also play a toughening effect, it is not affected by temperature, so it can be used as an effective high temperature increase Tough mechanism.
  • the preparation method of the above zirconia composite ceramic comprises the following steps:
  • Step S110 providing a zirconium oxychloride solution and a metal ion solution corresponding to the conductive material according to the amount of the zirconia matrix and the conductive material in the zirconia composite ceramic, and combining to obtain a mother liquid.
  • the concentration of the zirconium oxychloride solution is from 80 to 85 g/L.
  • the conductive material is a non-ferrous metal oxide or a white metal oxide
  • a corresponding amount of the metal oxide is weighed, and a metal ion solution having a concentration of 0.4 mol/L to 0.6 mol/L is dissolved with nitric acid.
  • the conductive material is a compound having a titanium mineral structure and a compound having a spinel structure
  • the amount of the conductive material is converted into the amount of the corresponding metal oxide, and then the corresponding metal oxide is weighed and dissolved by nitric acid.
  • a metal ion solution having a concentration of 0.4 mol/L to 0.6 mol/L.
  • the conductive material is 1 mol of LaCrO 3
  • 0.5 mol of Cr 2 O 3 and 0.5 mol of La 2 O 3 are added , and then a 0.4 to 0.6 mol/L nitrate solution is separately prepared.
  • the zirconia matrix further comprises a stabilizer
  • the zirconia matrix comprises 2% to 10% of a stabilizer and 90% to 98% of zirconium oxide by mass percentage
  • the stabilizer is selected from the group consisting of cerium oxide and magnesium oxide.
  • At least one of calcium oxide and cerium oxide further contains a metal ion corresponding to the stabilizer in the mother liquid.
  • a corresponding amount of the stabilizer is weighed, and after dissolving with nitric acid, a metal ion solution having a concentration of 0.4 mol/L to 0.6 mol/L is disposed and added to the mother liquid.
  • Step S120 providing a dispersant solution, and heating the dispersant solution to 60 ° C to 65 ° C, wherein the mass ratio of the dispersant in the dispersant solution to the zirconium oxide in the zirconia matrix is 0.5:99.5 to 1:99.
  • the concentration of the dispersant solution is from 10 g/L to 30 g/L.
  • the dispersing agent in the dispersant solution is at least one selected from the group consisting of SD-05, D3005, D900 and ammonium polyacrylate.
  • the dispersant solution is heated to a temperature of from 60 ° C to 65 ° C, and the rate of temperature increase is from 1 to 2 ° C / min.
  • Step S130 adding ammonia water and mother liquor having a concentration of 2 mol/L to 3 mol/L to the dispersant solution at the same time, controlling the reaction temperature to be 60 ° C to 65 ° C, and the pH of the reaction is 8-10, and aging after the reaction is finished 2 After hours to 5 hours, it is filtered and dried to obtain a precursor.
  • aqueous ammonia and a mother liquor are added to the dispersant solution, it is added by dropwise addition, and the flow rates of the two liquids are controlled to maintain the pH of 8-10.
  • the mixture is continuously stirred to form a hydroxide precipitate.
  • the precipitate obtained after filtration is rinsed with deionized water, and the washed precipitate is freeze-dried at 10 to 40 Pa for 2 hours to 5 hours to obtain a precursor. Further, it was rinsed 5 times with deionized water.
  • the ammonia water having a concentration of 2 mol/L to 3 mol/L is prepared by using ammonia water and deionized water having a mass fraction of 25% before use.
  • step S140 the precursor is sintered at 800 ° C to 1100 ° C for 1 hour to 5 hours to obtain a bulk material.
  • the temperature is raised to 800 ° C to 1100 ° C at a temperature increase rate of 1 to 3 ° C / min.
  • the sintering is carried out in an air resistance furnace.
  • step S150 the bulk material and the nano-reinforcing material are ball milled for 24 hours to 48 hours to obtain a zirconia composite ceramic powder.
  • the nano-reinforcing material is selected from at least one of nano zirconia and nano-alumina.
  • the zirconia ball is used as the ball milling medium, and the mass ratio of the bulk material to the nano reinforcing material, the zirconia ball and the water is 1:1 to 3:0.5 to 1.
  • step S160 the zirconia composite ceramic powder is granulated to form a green body.
  • the zirconia composite ceramic powder is subjected to spray granulation to obtain a powder having a particle size of 0.7 ⁇ m to 1 ⁇ m and a specific surface area of 8 to 11 m 2 /g.
  • the green body is formed by dry pressing, isostatic pressing, injection molding, extrusion molding or gel molding.
  • step S170 the green body is slowly heated to 1280 ° C to 1520 ° C for sintering to obtain a zirconia composite ceramic.
  • the temperature is raised to 700 ° C at a temperature increase rate of 0.5 to 3 ° C / min, and then the temperature is raised to 1280 ° C to 1520 ° C at a temperature increase rate of 4 to 5 ° C / min. In this step, the temperature rises slowly in the low temperature section to prevent cracks, bubbling, pores and the like from occurring in the green body.
  • it is sintered at 1280 ° C to 1520 ° C for 2 hours to 5 hours.
  • Step S180 machining and polishing the zirconia composite ceramic.
  • the preparation method of the above zirconia composite ceramic adopts a coprecipitation method, uses ammonia water as a precipitant, reacts to form a uniform precipitate, and then performs sintering, so that the distribution of the conductive material in the zirconia matrix is compared with the conventional physical mixing method. More uniform, even into the zirconia lattice, forming a continuous, conductive loop, which can reduce the amount of conductive materials, but also improve the mechanical properties of zirconia composite ceramics, because the conductive material is uniform in the zirconia matrix Distribution, so the entire resistivity of the entire zirconia composite ceramic is the same, which can avoid the formation of unsafe rapid discharge of static electricity on the surface of the zirconia composite ceramic.
  • a zirconia composite ceramic comprising the following mass fractions of components:
  • the preparation method of the above zirconia composite ceramic comprises the following steps:
  • Step 1 According to the mass ratio of zirconia in the table, the molar ratio of the molar ratio to the zirconium oxychloride is formulated into an aqueous solution of 80 g/L; then Y 2 O 3 and ferric oxide are weighed according to the mass ratio, Nickel oxide, chromium trioxide, and then dissolved in nitric acid were separately formulated into a 0.4 mol/L nitrate solution. Finally, the weighed solution of each substance is added to the reaction vessel, and stirred to form a mother liquid.
  • Step 2 The reaction and precipitation are carried out by a coprecipitation method.
  • deionized water having a total powder mass of 3 times and a dispersing agent having a total powder mass of 0.5%.
  • the dispersing agent was SD-05, and the temperature was slowly raised to 65 ° C at a rate of 1 ° C / min.
  • a concentrated ammonia solution having a mass fraction of 25% was selected as a precipitant, and deionized water was added to concentrated ammonia water to prepare a 3 mol/L precipitant solution.
  • the solution and the ammonia water in the first step are added to the reaction kettle synchronously, and the reaction temperature is controlled to be 60 ° C.
  • the flow rate of the two solutions is adjusted to maintain the pH value of 10 while continuously stirring to form a hydroxide precipitate until the mother liquor is added.
  • the precipitate was aged for 3 hours, then filtered, and the precipitate was washed 5 times with deionized water. Then, the washed precipitate was placed in a freeze dryer, adjusted to a drying pressure of 20 Pa, and freeze-dried and dried for 3 hours to obtain an antistatic zirconia precursor without hard agglomeration.
  • Step 3 The precursor obtained in the step 2 is heated to 950 ° C at a rate of 1 ° C / min in an air resistance furnace, and kept for 2 hours to obtain an antistatic zirconia bulk powder.
  • Step 4 The bulk powder obtained in the step 3 is added to the ball mill together with the nano alumina powder of the mass ratio, and the wet grinding is performed.
  • the grinding ball is made of zirconia grinding ball, and the ratio of the ball water is 1: 2:0.5, ball milling time 30 hours.
  • Step 5 The ball-milled powder was subjected to spray granulation to obtain an antistatic zirconia ceramic powder having a particle size of 0.8 ⁇ m and a specific gravity of 9 m 2 /g.
  • Step 6 The prepared zirconia antistatic ceramic powder is placed in a dry pressing mold, and a strip having a length of 50 mm, a width of 10 mm, and a height of 8 mm is pressed.
