WO2016170846A1 - 熱処理装置 - Google Patents

熱処理装置 Download PDF

Info

Publication number
WO2016170846A1
WO2016170846A1 PCT/JP2016/056055 JP2016056055W WO2016170846A1 WO 2016170846 A1 WO2016170846 A1 WO 2016170846A1 JP 2016056055 W JP2016056055 W JP 2016056055W WO 2016170846 A1 WO2016170846 A1 WO 2016170846A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat treatment
cooling
chamber
hydrogen gas
Prior art date
Application number
PCT/JP2016/056055
Other languages
English (en)
French (fr)
Inventor
勝俣 和彦
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Priority to JP2017514000A priority Critical patent/JP6341626B2/ja
Priority to EP16782868.0A priority patent/EP3249330B1/en
Priority to CN201680022010.2A priority patent/CN107532852B/zh
Publication of WO2016170846A1 publication Critical patent/WO2016170846A1/ja
Priority to US15/677,100 priority patent/US10690416B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/02Combinations of furnaces of kinds not covered by a single preceding main group combined in one structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/02Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated of multiple-chamber type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • F27D2007/045Fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0072Cooling of charges therein the cooling medium being a gas
    • F27D2009/0075Cooling of charges therein the cooling medium being a gas in direct contact with the charge

Definitions

  • the present disclosure relates to a heat treatment apparatus.
  • This application claims priority based on Japanese Patent Application No. 2015-87450 for which it applied to Japan on April 22, 2015, and uses the content here.
  • Patent Document 1 As a heat treatment apparatus having a heat treatment chamber that accommodates an object to be processed, a cooling gas supply device that supplies a cooling gas into the heat treatment chamber, and a cooling gas circulation device that circulates the cooling gas in the heat treatment chamber, for example, Patent Document 1 shown below.
  • the multi-chamber multi-cooling vacuum furnace described in 1) is known.
  • a liquid nozzle and a gas nozzle are disposed in a cooling chamber so as to surround an object to be processed, so that a cooling liquid and a cooling gas can be supplied. .
  • an inert gas when performing gas cooling in the heat treatment step, an inert gas may be used as a cooling gas.
  • the inert gas used for the cooling gas there are nitrogen gas, argon gas, and the like.
  • nitrogen gas is used for gas cooling in so-called bright heat treatment.
  • nitrogen gas it is necessary to increase the gas density in order to improve the cooling capacity.
  • pursuing improvement in cooling capacity requires a container that can withstand high pressure, a device that increases the pressure of the cooling gas, and the like, and inspection of those facilities is required.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a heat treatment apparatus capable of improving the cooling capacity even if the pressure of the cooling gas is suppressed.
  • a first aspect of the present disclosure includes a heat treatment chamber that accommodates an object to be processed, a cooling gas supply device that supplies a cooling gas into the heat treatment chamber, and a circulation of the cooling gas within the heat treatment chamber.
  • a cooling gas supply device having a gas purging device for purging a portion where there is a possibility of mixing the cooling gas and oxygen gas supplied into the heat treatment chamber with an inert gas.
  • the apparatus supplies hydrogen gas as a cooling gas to the heat treatment chamber.
  • hydrogen gas is used as the cooling gas, and the workpiece is cooled by circulating the hydrogen gas in the heat treatment chamber. Since hydrogen gas has a heat transfer coefficient approximately 2.2 times that of nitrogen gas, the cooling capacity can be improved even if the pressure of the cooling gas is suppressed. On the other hand, when hydrogen gas is mixed with oxygen gas, it is ignited and burned even by a slight spark. For this reason, by mixing the portion where there is a possibility of mixing the cooling gas and the oxygen gas supplied into the heat treatment chamber with an inert gas, mixing of the hydrogen gas and the oxygen gas in the portion is reliably prevented. Thereby, hydrogen gas can be safely used as the cooling gas. Therefore, according to this indication, even if it suppresses the pressure of cooling gas, the heat treatment apparatus which can improve cooling capacity is obtained.
  • FIG. 1 is a longitudinal sectional view of a multi-chamber heat treatment apparatus A according to an embodiment of the present disclosure as viewed from the front.
  • FIG. 2 is a cross-sectional view of the multi-chamber heat treatment apparatus A according to an embodiment of the present disclosure as viewed from above.
  • the multi-chamber heat treatment apparatus A according to the present embodiment is an apparatus in which a gas cooling device RG, a mist cooling device RM, and three heating devices K are combined via an intermediate transfer device H as shown in FIG.
  • the intermediate transfer device H includes a transfer chamber 1, a mist cooling chamber lift 2, a plurality of transfer rails 3, three pairs of pusher mechanisms 4a, 4b, 5a, 5b, 6a and 6b.
  • Three heating chamber elevators 7a to 7c, an expansion chamber 8, a partition door 9 and the like are provided.
  • the transfer chamber 1 is a container provided between the mist cooling device RM and the three heating devices K. As shown in FIG. 2, three heating chamber lifting platforms 7a to 7c are arranged on the floor of the transfer chamber 1 so as to surround the mist cooling chamber lifting platform 2.
  • the internal space of the transfer chamber 1 and the internal space of the expansion chamber 8 described later are intermediate transfer chambers in which the workpiece X moves.
  • the mist cooling chamber lift 2 is a support table on which the workpiece X is placed when the workpiece X is cooled by the mist cooling device RM, and is lifted by a lift mechanism (not shown). That is, the workpiece X moves between the intermediate transfer device H and the mist cooling chamber elevator 2 when the elevator mechanism operates while being placed on the mist cooling chamber elevator 2.
  • the plurality of transfer rails 3 are laid on the floor of the transfer chamber 1, on the mist cooling chamber lifting platform 2, on the heating chamber lifting platforms 7 a to 7 c and on the floor of the expansion chamber 8 as shown in the figure.
  • These transfer rails 3 are guide members (guide members) when moving the workpiece X in the transfer chamber 1 and the expansion chamber 8.
  • the three pairs of pusher mechanisms 4 a, 4 b, 5 a, 5 b, 6 a, 6 b are transfer actuators that press the workpiece X in the transfer chamber 1 and the expansion chamber 8.
  • the mechanism arranged in the same straight line is the mist cooling chamber lifting platform 2 and the three heating chamber lifting platforms 7a to 7c.
  • the workpiece X is moved between them.
  • one pusher mechanism 4a presses the workpiece X from the heating chamber lifting platform 7a toward the mist cooling chamber lifting platform 2, and the other pusher mechanism 4b
  • the workpiece X is pressed from the cooling chamber lift 2 toward the heating chamber lift 7a.
  • the plurality of transport rails 3 are configured to smoothly move the workpiece X when the workpiece X is moved (conveyed) using the three pairs of pusher mechanisms 4a, 4b, 5a, 5b, 6a, and 6b. In addition to guiding, it also guides the movement of the pressing portions attached to the tips of the three pairs of pusher mechanisms 4a, 4b, 5a, 5b, 6a, 6b.
  • the three heating chamber lifts 7a to 7c are support tables on which the workpiece X is placed when the workpiece X is heat-treated by each heating device K, and are provided directly below the respective heating devices K. These heating chamber elevating platforms 7a to 7c are moved up and down by an elevating mechanism (not shown) to move the workpiece X between the intermediate transfer device H and each heating device K.
  • the three heating devices K are devices that heat-treat the workpiece X and are provided above the transfer chamber 1.
  • Each heating device K includes a heating chamber, a plurality of electric heaters, and the like, and an object to be processed X accommodated in the heating chamber in a state of being placed on the heating chamber lifting platforms 7a to 7c. Heat uniformly in a reduced pressure atmosphere.
  • the mist cooling device RM is a device that cools the workpiece X using a mist of a predetermined cooling medium, and is provided below the transfer chamber 1.
  • This mist cooling device RM has a mist cooling chamber inside, and is to be processed with respect to an object to be processed X accommodated in the mist cooling chamber in a state of being placed on the mist cooling chamber lifting platform 2 described above. Cooling (mist cooling) is performed by spraying a mist of a cooling medium from a plurality of nozzles provided around the object X.
  • the cooling medium is water, for example.
  • the expansion chamber 8 is a substantially box-shaped expansion container that is connected to the side portion of the transfer chamber 1 and is provided for the purpose of connecting the intermediate transfer device H and the gas cooling device RG. One end of the expansion chamber 8 communicates with the side portion of the transfer chamber 1, and a partition door 9 is provided at the other end of the expansion chamber 8. A transfer rail 3 for moving the workpiece X is laid on the floor of the expansion chamber 8.