  • Step 7 The formed green body is placed in an air furnace for sintering.
  • the heating rate was 1 ° C / min before 700 ° C; 4 ° C / min after 700 ° C, until the highest sintering temperature.
  • the highest sintering temperature is 1400 ° C and held for 2.5 hours.
  • Step 8 Mechanically process the sintered zirconia antistatic ceramic according to the need to obtain a strip having a length of 36 mm, a width of 4 mm and a height of 3 mm, and then polishing to obtain an antistatic ceramic finished product having a size, shape and surface quality.
  • An antistatic zirconia ceramic comprises the following mass fraction components:
  • the preparation method of the above zirconia composite ceramic comprises the following steps:
  • Step 1 According to the mass ratio of zirconia in the table, the mass ratio of the molar ratio of zirconia to zirconia is converted into an aqueous solution of 82 g/L; and the mass ratio of LaSr 0.1 Cr 0.9 O 3 is converted into a molar ratio, and then The mass ratio of the precursor oxide cerium oxide, cerium oxide, and chromium oxide is converted into several oxides and cerium oxide, respectively, and dissolved in nitric acid to form a 0.5 mol/L nitrate solution. Finally, the weighed solution of each substance is added to the reaction vessel, and stirred to form a mother liquid.
  • Step 2 The reaction and precipitation are carried out by a coprecipitation method.
  • Deionized water having a total powder mass of 4 times and a dispersing agent having a total powder mass of 0.6% were added to the reaction vessel, and the dispersing agent was D3005, and the temperature was slowly raised to 62 ° C at a rate of 2 ° C / minute.
  • Select 25% of concentrated ammonia water as a precipitant in concentrated ammonia water Deionized water was added to prepare a 2 mol/L precipitant solution.
  • the solution and the ammonia water in the first step are added to the reaction kettle simultaneously, and the reaction temperature is controlled to be 62 ° C.
  • the flow rate of the two solutions is adjusted to maintain the pH value of 9, while stirring constantly to form a hydroxide precipitate until the mother liquor is added.
  • the precipitate was aged for 4 hours, then filtered, and the precipitate was washed 5 times with deionized water.
  • the rinsed precipitate was then placed in a freeze dryer, adjusted to a drying pressure of 25 Pa, and lyophilized and dried for 2 hours to obtain an antistatic zirconia precursor without hard agglomeration.
  • Step 3 The precursor obtained in the step 2 is heated to 1000 ° C at a rate of 2 ° C / min in an air resistance furnace, and kept for 3 hours to obtain an antistatic zirconia bulk powder.
  • Step 4 The bulk powder obtained in the step 3 is added to the ball mill by the nano-zirconia powder with the mass ratio, and the wet grinding is carried out.
  • the grinding ball is made of zirconia grinding ball, and the ratio of the ball water is 1:2.5. : 0.6, ball milling time 24 hours.
  • Step 5 The ball-milled powder was subjected to spray granulation to obtain an antistatic zirconia ceramic powder having a particle size of 1 ⁇ m and a specific gravity of 8 m 2 /g.
  • Step 6 The prepared zirconia antistatic ceramic powder is placed in an isostatic pressing mold, and processed into a long strip of 50 mm, a width of 10 mm and a height of 8 mm.
  • Step 7 The formed green body is placed in an air furnace for sintering.
  • the heating rate was 2 ° C / min before 700 ° C; 5 ° C / min after 700 ° C, until the highest sintering temperature.
  • the highest sintering temperature is 1360 ° C and is kept for 2 hours.
  • Step 8 Mechanically process the sintered zirconia antistatic ceramic according to the need to obtain a strip having a length of 36 mm, a width of 4 mm and a height of 3 mm, and then polishing to obtain an antistatic ceramic finished product having a size, shape and surface quality.
  • An antistatic zirconia ceramic comprises the following mass fraction components:
  • the preparation method of the above zirconia composite ceramic comprises the following steps:
  • Step 1 According to the mass ratio of zirconia in the table, the molar ratio of mass ratio to zirconium oxychloride is adjusted to be 81g/L aqueous solution; Y 2 O 3 , titanium oxide is weighed according to mass ratio, and then nitric acid is used. Dissolved and separately formulated into a 0.6 mol/L nitrate solution. Finally, the weighed solution of each substance is added to the reaction vessel, and stirred to form a mother liquid.
  • Step 2 The reaction and precipitation are carried out by a coprecipitation method.
  • deionized water having a total powder mass of 6 times and a dispersing agent having a total powder mass of 0.8%.
  • the dispersing agent was D900, and the temperature was slowly raised to 63 ° C at a rate of 1 ° C / min.
  • a concentrated ammonia solution having a mass fraction of 25% was selected as a precipitant, and deionized water was added to concentrated ammonia water to prepare a 3 mol/L precipitant solution.
  • the solution and the ammonia water in the first step are simultaneously added to the reaction kettle, and the reaction temperature is controlled to be 63 ° C.
  • the flow rate of the two solutions is adjusted to maintain the pH value of 8, while stirring constantly to form a hydroxide precipitate until the mother liquor is added.
  • the precipitate was aged for 3 hours, then filtered, and the precipitate was washed 5 times with deionized water. Then, the washed precipitate was placed in a freeze dryer, adjusted to a drying pressure of 30 Pa, and freeze-dried and dried for 5 hours to obtain an antistatic zirconia precursor without hard agglomeration.
  • Step 3 The precursor obtained in the step 2 is heated to 1050 ° C at a rate of 1 ° C / min in an air resistance furnace, and kept for 2.5 hours to obtain an antistatic zirconia bulk powder.
  • Step 4 The bulk powder obtained in the step 3 is added to the ball mill together with the nano alumina powder of the mass ratio, and the wet grinding is carried out.
  • the grinding ball is made of zirconia grinding ball, and the ratio of the ball water is 1:2. : 0.6, ball milling time 36 hours.
  • Step 5 The ball-milled powder was spray-granulated to obtain an antistatic zirconia ceramic powder having a particle size of 0.9 ⁇ m and a ratio of 9.5 m 2 /g.
  • Step 6 The prepared zirconia antistatic ceramic powder and the binder are kneaded at a mass ratio of 80:20.
  • the binder contains 60% of paraffin, 20% of polyethylene, and 20% of polypropylene (both in mass fraction). After mixing, injection molding is carried out to obtain a long injection green body of 50 mm in length, 10 mm in width and 8 mm in height.
  • Step 7 The formed green body is placed in an air furnace for sintering.
  • the heating rate was 0.5 ° C / min before 700 ° C; 4 ° C / min after 700 ° C, until the highest sintering temperature. Highest sintering temperature Degree 1320 ° C, and heat for 3 hours.
  • Step 8 Mechanically process the sintered zirconia antistatic ceramic according to the need to obtain a strip having a length of 36 mm, a width of 4 mm and a height of 3 mm, and then polishing to obtain an antistatic ceramic finished product having a size, shape and surface quality.
  • An antistatic zirconia ceramic comprises the following mass fraction components:
  • the preparation method of the above zirconia composite ceramic comprises the following steps:
  • Step 1 According to the mass ratio of zirconia in the table, the molar ratio of the molar ratio to the zirconium oxychloride is formulated into an aqueous solution of 85 g/L; then Y 2 O 3 , zinc oxide and tin oxide are weighed according to the mass ratio. Then, it was dissolved in nitric acid, and each was formulated into a 0.5 mol/L nitrate solution. Finally, the weighed solution of each substance is added to the reaction vessel, and stirred to form a mother liquid.
  • Step 2 The reaction and precipitation are carried out by a coprecipitation method.
  • Deionized water having a total powder mass of 5 times and a dispersing agent having a total powder mass of 1% were added to the reaction vessel, and the dispersing agent was ammonium polyacrylate, and the temperature was slowly raised to 64 ° C at a rate of 1 ° C / minute.
  • a concentrated ammonia solution having a mass fraction of 25% was selected as a precipitant, and deionized water was added to concentrated ammonia water to prepare a 3 mol/L precipitant solution.
  • the solution and the ammonia water in the first step are synchronously added to the reaction kettle, and the reaction temperature is controlled to be 64 ° C.
  • the flow rate of the two solutions is adjusted to maintain the pH value of 9, while stirring constantly to form a hydroxide precipitate until the mother liquor is added.
  • the precipitate was aged for 4 hours, then filtered, and the precipitate was washed 5 times with deionized water. Then, the washed precipitate was placed in a freeze dryer, adjusted to a drying pressure of 40 Pa, and freeze-dried and dried for 5 hours to obtain an antistatic zirconia precursor without hard agglomeration.
  • Step 3 The precursor obtained in the step 2 is heated to 1000 ° C at a rate of 3 ° C / min in an air resistance furnace, and kept for 2 hours to obtain an antistatic zirconia bulk powder.
  • Step 4 The bulk powder obtained in the step 3 is added to the ball mill together with the nano alumina powder of the mass ratio, and the wet grinding is carried out.
  • the grinding ball is made of zirconia grinding ball, and the ratio of the ball water is 1:3. : 0.5, ball milling time 48 hours.
  • Step 5 The ball-milled powder was subjected to spray granulation to obtain an antistatic zirconia ceramic powder having a particle size of 0.7 ⁇ m and a specific surface ratio of 11 m 2 /g.
  • Step 6 Mix the prepared zirconia antistatic ceramic powder with binder PVA of 5% by mass, 0.8% of plasticizer DOP, and 0.5% of dispersant PMMA, and extrude 50mm long. Strips 10mm high and 8mm high.
  • Step 7 The formed green body is placed in an air furnace for sintering.
  • the heating rate was 1.5 ° C / min before 700 ° C; 5 ° C / min after 700 ° C, until the highest sintering temperature.
  • the highest sintering temperature is 1380 ° C and is kept for 2 hours.
  • Step 8 According to the need, the sintered zirconia antistatic ceramic is processed into a strip of 36 mm, a width of 4 mm and a height of 3 mm, and is polished to obtain an antistatic ceramic finished product having a size, shape and surface quality.
  • An antistatic zirconia ceramic comprises the following mass fraction components:
  • the preparation method of the above zirconia composite ceramic comprises the following steps:
  • Step 1 According to the mass ratio of zirconia in the table, the mass ratio of the molar ratio of zirconia to zirconia is converted into an aqueous solution of 82 g/L; the mass ratio of MgAl 2 O 4 is converted into a molar ratio, and then converted into The mass ratio of the precursor oxide magnesium oxide and aluminum oxide is then dissolved in the nitric acid by dissolving the two oxides and the cerium oxide, respectively, and then 0.5 mol/L of the nitrate solution is finally added, and finally the solution of each substance is added to the reaction vessel. Stir well to form a mother liquor.
  • Step 2 The reaction and precipitation are carried out by a coprecipitation method.
  • deionized water having a total powder mass of 3 times and a dispersing agent having a total powder mass of 0.6%.
  • the dispersing agent was SD-05, and the temperature was slowly raised to 62 ° C at a rate of 1 ° C / min.
  • a concentrated ammonia solution having a mass fraction of 25% was selected as a precipitant, and deionized water was added to concentrated ammonia water to prepare a 3 mol/L precipitant solution.
  • the solution and the ammonia water in the first step are added to the reaction kettle simultaneously, and the reaction temperature is controlled to be 62 ° C.
  • the flow rate of the two solutions is adjusted to maintain the pH value of 9, while stirring constantly to form a hydroxide precipitate until the mother liquor is added.
  • the precipitate was aged for 3 hours, then filtered, and the precipitate was washed 5 times with deionized water. Then, the washed precipitate was placed in a freeze dryer, adjusted to a drying pressure of 20 Pa, and freeze-dried and dried for 3 hours to obtain an antistatic zirconia precursor without hard agglomeration.
  • Step 3 The precursor obtained in the step 2 is heated to 1000 ° C at a rate of 1 ° C / min in an air resistance furnace, and kept for 2 hours to obtain an antistatic zirconia bulk powder.
  • Step 4 The bulk powder obtained in the step 3 is added to the ball mill together with the nano alumina powder of the mass ratio, and the wet grinding is carried out.
  • the grinding ball is made of zirconia grinding ball, and the ratio of the ball water is 1:2. : 0.5, ball milling time 30 hours.
  • Step 5 The ball-milled powder was spray-granulated to obtain an antistatic zirconia ceramic powder having a particle size of 0.8 ⁇ m and a ratio of 10 m 2 /g.
  • Step 6 The prepared zirconia antistatic ceramic powder and the paraffin wax which is 20% by mass of the powder are heated and stirred, and then hot-pressed to obtain a strip of 50 mm, a width of 10 mm and a height of 8 mm.
  • Step 7 The formed green body is first buried in a crucible containing corundum powder and dewaxed, and then placed in an air furnace for sintering.
  • the heating rate was 1 ° C / min before 700 ° C; 4 ° C / min after 700 ° C, until the highest sintering temperature.
  • the highest sintering temperature is 1380 ° C and is kept for 2 hours.
  • Step 8 Mechanically process the sintered zirconia antistatic ceramic according to the need to obtain a strip having a length of 36 mm, a width of 4 mm and a height of 3 mm, and then polishing to obtain an antistatic ceramic finished product having a size, shape and surface quality.
  • Cerium oxide partially stabilized zirconia 60% Ferric oxide 10% Nickel oxide 18% Chromium oxide 12%
  • Step 1 Weigh the yttria partially stabilized zirconia, ferric oxide, nickel oxide and chromium oxide according to the mass ratio in the table, and then add to the ball mill for physical mixing.
  • the material: ball: water 1: 2: 0.6, ball milling time of 30 hours.
  • Step 2 Weigh 1% of the total PVA of the powder, then prepare a 10% PVA solution, add it to the ball-milled slurry, and mix well.
  • Step 3 Transfer the PVA-added slurry to a storage tank with a stirring paddle, and then spray granulate to obtain a spherical powder.
  • Step 4 The obtained spherical powder is placed in a dry pressing mold, and formed into a strip having a length of 50 mm, a width of 10 mm, and a height of 8 mm.
  • Step 5 The formed green body is placed in an air furnace for sintering at a heating rate of 2 ° C / min until the maximum sintering temperature of 1400 ° C, and then held for 2 hours.
  • Step 6 The sintered blank is processed to obtain a strip having a length of 36 mm, a width of 4 mm, and a height of 3 mm.
  • the resistivity test uses a volume resistance tester, test temperature: 25 ° C, test humidity: 50%.
  • the density test uses a precision density balance with a test temperature of 25 °C.
  • the bending strength is measured by a bending strength tester, and the test method is a three-point bending strength test method.
  • the hardness test uses a Vickers hardness tester.