  • the partition door 9 is a door that partitions the intermediate transfer chamber that is the internal space of the expansion chamber 8 and the gas cooling chamber 10 (heat treatment chamber) of the gas cooling device RG, and is provided in a vertical posture on the other end of the expansion chamber 8. It has been. That is, the partition door 9 moves up and down by a driving mechanism (not shown) to open or shield the other end of the expansion chamber 8.
  • the gas cooling device RG is a cooling device that cools the workpiece X using a cooling gas, and uses hydrogen gas (H 2 gas) as the cooling gas.
  • the gas cooling device RG includes a gas cooling chamber 10, a cooling gas supply device 20, a cooling gas circulation device 30, a gas purge device 40, a hydrogen gas recovery device 50, and the like.
  • the gas cooling chamber 10 includes a workpiece storage unit 11, a cooling gas circulation unit 12, a heat exchange unit 13, and the like.
  • the workpiece storage unit 11 is a highly pressure-resistant shape, that is, a substantially cylindrical container with rounded end faces, and is vertically adjacent to the expansion chamber 8 constituting the intermediate transfer chamber (the radial direction is horizontal). Is provided).
  • the workpiece storage unit 11 is connected to the expansion chamber 8 in a state in which a part of the expansion chamber 8 is accommodated therein, that is, in a state where the partition door 9 protrudes from the side into the gas cooling chamber 10. ing. Furthermore, a workpiece door 11a is provided at a position facing the partition door 9 in the workpiece storage unit 11. The workpiece entrance / exit door 11a opens and closes a workpiece entrance through which the workpiece X is taken in and out between the outside and the gas cooling chamber.
  • a mounting table 10b for holding the workpiece X at a predetermined height is provided inside the workpiece door 11a.
  • the workpiece X held on the mounting table 10b is moved by the loading / unloading cylinder mechanism 10c shown in FIG.
  • the entrance / exit cylinder mechanism 10 c is a transport mechanism that moves the workpiece X to the workpiece storage section 11 and the transport chamber 1.
  • the cooling gas circulation unit 12 is an annular container that connects the workpiece storage unit 11 and the heat exchange unit 13. As shown in FIG. 1, one end (gas blowing port 12 a) of the cooling gas circulation unit 12 opens to the upper part (upper side) of the workpiece storage unit 11, and the other end (gas exhaust port 12 b) of the cooling gas circulation unit 12. Is opened to the lower part (lower side) of the object-to-be-processed container 11 so as to face the gas inlet 12a with the object X to be processed in between.
  • a vacuum pump 12d is connected to the cooling gas circulation unit 12 through an exhaust pipe 12c.
  • the vacuum pump 12d exhausts the gas in the gas cooling chamber 10 to the outside through the exhaust pipe 12c.
  • the vacuum pump 12d for example, a roots pump can be used.
  • the exhaust pipe 12c between the cooling gas circulation unit 12 and the vacuum pump 12d is provided with an on-off valve 12c1 that controls gas exhaust.
  • the downstream side of the vacuum pump 12d is branched into an air release pipe 12e and a hydrogen gas recovery pipe 12f.
  • An open / close valve 12e1 is provided in the atmosphere release pipe 12e, and an open / close valve 12f1 is provided in the hydrogen gas recovery pipe 12f.
  • the heat exchange unit 13 is provided in the cooling gas circulation unit 12 on the downstream side (exhaust side) of the gas exhaust port 12b, and includes a heat exchanger 13a.
  • the heat exchanger 13a has a plurality of heat transfer tubes provided in a meandering state, and a predetermined liquid refrigerant is inserted therein.
  • This heat exchanging unit 13 is cooled by exchanging heat between the cooling gas flowing from one end of the cooling gas circulating unit 12 to the other end of the cooling gas circulating unit 12 through the workpiece storage unit 11 with the liquid refrigerant in the heat transfer tube. To do.
  • the cooling gas heated by the workpiece X is cooled to, for example, the temperature before the cooling of the workpiece X (the temperature of the cooling gas blown from the gas inlet 12a). .
  • the cooling gas supply device 20 includes a supply tank 21, a cooling gas supply pipe 22, an on-off valve 23, and the like.
  • the supply tank 21 holds hydrogen gas used as a cooling gas in a high pressure state.
  • the supply tank 21 is connected to the gas cooling chamber 10 via a cooling gas supply pipe 22.
  • the on-off valve 23 allows / blocks the passage of the cooling gas in the cooling gas supply pipe 22. When the on-off valve 23 is closed, the supply of the cooling gas from the supply tank 21 to the gas cooling chamber 10 is shut off. When the on-off valve 23 is in the open state, the cooling gas is supplied from the supply tank 21 to the gas cooling chamber 10. Supplied.
  • the cooling gas circulation device 30 includes a turbo fan 31 (impeller), a rotating shaft 32, a motor 33, a seal member 34, and the like.
  • the turbo fan 31 is a centrifugal fan provided in the gas cooling chamber 10.
  • the rotating shaft 32 extends in the horizontal direction, passes through the wall 10 a of the gas cooling chamber 10, and is connected to the turbo fan 31.
  • the motor 33 is a power source that rotates the rotary shaft 32, and is provided outside the gas cooling chamber 10. As the motor, for example, a water cooling motor can be used.
  • the motor 33 has a gas introduction part 33a for introducing an inert gas into the inside, and a gas discharge part 33b for discharging the inert gas from the inside.
  • the gas introduction part 33a and the gas discharge part 33b are openings provided in the housing of the motor 33 that accommodates the rotor and the stator.
  • the seal member 34 is provided around the rotation shaft 32 and seals between the gas cooling chamber 10 and the motor 33. As the seal member 34, for example, a segment seal can be used.
  • the gas purge device 40 purges at least the motor 33 with an inert gas.
  • the gas purge apparatus 40 includes a supply tank 41, a gas purge chamber 42, a first gas purge pipe 43, a second gas purge pipe 44, a third gas purge pipe 45, and the like.
  • the supply tank 41 holds an inert gas used for gas purging in a high pressure state. Nitrogen gas, argon gas, or the like can be used as the inert gas, but the supply tank 41 of the present embodiment holds relatively inexpensive nitrogen gas (N 2 gas).
  • the gas purge chamber 42 is a container that hermetically surrounds at least the motor 33.
  • the gas purge chamber 42 of the present embodiment is configured to surround the gas cooling chamber 10 together with the motor 33.
  • the gas purge chamber 42 is formed in a substantially box shape, and surrounds the upper surface and four side surfaces of the motor 33 and the gas cooling chamber 10 as shown in FIGS. 1 and 2.
  • the gas purge chamber 42 also surrounds at least a part of the expansion chamber 8 outside the partition door 9.
  • An exhaust pipe 42 a is provided on the upper surface of the gas purge chamber 42.
  • the exhaust pipe 42a has a safety valve that is opened when a predetermined pressure is reached, and is opened at, for example, 1.1 bar or more.
  • the first gas purge pipe 43 is a pipe for supplying an inert gas into the motor 33.
  • the first gas purge pipe 43 connects between the supply tank 41 and the gas introduction part 33 a of the motor 33.
  • the first gas purge pipe 43 is provided with an on-off valve 43a.
  • the on-off valve 43a allows / blocks the passage of the inert gas in the first gas purge pipe 43.
  • the second gas purge pipe 44 is a pipe for supplying an inert gas into the gas purge chamber 42.
  • the second gas purge pipe 44 connects between the supply tank 41 and the gas purge chamber 42.
  • the second gas purge pipe 44 is provided with an on-off valve 44a.
  • the on-off valve 44 a allows / blocks the passage of the inert gas in the second gas purge pipe 44.
  • the third gas purge pipe 45 is a pipe for supplying an inert gas into the gas cooling chamber 10.
  • the third gas purge pipe 45 connects between the supply tank 41 and the gas cooling chamber 10.
  • the third gas purge pipe 45 is provided with an on-off valve 45a.
  • the on-off valve 45 a allows / blocks the passage of the inert gas in the third gas purge pipe 45.
  • FIG. 3 is a diagram illustrating a schematic configuration of the hydrogen gas recovery device 50 according to an embodiment of the present disclosure.
  • the hydrogen gas recovery device 50 recovers the hydrogen gas supplied to the gas cooling chamber 10 as a cooling gas.
  • the hydrogen gas recovery device 50 of the present embodiment is connected to a hydrogen gas recovery pipe 12 f on the downstream side of the vacuum pump 12 d, and the recovered hydrogen gas is supplied to the supply tank 21 of the cooling gas supply device 20. To supply.
  • the hydrogen gas recovery device 50 includes a plurality of recovery tanks 51a to 51d, a compressor 52, a hydrogen gas supply pipe 53, and the like.
  • the plurality of recovery tanks 51a to 51d are connected to the hydrogen gas recovery pipe 12f via pipes having on-off valves 51a1 to 51d1, respectively.
  • the on-off valve 51a1 allows / blocks the passage of hydrogen gas to the recovery tank 51a.