  • the resistivity of the products prepared in Examples 1-5 was much lower than that of the comparative examples, and the products prepared in Examples 1-5 were higher in density, flexural strength and hardness than the comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种氧化锆复合陶瓷及其制备方法。该氧化锆复合陶瓷,按照质量百分比计,包括:65%-80%的氧化锆基体、10%-30%的导电材料及2%-11%的纳米增强材料。导电材料选自有色金属氧化物、白色金属氧化物、具有钙钛矿结构的化合物及具有尖晶石结构的化合物中的至少一种。该氧化锆复合陶瓷防静电性能优良、力学性能高。

Description

氧化锆复合陶瓷及其制备方法 技术领域
本发明涉及一种氧化锆复合陶瓷及其制备方法。
背景技术
当两种物体相互摩擦时,一种物体中的电子因受原子核的束缚较弱,跑到另一个物体上去,使得到电子的物体由于其中的负电荷多于正电荷,因而显出带负电;失去电子的物体由于其中的正电荷多于负电荷,因而显出带正电,这就是摩擦起电现象。由此物体所带的电称为“静电”,当其积聚到一定程度时就会发生静电放电现象。在当今日益发展的电子工业时代,各种微电子、光电子原件的应用非常广泛,而静电放电能够破坏电子原件、改变半导体元器件的电性能、破坏电子系统,造成整个设备故障或失灵;与此同时,静电电荷释放时产生静电火花,极易引燃易燃易爆材料,造成极大危险和经济损失。
陶瓷材料具有良好的耐磨性、耐腐蚀、耐高温、刚性好等优点,是理想的防静电材料。目前披露的防静电陶瓷材料制作方法,大都是通过在陶瓷基体中加入第二相,即导电相的方法,使陶瓷材料的电阻率降低为105到109Ω·cm,从而达到静电耗散的目的。
由于目前的防静电陶瓷材料采用的是陶瓷基体+导电相粉体物理混合的方法制备,因此需要加入较多的导电相(一般的比例是20%~40%质量分数)才能达到所需要的电阻率,这无疑大大增加了陶瓷基体的杂质含量,降低了陶瓷体本身的力学性能。
发明内容
基于此,有必要,提供一种防静电性能优良、力学性能高的氧化锆复合陶瓷及其制备方法。
一种氧化锆复合陶瓷,其特征在于,按照质量百分比计,包括:65%~80%的氧化锆基体、10%~30%的导电材料及2%~11%的纳米增强材料,其中所述导电材料选自有色金属氧化物、白色金属氧化物、具有钛矿结构的化合物及具有尖晶石结构的化合物中的至少一种,所述有色氧化物选自CuO、Cu2O、V2O5、NiO、MnO、MnO2、CoO、Co2O3、Co3O4、Fe2O3、FeO、Fe3O4及Cr2O3中的至少一种,所述白色氧化物选自ZnO、SnO2、TiO2中的至少一种,所述具有钛矿结构的化合物选自CaTiO3、BaTiO3、LaCrO3、LaSr0.1Cr0.9O3、SrTiO3、LaFeO3的至少一种,所述具有尖晶石结构的化合物的结构式为AB2O4,其中,A选自Mg、Fe、Zn及Mn中的至少一种,所述B选自Al、Cr及Fe中的至少一种。
在其中一个实施例中,所述氧化锆基体以质量百分含量计包括2%~10%的稳定剂及90%~98%的氧化锆,所述稳定剂选自氧化钇、氧化镁、氧化钙及氧化铈中的至少一种。
在其中一个实施例中,所述纳米增强材料选自纳米氧化锆及纳米氧化铝中的至少一种。
上述氧化锆复合陶瓷的制备方法,其特征在于,包括以下步骤:
根据氧化锆复合陶瓷中氧化锆基体的及导电材料的量提供氧氯化锆溶液及所述导电材料对应的金属离子溶液,合并后得到母液;
提供分散剂溶液,将所述分散剂溶液加热至60℃~65℃,其中所述分散剂溶液中的分散剂与氧化锆基体中氧化锆的质量比0.5∶99.5~1∶99。
将浓度为2mol/L~3mol/L的氨水及所述母液同时加入所述分散剂溶液中反应,控制反应温度为60℃~65℃,反应的pH值为8-10,反应结束后陈化2小时~5小时,过滤后干燥得到前驱体;
将所述前驱体在800℃~1100℃下烧结1小时~5小时得到块状材料;
将所述块状材料与纳米增强材料球磨24小时~48小时得到氧化锆复合陶 瓷粉体;
将所述氧化锆复合陶瓷粉体造粒后制成生坯;及
将所述生坯缓慢升温至1280℃~1520℃进行烧结得到所述氧化锆复合陶瓷。
在其中一个实施例中,所述将所述生坯缓慢升温至1280℃~1520℃进行烧结的步骤中,以0.5~3℃/min的升温速率升温至700℃,之后再以4~5℃/min的升温速率升温至1280℃~1520℃。
在其中一个实施例中,根据氧化锆复合陶瓷中氧化锆基体及导电材料的量提供氧氯化锆溶液及所述导电材料对应的金属离子溶液的步骤中,所述氧氯化锆溶液的浓度为80~85g/L,根据所述氧化锆复合陶瓷中导电材料的量换算为金属氧化物的量,将金属氧化物分别用硝酸溶解配制成浓度为0.4mol/L~0.6mol/L的金属离子溶液。
在其中一个实施例中,所述过滤后干燥得到前驱体的步骤中,过滤后得到的沉淀物采用去离子水冲洗后,将冲洗后的沉淀物在10~40Pa下冷冻干燥2小时~5小时得到所述前驱体。
在其中一个实施例中,所述分散剂溶液中的分散剂选自SD-05、D3005、D900及聚丙烯酸铵中的至少一种,所述分散剂溶液的浓度为10g/L~30g/L。
在其中一个实施例中,所述将所述氧化锆复合陶瓷粉体造粒后制成生坯的步骤中,将所述氧化锆复合陶瓷粉体进行喷雾造粒,得到粒度为0.7μm~1μm、比表面积为8~11m2/g的粉体。
在其中一个实施例中,所述将所述前驱体在800℃~1100℃下烧结1小时~5小时得到块状材料的步骤中,以1~3℃/min的升温速率升温到800℃~1100℃。
上述氧化锆复合陶瓷,加入的导电材料具有导体或者半导体的性质,加入到氧化锆基体中以后,能显著的降低氧化锆基体本身的电阻率,同时,加入的导电材料在高温烧结时,不会氧化分解,从而避免在氧化锆复合陶瓷内部产生孔洞,提高了氧化锆基体的防静电性能和致密性;纳米增强材料能吸 收部分断裂能,从而起到补强和增韧的双重效果;上述氧化锆复合陶瓷的制备方法,采用共沉淀法,采用氨水作为沉淀剂,反应生成均匀的沉淀,之后再进行烧结,相较于传统的物理混合方法,使得导电材料在氧化锆基体中的分布更加均匀,甚至可以进入氧化锆晶格中,形成连续、导通的导电回路,从而可以减少导电材料的用量,同时也提高了氧化锆复合陶瓷的力学性能,由于导电材料在氧化锆基体中均匀分布,因此整个氧化锆复合陶瓷的局部电阻率相同,可以避免静电在氧化锆复合陶瓷的表面形成不安全的快速放电。
附图说明
图1为一实施方式的氧化锆复合陶瓷的制备方法的流程示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
一种氧化锆复合陶瓷,按照质量百分比计,包括:65%~80%的氧化锆基体、10%~30%的导电材料及2%~11%的纳米增强材料。
其中,导电材料选自有色金属氧化物、白色金属氧化物、具有钛矿结构的化合物及具有尖晶石结构的化合物中的至少一种。
有色氧化物选自CuO、Cu2O、V2O5、NiO、MnO、MnO2、CoO、Co2O3、Co3O4、Fe2O3、FeO、Fe3O4及Cr2O3中的至少一种。
白色氧化物选自ZnO、SnO2、TiO2中的至少一种。
具有钛矿结构的化合物选自CaTiO3、BaTiO3、LaCrO3、LaSr0.1Cr0.9O3、SrTiO3、LaFeO3的至少一种。
具有尖晶石结构的化合物的结构式为AB2O4,其中,A选自Mg、Fe、 Zn及Mn中的至少一种,B选自Al、Cr及Fe中的至少一种。具有尖晶石结构的化合物可以为:MgAl2O4、FeAl2O4、ZnCr2O4、或MnFe2O4
优选的,氧化锆基体以质量百分含量计包括2%~10%的稳定剂及90%~98%的氧化锆,所述稳定剂选自氧化钇、氧化镁、氧化钙及氧化铈中的至少一种。加入稳定剂可以提高氧化锆的韧性。
优选的,纳米增强材料选自纳米氧化锆及纳米氧化铝中的至少一种。