  • the on-off valve 51a1 When the on-off valve 51a1 is closed, the supply of hydrogen gas from the hydrogen gas recovery pipe 12f to the recovery tank 51a is shut off.
  • the on-off valve 51a1 When the on-off valve 51a1 is open, hydrogen is supplied from the hydrogen gas recovery pipe 12f to the recovery tank 51a. Gas is supplied.
  • the recovery tanks 51a to 51c perform a plurality of pressure equalization operations on the hydrogen gas in the gas cooling chamber 10 (in this embodiment, three pressure equalization operations). (To be described later)).
  • the recovery tank 51d (second recovery tank) is provided to recover the hydrogen gas in the gas cooling chamber 10 by driving the vacuum pump 12d after a plurality of pressure equalizing operations.
  • the compressor 52 pressurizes the hydrogen gas recovered in the plurality of recovery tanks 51 a to 51 d and supplies it to the cooling gas supply device 20.
  • the hydrogen gas supply pipe 53 supplies the hydrogen gas boosted by the compressor 52 to the supply tank 21 of the cooling gas supply device 20.
  • the supply tank 21 of the present embodiment includes a plurality of supply tanks 21a to 21c.
  • On-off valves 53a to 53c provided in the hydrogen gas supply pipe 53 allow / block passage of hydrogen gas to the supply tanks 21a to 21c. For example, when the on-off valve 53a is closed, the supply of hydrogen gas from the hydrogen gas supply pipe 53 to the supply tank 21a is interrupted, and when the on-off valve 53a is open, the hydrogen gas supply pipe 53 to the supply tank 21a. Hydrogen gas is supplied.
  • the worker carries the workpiece X into the workpiece storage unit 11 (gas cooling chamber) via the workpiece door 11a.
  • the operator seals the workpiece door 11a, manually sets an operation panel (not shown), sets heat treatment conditions, and instructs a control device (not shown) to start heat treatment.
  • the control device moves the workpiece X to the heating device K to perform the heat treatment.
  • the object to be processed X after the heat treatment is mist-cooled by a mist cooling device RM as necessary, and then conveyed to the gas cooling device RG by the loading / unloading cylinder mechanism 10c and held on the mounting table 10b. It arrange
  • the control device drives the gas cooling device RG to cool the workpiece X with gas.
  • the control device drives the cooling gas supply device 20 to supply hydrogen gas to the gas cooling chamber 10.
  • the hydrogen gas is supplied from the cooling gas supply pipe 22 to the gas cooling chamber 10 when the on / off valve 23 is opened from the closed state by the control device.
  • the control device switches the open / close valve 23 from the open state to the closed state, and drives the cooling gas circulation device 30 to start the circulation of the hydrogen gas. Then, the cooling process of the workpiece X in accordance with the heat treatment conditions is started.
  • hydrogen gas is used as a cooling gas for cooling the workpiece X, and the workpiece X is cooled by circulating the hydrogen gas in the gas cooling chamber 10. Since hydrogen gas has a heat transfer coefficient approximately 2.2 times that of nitrogen gas, the cooling capacity can be improved even if the pressure of the cooling gas is suppressed.
  • the volume of the gas cooling chamber 10 is 2 m 3
  • the volumes of the supply tanks 21 a to 21 c are 1.5 m 3
  • the hydrogen gas pressure held in the supply tanks 21 a to 21 c is 10 bar
  • the on-off valve 23 The pressure in the gas cooling chamber 10 when opening is about 6.9 bar. In order to achieve this cooling capacity with nitrogen gas, a pressure of approximately 15.2 bar is required.
  • the sealing member 34 is provided around the rotating shaft 32 rotated by the motor 33 of the cooling gas circulation device 30 to seal between the gas cooling chamber 10 where the hydrogen gas exists and the motor 33.
  • the gas purge device 40 is provided, and the inside of the motor 33 is purged with an inert gas. The gas and oxygen gas are reliably prevented from being mixed. Thereby, hydrogen gas can be used safely as a cooling gas.
  • the gas purge device 40 includes a first gas purge pipe 43 that supplies nitrogen gas into the motor 33, a gas purge chamber 42 that surrounds at least the motor 33, and a second gas purge that supplies nitrogen gas into the gas purge chamber 42.
  • a tube 44 According to this configuration, the atmosphere inside the motor 33 is replaced with nitrogen gas, and the atmosphere outside the motor 33 is also replaced with nitrogen gas, so that hydrogen gas and oxygen gas are mixed in and around the motor 33. This can be surely prevented.
  • the gas purge chamber 42 surrounds the gas cooling chamber 10 together with the motor 33, it is possible to comprehensively enclose a portion where hydrogen gas is used including the gas cooling chamber 10.
  • the gas purge chamber 42 of the present embodiment surrounds a part of the expansion chamber 8 outside the partition door 9 that separates the gas cooling chamber 10 and the expansion chamber 8 from each other. It is possible to reliably prevent oxygen gas from being mixed.
  • the gas purge chamber 42 has an exhaust pipe 42a provided with a safety valve, even if hydrogen gas leaks into the gas purge chamber 42, the pressure can be lowered to a predetermined value or less, and the hydrogen gas is ignited spontaneously. This can be surely prevented.
  • FIG. 4 is a flowchart of a hydrogen gas recovery operation according to an embodiment of the present disclosure.
  • the volume of each of the plurality of recovery tanks 51a to 51d is assumed to be 1 m 3 .
  • step S1 the on-off valve 51a1 shown in FIG. 3 is opened, and the recovery tank 51a and the gas cooling chamber 10 are communicated.
  • step S1 the on-off valve 51a1
  • step S2 the on-off valve 51b1
  • step S2 the recovery tank 51b and the gas cooling chamber 10 are communicated.
  • step S3 the hydrogen gas recovery device 50 recovers the hydrogen gas in the gas cooling chamber 10 into the recovery tanks 51a to 51c by a plurality of pressure equalizing operations. Thereby, approximately 75% of hydrogen gas can be recovered.
  • the on-off valve 51c1 is closed, the on-off valve 51d1 is opened, and the recovery tank 51d and the gas cooling chamber 10 are communicated.
  • the vacuum pump 12d is driven to forcibly recover the hydrogen gas in the gas cooling chamber 10 into the recovery tank 51d (step S4).
  • the pressure in the gas cooling chamber 10 decreases from approximately 1.85 bar to approximately 0.1 bar.
  • the hydrogen gas recovery device 50 recovers the hydrogen gas in the gas cooling chamber 10 by driving the vacuum pump 12d after a plurality of pressure equalizing operations. As a result, approximately 99% of hydrogen gas can be recovered.
  • step S5 nitrogen gas is supplied to the gas cooling chamber 10 via the third gas purge pipe 45, and hydrogen gas that could not be recovered is released into the atmosphere (step S5).
  • the hydrogen gas recovery operation is thus completed.
  • the hydrogen gas recovered in the plurality of recovery tanks 51a to 51d is increased in pressure by the compressor 52 shown in FIG. 3 and supplied to one of the supply tanks 21a to 21c of the cooling gas supply device 20 as a cooling gas. Thereby, hydrogen gas can be reused, and the running cost of the gas cooling device RG can be reduced.
  • the present embodiment described above includes the gas cooling chamber 10 that accommodates the workpiece X, the cooling gas supply device 20 that supplies the cooling gas into the gas cooling chamber 10, and the cooling gas within the gas cooling chamber 10.
  • a multi-chamber heat treatment device A having a cooling gas circulation device 30 for circulating the gas is disclosed.
  • the cooling gas supply device 20 supplies hydrogen gas as a cooling gas to the gas cooling chamber 10.
  • the cooling gas circulation device 30 includes a turbo fan 31 provided in the gas cooling chamber 10, a rotating shaft 32 that passes through the wall 10 a of the gas cooling chamber 10 and is connected to the turbo fan 31, and a gas cooling chamber.
  • the gas purge chamber 42 surrounds the gas cooling chamber 10 together with the motor 33.
  • the present disclosure is not limited to this.
  • the gas purge chamber 42 may be configured to surround the motor 33 at a minimum. That is, a gas purge for purging a portion (in the above embodiment, the motor 33) where the cooling gas (hydrogen gas) supplied into the gas cooling chamber 10 (heat treatment chamber) and oxygen gas may be mixed with an inert gas. If it has an apparatus, mixing of hydrogen gas and oxygen gas will be prevented reliably, and hydrogen gas can be used safely as a cooling gas.
  • recovery apparatus 50 demonstrated performing to the tertiary pressure equalization operation in the said embodiment, this indication is not limited to this.
  • it may be up to the primary and secondary pressure equalization operations, or the fourth and higher pressure equalization operations may be performed.
  • Cooling room (heat treatment room) 10a Wall 20 Cooling gas supply device 30 Cooling gas circulation device 31 Turbo fan (impeller) 32 Rotating shaft 33 Motor 34 Seal member 40 Gas purge device 42 Gas purge chamber 43 First gas purge tube 44 Second gas purge tube 50 Hydrogen gas recovery devices 51a to 51d Recovery tank 52 Compressor A Multi-chamber heat treatment device (heat treatment device) X Workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Abstract

多室型熱処理装置(A)が、ガス冷却室(10)内に供給された冷却ガスと酸素ガスとの混合の可能性がある部位を、不活性ガスでガスパージするガスパージ装置(40)を有し、冷却ガス供給装置(20)が、冷却ガスとして水素ガスをガス冷却室(10)に供給する。

Description

熱処理装置
 本開示は、熱処理装置に関する。
 本願は、2015年4月22日に日本に出願された特願2015-87450号に基づき優先権を主張し、その内容をここに援用する。
 被処理物を収容する熱処理室と、熱処理室内に冷却ガスを供給する冷却ガス供給装置と、熱処理室内で冷却ガスを循環させる冷却ガス循環装置と、を有する熱処理装置として、例えば、下記特許文献1に記載の多室式マルチ冷却真空炉が知られている。この多室式マルチ冷却真空炉は、冷却室内に、被処理物を囲んで液用ノズルとガス用ノズルが配置されており、冷却液の供給と冷却ガスの供給が可能な構成となっている。
日本国特開平11-153386号公報
 ところで、熱処理工程において、ガス冷却を行う場合、冷却ガスとして不活性ガスを使用することがある。冷却ガスに使用する不活性ガスとしては、窒素ガスやアルゴンガス等があるが、いわゆる光輝熱処理のガス冷却においては、一般的に窒素ガスが使用される。冷却ガスとして窒素ガスを使用した場合、冷却能力を向上させるためには、ガス密度を上げる必要がある。しかしながら、冷却能力の向上を追求していくと、高圧に耐え得る容器や、冷却ガスを高圧化する装置等が必要となり、また、それらの設備の点検が必要になる。
 本開示は、上記問題点に鑑みてなされ、冷却ガスの圧力を抑えても、冷却能力を向上させることができる熱処理装置の提供を目的とする。
 上記の課題を解決するために、本開示における第1の態様は、被処理物を収容する熱処理室と、熱処理室内に冷却ガスを供給する冷却ガス供給装置と、熱処理室内で冷却ガスを循環させる冷却ガス循環装置と、を有する熱処理装置であって、熱処理室内に供給された冷却ガスと酸素ガスとの混合の可能性がある部位を不活性ガスでガスパージするガスパージ装置を有し、冷却ガス供給装置が、冷却ガスとして水素ガスを熱処理室に供給する。
 本開示では、冷却ガスとして水素ガスを使用し、水素ガスを熱処理室内で循環させて被処理物を冷却する。水素ガスは、窒素ガスに比べ、約2.2倍の熱伝達率を有するため、冷却ガスの圧力を抑えても、冷却能力を向上させることができる。一方、水素ガスは、酸素ガスと混合されると、僅かなスパークによっても着火・燃焼してしまう。このため、熱処理室内に供給された冷却ガスと酸素ガスとの混合の可能性がある部位を不活性ガスでガスパージすることで、上記部位における水素ガスと酸素ガスとの混合を確実に防止する。これにより、冷却ガスとして水素ガスを安全に使用することが可能となる。
 したがって、本開示によれば、冷却ガスの圧力を抑えても、冷却能力を向上させることができる熱処理装置が得られる。
本開示の一実施形態に係る多室型熱処理装置を正面から見た縦断面図である。 本開示の一実施形態に係る多室型熱処理装置を上面から見た横断面図である。 本開示の一実施形態に係る水素ガス回収装置の概略構成を示す図である。 本開示の一実施形態に係る水素ガスの回収動作のフローチャートである。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の説明では、本開示の熱処理装置として、多室型熱処理装置を例示する。
 図1は、本開示の一実施形態に係る多室型熱処理装置Aを正面から見た縦断面図である。また、図2は、本開示の一実施形態に係る多室型熱処理装置Aを上面から見た横断面図である。
 本実施形態に係る多室型熱処理装置Aは、図1に示すように、中間搬送装置Hを介してガス冷却装置RG、ミスト冷却装置RM及び3つの加熱装置Kを合体させた装置である。
 中間搬送装置Hは、図1及び図2に示すように、搬送チャンバー1、ミスト冷却室昇降台2、複数の搬送レール3、三対のプッシャー機構4a,4b,5a,5b,6a,6bと、3つの加熱室昇降台7a~7cと、拡張チャンバー8と、区画扉9等を備えている。
 搬送チャンバー1は、ミスト冷却装置RMと3つの加熱装置Kとの間に設けられた容器である。この搬送チャンバー1の床部には、図2に示すように、ミスト冷却室昇降台2を取り囲むように3つの加熱室昇降台7a~7cが配置されている。この搬送チャンバー1の内部空間及び後述する拡張チャンバー8の内部空間は、被処理物Xが移動する中間搬送室である。
 ミスト冷却室昇降台2は、ミスト冷却装置RMで被処理物Xを冷却する際に被処理物Xを載せる支持台であり、図示しない昇降機構により昇降する。すなわち、被処理物Xは、ミスト冷却室昇降台2上に載置された状態で上記昇降機構が作動することにより、中間搬送装置Hとミスト冷却室昇降台2との間を移動する。
 複数の搬送レール3は、図示するように、搬送チャンバー1の床部、ミスト冷却室昇降台2上、加熱室昇降台7a~7c上及び拡張チャンバー8の床部に敷設されている。これらの搬送レール3は、搬送チャンバー1及び拡張チャンバー8内で被処理物Xを移動させる際のガイド部材(案内部材)である。三対のプッシャー機構4a,4b,5a,5b,6a,6bは、搬送チャンバー1及び拡張チャンバー8内で被処理物Xを押圧する搬送アクチュエータである。
 すなわち、三対のプッシャー機構4a,4b,5a,5b,6a,6bのうち、同一直線状に配置された機構は、ミスト冷却室昇降台2と3つの加熱室昇降台7a~7cのうちの一つとの間で被処理物Xを移動させる。例えば、一対のプッシャー機構4a,4bのうち、一方のプッシャー機構4aは、加熱室昇降台7aからミスト冷却室昇降台2に向けて被処理物Xを押圧し、他方のプッシャー機構4bは、ミスト冷却室昇降台2から加熱室昇降台7aに向けて被処理物Xを押圧する。
 複数の搬送レール3は、これらの三対のプッシャー機構4a,4b,5a,5b,6a,6bを用いた被処理物Xの移動(搬送)に際して、被処理物Xが円滑に移動するように案内することに加え、三対のプッシャー機構4a,4b,5a,5b,6a,6bの先端に取り付けられた押圧部の移動をも案内する。
 3つの加熱室昇降台7a~7cは、各加熱装置Kで被処理物Xを加熱処理する際に被処理物Xを載せる支持台であり、各加熱装置Kの直下に設けられている。これらの加熱室昇降台7a~7cは、図示しない昇降機構により昇降することにより、被処理物Xを中間搬送装置Hと各加熱装置Kとの間で移動させる。
 3つの加熱装置Kは、被処理物Xに加熱処理を施す装置であり、搬送チャンバー1の上方に設けられている。各々の加熱装置Kは、内部に加熱室や複数の電気ヒータ等を備えており、加熱室昇降台7a~7c上に載置された状態で加熱室内に収容された被処理物Xを、所定の減圧雰囲気下で均一に加熱する。