上述氧化锆复合陶瓷,加入的导电材料具有导体或者半导体的性质,加入到氧化锆基体中以后,能显著的降低氧化锆基体本身的电阻率;同时,加入的导电材料在高温烧结时,不会氧化分解,从而避免在氧化锆复合陶瓷内部产生孔洞,提高了氧化锆基体的防静电性能和致密性;加入的导电材料烧结后,在氧化锆基体中形成导电或半导电的离散型晶粒相,从而可以使氧化锆复合陶瓷的电阻率下降到105-109Ω·cm左右;加入纳米增强材料,利用热膨胀和弹性模量的失配使得断裂应力增加,同时吸收部分断裂能,从而具备补强和增韧的双重效果,在弥散强化材料中存在裂纹扩展的钉扎和偏转、弯曲效应,也能起到增韧作用,它不受温度的影响,因此可作为一种有效的高温增韧机制。
上述氧化锆复合陶瓷的制备方法,包括以下步骤:
步骤S110、根据氧化锆复合陶瓷中氧化锆基体的及导电材料的量提供氧氯化锆溶液及导电材料对应的金属离子溶液,合并后得到母液。
优选的,氧氯化锆溶液的浓度为80~85g/L。
如果导电材料为有色金属氧化物、白色金属氧化物,就称取对应量的金属氧化物,用硝酸溶解配置成浓度为0.4mol/L~0.6mol/L的金属离子溶液。
如果导电材料为具有钛矿结构的化合物及具有尖晶石结构的化合物,就将导电材料的量换算为对应的金属氧化物的量,然后称取对应的金属氧化物,分别用硝酸溶解配制成浓度为0.4mol/L~0.6mol/L的金属离子溶液。
例如,导电材料为1mol的LaCrO3,则加入0.5mol的Cr2O3和0.5mol的La2O3,然后分别配成0.4~0.6mol/L的硝酸盐溶液。
优选的,氧化锆基体中还含有稳定剂,氧化锆基体以质量百分含量计包括2%~10%的稳定剂及90%~98%的氧化锆,稳定剂选自氧化钇、氧化镁、氧化钙及氧化铈中的至少一种,则母液中还含有稳定剂对应的金属离子。进一步的,该步骤中,称取对应量的稳定剂,采用硝酸溶解后,配置成浓度为0.4mol/L~0.6mol/L的金属离子溶液,加入母液中。
步骤S120、提供分散剂溶液,将所述分散剂溶液加热至60℃~65℃,其中分散剂溶液中的分散剂与氧化锆基体中氧化锆的质量比为0.5∶99.5~1∶99。
优选的,分散剂溶液的浓度为10g/L-30g/L。
优选的,分散剂溶液中的分散剂选自SD-05、D3005、D900及聚丙烯酸铵中的至少一种。
优选的,将分散剂溶液加热至60℃~65℃的步骤中,升温速率为1~2℃/min。
步骤S130、将浓度为2mol/L~3mol/L的氨水及母液同时加入分散剂溶液中反应,控制反应温度为60℃~65℃,反应的pH值为8-10,反应结束后陈化2小时~5小时,过滤后干燥得到前驱体。
优选的,在向分散剂溶液中加入氨水及母液时,采用滴加的方式加入,控制两种液体的流量以保持pH值为8-10。
优选的,将浓度为2mol/L~3mol/L的氨水及母液同时加入分散剂溶液中反应时,不断搅拌,生成氢氧化物沉淀。
优选的,过滤后得到的沉淀物采用去离子水冲洗后,将冲洗后的沉淀物在10~40Pa下冷冻干燥2小时~5小时得到前驱体。进一步的,采用去离子水冲洗5次。
优选的,浓度为2mol/L~3mol/L的氨水使用前用质量分数为25%的氨水和去离子水配置而成。
步骤S140、将前驱体在800℃~1100℃下烧结1小时~5小时得到块状材料。
优选的,以1~3℃/min的升温速率升温到800℃~1100℃。
优选的,烧结在空气电阻炉中进行。
步骤S150、将块状材料与纳米增强材料球磨24小时~48小时得到氧化锆复合陶瓷粉体。
优选的,纳米增强材料选自纳米氧化锆及纳米氧化铝中的至少一种。
优选的,采用氧化锆球作为球磨介质,块状材料与纳米增强材料的总量、氧化锆球及水的质量比为1∶1~3∶0.5~1。
步骤S160、将氧化锆复合陶瓷粉体造粒后制成生坯。
优选的,将所述氧化锆复合陶瓷粉体进行喷雾造粒,得到粒度为0.7μm~1μm、比表面积为8~11m2/g的粉体。
优选的,采用干压成型、等静压成型、注射成型、挤出成型或凝胶成型的方法制成生坯。
步骤S170、将生坯缓慢升温至1280℃~1520℃进行烧结得到氧化锆复合陶瓷。
优选的,以0.5~3℃/min的升温速率升温至700℃,之后再以4~5℃/min的升温速率升温至1280℃~1520℃。该步骤中,低温段升温缓慢,防止坯体出现开裂、鼓泡、气孔等缺陷。
优选的,在1280℃~1520℃烧结2小时~5小时。
步骤S180、将所述氧化锆复合陶瓷进行机械加工、抛光。
上述氧化锆复合陶瓷的制备方法,采用共沉淀法,采用氨水作为沉淀剂,反应生成均匀的沉淀,之后再进行烧结,相较于传统的物理混合方法,使得导电材料在氧化锆基体中的分布更加均匀,甚至可以进入氧化锆晶格中,形成连续、导通的导电回路,从而可以减少导电材料的用量,同时也提高了氧化锆复合陶瓷的力学性能,由于导电材料在氧化锆基体中均匀分布,因此整个氧化锆复合陶瓷的局部电阻率相同,可以避免静电在氧化锆复合陶瓷的表面形成不安全的快速放电。
以下,结合具体实施例进行详细说明。
实施例1
一种氧化锆复合陶瓷包含以下质量分数的组分:
氧化锆 76%
氧化钇 4%
三氧化二铁 1%
氧化镍 7%
三氧化二铬 2%
纳米氧化铝 10%
上述氧化锆复合陶瓷的制备方法包括以下步骤:
步骤一:根据表中的氧化锆的质量比例,按摩尔比换算为氧氯化锆的质量比,配成80g/L的水溶液;之后按质量比称取Y2O3和三氧化二铁、氧化镍、三氧化二铬,然后用硝酸溶解,分别配成0.4mol/L的硝酸盐溶液。最后将称好的各物质溶液加入到反应釜,搅拌均匀形成母液。
步骤二:利用共沉淀法进行反应、沉淀。向反应釜中加入去总粉体质量3倍的去离子水和总粉体质量0.5%的分散剂,分散剂为SD-05,以1℃/分的速度缓慢升温至65℃。选择质量分数25%的浓氨水作为沉淀剂,在浓氨水中加入去离子水配成3mol/L的沉淀剂溶液。将步骤一所配溶液和氨水同步加入反应釜,控制反应温度为60℃,注意调节两种溶液的流量,使保持pH值为10,同时不断搅拌,生成氢氧化物沉淀,直至母液加完。待反应完毕后,将沉淀物陈化3小时,然后过滤,用去离子水冲洗沉淀物5次。然后将冲洗后的沉淀物放入冷冻干燥机,调节干燥压力为20Pa,冷冻干燥干燥3小时,从而得到无硬团聚的防静电氧化锆前驱体。
步骤三:将步骤2得到的前驱体采用空气电阻炉以1℃/分的速度升温到950℃,并保温2小时,得到防静电氧化锆块状粉体。
步骤四:将步骤3得到的块状粉体和按质量比称好的纳米氧化铝粉一起加入球磨机,进行湿磨混合,磨球采用氧化锆材质磨球,料球水的比例为1∶ 2∶0.5,球磨时间30小时。
步骤五:将球磨好的粉体进行喷雾造粒,得到粒度为0.8μm,比表9m2/g的防静电氧化锆陶瓷粉体。
步骤六:将制备好的氧化锆防静电陶瓷粉体放入干压模具,压制成长50mm,宽10mm、高8mm的长条。
步骤七:将成型好的生坯放入空气炉中进行烧结。升温速率为700摄氏度以前为1℃/分;700℃以后4℃/分,直至升到最高烧结温度。最高烧结温度1400℃,并保温2.5小时。
步骤八:根据需要对烧结好的氧化锆防静电陶瓷进行机械加工,得到长36mm、宽4mm,高3mm的长条,然后抛光,得到尺寸、形状、表面质量合格的防静电陶瓷成品。
实施例2
一种防静电氧化锆陶瓷包含以下质量分数的组分:
氧化锆 70%
氧化钇 5%
LaSr0.1Cr0.9O3 20%
纳米氧化锆 5%
上述氧化锆复合陶瓷的制备方法包括以下步骤:
步骤一:根据表中的氧化锆的质量比例,按摩尔比换算为氧氯化锆的质量比,配成82g/L的水溶液;将LaSr0.1Cr0.9O3按质量比折算为摩尔比,再换算成前驱氧化物氧化镧、氧化锶、氧化铬的质量比,然后把几种氧化物和氧化钇分别用硝酸溶解,分别配成0.5mol/L的硝酸盐溶液。最后将称好的各物质溶液加入到反应釜,搅拌均匀形成母液。
步骤二:利用共沉淀法进行反应、沉淀。向反应釜中加入去总粉体质量4倍的去离子水和总粉体质量0.6%的分散剂,分散剂为D3005,以2℃/分的速度缓慢升温至62℃。选择质量分数25%的浓氨水作为沉淀剂,在浓氨水中 加入去离子水配成2mol/L的沉淀剂溶液。将步骤一所配溶液和氨水同步加入反应釜,控制反应温度为62℃,注意调节两种溶液的流量,使保持pH值为9,同时不断搅拌,生成氢氧化物沉淀,直至母液加完。待反应完毕后,将沉淀物陈化4小时,然后过滤,用去离子水冲洗沉淀物5次。然后将冲洗后的沉淀物放入冷冻干燥机,调节干燥压力为25Pa,冷冻干燥干燥2小时,从而得到无硬团聚的防静电氧化锆前驱体。