 ミスト冷却装置RMは、所定の冷却媒体のミストを用いて被処理物Xを冷却処理する装置であり、搬送チャンバー1の下方に設けられている。このミスト冷却装置RMは、内部にミスト冷却室を備えており、上述したミスト冷却室昇降台2上に載置された状態でミスト冷却室内に収容された被処理物Xに対して、被処理物Xの周囲に設けられた複数のノズルから冷却媒体のミストを噴射することにより冷却(ミスト冷却)する。なお、上記冷却媒体は例えば水である。
 拡張チャンバー8は、搬送チャンバー1の側部に接続され、中間搬送装置Hとガス冷却装置RGとを接続するために便宜的に設けられた略箱型の拡張容器である。拡張チャンバー8の一端は、搬送チャンバー1の側部に連通し、拡張チャンバー8の他端には区画扉9が設けられている。また、拡張チャンバー8の床部には、被処理物Xの移動用の搬送レール3が敷設されている。
 区画扉9は、拡張チャンバー8の内部空間である中間搬送室とガス冷却装置RGのガス冷却室10(熱処理室)とを区画する扉であり、拡張チャンバー8の他端上に垂直姿勢で設けられている。すなわち、この区画扉9は、図示しない駆動機構によって上下動することによって、拡張チャンバー8の他端を開放あるいは遮蔽する。
 続いて、ガス冷却装置RGについて説明する。ガス冷却装置RGは、冷却ガスを用いて被処理物Xを冷却処理する冷却装置であり、上記冷却ガスとして水素ガス(Hガス)を用いる。このガス冷却装置RGは、図1に示すように、ガス冷却室10と、冷却ガス供給装置20と、冷却ガス循環装置30と、ガスパージ装置40と、水素ガス回収装置50等を備えている。
 ガス冷却室10は、被処理物収容部11と、冷却ガス循環部12と、熱交換部13等を備えている。被処理物収容部11は、圧力耐性の高い形状、つまり両端面が丸みを帯びた略円筒状の容器で、中間搬送室を構成する拡張チャンバー8に隣接して、縦に(径方向が水平となるように)設けられている。
 また、被処理物収容部11は、拡張チャンバー8の一部を内部に収容するような状態、つまり区画扉9がガス冷却室10の内部に側方から突出する状態で拡張チャンバー8に接続されている。さらに、被処理物収容部11において上記区画扉9に対向する位置には、ワーク出入扉11aが設けられている。このワーク出入扉11aは、外部とガス冷却室との間で被処理物Xを出し入れするワーク出入口を開閉する。
 ワーク出入扉11aの内側には、被処理物Xを所定高さに保持する載置台10bが設けられている。載置台10bに保持された被処理物Xの移動は、図2に示す出入用シリンダー機構10cにより行う。出入用シリンダー機構10cは、被処理物Xを被処理物収容部11と搬送チャンバー1とに移動させる搬送機構である。
 冷却ガス循環部12は、被処理物収容部11と熱交換部13とを接続する環状の容器である。図1に示すように、冷却ガス循環部12の一端(ガス吹込口12a)が被処理物収容部11の上部(上側)に開口し、冷却ガス循環部12の他端(ガス排気口12b)が被処理物Xを挟んでガス吹込口12aに対向するように被処理物収容部11の下部(下側)に開口する。
 冷却ガス循環部12には、排気管12cを介して真空ポンプ12dが接続されている。真空ポンプ12dは、排気管12cを介してガス冷却室10内のガスを外部に排気する。真空ポンプ12dとしては、例えばルーツポンプを使用することができる。冷却ガス循環部12と真空ポンプ12dとの間の排気管12cには、ガスの排気を制御する開閉弁12c1が設けられている。真空ポンプ12dの下流側は、大気開放管12eと水素ガス回収管12fに分岐している。大気開放管12eには、開閉弁12e1が設けられ、水素ガス回収管12fには、開閉弁12f1が設けられている。
 熱交換部13は、ガス排気口12bの下流側(排気側)にて冷却ガス循環部12に設けられ、熱交換器13aを有する。熱交換器13aは、蛇行状態に設けられた複数の伝熱管を有し、内部に所定の液体冷媒が挿通される。この熱交換部13は、冷却ガス循環部12の一端から被処理物収容部11を経て冷却ガス循環部12の他端に向け流れる冷却ガスを伝熱管内の液体冷媒と熱交換させることにより冷却する。熱交換部13では、被処理物Xによって加熱された冷却ガスが、例えば被処理物Xの冷却に供される前の温度(ガス吹込口12aから吹き出される冷却ガスの温度)に冷却される。
 冷却ガス供給装置20は、供給タンク21と、冷却ガス供給管22と、開閉弁23等を有する。供給タンク21は、冷却ガスとして使用する水素ガスを高圧状態で保持する。供給タンク21は、冷却ガス供給管22を介してガス冷却室10に接続されている。開閉弁23は、冷却ガス供給管22における冷却ガスの通過を許容/遮断する。開閉弁23が閉状態の場合、供給タンク21からガス冷却室10への冷却ガスの供給は遮断され、開閉弁23が開状態の場合には、供給タンク21からガス冷却室10に冷却ガスが供給される。
 冷却ガス循環装置30は、ターボファン31(羽根車)と、回転軸32と、モーター33と、シール部材34等を備える。ターボファン31は、ガス冷却室10内に設けられている遠心ファンである。回転軸32は水平方向に延び、ガス冷却室10の壁部10aを貫通し、ターボファン31と接続されている。モーター33は、回転軸32を回転させる動力源であり、ガス冷却室10外に設けられている。モーターとしては、例えば、水冷モーターを使用することができる。
 モーター33は、不活性ガスを内部に導入するガス導入部33aと、内部から不活性ガスを排出するガス排出部33bと、を有する。ガス導入部33a及びガス排出部33bは、ローター及びステータを収容するモーター33のハウジングに設けられた開口部である。シール部材34は、回転軸32の周囲に設けられ、ガス冷却室10とモーター33との間をシールする。シール部材34としては、例えばセグメントシールを使用することができる。
 ガスパージ装置40は、少なくともモーター33を不活性ガスでガスパージする。ガスパージ装置40は、供給タンク41と、ガスパージ室42と、第1のガスパージ管43と、第2のガスパージ管44と、第3のガスパージ管45等を有する。供給タンク41は、ガスパージに使用する不活性ガスを高圧状態で保持する。不活性ガスとしては、窒素ガス、アルゴンガス等が使用可能であるが、本実施形態の供給タンク41は、比較的安価な窒素ガス(Nガス)を保持している。
 ガスパージ室42は、少なくともモーター33を気密的に囲う容器である。本実施形態のガスパージ室42は、モーター33と共にガス冷却室10を囲う構成となっている。具体的に、ガスパージ室42は、略箱型に形成されており、図1及び図2に示すように、モーター33及びガス冷却室10の上面及び四方の側面を囲っている。また、ガスパージ室42は、区画扉9の外側の拡張チャンバー8の少なくとも一部をも囲っている。ガスパージ室42の上面には、排気管42aが設けられている。排気管42aは、所定の圧力になると開放される安全弁を有し、例えば1.1bar以上で開放される。
 第1のガスパージ管43は、モーター33内に不活性ガスを供給する管である。第1のガスパージ管43は、供給タンク41とモーター33のガス導入部33aとの間を接続する。第1のガスパージ管43には、開閉弁43aが設けられている。開閉弁43aは、第1のガスパージ管43における不活性ガスの通過を許容/遮断する。開閉弁43aが閉状態の場合、供給タンク41からモーター33内への不活性ガスの供給は遮断され、開閉弁43aが開状態の場合には、供給タンク41からモーター33内に不活性ガスが供給される。
 第2のガスパージ管44は、ガスパージ室42内に不活性ガスを供給する管である。第2のガスパージ管44は、供給タンク41とガスパージ室42との間を接続する。第2のガスパージ管44には、開閉弁44aが設けられている。開閉弁44aは、第2のガスパージ管44における不活性ガスの通過を許容/遮断する。開閉弁44aが閉状態の場合、供給タンク41からガスパージ室42内への不活性ガスの供給は遮断され、開閉弁44aが開状態の場合には、供給タンク41からガスパージ室42内に不活性ガスが供給される。
 第3のガスパージ管45は、ガス冷却室10内に不活性ガスを供給する管である。第3のガスパージ管45は、供給タンク41とガス冷却室10との間を接続する。第3のガスパージ管45には、開閉弁45aが設けられている。開閉弁45aは、第3のガスパージ管45における不活性ガスの通過を許容/遮断する。開閉弁45aが閉状態の場合、供給タンク41からガス冷却室10内への不活性ガスの供給は遮断され、開閉弁45aが開状態の場合には、供給タンク41からガス冷却室10内に不活性ガスが供給される。
 次に、水素ガス回収装置50の構成について、図3を参照して説明する。
 図3は、本開示の一実施形態に係る水素ガス回収装置50の概略構成を示す図である。
 水素ガス回収装置50は、ガス冷却室10に冷却ガスとして供給した水素ガスを回収する。本実施形態の水素ガス回収装置50は、図1に示すように、真空ポンプ12dの下流側の水素ガス回収管12fに接続されており、回収した水素ガスを冷却ガス供給装置20の供給タンク21に供給する。
 水素ガス回収装置50は、図3に示すように、複数の回収タンク51a~51dと、コンプレッサー52と、水素ガス供給管53等を有する。複数の回収タンク51a~51dは、それぞれ開閉弁51a1~51d1を有する配管を介して水素ガス回収管12fと接続されている。例えば、開閉弁51a1は、回収タンク51aへの水素ガスの通過を許容/遮断する。開閉弁51a1が閉状態の場合、水素ガス回収管12fから回収タンク51aへの水素ガスの供給は遮断され、開閉弁51a1が開状態の場合には、水素ガス回収管12fから回収タンク51aへ水素ガスが供給される。
 複数の回収タンク51a~51dのうち、回収タンク51a~51c(第1の回収タンク)は、ガス冷却室10内の水素ガスを複数回の均圧操作(本実施形態では3回の均圧操作(後述))により回収するために設けられている。また、回収タンク51d(第2の回収タンク)は、複数回の均圧操作の後、真空ポンプ12dの駆動によりガス冷却室10内の水素ガスを回収するために設けられている。コンプレッサー52は、複数の回収タンク51a~51dに回収された水素ガスを昇圧して、冷却ガス供給装置20に供給する。
 水素ガス供給管53は、コンプレッサー52によって昇圧された水素ガスを、冷却ガス供給装置20の供給タンク21に供給する。本実施形態の供給タンク21は、複数の供給タンク21a~21cを含む。水素ガス供給管53に設けられた開閉弁53a~53cは、供給タンク21a~21cへの水素ガスの通過を許容/遮断する。例えば、開閉弁53aが閉状態の場合、水素ガス供給管53から供給タンク21aへの水素ガスの供給は遮断され、開閉弁53aが開状態の場合には水素ガス供給管53から供給タンク21aへ水素ガスが供給される。
 次に、このように構成された多室型熱処理装置Aの動作、特にガス冷却室10における被処理物Xの冷却動作について詳しく説明する。
 先ず、作業者は、ワーク出入扉11aを介して被処理物Xを被処理物収容部11(ガス冷却室)内に搬入する。次に、作業者は、ワーク出入扉11aを密閉し、不図示の操作盤を手動操作することにより熱処理条件を設定し、さらに熱処理の開始を不図示の制御装置に指示する。制御装置は、設定された熱処理条件に基づいて、被処理物Xを加熱装置Kに移動させて加熱処理を行わせる。加熱処理後の被処理物Xは、必要に応じてミスト冷却装置RMにてミスト冷却された後、出入用シリンダー機構10cによってガス冷却装置RGに搬送され、載置台10bに保持された状態で、ガス吹込口12aとガス排気口12bとの間に配置される。
 次に、制御装置は、ガス冷却装置RGを駆動させ、被処理物Xをガス冷却する。具体的に、制御装置は、冷却ガス供給装置20を駆動させ、ガス冷却室10に水素ガスを供給する。水素ガスは、制御装置によって開閉弁23が閉状態から開状態になると、冷却ガス供給管22からガス冷却室10に供給される。制御装置は、ガス冷却室10に所定量の水素ガスが供給されると、開閉弁23を開状態から閉状態にし、また冷却ガス循環装置30を駆動させて水素ガスの循環を開始させることによって、上記熱処理条件に沿った被処理物Xの冷却処理を開始させる。
 冷却ガス循環装置30が駆動すると、図1に矢印で示すような水素ガスの(図1の例では時計回りの)流動が発生する。ガス吹込口12aから下方に吹出した水素ガスは、被処理物Xに上方から吹付けて被処理物Xを冷却する。そして、被処理物Xの冷却に寄与した水素ガスは、被処理物Xの下方に流れ出てガス排気口12bに流れ込むことにより熱交換部13に導かれ、熱交換部13で冷却された後、冷却ガス循環部12により循環する。
 このように、本実施形態では、被処理物Xの冷却処理の冷却ガスとして水素ガスを使用し、水素ガスをガス冷却室10内で循環させて被処理物Xを冷却する。水素ガスは、窒素ガスに比べ、約2.2倍の熱伝達率を有するため、冷却ガスの圧力を抑えても、冷却能力を向上させることができる。例えば、ガス冷却室10の体積を2mとし、供給タンク21a~21cの体積をそれぞれ1.5mとし、供給タンク21a~21cに保持される水素ガスの圧力をそれぞれ10barとすると、開閉弁23を開けたときのガス冷却室10の圧力は、略6.9barになる。この冷却能力を、仮に窒素ガスで達成するためには、略15.2barの圧力が必要となる。
 一方、水素ガスは、酸素ガスと混合されると、僅かなスパークによっても着火・燃焼してしまう。このため、本実施形態では、冷却ガス循環装置30のモーター33によって回転する回転軸32周りにシール部材34を設け、水素ガスが存在するガス冷却室10とモーター33との間をシールする。また、回転軸32周りは、完全に気密にシールすることが困難であるため、本実施形態では、ガスパージ装置40を設け、モーター33内を不活性ガスでガスパージすることで、モーター33内において水素ガスと酸素ガスが混合されることを確実に防止する。これにより、冷却ガスとして水素ガスを安全に使用することができる。