步骤三:将步骤2得到的前驱体采用空气电阻炉以2℃/分的速度升温到1000℃,并保温3小时,得到防静电氧化锆块状粉体。
步骤四:将步骤3得到的块状粉体和按质量比称好的纳米氧化锆粉一起加入球磨机,进行湿磨混合,磨球采用氧化锆材质磨球,料球水的比例为1∶2.5∶0.6,球磨时间24小时。
步骤五:将球磨好的粉体进行喷雾造粒,得到粒度为1μm,比表8m2/g的防静电氧化锆陶瓷粉体。
步骤六:将制备好的氧化锆防静电陶瓷粉体放入等静压模具,压制后加工成长50mm,宽10mm、高8mm的长条。
步骤七:将成型好的生坯放入空气炉中进行烧结。升温速率为700摄氏度以前为2℃/分;700℃以后5℃/分,直至升到最高烧结温度。最高烧结温度1360℃,并保温2小时。
步骤八:根据需要对烧结好的氧化锆防静电陶瓷进行机械加工,得到长36mm、宽4mm,高3mm的长条,然后抛光,得到尺寸、形状、表面质量合格的防静电陶瓷成品。
实施例3
一种防静电氧化锆陶瓷包含以下质量分数的组分:
氧化锆 65%
氧化钇 3%
氧化钛 30%
纳米氧化铝 2%
上述氧化锆复合陶瓷的制备方法包括以下步骤:
步骤一:根据表中的氧化锆的质量比例,按摩尔比换算为氧氯化锆的质量比,配成81g/L的水溶液;按质量比称取Y2O3、氧化钛,然后用硝酸溶解,分别配成0.6mol/L的硝酸盐溶液。最后将称好的各物质溶液加入到反应釜,搅拌均匀形成母液。
步骤二:利用共沉淀法进行反应、沉淀。向反应釜中加入去总粉体质量6倍的去离子水和总粉体质量0.8%的分散剂,分散剂为D900,以1℃/分的速度缓慢升温至63℃。选择质量分数25%的浓氨水作为沉淀剂,在浓氨水中加入去离子水配成3mol/L的沉淀剂溶液。将步骤一所配溶液和氨水同步加入反应釜,控制反应温度为63℃,注意调节两种溶液的流量,使保持pH值为8,同时不断搅拌,生成氢氧化物沉淀,直至母液加完。待反应完毕后,将沉淀物陈化3小时,然后过滤,用去离子水冲洗沉淀物5次。然后将冲洗后的沉淀物放入冷冻干燥机,调节干燥压力为30Pa,冷冻干燥干燥5小时,从而得到无硬团聚的防静电氧化锆前驱体。
步骤三:将步骤2得到的前驱体采用空气电阻炉以1℃/分的速度升温到1050℃,并保温2.5小时,得到防静电氧化锆块状粉体。
步骤四:将步骤3得到的块状粉体和按质量比称好的纳米氧化铝粉一起加入球磨机,进行湿磨混合,磨球采用氧化锆材质磨球,料球水的比例为1∶2∶0.6,球磨时间36小时。
步骤五:将球磨好的粉体进行喷雾造粒,得到粒度为0.9μm,比表9.5m2/g的防静电氧化锆陶瓷粉体。
步骤六:将制备好的氧化锆防静电陶瓷粉体和粘结剂按80∶20的质量比混炼。粘结剂中石蜡占60%、聚乙烯占20%、聚丙烯占20%(均为质量分数)混炼后注射成型,得到长50mm,宽10mm、高8mm的长条注射生坯。
步骤七:将成型好的生坯放入空气炉中进行烧结。升温速率为700摄氏度以前为0.5℃/分;700℃以后4℃/分,直至升到最高烧结温度。最高烧结温 度1320℃,并保温3小时。
步骤八:根据需要对烧结好的氧化锆防静电陶瓷进行机械加工得到长36mm、宽4mm,高3mm的长条,然后抛光,得到尺寸、形状、表面质量合格的防静电陶瓷成品。
实施例4
一种防静电氧化锆陶瓷包含以下质量分数的组分:
氧化锆 70%
氧化钇 4%
氧化锌 10%
氧化锡 10%
纳米氧化铝 6%
上述氧化锆复合陶瓷的制备方法包括以下步骤:
步骤一:根据表中的氧化锆的质量比例,按摩尔比换算为氧氯化锆的质量比,配成85g/L的水溶液;之后按质量比称取Y2O3、氧化锌和氧化锡,然后用硝酸溶解,分别配成0.5mol/L的硝酸盐溶液。最后将称好的各物质溶液加入到反应釜,搅拌均匀形成母液。
步骤二:利用共沉淀法进行反应、沉淀。向反应釜中加入去总粉体质量5倍的去离子水和总粉体质量1%的分散剂,分散剂为聚丙烯酸铵,以1℃/分的速度缓慢升温至64℃。选择质量分数25%的浓氨水作为沉淀剂,在浓氨水中加入去离子水配成3mol/L的沉淀剂溶液。将步骤一所配溶液和氨水同步加入反应釜,控制反应温度为64℃,注意调节两种溶液的流量,使保持pH值为9,同时不断搅拌,生成氢氧化物沉淀,直至母液加完。待反应完毕后,将沉淀物陈化4小时,然后过滤,用去离子水冲洗沉淀物5次。然后将冲洗后的沉淀物放入冷冻干燥机,调节干燥压力为40Pa,冷冻干燥干燥5小时,从而得到无硬团聚的防静电氧化锆前驱体。
步骤三:将步骤2得到的前驱体采用空气电阻炉以3℃/分的速度升温到1000℃,并保温2小时,得到防静电氧化锆块状粉体。
步骤四:将步骤3得到的块状粉体和按质量比称好的纳米氧化铝粉一起加入球磨机,进行湿磨混合,磨球采用氧化锆材质磨球,料球水的比例为1∶3∶0.5,球磨时间48小时。
步骤五:将球磨好的粉体进行喷雾造粒,得到粒度为0.7μm,比表11m2/g的防静电氧化锆陶瓷粉体。
步骤六:将制备好的氧化锆防静电陶瓷粉体和占粉体质量5%的粘结剂PVA、0.8%的增塑剂DOP、0.5%的分散剂PMMA混合均匀,挤出长50mm,宽10mm、高8mm的长条。
步骤七:将成型好的生坯放入空气炉中进行烧结。升温速率为700摄氏度以前为1.5℃/分;700℃以后5℃/分,直至升到最高烧结温度。最高烧结温度1380℃,并保温2小时。
步骤八:根据需要对烧结好的氧化锆防静电陶瓷加工成长36mm、宽4mm,高3mm的长条、抛光,得到尺寸、形状、表面质量合格的防静电陶瓷成品。
实施例5
一种防静电氧化锆陶瓷包含以下质量分数的组分:
氧化锆 70%
氧化钇 3%
MgAl2O4 25%
纳米氧化铝 2%
上述氧化锆复合陶瓷的制备方法包括以下步骤:
步骤一:根据表中的氧化锆的质量比例,按摩尔比换算为氧氯化锆的质量比,配成82g/L的水溶液;将MgAl2O4按质量比折算为摩尔比,再换算成前驱氧化物氧化镁、氧化铝的质量比,然后把两种氧化物和氧化钇分别用硝 酸溶解,分别配成0.5mol/L的硝酸盐溶液最后将称好的各物质溶液加入到反应釜,搅拌均匀形成母液。
步骤二:利用共沉淀法进行反应、沉淀。向反应釜中加入去总粉体质量3倍的去离子水和总粉体质量0.6%的分散剂,分散剂为SD-05,以1℃/分的速度缓慢升温至62℃。选择质量分数25%的浓氨水作为沉淀剂,在浓氨水中加入去离子水配成3mol/L的沉淀剂溶液。将步骤一所配溶液和氨水同步加入反应釜,控制反应温度为62℃,注意调节两种溶液的流量,使保持pH值为9,同时不断搅拌,生成氢氧化物沉淀,直至母液加完。待反应完毕后,将沉淀物陈化3小时,然后过滤,用去离子水冲洗沉淀物5次。然后将冲洗后的沉淀物放入冷冻干燥机,调节干燥压力为20Pa,冷冻干燥干燥3小时,从而得到无硬团聚的防静电氧化锆前驱体。
步骤三:将步骤2得到的前驱体采用空气电阻炉以1℃/分的速度升温到1000℃,并保温2小时,得到防静电氧化锆块状粉体。
步骤四:将步骤3得到的块状粉体和按质量比称好的纳米氧化铝粉一起加入球磨机,进行湿磨混合,磨球采用氧化锆材质磨球,料球水的比例为1∶2∶0.5,球磨时间30小时。
步骤五:将球磨好的粉体进行喷雾造粒,得到粒度为0.8μm,比表10m2/g的防静电氧化锆陶瓷粉体。
步骤六:将制备好的氧化锆防静电陶瓷粉体和占粉体质量20%的石蜡一起加热搅匀后,进行热压注成型,制得50mm,宽10mm、高8mm的长条。
步骤七:先将成型好的生坯埋入装有刚玉粉的坩埚中脱蜡,然后放入空气炉中进行烧结。升温速率为700摄氏度以前为1℃/分;700℃以后4℃/分,直至升到最高烧结温度。最高烧结温度1380℃,并保温2小时。
步骤八:根据需要对烧结好的氧化锆防静电陶瓷进行机械加工,得到长36mm、宽4mm,高3mm的长条,然后抛光,得到尺寸、形状、表面质量合格的防静电陶瓷成品。
对比例:
氧化钇部分稳定氧化锆 60%
三氧化二铁 10%
氧化镍 18%
三氧化二铬 12%