 具体的に、ガスパージ装置40は、モーター33内に窒素ガスを供給する第1のガスパージ管43と、少なくともモーター33を囲うガスパージ室42と、ガスパージ室42内に窒素ガスを供給する第2のガスパージ管44と、を有する。この構成によれば、モーター33内の雰囲気が窒素ガスで置換され、さらに、モーター33外の雰囲気も窒素ガスで置換されるため、モーター33内及びその近傍において水素ガスと酸素ガスが混合されることを確実に防止することができる。
 また、本実施形態では、ガスパージ室42がモーター33と共にガス冷却室10を囲うため、ガス冷却室10を含めて水素ガスを使用する部位を包括的に囲うことができる。また、本実施形態のガスパージ室42は、ガス冷却室10と拡張チャンバー8との間を隔離する区画扉9よりも外側の拡張チャンバー8の一部まで囲うようになっているため、水素ガスと酸素ガスが混合されることを確実に防止することができる。また、ガスパージ室42は、安全弁が設けられた排気管42aを有するため、万が一、ガスパージ室42に水素ガスが漏れても、圧力を所定値以下まで下げることができ、水素ガスが自発的に着火してしまうことを確実に防止することができる。
 ところで、水素ガスは、窒素ガスよりも冷却能力が高いが、窒素ガスよりも高価であるため、水素ガスの消費量を削減することが好ましい。このため、本実施形態では、ガス冷却室10内に供給した水素ガスを回収する水素ガス回収装置50を有する。
 図4は、本開示の一実施形態に係る水素ガスの回収動作のフローチャートである。なお、以下の説明では、複数の回収タンク51a~51dのそれぞれの体積を、1mに仮定して説明する。
 水素ガスの回収動作では、先ず、図3に示す開閉弁51a1を開状態にし、回収タンク51aとガス冷却室10とを連通させる(1次均圧操作:ステップS1)。これにより、ガス冷却室10の圧力は、略6.9barから略4.3barに低下する。
 その後、開閉弁51a1を閉じ、開閉弁51b1を開状態にし、回収タンク51bとガス冷却室10とを連通させる(2次均圧操作:ステップS2)。これにより、ガス冷却室10の圧力は、略4.3barから略2.75barに低下する。
 その後、開閉弁51b1を閉じ、開閉弁51c1を開状態にし、回収タンク51cとガス冷却室10とを連通させる(3次均圧操作:ステップS3)。これにより、ガス冷却室10の圧力は、略2.75barから略1.85barに低下する。
 このように、水素ガス回収装置50は、ガス冷却室10内の水素ガスを複数回の均圧操作により回収タンク51a~51c内に回収する。これにより、略75%の水素ガスを回収することができる。
 その後、開閉弁51c1を閉じ、開閉弁51d1を開状態にし、回収タンク51dとガス冷却室10とを連通させる。そして、真空ポンプ12dを駆動させ、ガス冷却室10内の水素ガスを回収タンク51d内に強制的に回収する(ステップS4)。これにより、ガス冷却室10の圧力は、略1.85barから略0.1barに低下する。
 このように、水素ガス回収装置50は、複数回の均圧操作の後に、ガス冷却室10内の水素ガスを真空ポンプ12dの駆動により回収する。その結果、略99%の水素ガスを回収することができる。
 真空ポンプ12dの駆動後は、第3のガスパージ管45を介して窒素ガスをガス冷却室10に供給し、回収しきれなかった水素ガスを大気放出する(ステップS5)。以上により、水素ガスの回収動作が終了する。
 複数の回収タンク51a~51dに回収された水素ガスは、図3に示すコンプレッサー52によって昇圧され、冷却ガス供給装置20の供給タンク21a~21cのいずれかに冷却ガスとして供給される。これにより、水素ガスの再利用が可能となり、ガス冷却装置RGのランニングコストを低減することができる。
 このように、上述の本実施形態は、被処理物Xを収容するガス冷却室10と、ガス冷却室10内に冷却ガスを供給する冷却ガス供給装置20と、ガス冷却室10内で冷却ガスを循環させる冷却ガス循環装置30と、を有する多室型熱処理装置Aを開示する。また、冷却ガス供給装置20は、冷却ガスとして水素ガスをガス冷却室10に供給する。上記の構成を採用することによって、冷却ガスの圧力を抑えても、冷却能力を向上させることができる。
さらに、冷却ガス循環装置30は、ガス冷却室10内に設けられたターボファン31と、ガス冷却室10の壁部10aを貫通し、ターボファン31と接続される回転軸32と、ガス冷却室10外に設けられ、回転軸32を回転させるモーター33と、少なくともモーター33を不活性ガスでガスパージするガスパージ装置40と、を有する。上記の構成を採用することによって、水素ガスと酸素ガスとの混合が確実に防止され、冷却ガスとして水素ガスを安全に使用することができる。
 なお、本開示は上記実施形態に限定されず、例えば以下のような変形例が考えられる。
(1)上記実施形態では、ガスパージ室42がモーター33と共にガス冷却室10を囲うと説明したが、本開示はこれに限定されない。例えば、ガスパージ室42は、モーター33を最小限囲う構成であればよい。すなわち、ガス冷却室10(熱処理室)内に供給された冷却ガス(水素ガス)と酸素ガスとの混合の可能性がある部位(上記実施形態ではモーター33)を、不活性ガスでガスパージするガスパージ装置を有していれば、水素ガスと酸素ガスとの混合が確実に防止され、冷却ガスとして水素ガスを安全に使用することができる。
(2)また、上記実施形態では、モーター33の回転軸32周りにシール部材34を設ける構成について説明したが、モーター33のガスパージが十分であれば、シール部材34を設けず、モーター33のハウジングとガス冷却室10との間を隔離しなくてもよい。また、モーター33の回転軸32周りに設けたシール部材34が、ガス冷却室10の圧力を保持できる(多少のガス漏れは許容する)のであれば、モーター33のハウジングが無くてもよい。
(3)また、上記実施形態では、水素ガス回収装置50は3次均圧操作まで行うと説明したが、本開示はこれに限定されない。例えば、1次、2次均圧操作までであってもよいし、4次以上の均圧操作を行ってもよい。
 本開示によれば、冷却ガスの圧力を抑えても、冷却能力を向上させることができる熱処理装置が得られる。また、冷却ガスとして水素ガスを安全に使用することができる。
10 ガス冷却室(熱処理室)
10a 壁部
20 冷却ガス供給装置
30 冷却ガス循環装置
31 ターボファン(羽根車)
32 回転軸
33 モーター
34 シール部材
40 ガスパージ装置
42 ガスパージ室
43 第1のガスパージ管
44 第2のガスパージ管
50 水素ガス回収装置
51a~51d 回収タンク
52 コンプレッサー
A 多室型熱処理装置(熱処理装置)
X 被処理物