步骤一:按表中质量比分别称量氧化钇部分稳定氧化锆、三氧化二铁、氧化镍、三氧化二铬,然后加入到球磨机中,进行物理混合。其中,料∶球∶水=1∶2∶0.6,球磨时间30小时。
步骤二:称取粉体总质量1%的PVA,然后配成10%的PVA溶液,加入到球磨好的浆料中,搅拌均匀。
步骤三:将加好PVA的浆料转移到带搅拌桨的贮料罐中,然后进行喷雾造粒,得到圆球形粉末。
步骤四:将得到的球形粉末放入干压模具内,成型为长50mm,宽10mm、高8mm的长条。
步骤五:把成型好的生坯放入空气炉中进行烧结,升温速度2℃/分,直至最高烧结温度1400℃,然后保温2小时。
步骤六:对烧结好的毛坯进行加工,得到长36mm、宽4mm,高3mm的长条。
对实施例1-5及对比例制备的产品进行密度、电阻率、抗弯强度及硬度测试,测试结果如表1所示。
其中,电阻率测试采用体积电阻测试仪,测试温度:25℃,测试湿度:50%。
密度测试采用精密密度天平,测试温度:25℃。
抗弯强度采用抗弯强度测试仪,测试方法为三点抗弯强度测试法。
硬度测试采用维氏硬度仪。
表1
Figure PCTCN2015077512-appb-000001
从表1可以看出,实施例1-5制备的产品的电阻率远低于对比例,实施例1-5制备的产品的密度、抗弯强度及硬度均高于对比例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种氧化锆复合陶瓷,其特征在于,按照质量百分比计,包括:65%~80%的氧化锆基体、10%~30%的导电材料及2%~11%的纳米增强材料,其中所述导电材料选自有色金属氧化物、白色金属氧化物、具有钛矿结构的化合物及具有尖晶石结构的化合物中的至少一种,所述有色氧化物选自CuO、Cu2O、V2O5、NiO、MnO、MnO2、CoO、Co2O3、Co3O4、Fe2O3、FeO、Fe3O4及Cr2O3中的至少一种,所述白色氧化物选自ZnO、SnO2、TiO2中的至少一种,所述具有钛矿结构的化合物选自CaTiO3、BaTiO3、LaCrO3、LaSr0.1Cr0.9O3、SrTiO3、LaFeO3的至少一种,所述具有尖晶石结构的化合物的结构式为AB2O4,其中,A选自Mg、Fe、Zn及Mn中的至少一种,所述B选自Al、Cr及Fe中的至少一种。
  2. 根据权利要求1所述的氧化锆复合陶瓷,其特征在于,所述氧化锆基体以质量百分含量计包括2%~10%的稳定剂及90%~98%的氧化锆,所述稳定剂选自氧化钇、氧化镁、氧化钙及氧化铈中的至少一种。
  3. 根据权利要求1所述的氧化锆复合陶瓷,其特征在于,所述纳米增强材料选自纳米氧化锆及纳米氧化铝中的至少一种。
  4. 如权利要求1所述的氧化锆复合陶瓷的制备方法,其特征在于,包括以下步骤:
    根据氧化锆复合陶瓷中氧化锆基体及导电材料的量提供氧氯化锆溶液及所述导电材料对应的金属离子溶液,合并后得到母液;
    提供分散剂溶液,将所述分散剂溶液加热至60℃~65℃,其中所述分散剂溶液中的分散剂与氧化锆基体中氧化锆的质量比为0.5∶99.5~1∶99;
    将浓度为2mol/L~3mol/L的氨水及所述母液同时加入所述分散剂溶液中反应,控制反应温度为60℃~65℃,反应的pH值为8-10,反应结束后陈化2小时~5小时,过滤后干燥得到前驱体;
    将所述前驱体在800℃~1100℃下烧结1小时~5小时得到块状材料;
    将所述块状材料与纳米增强材料球磨24小时~48小时得到氧化锆复合陶瓷粉体;
    将所述氧化锆复合陶瓷粉体造粒后制成生坯;及
    将所述生坯缓慢升温至1280℃~1520℃进行烧结得到所述氧化锆复合陶瓷。
  5. 根据权利要求4所述的氧化锆复合陶瓷的制备方法,其特征在于,所述将所述生坯缓慢升温至1280℃~1520℃进行烧结的步骤中,以0.5~3℃/min的升温速率升温至700℃,之后再以4~5℃/min的升温速率升温至1280℃~1520℃。
  6. 根据权利要求4所述的氧化锆复合陶瓷的制备方法,其特征在于,根据氧化锆复合陶瓷中氧化锆基体及导电材料的量提供氧氯化锆溶液及所述导电材料对应的金属离子溶液的步骤中,所述氧氯化锆溶液的浓度为80~85g/L,根据所述氧化锆复合陶瓷中导电材料的量换算为金属氧化物的量,将金属氧化物分别用硝酸溶解配制成浓度为0.4mol/L~0.6mol/L的金属离子溶液。
  7. 根据权利要求4所述的氧化锆复合陶瓷的制备方法,其特征在于,所述过滤后干燥得到前驱体的步骤中,过滤后得到的沉淀物采用去离子水冲洗后,将冲洗后的沉淀物在10~40Pa下冷冻干燥2小时~5小时得到所述前驱体。
  8. 根据权利要求4所述的氧化锆复合陶瓷的制备方法,其特征在于,所述分散剂溶液中的分散剂选自SD-05、D3005、D900及聚丙烯酸铵中的至少一种,所述分散剂溶液的浓度为10g/L~30g/L。
  9. 根据权利要求4所述的氧化锆复合陶瓷的制备方法,其特征在于,所述将所述氧化锆复合陶瓷粉体造粒后制成生坯的步骤中,将所述氧化锆复合陶瓷粉体进行喷雾造粒,得到粒度为0.7μm~1μm、比表面积为8~11m2/g的粉体。
  10. 根据权利要求4所述的氧化锆复合陶瓷的制备方法,其特征在于,所述将所述前驱体在800℃~1100℃下烧结1小时~5小时得到块状材料的步骤中,以1~3℃/min的升温速率升温到800℃~1100℃。
PCT/CN2015/077512 2015-04-27 2015-04-27 氧化锆复合陶瓷及其制备方法 WO2016172824A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/567,057 US20180134624A1 (en) 2015-04-27 2015-04-27 Zirconium oxide composite ceramic and preparation method therefor
PCT/CN2015/077512 WO2016172824A1 (zh) 2015-04-27 2015-04-27 氧化锆复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/077512 WO2016172824A1 (zh) 2015-04-27 2015-04-27 氧化锆复合陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2016172824A1 true WO2016172824A1 (zh) 2016-11-03

Family

ID=57199001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077512 WO2016172824A1 (zh) 2015-04-27 2015-04-27 氧化锆复合陶瓷及其制备方法

Country Status (2)

Country Link
US (1) US20180134624A1 (zh)
WO (1) WO2016172824A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751985A (zh) * 2018-05-28 2018-11-06 潮州三环(集团)股份有限公司 灰色氧化锆陶瓷原料组合物、灰色氧化锆陶瓷及其制备方法
CN108911741A (zh) * 2018-06-21 2018-11-30 安徽信息工程学院 防静电瓷砖及其制备方法
CN110304920A (zh) * 2019-08-16 2019-10-08 Oppo广东移动通信有限公司 氧化锆陶瓷及其制备方法、壳体和电子设备
CN114230353A (zh) * 2021-12-29 2022-03-25 太仓宏达俊盟新材料有限公司 一种含有氧化锆的耐高温复合材料及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106431395A (zh) * 2016-08-31 2017-02-22 山东国瓷功能材料股份有限公司 高透光性氧化锆烧结体及其制备方法与应用
CN108503356A (zh) * 2018-05-22 2018-09-07 中国原子能科学研究院 一种氧化锆氧分析仪用锆管及其制备方法
CN111196722A (zh) * 2018-11-16 2020-05-26 青岛海尔智慧厨房电器有限公司 一种灶具用聚能环锅架及其生产方法
CN109467430A (zh) * 2018-12-26 2019-03-15 浙江杰奈尔新材料有限公司 一种珠子配方及生产工艺
CN110128136B (zh) * 2019-06-18 2022-04-19 亚细亚新材料科技股份公司 一种防静电陶瓷材料及其制备方法
CN110668810A (zh) * 2019-10-28 2020-01-10 Oppo广东移动通信有限公司 摄像头装饰件及其制备方法、壳体和电子设备
CN111269011B (zh) * 2020-02-18 2023-05-05 长裕控股集团股份有限公司 氧化锆微珠的制备方法
CN111547766B (zh) * 2020-06-19 2022-09-06 山东国瓷功能材料股份有限公司 复合氧化锆材料及其制备方法
CN113800907B (zh) * 2021-11-01 2023-01-13 天津科技大学 用于3d打印的齿科氧化锆陶瓷浆料及制备方法及应用
CN115536385B (zh) * 2022-01-28 2023-09-29 上海晶石陶瓷有限公司 一种氧化锆陶瓷及其制备方法与应用
CN114807788B (zh) * 2022-04-13 2023-07-07 苏州诚亮粉末冶金有限公司 一种zta陶瓷网膜改性纳米粉末冶金材料及其制备方法
CN114573341B (zh) * 2022-04-27 2022-07-19 潍坊工程职业学院 一种二氧化锆基导电陶瓷的制备方法
CN115093217B (zh) * 2022-06-20 2023-07-14 深圳陶陶科技有限公司 灰色氧化锆陶瓷的制备方法以及灰色氧化锆陶瓷
CN115353381B (zh) * 2022-08-29 2023-04-07 湖南圣瓷科技有限公司 大尺寸氧化锆防静电陶瓷及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269958A (zh) * 2008-05-08 2008-09-24 广东东方锆业科技股份有限公司 一种铈稳定氧化锆结构陶瓷材料及其制备方法
CN101279845A (zh) * 2007-04-03 2008-10-08 胡忠辉 静电耗散陶瓷材料及其制备方法
CN101698600A (zh) * 2009-10-30 2010-04-28 广东工业大学 一种纳米级NiO-YSZ复合陶瓷的制备方法
CN101786878A (zh) * 2010-01-27 2010-07-28 长沙理工大学 防静电陶瓷材料及其制备方法及该材料制得的鞭炮引线编织针
CN104341150A (zh) * 2014-09-12 2015-02-11 李正国 一种防静电氧化锆陶瓷及其制造工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279845A (zh) * 2007-04-03 2008-10-08 胡忠辉 静电耗散陶瓷材料及其制备方法
CN101269958A (zh) * 2008-05-08 2008-09-24 广东东方锆业科技股份有限公司 一种铈稳定氧化锆结构陶瓷材料及其制备方法
CN101698600A (zh) * 2009-10-30 2010-04-28 广东工业大学 一种纳米级NiO-YSZ复合陶瓷的制备方法
CN101786878A (zh) * 2010-01-27 2010-07-28 长沙理工大学 防静电陶瓷材料及其制备方法及该材料制得的鞭炮引线编织针
CN104341150A (zh) * 2014-09-12 2015-02-11 李正国 一种防静电氧化锆陶瓷及其制造工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751985A (zh) * 2018-05-28 2018-11-06 潮州三环(集团)股份有限公司 灰色氧化锆陶瓷原料组合物、灰色氧化锆陶瓷及其制备方法
CN108911741A (zh) * 2018-06-21 2018-11-30 安徽信息工程学院 防静电瓷砖及其制备方法
CN110304920A (zh) * 2019-08-16 2019-10-08 Oppo广东移动通信有限公司 氧化锆陶瓷及其制备方法、壳体和电子设备
CN114230353A (zh) * 2021-12-29 2022-03-25 太仓宏达俊盟新材料有限公司 一种含有氧化锆的耐高温复合材料及其制备方法

Also Published As

Publication number Publication date
US20180134624A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2016172824A1 (zh) 氧化锆复合陶瓷及其制备方法
CN106145938A (zh) 氧化锆复合陶瓷及其制备方法
JP5745765B2 (ja) 酸化ジルコニウム及びその製造方法
EP2492257B1 (en) Scandia-stabilised zirconia sintered powder, process for production of scandia-stabilized zirconia sintered powder, process for production of scandia-stabilized zirconia sheet
CN103030390B (zh) 一种氧化锌压敏电阻材料及制备方法
Kimura et al. Fabrication of grain‐oriented Bi2WO6 ceramics
JP2001011613A (ja) 酸化亜鉛を含有するスパッタリングターゲットの製造方法
CN101169996B (zh) 一种应用于超高温条件低功耗Mn-Zn铁氧体磁性材料及其制备方法
CN101124690A (zh) 用于固态氧化物型燃料电池的电解质薄片及其制造方法、以及固态氧化物型燃料电池组
CN114988886A (zh) 可低温烧结的高纯α-氧化铝粉的制备方法
CN114538920B (zh) 一种高韧性高硬度锆镧铝复合磨介的制备方法
CA2034106C (en) Process for fabricating doped zinc oxide microspheres
CN109081687A (zh) 一种适用于煅烧锂电池正极材料的高抗热震陶瓷坩埚及其制备方法
JP4470001B2 (ja) ジルコニア微粉末の製造法
JPH09507828A (ja) 燃結六方晶フェライト材料の成型品
JP2006089345A (ja) 導電性多孔質セラミックス焼結体およびその製造方法
JPS647030B2 (zh)
JPS6121185B2 (zh)
JP2003022821A (ja) スカンジア安定化ジルコニア電解質
JPH0616471A (ja) 耐熱導電性焼結体
JPH05339698A (ja) 溶射用ジルコニア粉末
JP2000086336A (ja) 正特性サーミスタの製造方法
JPH05844A (ja) 耐熱導電性焼結体
JPH0235702B2 (zh)
JPH09196098A (ja) 耐熱導電性セラミックス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567057

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890204

Country of ref document: EP

Kind code of ref document: A1