Claims (9)

  1.  被処理物を収容する熱処理室と、前記熱処理室内に冷却ガスを供給する冷却ガス供給装置と、前記熱処理室内で前記冷却ガスを循環させる冷却ガス循環装置と、を有する熱処理装置であって、
      前記熱処理室内に供給された前記冷却ガスと酸素ガスとの混合の可能性がある部位を不活性ガスでガスパージするガスパージ装置を有し、
    前記冷却ガス供給装置が、前記冷却ガスとして水素ガスを前記熱処理室に供給する、熱処理装置。
  2.  前記冷却ガス循環装置が、前記熱処理室内に設けられた羽根車と、前記熱処理室の壁部を貫通し、前記羽根車と接続される回転軸と、前記熱処理室外に設けられ、前記回転軸を回転させるモーターと、を有し、前記ガスパージ装置が、少なくとも前記モーターを不活性ガスでガスパージする、請求項1に記載の熱処理装置。
  3.  前記ガスパージ装置が、前記モーター内に不活性ガスを供給する第1のガスパージ管と、少なくとも前記モーターを囲うガスパージ室と、前記ガスパージ室内に不活性ガスを供給する第2のガスパージ管と、を有する、請求項2に記載の熱処理装置。
  4.  前記ガスパージ室が、前記モーターと共に前記熱処理室を囲う、請求項3に記載の熱処理装置。
  5.  前記回転軸の周囲に設けられ、前記熱処理室と前記モーターとの間をシールするシール部材を有する、請求項2~4のいずれか一項に記載の熱処理装置。
  6.  前記熱処理室内に供給した水素ガスを回収する水素ガス回収装置を有する、請求項1~5のいずれか一項に記載の熱処理装置。
  7.  前記水素ガス回収装置が、前記熱処理室内の水素ガスを均圧操作により回収するための第1の回収タンクを有する、請求項6に記載の熱処理装置。
  8.  前記水素ガス回収装置が、前記均圧操作の後に、前記熱処理室内の前記水素ガスを真空ポンプの駆動により回収するための第2の回収タンクをさらに有する、請求項7に記載の熱処理装置。
  9.  前記第1及び/または第2の回収タンクに回収された水素ガスを昇圧して、前記冷却ガス供給装置に前記冷却ガスとして供給するコンプレッサーを有する、請求項7または8に記載の熱処理装置。
PCT/JP2016/056055 2015-04-22 2016-02-29 熱処理装置 WO2016170846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017514000A JP6341626B2 (ja) 2015-04-22 2016-02-29 熱処理装置
EP16782868.0A EP3249330B1 (en) 2015-04-22 2016-02-29 Heat treatment device
CN201680022010.2A CN107532852B (zh) 2015-04-22 2016-02-29 热处理装置
US15/677,100 US10690416B2 (en) 2015-04-22 2017-08-15 Heat treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015087450 2015-04-22
JP2015-087450 2015-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/677,100 Continuation US10690416B2 (en) 2015-04-22 2017-08-15 Heat treatment device

Publications (1)

Publication Number Publication Date
WO2016170846A1 true WO2016170846A1 (ja) 2016-10-27

Family

ID=57143936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056055 WO2016170846A1 (ja) 2015-04-22 2016-02-29 熱処理装置

Country Status (5)

Country Link
US (1) US10690416B2 (ja)
EP (1) EP3249330B1 (ja)
JP (1) JP6341626B2 (ja)
CN (1) CN107532852B (ja)
WO (1) WO2016170846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094599A (zh) * 2017-12-06 2020-05-01 株式会社Ihi 热处理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231471B2 (ja) * 2019-04-23 2023-03-01 リョービ株式会社 焼入装置および焼入方法
CN115371433B (zh) * 2022-10-26 2023-01-31 河南天利热工装备股份有限公司 一种快速冷却工业炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147514A (ja) * 1982-02-24 1983-09-02 Ishikawajima Harima Heavy Ind Co Ltd ガス冷却熱処理法
JPH0390510A (ja) * 1989-09-01 1991-04-16 Daido Sanso Kk ガス回収方法およびそれに用いる装置
JPH05230528A (ja) * 1992-02-24 1993-09-07 Daido Steel Co Ltd 真空炉におけるガス循環冷却促進法
JP2010181135A (ja) * 2009-02-03 2010-08-19 Ipsen Inc 真空熱処理炉用シーリング機構
JP2012251764A (ja) * 2011-05-31 2012-12-20 Ipsen Co Ltd 工業炉設備における真空ポンプの制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168607A (en) * 1960-12-28 1965-02-02 Greene Ben Methods of heat treating articles
DE4121277C2 (de) * 1991-06-27 2000-08-03 Ald Vacuum Techn Ag Vorrichtung und Verfahren zur selbsttätigen Überwachung der Betriebssicherheit und zur Steuerung des Prozeßablaufs bei einem Vakuum-Wärmebehandlungsofen
US5326031A (en) * 1992-10-15 1994-07-05 Nordson Corporation Apparatus for dispensing conductive coating materials including color changing capability
JPH10183236A (ja) * 1996-12-25 1998-07-14 Shimazu Mekutemu Kk 真空熱処理炉
JPH11153386A (ja) 1997-11-25 1999-06-08 Ishikawajima Harima Heavy Ind Co Ltd 多室式マルチ冷却真空炉
JP2001255070A (ja) 2000-03-15 2001-09-21 Hitachi Metals Ltd 真空加熱炉
JP4190964B2 (ja) 2003-06-27 2008-12-03 中外炉工業株式会社 熱処理炉の加圧ガス冷却装置およびその運転方法
JP2007027379A (ja) 2005-07-15 2007-02-01 Hitachi Kokusai Electric Inc 基板処理装置
US7727305B2 (en) * 2006-04-20 2010-06-01 Lummus Technology Inc. Method and system for atmosphere recycling
JP5912670B2 (ja) 2012-03-02 2016-04-27 Dowaサーモテック株式会社 ワークのガス冷却装置
CN103114190B (zh) * 2013-03-14 2014-06-25 镇海石化建安工程有限公司 不锈钢焊接管连续光亮固溶热处理设备
CN203229561U (zh) * 2013-04-20 2013-10-09 滕州晨晖电子集团有限公司 键合线退火机
JP6596703B2 (ja) * 2015-03-04 2019-10-30 株式会社Ihi 多室型熱処理装置
CN107614709B (zh) * 2015-05-26 2020-02-18 株式会社Ihi 热处理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147514A (ja) * 1982-02-24 1983-09-02 Ishikawajima Harima Heavy Ind Co Ltd ガス冷却熱処理法
JPH0390510A (ja) * 1989-09-01 1991-04-16 Daido Sanso Kk ガス回収方法およびそれに用いる装置
JPH05230528A (ja) * 1992-02-24 1993-09-07 Daido Steel Co Ltd 真空炉におけるガス循環冷却促進法
JP2010181135A (ja) * 2009-02-03 2010-08-19 Ipsen Inc 真空熱処理炉用シーリング機構
JP2012251764A (ja) * 2011-05-31 2012-12-20 Ipsen Co Ltd 工業炉設備における真空ポンプの制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094599A (zh) * 2017-12-06 2020-05-01 株式会社Ihi 热处理装置

Also Published As

Publication number Publication date
EP3249330A4 (en) 2018-07-25
EP3249330B1 (en) 2019-08-14
US20180010854A1 (en) 2018-01-11
JP6341626B2 (ja) 2018-06-13
US10690416B2 (en) 2020-06-23
CN107532852B (zh) 2019-06-14
EP3249330A1 (en) 2017-11-29
JPWO2016170846A1 (ja) 2017-09-21
CN107532852A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6596703B2 (ja) 多室型熱処理装置
JP6341626B2 (ja) 熱処理装置
US10648050B2 (en) Heat treatment apparatus
WO2009113621A1 (ja) 単室型真空熱処理炉及び単室型真空熱処理炉における被処理品の酸化防止方法
JP2001250787A (ja) 基板処理装置および基板処理方法
US8734147B2 (en) Seal structure for pressurized container, cooling treatment apparatus, multi-chamber heat treatment apparatus, pressure regulating method, and operating method
JP5144207B2 (ja) 基板処理装置および半導体装置の製造方法
WO2006030504A1 (ja) 真空熱処理炉の冷却ガス風路切替え装置
JP2021181093A (ja) 熱分解装置
CN102174668B (zh) 金属工件热处理用的甑式炉
CN114703540A (zh) 单晶炉热交换设备及其应用方法
US7018585B2 (en) Annealing apparatus
US20170254592A1 (en) Thermal treatment device
JP6796929B2 (ja) アルミニウム材のフラックスレスろう付け方法及びろう付け用処理装置
JP3894405B2 (ja) 真空熱処理装置
JPS6248728B2 (ja)
JP5233481B2 (ja) 連続焼鈍炉の雰囲気ガス置換方法および連続焼鈍炉
JP3465198B2 (ja) 化学反応容器の常温化操作方法及び燃料電池発電プラントの降温方法
JPS6345326A (ja) コイル熱処理炉
JPS62139810A (ja) 焼戻炉の炉内清浄方法および装置
JPH04285116A (ja) 熱処理炉雰囲気ガスの回収方法及び装置
JP2015218367A (ja) 真空焼入れ処理設備
KR20090040599A (ko) 수직 소둔로 내부 발생 더스트 제거 장치
JP2006245492A (ja) 基板熱処理装置および基板熱処理製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514000

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016782868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE