WO2016169515A1 - 电动车辆能量补充系统、方法和设备 - Google Patents

电动车辆能量补充系统、方法和设备 Download PDF

Info

Publication number
WO2016169515A1
WO2016169515A1 PCT/CN2016/079998 CN2016079998W WO2016169515A1 WO 2016169515 A1 WO2016169515 A1 WO 2016169515A1 CN 2016079998 W CN2016079998 W CN 2016079998W WO 2016169515 A1 WO2016169515 A1 WO 2016169515A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electric vehicle
vehicle
replacement
predetermined
Prior art date
Application number
PCT/CN2016/079998
Other languages
English (en)
French (fr)
Inventor
高振东
曲其聪
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2016169515A1 publication Critical patent/WO2016169515A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an energy supplementing system, method and apparatus for an electric vehicle.
  • Secondary rechargeable batteries commonly used in electric vehicles include lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and lithium-ion batteries. Compared with traditional lead-acid, nickel-hydrogen and cadmium-nickel batteries, lithium-ion batteries have the shortest history, but lithium-ion batteries have the best performance and the most promising prospects.
  • the energy density of automotive power batteries is much lower than that of fossil fuels.
  • the energy density of gasoline can reach 12000Wh/Kg.
  • the energy density of ternary material lithium ion battery is only 120-200Wh/Kg, which is two orders of magnitude different.
  • Nissan Leaf (LEAF) as an example, it can achieve a driving range of more than 160 kilometers (USLA4 mode) under full charge. Most consumers have a daily driving mileage below this mileage.
  • the industry mainly solves the problem of extending the driving range of electric vehicles by increasing the energy density of vehicle batteries, such as the maximum driving range of battery batteries developed by battery manufacturer BYD. Up to 450-500 km (ideal value at 40 km/h at a constant speed). The increase in the energy density of the battery reduces the frequency of energy replenishment of the electric vehicle to a certain extent, but at the same time, the (regular) charging time of the battery is further extended.
  • the conventional charging method of the vehicle battery generally adopts a constant current or constant current charging of a small current, and the charging current is relatively low, and the typical charging current is about 15A.
  • the conventional power supply voltage 220v a vehicle battery with a capacity of 16 to 26 KWh is fully charged.
  • the general charging time is 5-8 hours or even longer.
  • the charger required for such a small current conventional charging has a low installation cost and a low overall charging cost.
  • this method can make the active material of the battery work well and the battery has a long service life.
  • the battery is fully charged to obtain a large cruising range, the electric vehicle needs to be charged for a long time, and the demand for emergency operation is difficult to meet in time.
  • Another energy supplement mode is to directly replace the electric vehicle battery module, such as the battery charging mode proposed by Better Place.
  • This mode achieves the purpose of replenishing energy by setting up a special power station and directly replacing the battery pack of the electric vehicle.
  • This mode replenishes energy in a short time, and the battery replacement process takes only a few minutes, solving the problem of long-term charging waiting of the user. Even so, there is a significant problem with this mode of switching.
  • the cost of building and maintaining a battery-changing power station is high. For large cities, the construction of a large number of battery-changing power stations will place high demands on urban land.
  • the user of the electric vehicle must drive the electric vehicle to the battery-changing station during the driving process in order to achieve energy replenishment.
  • the electric vehicle is not sufficiently charged to support the vehicle when it is switched to the power station. Even if it can support the vehicle to drive to the power station, the electric vehicle will have to change the expected driving path due to the need to change the power.
  • the problem to be solved by the present invention is to provide a method of quickly supplementing the energy of an electric vehicle.
  • the technical solution of the present invention is: a method for energy supplementing of an electric vehicle, the electric vehicle comprising one or more wheels; an electric motor driving the wheels of the electric vehicle and being powered by a battery; the method comprising the following steps Determining the condition of the battery of the vehicle; determining the geographic location of the vehicle; based on the condition of the battery of the vehicle and the geographic location of the vehicle, the service center commands the battery replacement device to move to a predetermined location for the vehicle to replace the battery.
  • the predetermined place is confirmed based on the battery replacement request issued by the vehicle.
  • the power button on the electric vehicle is triggered, and the power exchange request is sent to the service center to determine the predetermined location.
  • the vehicle user interacts with the service center to confirm the predetermined location.
  • the method further includes the steps of: confirming the destination, confirming the remaining mileage of the vehicle based on the battery condition and the geographical location of the electric vehicle, when the destination and the remaining mileage meet the preset condition , provide a choice of power mode.
  • the power switching mode includes at least one of a power supply mode of the supply station, a predetermined location power conversion mode, and a parking point power conversion mode; in the power supply mode, the predetermined location is a battery supply station; and the predetermined location is a power exchange mode
  • the predetermined place is a specific place agreed by the user and the service center; in the parking point change mode, the predetermined place is a place where the electric vehicle stops driving.
  • the preset condition is that the distance between the current location and the destination of the electric vehicle is greater than the remaining mileage.
  • the method further includes the steps of: confirming the remaining mileage of the vehicle based on the battery condition and the geographical location of the electric vehicle, and displaying the remaining mileage of the vehicle.
  • the method further includes the following steps, according to the condition of the battery of the vehicle, to the vehicle The vehicle issued a reminder to change the power.
  • the method further includes the steps of: predicting the number and distribution of electric vehicles that need to be replaced in a specific range according to the geographical location information sent by the electric vehicle and the condition of the battery of the vehicle, and the service center formulates a power conversion plan according to the predicted result. .
  • the destination of the battery replacement device is determined by taking the predetermined location as the starting point and starting from the current geographic location of the battery replacement device.
  • the battery replacement device is in a precise positioning mode, and the positioning signal received by the battery replacement device matches the preset signal, and the battery replacement device confirms the specific geographic location of the predetermined vehicle.
  • the method further includes the step of presetting a specific electronic key, the battery replacement device identifying the predetermined vehicle according to the specific electronic key and placing the battery of the predetermined vehicle in the replaceable mode.
  • the battery replacement device moves according to a preset path, and the battery is replaced at least two predetermined locations for at least two electric vehicles.
  • the method further includes the battery replacement device replacing the battery for the predetermined vehicle according to a predetermined period.
  • the energy supplementing method further includes the step of loading a full battery at the battery supply station for replenishing the electric vehicle with energy.
  • the present invention also provides an energy supplementing system for an electric vehicle for replenishing energy for an electric vehicle, wherein the electric vehicle includes a vehicle body; a battery housed in the vehicle body; one or more wheels; an electric motor that drives the wheels and is Battery powered; the electric vehicle energy replenishing system includes: a battery replacement device that replaces a battery for a predetermined electric vehicle in accordance with a predetermined power exchange plan.
  • the predetermined power exchange plan includes an agreed power change time corresponding to the predetermined electric vehicle and an agreed power change location.
  • the battery exchange device moves to a position where the predetermined electric vehicle is located, and the battery is replaced from any of the front, rear, left, and right sides of the electric vehicle.
  • the present invention also provides another energy replenishing method for an electric vehicle, comprising the steps of: receiving, by the battery replacement device, a power exchange command; moving the battery replacement device to a first predetermined location according to a preset path, replacing the battery for the first predetermined vehicle; The replacement device continues to move to the second predetermined location according to the preset path to replace the battery for the second predetermined vehicle.
  • the battery replacement device confirms the first predetermined vehicle by the first power exchange key, and the battery replacement device confirms the second predetermined vehicle by the second power exchange key.
  • the first power-changing key is different from the second power-changing key.
  • the present invention also provides another method for energy replenishment of an electric vehicle, comprising the steps of: the battery replacement device receiving a power change command; and the battery replacement device moving to different preset locations according to a preset path, respectively, different predetermined electrics Replace the battery with the vehicle.
  • the battery exchange device moves along a preset path, thereby minimizing the sum of time differences for battery replacement for different predetermined electric vehicles.
  • the battery exchange device moves along a preset path, so that the battery replacement device moves the shortest distance for all predetermined electric vehicle replacement batteries.
  • the present invention also provides another method for energy replenishment of an electric vehicle, comprising the steps of: the battery replacement device receiving a power change command; and the battery replacement device moving to different preset locations according to a preset time sequence, respectively being different reservations Electric vehicle replacement battery.
  • the present invention provides a system that can quickly and flexibly replenish energy for an electric vehicle.
  • the present invention provides an electric vehicle energy replenishing system for replenishing energy for an electric vehicle, wherein the electric vehicle includes a vehicle body; a battery housed in the vehicle body; one or more wheels; an electric motor, driving The wheel is powered by a battery; a positioning system for determining a geographic location of the electric vehicle; a detecting unit for determining a condition of the battery of the electric vehicle; the electric vehicle energy replenishing system comprising: a service center having a communication module, transmitting a power-changing command to Battery replacement device; battery replacement device, which is moved to a predetermined location according to the power-changing command to replace the battery for the predetermined electric vehicle.
  • the electric vehicle includes a communication module for transmitting a battery replacement request to confirm a predetermined place.
  • the electric vehicle includes a power exchange button, and the power exchange request is sent by triggering the power button to confirm the predetermined location.
  • the service center includes a communication module, and the service center communicates with the vehicle user through the communication module to confirm the predetermined location.
  • the electric vehicle includes a client that confirms the remaining mileage of the vehicle based on the destination of the electric vehicle, the battery condition, and the geographical location, and provides the power-change mode selection when the destination and the remaining mileage meet the preset condition.
  • the power switching mode includes at least one of a power supply mode of the supply station, a predetermined location power conversion mode, and a parking point power conversion mode; in the power supply mode, the predetermined location is a battery supply station; and the predetermined location is a power exchange mode
  • the predetermined place is a specific place agreed by the user and the service center; in the parking point change mode, the predetermined place is a place where the electric vehicle stops driving.
  • the preset condition is that the distance between the current location and the destination of the electric vehicle is greater than the remaining mileage.
  • the electric vehicle includes a client that confirms the remaining mileage of the vehicle based on the battery condition and the geographical location of the electric vehicle, and displays the remaining mileage of the vehicle.
  • the electric vehicle includes a client, and the client sends a reminder to the vehicle according to the condition of the battery of the vehicle.
  • the service center includes a control system that predicts the number and distribution of electric vehicles that need to be replaced in a specific range according to the geographical location information of the electric vehicle and the condition of the battery of the vehicle, and formulates a power conversion plan according to the predicted result.
  • the service center includes a control system, and the control system takes a predetermined location as a destination, and determines a walking route of the battery replacement device, starting from a current geographic location of the battery replacement device.
  • the battery exchange device includes a precision positioning module for transmitting a precise positioning signal to determine a specific geographic location of the predetermined vehicle.
  • the service center includes a control system that presets a specific electronic key, and the battery replacement device identifies the predetermined vehicle based on the specific electronic key and places the battery of the predetermined vehicle in a replaceable mode.
  • the power changing command includes the battery replacement device moving according to a preset path, and replacing the battery in at least two predetermined locations for the at least two electric vehicles.
  • the power change command includes the battery replacement device replacing the battery for a predetermined vehicle according to a predetermined period.
  • the energy supplementation system further includes a battery supply station including a battery storage reservoir for storing a plurality of batteries for replenishing energy for the electric vehicle, a charging device for charging a plurality of batteries, and a total control unit for controlling The charging device charges and manages the battery.
  • a battery supply station including a battery storage reservoir for storing a plurality of batteries for replenishing energy for the electric vehicle, a charging device for charging a plurality of batteries, and a total control unit for controlling The charging device charges and manages the battery.
  • the invention also provides a method for energy supplementation of an electric vehicle, comprising the steps of: the battery replacement device receiving a power change command; and the battery replacement device moving to different preset locations according to a preset path, respectively, being different predetermined electric vehicles Replacement battery.
  • the difference between the time when the battery replacement device replaces the battery for the predetermined electric vehicle and the predetermined power exchange time is the time difference of the power exchange; the battery replacement device moves along the preset path, thereby replacing all the predetermined electric vehicles.
  • the sum of the battery's changeover time is the smallest.
  • the battery exchange device moves along a preset path, so that the battery replacement device moves the shortest distance for all predetermined electric vehicle replacement batteries.
  • the invention also provides a method for energy replenishment of an electric vehicle, comprising the steps of: the battery replacement device receiving a power change command; the battery replacement device moving to a different preset position according to a preset time sequence, for different predetermined electrics Replace the battery with the vehicle.
  • the present invention also provides a method of energy replenishment of an electric vehicle, the electric vehicle including one or more wheels; an electric motor that drives the wheels and is powered by a battery; the method comprising the steps of communicating with the service center to determine a predetermined location
  • the service center determines the geographical location of the battery replacement device; confirms that the battery replacement device adjacent to the predetermined location is a predetermined battery replacement device; the service center sends a power exchange command to the predetermined battery replacement device; the predetermined battery replacement device receives the power exchange command, Move to the intended location to replace the battery for the electric vehicle.
  • the present invention also provides a method of energy replenishment of an electric vehicle, the electric vehicle including one or more wheels; an electric motor that drives the wheels and is powered by a battery; the method comprising the steps of communicating with the service center to confirm a predetermined location
  • the service center determines the time when the battery replacement device arrives at the predetermined location, and confirms that the battery replacement device that has the shortest time to arrive at the predetermined location is a predetermined battery replacement device, and the service center sends a power exchange command to the predetermined battery replacement device; the predetermined battery replacement device Receiving the power change command, moving to the predetermined location for the electric vehicle to replace the battery.
  • the present invention also provides a method of energy replenishment of an electric vehicle, the electric vehicle including one or more wheels; an electric motor driving the wheels and being powered by a battery; the method comprising the steps of: the electric vehicle transmitting a power change request; the service center receiving The power exchange request; the service center sends a power change command, the battery replacement device receives the power change command, and the battery replacement device moves to a predetermined location to replace the battery with the electric vehicle.
  • the electric vehicle and the battery exchange device are respectively moved to a predetermined place. Thereby, the electric vehicle can obtain energy supplement in the shortest time, and the energy supplement can be quickly realized on the basis that the electric vehicle does not change the original stroke.
  • the invention also provides a method for energy replenishment of an electric vehicle, the electric vehicle comprising one or more wheels; an electric motor driving the wheels and being powered by a battery; the method comprising the steps of: the service center transmitting a power change command, the battery replacement device The batteries are sequentially replaced for a number of electric vehicles according to the power exchange command.
  • the power-changing command replaces the battery for the battery replacement device within a preset period of time.
  • the power change command replaces the battery at a predetermined location for the battery replacement device.
  • the present invention also provides a method of energy replenishment of an electric vehicle, the electric vehicle including one or more wheels; an electric motor driving the wheels and being powered by a battery; the method comprising the steps of: the service center receiving a request for a power change, according to the electric vehicle And the geographical location of the battery replacement device, the service center dispatches the battery replacement device to move to the predetermined location for the electric vehicle to replace the battery.
  • the service center distinguishes the priority of the battery-replacement device, and sends a power-changing command to the battery-replacement device in order of priority from high to low.
  • the priority of the battery replacement device is distinguished according to the time when the battery replacement device moves to a predetermined location.
  • the priority of the battery replacement device is differentiated according to the cost of moving the battery replacement device to a predetermined location.
  • the priority of the battery replacement device is differentiated according to the time and cost of the battery replacement device moving to a predetermined location.
  • the service center After receiving the power-request request, the service center distinguishes the priority of the power-changing request, and processes the power-changing request in descending order of priority.
  • the priority of the power-change request is confirmed according to the type of the user of the electric vehicle.
  • the priority of the power-changing request is confirmed according to the time difference between the power-changing time and the current time.
  • the emergency response strategy is to move the battery replacement device at least partially located in different sub-areas in a specific area to a specific sub-area.
  • the present invention provides an apparatus that can quickly and flexibly replenish energy for an electric vehicle.
  • the present invention provides a battery replacement device, the battery replacement device includes a movable body, a power exchange mechanism for replacing a battery of the electric vehicle, and a control unit disposed in the main body to receive a power exchange command and control The battery exchange device is moved to a predetermined location to replace the battery for the predetermined vehicle.
  • control unit receives the geographical location of the electric vehicle and the condition of the battery, and determines a preset walking route of the battery replacement device.
  • the battery replacement device includes a precision positioning module for issuing a precise positioning signal to determine a specific location of the predetermined electric vehicle.
  • control unit identifies the predetermined vehicle based on the specific electronic key and places the predetermined vehicle in the battery replaceable mode.
  • the battery replacement device further includes a communication module for communicating with at least one of the electric vehicle, the service center, and the battery supply station.
  • the technical solution of the present invention is: a method for energy replenishment of an electric vehicle, the electric vehicle including a vehicle body; a plurality of wheels capable of driving the movement of the vehicle body; and an electric motor for driving the wheels and being powered by the battery;
  • the method includes the following steps: a battery replacement device lifts an electric vehicle side The predetermined height, at least in part from the side of the electric vehicle, enters the electric vehicle to replace the battery for the electric vehicle.
  • the side of the electric vehicle is lifted by lifting the wheel on one side of the electric vehicle.
  • the number of wheels on one side of the electric vehicle is two.
  • the tool used for lifting the electric vehicle is an electric jack.
  • the two electric jacks lift the two wheels on one side of the vehicle, respectively.
  • the same control device controls the two electric jacks to start and stop at the same time.
  • each electric jack is controlled to be started and stopped by a different control device.
  • each electric jack comprises a micro switch, and when the lifting height of the electric jack reaches a preset value, the micro switch is triggered to control the motor to stop.
  • the height of one side of the electric vehicle is raised to 50-300 mm.
  • the battery replacement device unlocks the battery module before the electric vehicle replaces the battery module.
  • the locking mechanism is a hydraulic locking mechanism comprising a hydraulic cylinder and a piston disposed on the electric vehicle.
  • one side of the electric vehicle includes either one of a front side, a rear side, a left side, and a right side of the vehicle.
  • the battery replacement device lifts the front side of the electric vehicle, and the battery replacement device enters the vehicle under the horizontal direction from the front side, the battery module is detached from the vehicle body, and the battery module located on the battery tray is rotated by a predetermined angle. Remove the battery module from under the vehicle.
  • the battery replacement device lifts the left or right side of the electric vehicle, and the battery replacement device enters the vehicle under the horizontal direction from the left or the right side, and the battery module is detached from the vehicle body and moved in the horizontal direction.
  • the battery module is removed from the underside of the vehicle.
  • the battery exchange device when the battery exchange device enters the underside of the vehicle, it first moves along the lateral direction of the vehicle and then moves along the longitudinal direction of the vehicle.
  • the battery replacement device when the battery replacement device removes the battery module from the lower side of the vehicle, it first moves along the longitudinal direction of the vehicle and then moves along the lateral direction of the vehicle.
  • the electric jack includes a lifting arm that grips the wheel from a side of the wheel.
  • a battery replacement device for replacing a battery for an electric vehicle comprising a transport vehicle and a changeover trolley system housed in the transport vehicle, the electric change trolley system including an electric jack for laterally lifting the electric vehicle And a power change forklift for replacing the battery.
  • the electric change trolley system further includes an electro-hydraulic station for releasing the locking of the battery module by the locking mechanism.
  • the electro-hydraulic station comprises a hydraulic pump, an electric motor for driving the hydraulic pump, a fuel tank and a fuel pipe connected to the oil tank, and the oil pipe is selectively connectable with a locking mechanism of the battery module, thereby releasing the locking mechanism to the battery module. locking.
  • the power exchange forklift comprises a frame, a wheel for supporting the movement of the frame, a lifting mechanism disposed on the frame, and a battery module tray disposed on the lifting mechanism.
  • the lifting mechanism comprises at least three lifting units that are movable in a vertical direction relative to the frame to adjust the position of the battery module tray.
  • the battery module tray is capable of being at a predetermined angle with respect to the frame by the lifting mechanism.
  • the power exchange forklift further includes an energy unit that supplies energy for movement of the wheel and a drive mechanism that connects the wheels.
  • the energy unit is detachably received in the frame.
  • the wheel of the power exchange forklift is a universal wheel.
  • the power exchange forklift further includes a turntable that is rotatable relative to the frame.
  • the power exchange forklift further includes a sensor disposed between the lifting mechanism and the battery module tray.
  • the height of the power exchange forklift is less than 500 mm.
  • the electric forklift has a storage state and an operating state for replacing the battery for the electric vehicle.
  • the overall height of the forklift is no more than 500 mm.
  • the transport vehicle includes a communication device that is capable of communicating with a service center.
  • the power exchange forklift includes a control unit that controls the operation of the power exchange forklift according to a predetermined schedule.
  • the present invention also provides an electric vehicle including a vehicle body; a plurality of wheels capable of driving the vehicle body to move; an electric motor driving the wheels and being powered by the battery module; the electric vehicle including at least two battery modules, each of the battery modules being relatively independent
  • the device is detachably connected to the vehicle body; the at least two battery modules are disposed at the bottom of the vehicle body, and are sequentially disposed along a longitudinal extension direction of the vehicle body.
  • the number of the battery modules is three, and the three battery modules are sequentially disposed in a direction in which the longitudinal length of the vehicle body extends.
  • the battery module includes a first battery module, a second battery module, and a third battery module
  • the block, the first battery module and the second battery module are identical in shape, and the third battery module is different in shape from the first battery module.
  • the first battery module has a shape of a chevron.
  • the shape of the third battery module is a rectangle.
  • each battery module has a weight of about 150 to 350 Kg.
  • each battery module and the vehicle body can be separately replaced.
  • each battery module is fixed to the vehicle body by a separate locking system.
  • the locking system comprises a locking unit disposed on the vehicle body, and the locking unit has a one-to-one correspondence with the battery module.
  • the height of each battery module is less than or equal to 250 mm. Further, the height of the battery module is less than or equal to 200 mm.
  • the present invention also provides an electric vehicle including a vehicle body; a plurality of wheels capable of driving the vehicle body to move; an electric motor driving the wheels and being powered by the battery module; the vehicle body including a frame for accommodating the battery module and being disposed on the frame A locking/unlocking system that selectively locks the battery module to the vehicle body or unlocks the battery module from the vehicle body.
  • the locking and unlocking system is activated by a signal transmitted by the battery exchange device.
  • the locking and unlocking system is a hydraulic locking and unlocking system, comprising an oil inlet pipe disposed on the frame, an oil discharge pipe, a hydraulic cylinder connected to the oil inlet pipe and the oil discharge pipe, and reciprocally movable in the hydraulic cylinder The piston, as well as the jaws driven by the piston.
  • a rack and pinion mechanism is provided between the jaw and the piston, so that the relative reciprocating motion of the piston and the hydraulic cylinder is converted into a pivotal movement of the jaw.
  • the battery module includes a locking block for mating with the locking/unlocking system to lock the battery module to the vehicle body.
  • the electric vehicle further includes a retaining mechanism for selectively retaining the jaws in the locked position.
  • the retaining mechanism includes a locking arm pivotally coupled to the jaw, the locking arm being in a first position, the jaw being maintained in a locked state; the locking arm being in a second position, the jaw being movable relative to each other .
  • the invention also provides a battery module for an electric vehicle, comprising a housing, a plurality of battery units housed in the housing, wherein the battery module comprises a plurality of locking blocks for detachable connection with the electric vehicle.
  • the shape of the housing is convex.
  • the battery module has a weight of about 150 to 300 kg. Further, the battery module weighs approximately 200 kg.
  • the present invention also provides a battery pack for an electric vehicle, the battery pack including at least two battery modules, each of which is separately connectable to an electric vehicle.
  • the battery pack includes two battery modules.
  • the two battery modules are identical in shape.
  • the battery pack includes three battery modules.
  • At least two of the three battery modules are identical in shape.
  • the battery module includes at least one battery module having a convex shape.
  • the battery pack comprises two battery modules in the shape of a chevron, the first chevron-shaped battery module can be coupled to the front side of the electric vehicle, and the second chevron-shaped battery module can be coupled to the rear of the electric vehicle. side.
  • the distance between the long side of the first convex-shaped battery module and the long side of the second convex-shaped battery module is smaller than the battery module of the second convex shape The distance between the short sides.
  • the battery module can be removed from under the electric vehicle.
  • the battery module includes a locking unit for mating with a locking mechanism on the vehicle to be relatively fixed to the vehicle.
  • the locking unit is a groove provided on the outer side of the battery frame.
  • the present invention also provides an electric vehicle energy replenishing system including a battery exchange device and an electric vehicle, the battery exchange device including a transport vehicle and a refueling trolley system housed in the transport vehicle, the electric change trolley system including Lifting an electric jack of the electric vehicle and a power change forklift for replacing the battery;
  • the electric vehicle includes a vehicle body, a plurality of wheels capable of driving the vehicle body to move, an electric motor driving the wheels and being powered by the battery module;
  • the electric vehicle including at least Two battery modules, each of which is relatively independently disposed, can be detachably connected to the vehicle body; the at least two battery modules are arranged at the bottom of the vehicle body, and are sequentially disposed in a direction in which the vehicle body extends longitudinally.
  • the energy supplementation system further includes a service center, and the electric vehicle and the battery exchange device are communicatively coupled to the service center.
  • the height of the power exchange forklift is no more than 500 mm.
  • the electric changing trolley system further comprises a function for releasing the locking of the battery module by the locking mechanism. Unlock the mechanism.
  • the unlocking mechanism is an electric hydraulic station including a hydraulic pump, an electric motor for driving the hydraulic pump, a fuel tank, and a fuel pipe connected to the oil tank, and the oil pipe is selectively connectable to a locking mechanism of the battery module.
  • the power exchange forklift comprises a frame, a wheel for supporting the movement of the frame, a lifting mechanism disposed on the frame, and a battery module tray disposed on the lifting mechanism.
  • the lifting mechanism comprises at least three lifting units that are movable in a vertical direction relative to the frame to adjust the position of the battery module tray.
  • the battery module tray is capable of being at a predetermined angle with respect to the frame by the lifting mechanism.
  • the power exchange forklift further includes an energy unit that supplies energy for movement of the wheel and a drive mechanism that connects the wheels.
  • the energy unit is detachably received in the frame.
  • the wheel of the power exchange forklift is a universal wheel.
  • the power exchange forklift further includes a turntable that is rotatable relative to the frame.
  • the power exchange forklift further includes a sensor disposed between the lifting mechanism and the battery module tray.
  • the electric forklift has a storage state and an operating state for replacing the battery for the electric vehicle.
  • the overall height of the forklift is no more than 500 mm.
  • the transport vehicle includes a communication device capable of communicating with a service center.
  • the power exchange forklift includes a control unit that controls the operation of the power exchange forklift according to a predetermined schedule.
  • the geographical position of the electric vehicle does not change throughout the process of replacing the battery of the electric vehicle by the battery replacement device.
  • the electric vehicle can obtain the service of battery replacement when the driver is not in the vehicle, and the power supplement of the electric vehicle is flexible and flexible, and even if the electric vehicle cannot move due to insufficient power, the energy can be quickly added. It is no longer necessary to pre-design the mobile line and specifically move to the charging station for charging.
  • the problem to be solved by the present invention is to provide a battery exchange device suitable for efficiently and conveniently replacing battery components for different numbers of electric vehicles.
  • a battery replacement device comprising a battery replacement device for replacing a battery component for an electric vehicle
  • the battery replacement device comprising: a first vehicle body, a first vehicle body
  • the battery receiving mechanism includes a first receiving space for accommodating the battery assembly; and a plurality of second vehicles
  • the body is connected to the first vehicle body, and the second vehicle body includes a battery exchange mechanism and a second receiving space for accommodating the battery assembly; the first vehicle body and the second vehicle body can be relatively separated and the battery assembly can be replaced separately for the electric vehicle.
  • the first vehicle body further includes a charger for charging the battery component housed in the first receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the first vehicle body further includes a charger for charging the battery component housed in the second receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the second vehicle body further includes a charger for charging the battery component housed in the second receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the first vehicle body further includes a third receiving space, and the second vehicle body is at least partially received in the third receiving space.
  • the second vehicle body is hooked on the first vehicle body.
  • the first vehicle body includes a detachably connected front and a vehicle body, and the battery exchange mechanism and the first battery receiving space are located in the vehicle body.
  • the first vehicle body includes a third receiving space, and the third receiving space houses a plurality of second vehicle bodies.
  • the second vehicle body comprises a plurality of battery components.
  • the number of battery components is equivalent to the number of battery components included in an electric vehicle.
  • the present invention also provides a battery replacement device for loading and unloading a battery assembly of an electric vehicle, the battery replacement device comprising: a first vehicle body, the first vehicle body including a first receiving space for accommodating the battery assembly; and a plurality of second vehicle bodies
  • the second vehicle body includes a battery replacement mechanism and a second receiving space for accommodating the battery assembly; the second vehicle body is detachably connected to the first vehicle body; the first vehicle body further includes a third receiving space, and the second vehicle body is at least partially Contained in the third containment space.
  • the first vehicle body further includes a charger for charging the battery component housed in the first receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the first vehicle body further includes a charger for charging the battery component housed in the second receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the second vehicle body further includes a charger for charging the battery component housed in the second receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the first vehicle body comprises a detachably connected front and a vehicle body, and the third receiving space is located at the vehicle body.
  • the third receiving space accommodates a plurality of second vehicle bodies.
  • the second vehicle body comprises a plurality of battery components.
  • the number of battery components is equivalent to the number of battery components included in an electric vehicle.
  • the present invention also provides a battery replacement device for replacing a battery assembly for an electric vehicle, comprising the steps of: when the number of electric vehicles that need to replace the battery assembly is greater than a preset value, the first vehicle body moves to a predetermined location for the electric vehicle respectively When the number of electric vehicles that need to be replaced is less than or equal to a preset value, the second vehicle body is removed from the third accommodating space relative to the first vehicle body, and moved to a predetermined location for the electric vehicle to replace the battery assembly.
  • the plurality of second vehicle bodies are removed from the third accommodating space relative to the first vehicle body, and are respectively moved to different electric vehicle replacement battery assemblies at predetermined locations.
  • Another battery replacement device provided by the present invention is a method for replacing a battery assembly of an electric vehicle, comprising the steps of: obtaining the number N of electric vehicles that need to be replaced, and N is an integer greater than or equal to 1; determining that N is within a preset range The first vehicle body is moved to a position corresponding to a distance from the plurality of predetermined positions, and the plurality of second vehicle bodies are removed from the third receiving space relative to the first vehicle body, and are respectively moved to different predetermined locations to replace battery components of different electric vehicles. .
  • the present invention also provides a battery replacement device for loading and unloading a battery assembly of an electric vehicle, the battery replacement device comprising: a front end for moving the traction battery replacement device; the first vehicle body, the first vehicle body including a battery replacement mechanism and a first receiving space for accommodating the battery assembly; the second body, the second body includes a battery replacing mechanism and a second receiving space for accommodating the battery assembly; the size of the first receiving space is larger than the size of the second receiving space; the first body The second body is replaceably connected to the front.
  • the first vehicle body further includes a charger for charging the battery component housed in the first receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the second vehicle body further includes a charger for charging the battery component housed in the second receiving space, the charger comprising a power connector and a plurality of charging connectors.
  • the second vehicle body comprises a plurality of battery components.
  • the number of battery components is equivalent to the number of battery components included in an electric vehicle.
  • the present invention also provides a battery replacement device for replacing a battery assembly for an electric vehicle, comprising the steps of: when the number of electric vehicles requiring replacement of the battery assembly is greater than a preset value, the front end of the vehicle is connected to the first vehicle body and moved to a predetermined location.
  • the first vehicle body is an electric vehicle replacement battery; when the number of electric vehicles that need to replace the battery assembly is less than or equal to a preset value, the front end is connected to the second vehicle body and moved to a predetermined location, and the second vehicle body is an electric vehicle to replace the battery.
  • the preset value is an integer between 5 and 50.
  • the battery replacement device provided by the present invention includes a first vehicle body and a second vehicle body having different receiving spaces, and the first vehicle is different according to the number of electric vehicles that need to be replaced in a specific area.
  • the body and the second body can replace the batteries for different numbers of electric vehicles, respectively.
  • the battery replacement device provides a battery replacement service with greater efficiency.
  • the electric vehicle energy supplementing system and method provided by the invention effectively eliminates the technical problems currently encountered by the electric vehicle through the flexible and intelligent control and service system, and provides the user of the electric vehicle with reliable, safe, and Similar to the experience of traditional vehicles, it solves the user's mileage anxiety.
  • the electric vehicle battery exchange system provides a new user experience for electric vehicle users through a flexible power replenishment solution combined with battery quick change technology.
  • This system is specially designed to provide services for users who purchase or rent electric vehicles in the system. When the user purchases or rents the electric vehicle of the system, relevant information will be entered into the system and the service will be enabled. All electric vehicles in this system are equipped with vehicle clients, and the matching battery modules have specific quick change interfaces.
  • the electric vehicle energy supplementing system and method provided by the invention provide a variety of power replenishment modes, including calling for power change and reminding for power change. Combined with the traditional charging pile charging mode, an all-round and high-efficiency electric vehicle energy supplementing scheme is constructed.
  • the battery replacement device's power-change structure makes it easy to replace the battery. It is not necessary to lift the vehicle on a specific work platform, and the battery can be removed and installed from the front, the rear or the side of the vehicle.
  • the battery replacement of the electric vehicle in most parking states is simple and feasible, and the location of the battery replacement is not particularly limited, and the electric vehicle can be conveniently obtained whether it is parked on a road, in a garage or in a parking space of a parking lot. Battery replacement service.
  • the electric vehicle can obtain the battery replacement service according to an agreement with the service provider in the case where the vehicle user is not on site.
  • the user does not have to move the electric vehicle to a specific substation specifically for battery replacement, and the user experience is excellent.
  • FIG. 1 is a schematic diagram of an electric vehicle energy supplement system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an electric vehicle.
  • FIG. 3 is a block diagram showing the configuration of an electric vehicle.
  • FIG. 4 is a schematic illustration of a user interface of an electric vehicle.
  • FIG. 5 is a schematic diagram of a first embodiment of a battery module layout on an electric vehicle.
  • FIG. 6 is a schematic diagram of a second embodiment of a battery module layout on an electric vehicle.
  • Fig. 7 is a schematic structural view of a first battery module.
  • FIG. 8 is a schematic view of a battery housing frame on an electric vehicle.
  • Figure 9 is a schematic illustration of a first embodiment of a locking/unlocking system.
  • Figure 10 is a schematic illustration of the locking/unlocking system of Figure 9 in an unlocked state.
  • Figure 11 is a schematic illustration of the locking/unlocking system of Figure 9 in a locked state.
  • Figure 12 is a schematic illustration of a locking/unlocking system of the first battery module.
  • Figure 13 is a schematic illustration of a locking/unlocking system of a third battery module.
  • Figure 14 is a schematic illustration of a locking/unlocking system of a second battery module.
  • Figure 15 is a schematic illustration of a second embodiment of a locking/unlocking system in which the battery module is in a locked state.
  • Figure 16 is a schematic illustration of a second embodiment of a locking/unlocking system in which the battery module is in an unlocked state.
  • Figure 17 is a schematic illustration of a third embodiment of a locking/unlocking system in which the battery module is in a locked state.
  • Figure 18 is a schematic illustration of the locking/unlocking system of Figure 17 with the battery module in an unlocked state.
  • Figure 19 is a schematic illustration of a fourth embodiment of a locking/unlocking system in which the battery module is in a locked state.
  • Figure 20 is a schematic illustration of the locking/unlocking system of Figure 19 with the battery module in an unlocked state.
  • 21 is a schematic structural view of a battery exchange device.
  • Fig. 22 is a block diagram showing the configuration of a battery exchange device.
  • Figure 23 is a schematic illustration of a first embodiment of a battery exchange device.
  • Figure 24 is a perspective view of the electric jack in the battery exchange device.
  • Figure 25 is a front elevational view showing the state in which the jack is in an unlifted state.
  • Figure 26 is a front elevational view showing the jack in a raised state.
  • Figure 27 is a top plan view of the jack.
  • FIG. 28 is a perspective view of a power exchange forklift in a battery exchange device.
  • 29 is a perspective view of the power change forklift in which the battery module tray is removed.
  • Figure 30 is a side elevational view of the power change forklift with the lift mechanism raised to a certain height.
  • FIG. 31 is a schematic diagram of the battery exchange device being the electric vehicle replacement battery module shown in FIG. 4, in which one side of the electric vehicle is lifted by a predetermined height.
  • FIG. 32 is a left side view of the battery replacement device of FIG. 31 as an electric vehicle replacement battery module.
  • FIG. 33 is a top plan view of the battery replacement device of FIG. 31 being an electric vehicle replacement battery module.
  • Figure 34 is a schematic illustration of the battery replacement device of Figure 31 being an electric vehicle replacement battery module in which the first battery module is transferred to the installed position.
  • 35 is a schematic diagram of the battery replacement device of FIG. 31 being an electric vehicle replacement battery module, wherein the power exchange trolley is ready to transport the second battery module.
  • FIG. 36 is a schematic diagram of the battery replacement device of FIG. 31 being an electric vehicle replacement battery module, wherein the second battery module is transferred to the installation position.
  • FIG. 37 is a schematic diagram of the battery replacement device of FIG. 31 being an electric vehicle replacement battery module, wherein the power exchange trolley is ready to transport the third battery module.
  • FIG. 38 is a schematic diagram of the battery replacement device of FIG. 31 replacing the battery module of the electric vehicle, wherein the third battery module is transferred to the underside of the electric vehicle.
  • 39 is a schematic diagram of the battery replacement device of FIG. 31 replacing the battery module of the electric vehicle, wherein the third battery module is rotated to the installation position.
  • FIG. 40 is a schematic diagram of the battery replacement device of FIG. 31 completing battery module replacement from the side of the electric vehicle.
  • 41 is a schematic diagram of the battery exchange device for replacing the battery module of the electric vehicle shown in FIG. 5, the front side of the electric vehicle being lifted to a predetermined height.
  • FIG. 42 is a left side view of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module.
  • FIG. 43 is a top plan view showing the battery replacement device of FIG. 41 as an electric vehicle replacement battery module.
  • FIG. 44 is a schematic diagram of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module, wherein the first battery module is transferred to the underside of the electric vehicle.
  • FIG. 45 is a schematic diagram of the battery replacement device of FIG. 41 replacing the battery module of the electric vehicle, wherein the first battery module is rotated to the installation position.
  • FIG. 46 is a schematic diagram of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module, wherein the power exchange trolley is prepared to transfer the second battery module from the front side of the electric vehicle.
  • FIG. 47 is a schematic diagram of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module, wherein the second battery module is transferred to the underside of the electric vehicle.
  • FIG. 48 is a schematic diagram of the battery replacement device of FIG. 41 replacing the battery module for the electric vehicle, wherein The second battery module is rotated to the mounting position.
  • FIG. 49 is a schematic diagram of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module, wherein the power exchange trolley is prepared to transfer the third battery module from the front side of the electric vehicle.
  • FIG. 50 is a schematic diagram of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module, wherein the third battery module is transferred to the underside of the electric vehicle.
  • FIG. 51 is a schematic diagram of the battery replacement device of FIG. 41 being an electric vehicle replacement battery module, wherein the third battery module is rotated to the installation position.
  • FIG. 52 is a schematic view showing a state in which the battery replacement device of FIG. 41 completes replacement of the battery module from the front side of the electric vehicle.
  • Figure 53 is a schematic view showing a second embodiment of the battery exchange device for replacing the battery of the electric vehicle
  • Figure 54 is a schematic illustration of a third embodiment of a battery layout of an electric vehicle
  • Figure 55 is a side elevational view of a first preferred embodiment of the battery exchange apparatus
  • Figure 56 is a side elevational view of a second preferred embodiment of the battery exchange apparatus.
  • Figure 57 is a plan view of a third preferred embodiment of the battery exchange device.
  • Figure 58 is a plan view of a fourth preferred embodiment of the battery exchange device.
  • Figure 59 is a side elevational view of a preferred embodiment of the replacement assembly in a first state
  • Figure 60 is a side elevational view of a preferred embodiment of the replacement assembly in a second state
  • Figure 61 is a partial enlarged view of a portion A in Figure 60.
  • Figure 62 is a side view of the electric vehicle
  • Figure 63 is a bottom plan view of the electric vehicle shown in Figure 62;
  • Figure 64 is a schematic view of a fifth embodiment of the battery exchange device.
  • Figure 65 is a schematic view of the battery exchange device of Figure 64 in a first position relative to the electric vehicle;
  • Figure 66 is a schematic view of the battery exchange device of Figure 64 in a second position relative to the electric vehicle;
  • Figure 67 is a schematic view of the battery exchange device of Figure 64 in a third position relative to the electric vehicle;
  • Figure 68 is a schematic view of the battery exchange device of Figure 64 in a fourth position relative to the electric vehicle;
  • Figure 69 is a schematic view of the battery exchange device of Figure 64 in a fifth position relative to the electric vehicle;
  • Figure 70 is a schematic view of the battery exchange device of Figure 64 in a sixth position relative to the electric vehicle;
  • Figure 71 is a schematic view showing a sixth preferred embodiment of the battery exchange device.
  • Figure 72 is a schematic view of the battery exchange device of Figure 71 in a first position relative to the electric vehicle;
  • Figure 73 is a schematic view of the battery exchange device of Figure 71 in a second position relative to the electric vehicle;
  • Figure 74 is a schematic view of the battery exchange device of Figure 71 in a third position relative to the electric vehicle;
  • Figure 75 is a schematic view of the battery exchange device of Figure 71 in a fourth position relative to the electric vehicle;
  • Figure 76 is a schematic view of the battery exchange device of Figure 71 in a fifth position relative to the electric vehicle;
  • Figure 77 is a schematic view of the battery exchange device of Figure 71 in a sixth position relative to the electric vehicle;
  • Figure 78 is a schematic view showing the battery exchange device of Figure 71 in a seventh position relative to the electric vehicle;
  • Figure 79 is a schematic view showing a seventh preferred embodiment of the battery exchange device.
  • Figure 80 is a schematic view showing an eighth preferred embodiment of the battery exchange device.
  • Figure 81 is a schematic view of the battery exchange device shown in Figure 80 relative to the electric vehicle in a first position;
  • Figure 82 is a schematic view of the battery exchange device of Figure 80 in a second position relative to the electric vehicle;
  • Figure 83 is a schematic view of the battery exchange device of Figure 80 in a third position relative to the electric vehicle;
  • Figure 84 is a schematic view showing the battery exchange device shown in Figure 80 in a fourth position relative to the electric vehicle;
  • Figure 85 is a schematic view showing the battery exchange device shown in Figure 80 in a fifth position relative to the electric vehicle;
  • Figure 86 is a schematic view of a ninth preferred embodiment of the battery exchange device.
  • Figure 87 is a schematic view showing the battery exchange device shown in Figure 86 in a first state
  • Figure 88 is a schematic view showing the battery exchange device of Figure 86 in a second state
  • Figure 89 is a schematic view showing the battery exchange device shown in Figure 86 in a third state
  • Figure 90 is a schematic illustration of an embodiment of a battery exchange system
  • Figure 91 is a first preferred embodiment of the battery replacement system of Figure 90 for precise positioning
  • Figure 92 is a schematic view showing the battery replacement system of Figure 90 in a first state
  • Figure 93 is a schematic view of the battery replacement system of Figure 90 in a second state
  • Figure 94 is a second preferred embodiment of the battery exchange system of Figure 90 for achieving precise positioning.
  • Figure 95 is a schematic illustration of a third embodiment of a battery exchange device.
  • Figure 96 is a schematic illustration of the second body of the battery exchange device being an electric vehicle replacement battery assembly.
  • Fig. 97 is a schematic view showing the charging of the first vehicle body of the battery exchange device to the external power source.
  • Figure 98 is a schematic view showing the charging of the second body of the battery exchange device to the external power source.
  • Figure 99 is a schematic diagram showing the basic configuration of a charger.
  • Figure 100 is a schematic illustration of a ninth preferred embodiment of a battery exchange device.
  • Figure 101 is a schematic illustration of a tenth preferred embodiment of a battery exchange device.
  • Figure 102 is a schematic illustration of a first embodiment of a method of replacing a battery assembly for an electric vehicle by a battery exchange device.
  • Figure 103 is a schematic illustration of a second embodiment of a method of replacing a battery assembly for an electric vehicle by a battery exchange device.
  • Figure 104 is a schematic view of an eleventh preferred embodiment of the battery exchange device.
  • Figure 105 is a schematic illustration of a twelfth preferred embodiment of a battery exchange device.
  • Figure 106 is a schematic illustration of a third embodiment of a method of replacing a battery assembly for an electric vehicle by a battery exchange device.
  • Figure 107 is a block diagram showing the configuration of a battery supply station.
  • Figure 108 is a schematic diagram of an operating system interface of a battery service center.
  • Figure 109 is a schematic diagram showing the system configuration of the battery service center.
  • Figure 110 is a block diagram showing the configuration of the management system of the service center.
  • Figure 111 is a schematic diagram of the travel path planning of the battery exchange device.
  • FIG. 112 is a schematic flow chart of an electric vehicle energy supplementing method provided by the first embodiment.
  • Figure 113 is another flow diagram of an electric vehicle energy supplementing method.
  • Figure 114 is a flow chart showing still another flow of the electric vehicle energy supplementing method.
  • Figure 115 is a flow chart showing a method of the battery exchange device acquiring battery supply station information.
  • Figure 116 is a flow chart showing a method of obtaining battery replenishment information by a battery supply station.
  • Figure 117 is a flow diagram showing a method of replenishing a fully charged battery by a battery exchange device.
  • Figure 118 is a flow chart showing a method of completing a power-change task after the battery-replacement device receives the power-changing command.
  • Figure 119 is a flow chart showing a fourth embodiment of an electric vehicle energy supplementing method.
  • Figure 120 is a flow chart showing a fifth embodiment of an electric vehicle energy supplementing method.
  • Figure 121 is a flow chart showing a sixth embodiment of an electric vehicle energy supplementing method.
  • Figure 122 is a flow chart showing a seventh embodiment of an electric vehicle energy supplementing method.
  • Figure 123 is a flow chart showing an eighth embodiment of an electric vehicle energy supplementing method.
  • Figure 124 is a flow diagram of still another embodiment of an electric vehicle energy supplementing method.
  • Figure 125 is a flow chart showing the service center scheduling battery replacement device.
  • 126 is a schematic flow chart of still another embodiment of an electric vehicle energy supplementing method.
  • 127 is a flow chart showing another embodiment of an electric vehicle energy supplementing method.
  • Figure 128 is a flow chart showing another embodiment of an electric vehicle energy supplementing method.
  • FIG. 1 discloses an energy supplement system 50 for an electric vehicle.
  • the electric vehicle 52 may be a pure electric vehicle that is fully powered by the battery assembly 54, or a hybrid electric vehicle that is partially powered by the battery.
  • the specific concept of the present invention will be described by taking a pure electric vehicle as an example. The following specific embodiments are not intended to limit the type of electric vehicle.
  • the energy supplement system 50 is a battery energy supplemental service network that includes an electric vehicle.
  • the service network includes a service provider 51, a removable battery exchange device 56, and an electric vehicle 52 that accepts battery replacement and its user 53.
  • the service provider 51 the user 53 of the electric vehicle establishes a connection by agreement. Based on the relevant protocol, the user 53 of the electric vehicle receives the battery replacement service provided by the service provider 51, and the service provider charges the user 53 of the vehicle for the corresponding fee based on the service of the battery replacement.
  • the service provider 51 ensures that the user 53 is provided with a fully charged battery and is responsible for the maintenance and maintenance of the corresponding battery. The user replaces the battery when needed, and no longer needs to pay attention to battery maintenance and maintenance. Since the service provider 51 has a unified management of the battery pack 54, the performance and life of the battery can be most effectively managed, and the energy utilization rate is maximized. The mileage anxiety problem of users of electric vehicles has also been effectively solved.
  • the battery assembly 54 in the electric vehicle can be purchased directly by the user or rented by the user to a service provider. Of course, in some cases, the user can also rent the vehicle directly, that is, the entire electric vehicle is rented along with the battery.
  • the financial institution 64 is capable of establishing a connection between the service provider and the user. The user accepts the service provided by the service provider and pays the relevant fee to the service provider through the financial institution.
  • the service provider provides a service center 58 that manages the satisfaction of service requirements and requirements in the energy supplement system.
  • the service center establishes a data connection with the electric vehicle 52 and its user 53, the battery exchange device 56, and the battery supply station 60 via the data network 59.
  • the battery supply station 60 includes a charging device 62 that receives power supplements from the power network 63.
  • the power replenishing system 50 of the electric vehicle includes a power replenishing device.
  • the power replenishing device is provided by the service provider 51.
  • the user 53 of the electric vehicle 52 can select a fixed battery service station for energy replenishment or select to be moved by the movable battery exchange device 56 to a predetermined location to provide a power exchange service for the electric vehicle as needed.
  • the battery service station can be a charging station that includes a number of charging stations, or a power station that provides a fully charged battery.
  • the user can sign a different nature agreement with the service provider to obtain the battery replacement service.
  • the service provider manages the above information of the user to determine different service content for different users.
  • Users and service providers sign different types of agreements, based on the content of the agreement, users can be divided into different types.
  • the types of users can include important customers, general customers, and general customers. Different types of customers have different priorities for power-changing requests, and the corresponding service content may also be different. In general, important customer's power change requests can be prioritized. Services include charging, power change, battery maintenance and battery maintenance.
  • the service provider can manage the replacement requirements proposed by multiple users in a unified manner, plan the optimal power-changing path according to the order in which the user requests, and the time and place requirements, and instruct the specific battery replacement device to execute. It is also possible to instruct a plurality of specific battery replacement devices according to the order in which the user requests, and provide different battery replacement services for different electric vehicles to ensure that the electric vehicle obtains the fastest battery replacement service.
  • the service center mentioned here may be a service center with an actual workplace, or a virtual service center that realizes data processing and exchange only by means of cloud computing or the like.
  • Virtual service centers include virtual servers.
  • the virtual server collects information about the electric vehicle and the battery replacement device, and dispatches the battery replacement device to replace the battery for the electric vehicle according to a predetermined algorithm.
  • the service provider can manage the replacement requirements proposed by multiple users, and plan the optimal power-changing path according to the order of the users' requirements and the time and place requirements, and instruct the specific battery replacement equipment to execute. It is also possible to instruct a plurality of specific battery replacement devices according to the order in which the user requests, and provide different battery replacement services for different electric vehicles to ensure that the electric vehicle obtains the fastest battery replacement service.
  • the battery in the power replenishing system of the electric vehicle is managed by the system.
  • the battery used by the electric vehicle is preferably the same as the battery provided by the service provider.
  • the pool specifications are the same.
  • the user of the electric vehicle can purchase the battery or rent the battery.
  • renting is a better option, so that for the user, the cost of purchasing an electric vehicle will be greatly reduced.
  • the risk of battery maintenance is reduced.
  • users can sign different types of agreements with service providers to get battery replacement services.
  • the service provider manages the above information of the user to determine different service content for different users.
  • the electric vehicle 52 includes a vehicle body 52a and a detachable battery assembly 54 housed in the vehicle body.
  • the vehicle body 52a includes a vehicle body 52d having an electric motor 52c for driving the movement of one or more wheels 52b.
  • the battery assembly 54 provides energy to the motor 52c to ensure that the vehicle can travel.
  • the battery assembly 54 is electrically and mechanically coupled to the vehicle body to connect to the vehicle and provide electrical energy for functions such as exercise, lighting, sound, air conditioning, and the like of the vehicle.
  • the electric vehicle also includes a charger 52e that is electrically coupled to the battery assembly 54 and that is coupled to an external power source to charge the battery through an external charging interface.
  • electric vehicle 52 includes a positioning system 65 for determining the geographic location in which the vehicle is located.
  • the positioning system 65 can be a Global Positioning System (GPS), a Beidou positioning system, a radio tower positioning system, a wireless fidelity Wi-Fi positioning system, or a combination of the above.
  • the electric vehicle 52 may further include a navigation system for providing the vehicle with path guidance for moving from one destination to another. At this time, a corresponding display is provided on the vehicle to display the geographical location of the vehicle and the map information within a certain range around the vehicle.
  • the electric vehicle further includes a battery detecting unit 66 for detecting the condition of the battery.
  • the condition of the battery includes, but is not limited to, the amount of power of the battery, the level of charge and discharge of the battery, the age of the battery, and combinations thereof.
  • the battery's power generally refers to the current remaining battery power.
  • the electric vehicle includes a main control unit 68 for controlling the operation of each functional module of the electric vehicle.
  • the main control unit 68 typically contains a CPU and a memory.
  • the main control unit 68 receives the battery status information transmitted by the battery detecting unit 66 and is stored by the memory.
  • the memory also stores the power usage of each functional module on the electric vehicle, including but not limited to the power consumption, usage time, frequency of use, and the like of the different functional modules.
  • the electric vehicle includes a transmission control unit 69 for controlling the power transmission of the electric vehicle to transmit the power output by the electric motor to the respective functional components.
  • a communication interface 70 can be provided on the electric vehicle for communicating with the communication network to transmit information to the service center and receive information transmitted by the service center.
  • the service center and the electric vehicle 52 establish a communication link through the communication network.
  • the relevant information in the memory is received, and based on the information, the battery usage mode of the electric vehicle is confirmed.
  • the electric vehicle also includes a battery control unit 71 for controlling the energy usage of the battery.
  • a battery control unit 71 for controlling the energy usage of the battery. Including vehicles The distribution of the used power of different functional modules, the control of battery charge and discharge, and the like.
  • a user interface 72 can be provided on the electric vehicle.
  • User interface 72 includes display device 74 and input device 76.
  • Display device 74 is typically a display, such as an LCD display, or other device having a display function, such as a touch screen or the like.
  • a display indicating the state of use of the battery can be displayed on the display, and the remaining battery power can be displayed in real time.
  • the display identifier may be in the form of a percentage or a block-shaped battery icon, and the number of icon blocks is different, indicating that the remaining battery power is different.
  • Display device 74 can also display map information. Through the input device 76, the user can at least partially establish contact with the main control unit 68. Input device 76 and display device 74 can be arranged the same to simplify the user interface.
  • a client is installed on the electric vehicle.
  • a client on a user's electric vehicle has a user interface 72 that includes a display device 74 and an input device 76. From the client of the electric vehicle, information such as the geographic location of the electric vehicle, the condition of the battery, the location and time of the power change, and the like can be output.
  • the client of the electric vehicle can receive information such as the remaining mileage estimate sent by the service center's master control operating system, the power change reminder, the change point location and time.
  • the client of the electric vehicle can also receive identity confirmation information sent by the battery replacement device or send identity confirmation information to the battery replacement device.
  • the client of the electric vehicle includes an operating system 68a, a communication module 68b, a user interface module 68c, a positioning module 68d, a battery control module 68e, a cost module 68f, a database module 68g, a battery status database 68h, and a geographic location database 68i.
  • Operating system 68a includes a number of programs for processing system tasks.
  • the communication module 68b is for connecting to a client of the service center 58, the battery exchange device 56, and the like via one or more communication ports or communication networks.
  • Communication networks include, but are not limited to, local area networks, metropolitan area networks, the Internet, or other wide area networks.
  • User interface module 68c receives user instructions via input device 76 and displays the instructions through display device 74.
  • the positioning module 68d determines the geographic location of the electric vehicle through the positioning system, and is also connected to the user interface module to display the geographical location of the destination specified by the user.
  • the battery control module 68e controls the battery replacement process, including but not limited to controlling the identification between the electric vehicle and the battery replacement device, monitoring the usage process data of the battery of the vehicle, and the like.
  • the cost module 68f is used to manage the expenses of the electric vehicle.
  • the battery detecting module 68j is configured to manage the battery detecting unit.
  • the database module 68g is used to provide an interface of the database of the vehicle for data exchange and connection with other databases in the entire energy supplementing system.
  • the battery status database 68h includes current and/or historical data for the battery condition of the electric vehicle.
  • the geographic location database 68i includes current and/or historical data for the geographic location of the vehicle.
  • the energy supplement system of the entire electric vehicle contains more than one electric vehicle.
  • the above client is installed on each electric vehicle.
  • the client of each electric vehicle manages the corresponding electric vehicle, and correspondingly provides relevant information corresponding to the electric vehicle.
  • the service center generally manages the information and data provided by the clients of all electric vehicles.
  • the service provider can also install the client on the vehicle after signing the service agreement with the user, and the content displayed in the user interface 72 corresponds to the program of the client.
  • the service center receives the geographic location and battery status information of the electric vehicle 52, determines the farthest mileage the electric vehicle can travel, and provides corresponding information to the user.
  • the farthest mileage the vehicle can travel also known as the remaining mileage of the vehicle, can be displayed on the map.
  • the user further determines whether the battery replacement service needs to be reserved according to the expected itinerary. It is also possible to make a background judgment by the service center.
  • the service center sends a reminder to the user of the electric vehicle to replace the battery.
  • the user of the electric vehicle confirms whether it is necessary to replace the battery as needed. If the user confirms that the battery needs to be replaced, the user can send a battery replacement request to the service center via the input device 76.
  • the service center may further confirm the time and place of the specific battery replacement with the user, and the confirmation may be through information communication between the user interfaces 72, or may be other methods such as telephone confirmation.
  • the battery replacement plan and instructions are sent to the specific battery replacement device.
  • the battery replacement device performs a battery replacement plan and moves to a predetermined location to replace the battery for the predetermined electric vehicle.
  • An electric vehicle in an energy supplement system equipped with a battery module of a specific form is suitable for the battery replacement device to take out the battery module from different directions such as the front, the rear or the side of the vehicle.
  • the battery replacement device can perform battery replacement for the electric vehicle regardless of the space of about one parking space in any of the front, rear or side of the electric vehicle.
  • the geographical location information of the electric vehicle does not change. Even if the user of the electric vehicle is not present, the battery replacement of the electric vehicle can be completed, and the worry-free driving experience of the user of the electric vehicle can be truly realized.
  • the battery involved in the present invention includes a plurality of battery modules, each of which includes a plurality of battery cells.
  • Each battery cell includes a positive and negative electrode and an electrolyte between the positive and negative electrodes.
  • the rated voltage of each battery unit is basically the same.
  • a plurality of battery cells form a battery module of a specific specific voltage and current by means of series and parallel connection.
  • the battery unit can be a single 18650 battery, a single plate battery, or other types of battery cells.
  • the battery unit is a rechargeable battery.
  • a plurality of battery units are combined to form a battery module, and each battery module has a charge and discharge control component to monitor the charge and discharge condition of the battery unit. Once a problem occurs in the battery unit, the internal circuit control of the control unit protects the battery unit from damage or influence. Other battery units are charged and discharged.
  • the battery assembly includes a plurality of battery modules.
  • a battery module 654 is disposed on the electric vehicle 652.
  • the battery module 654 is detachably coupled to the vehicle body 652.
  • the electric vehicle includes at least two battery modules, each of which is relatively independent and can be detachably connected to the vehicle body.
  • the battery modules are arranged at the bottom of the vehicle body, and are arranged in the order of the longitudinal extension of the vehicle body.
  • the electric vehicle includes three battery modules.
  • the three battery modules are a first battery module 654a, a second battery module 654b, and a third battery module 654c, respectively.
  • the three battery modules are arranged in sequence along the longitudinal direction of the vehicle body, so that all the battery modules required for the electric vehicle are arranged at the bottom of the vehicle body.
  • the first battery module 654a and the second battery module 654b have the same shape and are all convex.
  • the shape of the third battery module 654c is different from that of the first battery module 654a and the second battery module 654b, and is rectangular.
  • the third battery module 654c is located between the first battery module 654a and the second battery module 654b.
  • the third battery module is disposed between the first battery module and the second battery module. It can be understood that the number of the third battery modules can be one or more. Since the installation position of the third battery module is located in the middle of the chassis of the vehicle and is not affected by the position of the wheel, the shape of the third battery module may be rectangular or square, which is easy to be used as a standardized module to match different types of vehicles.
  • the electric vehicle includes a first battery module 654a and a second battery module 654b.
  • the two battery modules have the same shape and are sequentially disposed along the longitudinal direction of the electric vehicle, and are respectively disposed on the front side and the rear side of the vehicle body. More specifically, the shape of the battery module is convex, avoiding the space occupied by the wheel, and using the space at the bottom of the vehicle as much as possible to ensure that the electric vehicle can obtain the largest possible mileage.
  • the electric vehicle includes only two battery modules of the same shape, and no third battery module. At this time, the mileage of the electric vehicle is determined by two battery modules. For some small passenger cars, two battery modules are already able to meet the mileage requirements. The two battery modules are suitable for quick replacement of battery replacement equipment in terms of volume and weight. Those skilled in the art will appreciate that there may be other different combinations of the shape and number of battery modules depending on the design requirements of the mileage of the electric vehicle.
  • the battery module 654a shown in FIG. 7 includes a battery case 655, and a plurality of battery cells (not shown) housed in the housing 655.
  • the battery module includes a locking block 658 for locking the battery module with the locking and unlocking system On the body of the car.
  • the locking block 658 is a lug that extends from the housing.
  • the battery module shown in Fig. 7 has a substantially chevron shape.
  • the battery module 654a has a first mounting side of length L1 and a second mounting side of length L2, the first mounting side and the second mounting side being disposed in parallel, and L1 is smaller than L2.
  • the two sides of the first mounting side are respectively concave portions.
  • the two recessed portions form two shoulders of the battery module. It can be understood that the two concave portions may have an arc shape with a radius R, a fold line shape, or a step disposed at a right angle. As long as the battery module is mounted on the electric vehicle, the two concave portions do not The wheel part of the vehicle can interfere.
  • the battery module is provided with a locking block for mating with a battery module locking/release system on the body of the electric vehicle.
  • a locking block for mating with a battery module locking/release system on the body of the electric vehicle.
  • two locking blocks 658 are provided on each mounting side.
  • the spacing between the two locking blocks provided on the first mounting side is L3, and the spacing between the two locking blocks provided on the second mounting side is L4.
  • L3 is smaller than L4.
  • the first and second mounting sides are perpendicular to the third and fourth mounting sides. Wherein, the distance between the first mounting side and the second mounting side is L6, and the spacing between the two locking blocks disposed on the third and fourth mounting sides is L5, wherein L5 is smaller than L6.
  • the battery module is detachably connected to the vehicle body.
  • Each battery module is fixed to the vehicle body by a separate locking system. Therefore, the replacement of each battery module is not affected by the replacement of other battery modules, and the replacement process of the battery module is simple and convenient.
  • the body of the electric vehicle includes a frame for housing the battery module and a locking/unlocking system disposed on the frame.
  • the battery receiving frame includes longitudinal support bars 804a and 804b, and lateral support bars 812a, 812b, 812c and 812d, thereby forming a first receiving space 806, a second receiving space 808 and a third receiving space 810.
  • the three receiving spaces are sequentially disposed along the longitudinal direction for respectively housing the first battery module 654a, the second battery module 654c, and the third battery module 654b.
  • a battery module locking/unlocking system 726 is provided for fixing the battery module to the battery receiving frame.
  • the battery housing frame includes longitudinal and short support bars 802a, 802b, 802c and 802d parallel to the longitudinal support bars and the transverse support bars 803a, 803b, 803c and 803d together form a step to avoid the position of the wheel.
  • the locking/unlocking system in a first embodiment of the locking/unlocking system of the battery module, includes an oil inlet pipe fixed to the frame, an oil discharge pipe, and a hydraulic cylinder connected to the oil inlet pipe and the oil discharge pipe. 740, a piston 770 reciprocally movable within the hydraulic cylinder 740, and a jaw 762 that is moved by the hydraulic system.
  • a rack and pinion mechanism is provided between the jaw 762 and the hydraulic cylinder 740, so that the piston 770 reciprocates. Converted into a pivotal motion of the jaw 762.
  • the rack and pinion mechanism includes a rack 742 fixedly disposed with respect to the hydraulic cylinder 740, and a tooth portion 772 provided at one end of the gripper.
  • the jaws 762 are rotated about the pivot 744 such that the locking portions are in different positions.
  • the locking/unlocking system of the battery module is in a locked state, and the battery module 656 is fixed to the battery receiving frame.
  • the piston moves axially within the hydraulic cylinder, and the toothed portion 772 is driven to rotate by the moving rack 742 to move the jaw 762.
  • Two jaws 762 are symmetrically disposed on both sides of the hydraulic cylinder 740, and one end of each of the jaws 762 has a tooth portion 772 that is engageable with the rack 742.
  • the tooth portion 772 of one side rotates clockwise, and the tooth portion 772 of the other side rotates counterclockwise, so that the corresponding jaws 762a and 762b are relatively close together, and the end of the jaw away from the tooth has
  • the hook portion 738 is received in the groove on the lug to fix the battery module 654 with respect to the battery receiving frame.
  • the locking/unlocking system of the battery module is in an unlocked state, and the battery module can be detached from the battery receiving frame.
  • the piston moves in the axial direction of the hydraulic cylinder, and the toothed portion 772 is driven to rotate by the moving rack 742 to move the jaw 762.
  • the tooth portion 772 of one side rotates counterclockwise, and the tooth portion 772 of the other side rotates clockwise, so that the corresponding jaws 762a and 762b are relatively separated, and the jaw 762 is away from the tooth portion 772.
  • One segment has a hook portion, and the hook portion 738 is disengaged from the recess of the locking block 658 on the battery module, in a state in which the battery module 654 is detachable.
  • the locking/unlocking system of the battery module adopts a hydraulic locking mechanism, and the battery module can obtain a large clamping force to ensure that the battery module can be in a stable state even during the movement of the electric vehicle.
  • the hydraulic system provides stable clamping with a simple structure.
  • the hydraulic locking mechanism needs to provide the driving force with the liquid, once there is oil leakage in the pipeline that enters and exits the oil, there is a possibility that the locking mechanism is unstable, and the jaws are clamped to the battery module. Hold may be loose. In order to avoid this, the holding mechanism can be further added to the hydraulic locking mechanism to prevent the occurrence of locking failure due to oil leakage.
  • the retention mechanism includes a locking arm 748 that is rotatable relative to the jaw 762.
  • the locking arm 748 can be in a different position relative to the jaw 762.
  • the locking arm 748 includes a first end pivotally coupled to the hydraulic cylinder 740 and a free end 764 opposite the first end.
  • the locking arm 748 is pivotable relative to the hydraulic cylinder so as to be in a first position in which the free end 764 is relatively close to the jaw abutment surface 766 and a second position in which the free end 764 is relatively far from the jaw abutment surface 766.
  • each jaw 762 is correspondingly provided with a locking arm 748 for holding it in the locked position.
  • a plurality of locking units 726 are disposed on the battery receiving frame.
  • the number of locking units 726 is comparable to the number of locking blocks 658 on the battery module.
  • the electric vehicle 652 includes three battery modules 654, each of which includes eight locking blocks 658, and correspondingly, 24 locking units are disposed on the battery receiving frame.
  • the eight locking units form a battery module locking/unlocking system that individually locks and unlocks one battery module.
  • the locking/unlocking system includes eight spaced apart locking units 726, wherein the two locking units are disposed on one of the longitudinal support bars 804a of the battery receiving frame, two locking The interval between the units is L5, and the other longitudinal support rod 804b disposed in parallel with the longitudinal support rod is also provided with two locking units spaced apart by L5.
  • a receiving space 806 of the first battery module is formed between the two lateral support bars disposed perpendicularly to the longitudinal support bars.
  • One of the lateral support bars 812d is provided with two locking units spaced apart by L3, and the other lateral support bars 812c parallel to one of the lateral support bars 812d are provided with two locking units spaced apart by L4.
  • the locking unit is symmetrically disposed with respect to the longitudinally extending axis of the battery receiving frame to correspond to the position of the locking block on the battery module.
  • the locking unit can efficiently correspond to the locking block, enabling quick clamping of the battery module.
  • a sufficient space can be reserved for accommodating the locking block, and the battery module can be clamped and positioned without particularly high precision.
  • the locking/unlocking system of the third battery module 654c includes eight spaced-apart locking units 726 located in the middle of the battery module housing frame, wherein the locking units disposed on the lateral support bars are located first and second.
  • the locking/unlocking system of the battery module is located between the locking units on the lateral support bars.
  • Two locking units are disposed on one of the longitudinal support rods 804a of the battery receiving frame, the interval between the two locking units is L7, and the other lengthening support rod 804b is also provided with two locking units, two locking units The interval between them is L7.
  • the two locking units are located on the lateral support rod 812c, the interval between the two locking units is L8, the lateral support rod 812b is disposed in parallel with the lateral support rod 812c, and the lateral support rod 812b is also provided with two locking units, and the two locking units The interval between them is L8.
  • the locking/unlocking system also includes eight spaced apart locking units 726.
  • the locking/unlocking system of the first battery module and the locking/unlocking system of the second battery module are symmetrically disposed with respect to the third battery module.
  • the two locking units are disposed on one of the longitudinal support rods 804a of the battery receiving frame, and the interval between the two locking units is L5, and the other longitudinal support rods 804b disposed in parallel with the longitudinal support rods are also There are two locking units with an interval of L5.
  • a receiving space 806 of the second battery module is formed between the two lateral support bars disposed perpendicularly to the longitudinal support bars.
  • One of the lateral support rods 812a is provided with two locking units spaced apart by L3, and the other lateral support rods 812b parallel to one of the lateral support rods 812d are provided with an interval of Two locking units for L4.
  • the locking/unlocking systems of the three battery modules of the entire electric vehicle are relatively independent and do not interfere spatially with each other.
  • the arrangement of the battery module is reasonable, and the effective space of the chassis part of the electric vehicle is fully utilized, which not only ensures that the battery module can provide sufficient effective capacity, but also can lock and fix the battery modules of different shapes in a compact structure. It will be appreciated that the number and configuration of the locking units can be varied as desired.
  • the battery housing frame is provided with a pivotable locking member 670.
  • the battery receiving frame is provided with a through hole 688 and a receiving groove 682 disposed coaxially with the through hole 688.
  • the locking member 670 includes a rotating arm and a locking portion, and is pivotally disposed in the receiving groove.
  • the rotating arm is rotatable relative to the battery receiving frame through the rotating shaft 672.
  • the locking portion has a locking surface 678 for mating with an abutting surface 680 provided on the battery receiving frame.
  • the battery module is provided with a locking block 686 that can be moved along the through hole 688 to rotate the locking member 670.
  • the locking block 686 does not enter the through hole 688, the locking member 670 is in the released state, and the locking block 686 moves into the through hole 688 as the position of the battery module moves, and the tapered surface 674 on the locking block 686 gradually pushes the locking member 670 around the rotating shaft 672.
  • Rotating when the cylindrical portion of the locking block 686 comes into contact with the locking member 670, the locking surface 678 of the locking portion mates with the abutting surface 680, thereby fixing the battery module 654 with respect to the battery receiving frame, and the battery module is in a locked state.
  • the locking block 686 is removed in the opposite direction from the through hole 688, and the locking member 670 is gradually adapted to be mated with the cylindrical surface on the locking block 686 to be mated with the conical surface 674 on the locking block 686.
  • the locking member 670 loses the abutment of the locking block 686, thereby rotating from the locked state to the unlocked state, and the locking surface 678 is disengaged from the abutting surface 680.
  • the number of locking members is two, symmetrically disposed with respect to the through holes. It will be appreciated that the number of locking members may also be three or more in order to provide a reliable clamping force.
  • the axis of rotation of the locking member is perpendicular to the through hole and may be at other angles.
  • the locking unit includes a motor 698 and a locking foot 700 that is driven by a motor 698.
  • the locking leg 700 has a locking surface 693 disposed obliquely.
  • the battery module 690 is correspondingly provided with a slanted abutting surface 691.
  • the motor 698 can drive the locking foot 700 to rotate a predetermined angle such that the inclined locking surface 693 is no longer opposite the abutting surface 691.
  • An inner cone surface 696 is further disposed on the battery module receiving frame, and a corresponding surface of the battery module is provided with a tapered surface protrusion 692.
  • the tapered surface on the battery module The outer tapered surface 694 of the bump can remain in abutment with the inner tapered surface 696 of the inner cone face, thereby maintaining the battery module in a locked state.
  • the locking unit also includes an electrical energy supply unit that provides electrical energy to the electrical machine.
  • the power supply unit may be a battery. Since the locking foot is driven by the motor and the start and stop of the motor can be controlled wirelessly, in a specific embodiment, the external unlocking mechanism is a control unit for the wireless control motor.
  • the control unit includes a wireless transmitting unit for transmitting wireless signals.
  • the locking unit comprises a wireless receiving unit for receiving wireless signals.
  • the motor When the signal sent by the wireless transmitting unit is consistent with the preset signal inside the receiving unit, the motor is started, and the locking leg is driven to rotate by a preset angle.
  • the direction of rotation of the motor 698 can include forward and reverse rotation. In the forward rotation, the driving lock foot is rotated in the direction e so that the locking surface is opposed to the abutting surface. In the reverse rotation, the driving lock foot is rotated in a direction opposite to the direction e to shift the locking surface from the abutting surface. Thereby, the locking unit can both lock the battery module and release the battery module.
  • the locking unit includes an electromagnet.
  • the core 786 of the electromagnet moves axially as a locking member, and is engaged and disengaged from the recess 788 provided on the battery module, thereby realizing locking and unlocking of the battery module.
  • the push rod 784 is pushed toward the groove 788, so that the core end 786 is received in the groove 788, the battery module 782 is locked; when the core 786 is The energizing coil 780 moves away from the groove 788, so that the end of the core is disengaged from the groove 788, and the battery module 782 is in a released state. Under the action of gravity, the battery module 782 can be moved downward and disassembled from the battery receiving frame. Come down.
  • the number of battery modules is four, which are respectively disposed at four positions of the front, rear, left, and right of the electric vehicle near the chassis.
  • a battery module is disposed in each of the front part and the rear part, and the shape and size of the two battery modules are detailed, thereby ensuring the arrangement of the battery module to stabilize the center of gravity of the entire electric vehicle.
  • a battery module is disposed on each side of the vehicle body along the upper and lower sides of the drawing surface, and the two battery modules are identical in shape and size.
  • the shape and size of the battery module disposed on the side may be the same as or different from the shape and size of the battery module disposed at the front and rear.
  • the shape and size of the battery module is preferably adapted to make the capacity of the entire battery assembly large enough that the electric vehicle can travel a sufficiently long distance in a fully charged condition.
  • the position of the battery module relative to the ground of the electric vehicle ensures that each battery module can be detached from the vehicle body in an appropriate manner, removed relative to the vehicle body, and thus the battery module capacity is at least partially exhausted. When replaced with a fully charged battery module, the electric vehicle can continue to operate.
  • the number of battery modules may not be four, and may be one or more. Specifically, it can be preferably set to two or more, so that the size and weight of each battery module are not excessively large, and the battery replacement device is convenient and labor-saving to disassemble and install the battery module, and the structure of the battery replacement device can be simple and compact.
  • Each battery module includes a plurality of battery cells including a positive and negative electrode and an electrolyte located between the positive and negative electrodes 6.
  • the rated voltage of each battery unit is basically the same.
  • a plurality of battery cells form a battery module of a specific specific voltage and current by means of series and parallel connection.
  • the battery unit can be a single 18650 battery, or a single 21700 battery, or a single plate battery and other types of battery cells.
  • the battery unit is a rechargeable battery. It may be a lithium ion battery, a nickel hydrogen battery, a lead acid battery, or the like.
  • the battery module includes a charge and discharge control component to monitor the charge and discharge of the battery unit. Once a problem occurs in one of the battery units, the internal circuit of the control unit will protect the battery unit from damage or affect other battery units.
  • the protection function of a lithium battery is usually completed by a protection circuit board and a current device such as a PTC or a TCO.
  • the protection board is composed of electronic circuits.
  • the protection board usually includes a control integrated circuit (IC), a MOS switch, a thermistor, an ID memory, a PCB, etc. .
  • the control IC controls the MOS switch to conduct under all normal conditions, so that the battery cell communicates with the external circuit, and when the battery voltage or the loop current exceeds the specified value, it immediately controls the MOS switch to turn off (tens of milliseconds). To protect the safety of the battery.
  • the electric vehicle is provided with a power-changing button for directly transmitting a power-changing request to the service center.
  • the client of the electric vehicle sends the power change request information to the service center, and the service center receives the power change request information, verifies the battery replacement device status, and confirms the power change request.
  • the current geographical location information of the electric vehicle can be sent to the service center as the reserved place for replacing the battery.
  • the service center sends a power change command to the battery replacement device.
  • the service center confirms that the power change request can be implemented by feeding back the power exchange key.
  • the client of the electric vehicle receives the power change key and the power change request is confirmed.
  • the power change key is also sent to the battery replacement device as an identification of the electric vehicle as the battery replacement device.
  • the user does not need to communicate with the service center in a complicated manner, and only needs to trigger a power button to reach a service exchange agreement with the service center.
  • the establishment of the power exchange protocol is simple and convenient, and the operation is easy.
  • the receiving and confirming interface of the power change request is relatively simple.
  • the power-changing request information triggered by the power-changing button can also be set by the user, and the user sets the power-changing location and the power-changing time corresponding to the power-changing button to a fixed time point and a fixed location according to the daily power-changing habit.
  • the fixed time is 12:00 noon on Saturday
  • the fixed location is a commercial center parking lot. Therefore, the user and the service center of the electric vehicle can easily and conveniently reach a service agreement, and the service center can more accurately predict the power-changing demand according to the data of the user's driving habits, and reserve an appropriate amount of full-power batteries to avoid energy waste.
  • the battery in the energy supplement system of the electric vehicle is managed by the system.
  • the battery used in the electric vehicle is preferably the same as the battery specification provided by the service provider. Based on this, the user of the electric vehicle can purchase the battery or rent the battery. Of course, renting is a better option, so that for the user, the cost of purchasing an electric vehicle will be greatly reduced. At the same time, the risk of battery maintenance is reduced.
  • the battery of the electric vehicle can be connected to the external power source through the charging interface provided on the electric vehicle for regular or fast charging, or can be replaced by the power changing mechanism through the power exchange interface.
  • the specific power exchange interface design ensures easy battery removal and installation.
  • the power replenishing device includes at least one movable battery exchange device 56.
  • the battery exchange device 56 can be moved from one location to another to replace the battery for the electric vehicle at the predetermined location.
  • the removable battery exchange device can be a vehicle having a power unit and wheels driven by the power unit, or other movable equipment.
  • the battery exchange device can be equipped with a number of fully charged batteries for providing battery replacement services for at least one electric vehicle.
  • the battery replacement device removes at least a portion of the battery that is exhausted from the electric vehicle and replaces the fully charged battery with the electric vehicle.
  • the battery exchange device 56 has a first receiving space 78 for receiving a fully charged battery.
  • the battery exchange device has a second receiving space 80 for accommodating at least a portion of the battery that is exhausted.
  • the first receiving space 78 and the second receiving space 80 may be disposed as two cavities on the main body of the battery replacing device 56, respectively receiving a fully charged battery for replacing the electric vehicle and at least a portion replaced by the electric vehicle.
  • the two chambers are spaced apart for easy maintenance and replacement of the battery, avoiding confusion between a fully charged battery and at least a portion of the battery that is depleted of capacity.
  • the first receiving space 78 and the second receiving space 80 may be integrated into one.
  • the battery When replacing the battery, remove the depleted battery from the electric vehicle, take out the fully charged battery from the first storage space 78, install a fully charged battery for the electric vehicle, and store the replaced battery with the depleted battery.
  • the battery is stored in such a manner that the size of the battery replacement device can be small enough for easy movement.
  • the battery exchange device 56 includes a power change mechanism 82.
  • the power changing mechanism 82 is for replacing the fully charged battery housed in the first housing space 78 with the electric vehicle.
  • the power changing mechanism 82 can also be used to take out at least a portion of the battery that has been exhausted from the electric vehicle from the electric vehicle and further receive it into the second receiving space 80.
  • the power change mechanism 82 can be designed as a power change robot.
  • the power changing mechanism may be disposed between the first receiving space 78 and the second receiving space 80.
  • the first receiving space 78 and the second receiving space 80 are relatively replaced
  • the mechanisms 82 are symmetrically arranged such that the center of gravity of the battery exchange device is relatively balanced.
  • the first receiving space of the battery replacing device is located below the vertical direction of the power changing mechanism, and the second receiving space is located above the vertical direction of the power changing mechanism.
  • the positions of the first receiving space and the second receiving space may be other manners, such as being symmetric with respect to the power changing mechanism, or being located at one side of the power changing mechanism, but occupying the space. The size is equivalent.
  • the battery exchange device 56 includes a positioning system 84 for determining the geographic location of the battery exchange device. Similarly, the battery exchange device is also equipped with a navigation system for guiding the battery replacement device to move according to a predetermined travel route to a predetermined location to provide a battery replacement service for the predetermined electric vehicle.
  • the battery replacement device 56 is equipped with a client for receiving instructions from the service provider and establishing contact with the electric vehicle.
  • the client has a user interface 86.
  • the user interface of the battery exchange device also includes display device 86a and input device 86b.
  • the display device 86a is for displaying the geographical position of the battery exchange device, the position of the electric vehicle that needs to be replaced, and the path to the predetermined place.
  • the input device 86b is used to confirm the power exchange plan and instructions of the receiving service provider, and may also confirm the service location and perform identification with the user of the electric vehicle.
  • the battery exchange device includes a control unit 88 for controlling the battery replacement device to move to a predetermined location for a predetermined vehicle replacement battery based on the geographic location of the electric vehicle and the condition of the battery.
  • the battery exchange device has a communication interface 90. Information of the geographic location of the vehicle and the battery condition transmitted by the electric vehicle is received through the communication interface 90.
  • Communication interface 90 is further for communicating with a battery supply station and a service provider.
  • Communication interface 90 includes hardware and software disposed on the battery exchange device. A communication network is established between the service provider and the battery replacement device.
  • the battery exchange device 56 can directly receive an instruction from the service center or the service provider to move the battery according to the preset travel path to provide a battery replacement service for the predetermined electric vehicle. It is also possible to follow the route planned by the control unit according to the geographical location of the electric vehicle and the battery condition after receiving the power exchange plan issued by the service center or the service provider.
  • the battery exchange device receives the battery condition of the vehicle and the geographic location information of the vehicle through the data network.
  • the battery replacement device 56 can maintain the same data update frequency as the service provider to ensure timely and accurate confirmation of the geographic location of the electric vehicle of itself and the battery to be replaced.
  • control unit 88 receives information indicating the geographic location of the electric vehicle and the condition of the battery, and determines the travel route preset by the battery exchange device accordingly. At this time, the control unit 88 receives the condition of the battery of the vehicle transmitted by the electric vehicle. When the condition of the battery meets the preset condition, the control unit 88 sends a signal to the electric vehicle to remind the user of the electric vehicle that the battery replacement is required. Control The unit 88 receives the battery replacement signal sent by the electric vehicle, and provides the quickest route according to the geographical location of the current battery replacement device and the geographic location of the electric vehicle, and guides the battery replacement device to move to the position where the electric vehicle is located according to the set route. .
  • control unit 88 directly receives an instruction sent by the service center or the service provider, controls the battery exchange device 56 to move according to a predetermined travel route, and provides a battery replacement service for the predetermined electric vehicle located on the travel route.
  • the predetermined electric vehicle may be one or more.
  • the walking route of the battery replacement device is directly provided by the service provider, and the control unit does not need to set the walking route of the battery replacement device based on the geographical location information of the electric vehicle.
  • the positioning system 84 on the battery exchange device 56 includes a preliminary positioning subsystem 92 and a precision positioning subsystem 94.
  • the preliminary positioning subsystem 92 can be a GPS positioning system, and the GPS civil system has an error range of about 20 meters. Thus, by initially positioning the subsystem 92, the position of the electric vehicle can be locked within a general range. However, in order to be able to perform battery replacement for an electric vehicle, it is necessary to more accurately determine the relative position between the electric vehicle and the battery exchange device, ensure that the battery replacement device can find the correct electric vehicle, and obtain specific position information of the battery of the electric vehicle.
  • the precision positioning subsystem 94 includes a precision positioning module 96 disposed on the battery exchange device for activation after the preliminary positioning subsystem determines the approximate range of the predetermined electric vehicle.
  • the precision positioning module 96 sends a precise positioning signal to determine a particular geographic location of the predetermined electric vehicle.
  • the positioning accuracy of the precision positioning module 96 can be up to 1 meter.
  • the electric vehicle also includes a corresponding precision positioning unit 98 that receives a specific signal transmitted by the precision positioning unit 98 of the electric vehicle.
  • the specific signal matches the identification signal preset in the precision positioning module 96
  • the battery replacement device The control unit 88 confirms that a predetermined electric vehicle is found.
  • the control unit 88 of the battery exchange device issues a specific signal indicating confirmation of the predetermined electric vehicle.
  • the specific signal can be a "beep" sound, a flashing light, and the like.
  • the battery replacement device can be moved under the operation of the operator. When the battery replacement device reaches a certain range, the operator can identify the specific electric vehicle that needs to be replaced and its specificity by identifying the license plate number of the electric vehicle. position.
  • the battery exchange device transmits a specific communication signal.
  • the precise positioning unit 98 on the electric vehicle receives the signal, and the preset signal in the precise positioning unit 98 is specific to the specific
  • the main control unit 68 of the electric vehicle issues a specific signal to make a confirmation response.
  • the specific signal can be the flashing of the electric vehicle's headlights or the sound of a "beep".
  • the electric vehicle issues a request for battery replacement to a service center or service provider, and the service provider can assign a specific key to the predetermined electric vehicle by the computer system, within a certain period of time, The key is valid.
  • the battery replacement device includes a storage unit that stores a key assigned by the service center.
  • the battery exchange device further includes an identification unit for identifying whether the key of the predetermined electric vehicle matches the key in the storage unit. There may be more than one key stored in the storage unit, which respectively correspond to the power change request of different electric vehicles.
  • the identification unit receives the key of the electric vehicle and compares it with the key in the storage unit to confirm the identification of the predetermined electric vehicle when the key of the electric vehicle matches one of the keys in the storage unit.
  • the replacement of the battery with the key of the predetermined electric vehicle enables the replacement of the battery for the electric vehicle.
  • the key is automatically disabled after the battery is replaced or after a certain period of time.
  • the key is used to make the connection between the battery module and the electric vehicle body in an unlockable state.
  • the power changing mechanism 82 can only take out the battery module that needs to be replaced during the key validity period.
  • the specific time period can be set according to the time of battery replacement.
  • the time required for the battery replacement device 56 to perform a battery replacement for the electric vehicle is T, and the specific time period should be greater than T.
  • the particular time period can be less than 2T.
  • the key is generated based on the computer system confirming the replacement demand of the predetermined electric vehicle. After the key is generated, the validity period of the key does not necessarily begin to be calculated directly.
  • the key can be started after the battery replacement confirmation identifies the predetermined vehicle, and once the key is activated, the battery replacement device 56 must complete the replacement of the battery within the valid period of the key; otherwise, the key is timed.
  • the user of the electric vehicle can manually open the battery anti-theft lock, or the battery exchange device re-applies a key to the computer system to replace the battery for the predetermined electric vehicle again.
  • the key is generated and activated when the computer system confirms the power change request, and the battery replacement device is moved to a predetermined location during the key validity period to confirm the predetermined vehicle, and the battery replacement is completed accordingly.
  • the validity period of the key is obviously much larger than the time required for the battery replacement device to perform a battery replacement for the electric vehicle, and should also include the moving time of the battery replacement device and the time when the battery replacement device and the electric vehicle are identified.
  • the key can at least partially unlock the battery and the body of the electric vehicle. Further, the mechanical lock between the battery module and the vehicle body is released, and the battery of the electric vehicle can be completely in a state capable of being disassembled.
  • the battery replacement device sends a key to the electric vehicle, and the key in the electric vehicle matches the key sent by the battery replacement device, and sends a confirmation signal, thereby triggering the start switch of the battery replacement system, so that the electric vehicle is in the battery replaceable mode. .
  • the power unit in the battery replacement system starts to operate, driving the unlocking mechanism between the battery and the vehicle body.
  • a mechanical lock is also arranged between the battery and the vehicle body to further release the mechanical lock between the battery and the vehicle body, and the battery of the electric vehicle is completely in a state capable of being disassembled.
  • the key can also be directly used for identification between the electric vehicle and the battery exchange device.
  • the battery replacement device will recognize the electric vehicle. Don't be a scheduled vehicle.
  • the battery exchange device and the electric vehicle exchange data by means of a common key. Key information of the same content is used in the processing of data.
  • the information transmitted by the communication system is taken as an example for description.
  • the battery replacement device obtains the key information MM-1H.
  • the electric vehicle obtains the key information MM-1C. Since the key information of the battery replacement device and the key information of the electric vehicle together contain the data of "1", when the battery replacement device transmits the key information to the electric vehicle, the electric vehicle recognizes the same data information, and determines that the identification is successful.
  • the switch of the battery replacement system is activated so that the electric vehicle is in a battery replaceable mode.
  • the electric vehicle and the battery exchange device are respectively provided with a key storage portion and a key identification portion.
  • the communication unit of the electric vehicle receives the electronic key transmitted by the battery replacement device, and determines the valid key of the received key when the code of the received electronic key matches the key code stored in the storage portion.
  • the battery replacement device that transmits the corresponding electronic key is identified as a predetermined battery replacement device.
  • the result of the identification can be further sent to the battery locking unit of the electric vehicle for releasing the battery locking unit to bring the battery into a replaceable state.
  • the recognition result may be further wirelessly transmitted to the mobile communication device of the electric vehicle user to remind the user of the electric vehicle that the electric vehicle is in a battery replaceable state. If the user does not have a battery replacement appointment, the user can determine whether the battery lock unit is locked by remotely sending a lock command, so that the battery is in a non-replaceable state.
  • the battery exchange device includes a communication module capable of communicating with at least one of the electric vehicle, the service center, and the battery supply station.
  • the battery exchange device communicates with the electric vehicle, acquires position information of the electric vehicle, recognizes the identity with the electric vehicle, and provides battery replacement related data for the electric vehicle.
  • the battery replacement device communicates with the service center to obtain the power conversion plan and confirm the completion of the power exchange plan.
  • the power-change plan includes information about the electric vehicle that needs to be replaced, including but not limited to the location of the electric vehicle, the battery condition, the sequence of power-changing of different electric vehicles, and the corresponding power-replacement key.
  • the service center transmits information to the battery replacement device, and the battery replacement device receives relevant information and replaces the battery for different electric vehicles according to the relevant information. After the power is changed, the battery replacement device sends relevant information to the service center to confirm that the power exchange plan is completed.
  • the battery exchange device communicates with the battery supply station to obtain geographic location information and battery reserve status of the battery supply station.
  • the battery replacement device can also send its own battery reserve to the battery supply station, so that the battery supply station can make a reasonable charging plan, ensure that the battery replacement device can obtain full battery replenishment in time, and replace the battery for the electric vehicle.
  • the battery replacement device needs to replenish the full battery reserve, send the demand to the battery supply station.
  • the battery supply station can prepare the full battery in advance, and wait for the battery replacement device to move. After moving to the battery supply station, load the pre-prepared fully charged battery to the battery replacement unit.
  • battery replacement equipment By communicating with electric vehicles, service centers, and battery supply stations, battery replacement equipment can replace batteries for electric vehicles in a timely and accurate manner.
  • the battery replacement device can be moved over long distances, because of its flexible movement and convenient communication, it can provide power exchange services for electric vehicles in time and conveniently when the electric vehicle is moving or the user of the electric vehicle is not in the vehicle.
  • the battery exchange apparatus 856 includes a transporter 857 and a changeover trolley system 858.
  • the battery exchange device includes a transport vehicle, and a transfer member 860 mounted on one side of the transport vehicle 857 is used to transfer the battery module.
  • the transport vehicle includes a cab, a body, wheels supporting the body and the cab, and a power unit that drives the wheels to drive the body to move. Due to the presence of the power unit, the battery exchange device can be moved over long distances to replace the battery for the battery vehicle.
  • the vehicle body further includes a first cavity and a second cavity.
  • the first chamber houses an old battery that has been removed from the electric vehicle, and the second chamber houses a new battery that can be loaded into the electric vehicle to provide it with further endurance capabilities.
  • the transfer unit 860 of the battery exchange device includes a brake 864 and a battery module moving arm 862. The new battery of the second chamber is removed by the transfer member.
  • the battery changer can also transfer the old battery to the first chamber through the transfer unit.
  • the transport vehicle 857 includes communication means for communicating with the service center to obtain the power change command information.
  • the transport vehicle has a battery receiving space for accommodating the battery module.
  • the battery module includes at least a partially exhausted battery module (old battery) that has been replaced, and may also include a battery module (new battery) for replacement to an electric vehicle having a capacity substantially up to the rated capacity.
  • the housing of the old and new battery modules can be placed in zones as needed, or they can be placed in the same area, but the battery type is identified in other ways.
  • the transport vehicle is provided with a brake 860 and a battery module moving arm 862.
  • the battery module moving arm can transfer the battery module from the receiving space on the transport vehicle to the changing trolley system, and can also transfer the battery module in the changing trolley system to the receiving space on the transport vehicle.
  • the change trolley system 858 is housed in the transport vehicle 857.
  • the change trolley system 858 includes an electric jack 710 for side lifting the electric vehicle and a power change forklift 720 for replacing the battery.
  • the electric jack 710 includes a powered DC motor.
  • the electric jack also includes a DC power source that supplies energy to the DC motor.
  • the DC power source can be a battery pack or a battery.
  • the voltage of the battery pack is 12v, 18v, 36v, 48v, 56v, 80v or 120v.
  • the electric jack 710 includes a main body 712, a lifting arm 714 extending laterally from the main body, and The support arm 717 with the lift arm extending in the same direction.
  • the lifting arm 714 and the supporting base 717 project on the same side with respect to the main body 712, so that the jack 710 is raised and dropped in the vertical direction, the center of gravity is located on the side of the wheel to be lifted, and the jack can stably support the wheel and The body of an electric vehicle.
  • the lift arm 714 includes two oppositely disposed gripping arms 714a and 714b that are spaced apart from each other to support the wheel from the side and lift the wheel in a vertical direction under the action of the main body drive mechanism.
  • the lifting arm 714 extends laterally relative to the main body, and the operator can place the jack from the side of the wheel. Moreover, the lifting arm of the jack can lift the wheel without being inserted under the wheel, and the process of placing and operating is simple and easy.
  • the two clamping arms respectively have concave curved faces which are oppositely arranged to form a lifting space. The two curved faces are adapted to abut the circumferential contour of the wheel.
  • the two clamping arms are connected to the lifting mechanism by means of a connecting piece.
  • the connecting member includes a connecting plate connecting the two clamping arms and an extending arm 715 extending perpendicularly with respect to the connecting plate.
  • the extending arm 715 has an L shape, one side of which is connected with the lifting mechanism, and the connecting plate is parallel to the side of the extending arm. Settings.
  • the lifting mechanism is at least partially located in a space formed between one side of the extension arm and the web.
  • the body includes a lifting mechanism 866.
  • the lifting mechanism is coupled to the lifting arm 714 for driving the lifting arm to move vertically.
  • the lifting mechanism is a scissor structure comprising four pivoting arms 719a, 719b, 719c and 719d arranged symmetrically.
  • the lift mechanism also includes a drive mechanism that drives the pivot arm movement.
  • the drive mechanism is driven by a motor 718.
  • the drive mechanism includes a lead screw 716 that can be left-handed or right-handed.
  • the drive mechanism and the pivot arm are connected by a connecting member 750.
  • the power supply device supplies electrical energy to the electric motor.
  • the power supply device may be a rechargeable battery pack, or other device capable of providing electrical energy, such as a battery.
  • the electric jack is activated to control the operation of the motor, so that the motor drives the lead screw to rotate left or right, thereby driving the lifting mechanism to move.
  • the lift arm is moved to a predetermined position by the lift mechanism to raise one side of the electric vehicle to a predetermined height to ensure that the electric forklift is at least partially accessible from the side of the electric vehicle to the underside of the electric vehicle.
  • the support base 717 is coupled to the main body 712 and includes a connecting portion that connects the main body and support legs 717a and 717b that extend from the connecting portion toward one side.
  • Both the support base and the lift arm are U-shaped, so that the electric jack can hold the wheel from the side of the wheel.
  • the wheel has a circumferential contour, and the two support legs of the support seat are spaced apart, and the interval between the two support legs is larger than the size of the portion of the wheel whose circumferential contour is in contact with the ground, so that the support foot does not need to be on the wheel when placed on the side of the wheel Perform an extra lift.
  • the two gripping arms of the lift arm 714 are equally spaced, and the spacing between the two gripping arms 714a and 714b is also greater than the size of the portion of the wheel that is in contact with the ground to facilitate gripping the wheel from the side of the wheel. More preferably, the spacing between the two gripping arms is less than the spacing between the two support legs to provide stable support for the wheel.
  • the electric jack can be in a raised state and a non-lifted state.
  • the four pivot arms are a first pivot arm 719a, a second pivot arm 719b, The third pivot arm 719c and the fourth pivot arm 719d.
  • a first angle is formed between the first pivot arm 719a and the second pivot arm 719b
  • a second angle is formed between the second pivot arm and the third pivot arm. The sum of the first angle and the second angle is 180 degrees.
  • the angle of the first angle is A1
  • the angle of the second angle is B1.
  • the angle of the first angle is A2
  • the angle of the second angle is B2.
  • A2 is greater than A1 and B2 is less than B1.
  • the power change trolley system also includes an external unlocking mechanism 721 for unlocking the battery module by the unlocking/release system.
  • the external unlocking mechanism is an electrohydraulic station.
  • the electro-hydraulic station is independently set with respect to the electric forklift.
  • the electro-hydraulic station includes a hydraulic pump, an electric motor for driving the hydraulic pump, a fuel tank, and a fuel pipe connected to the fuel tank, and the oil pipe is selectively connected to a locking mechanism of the battery module disposed on the frame, thereby releasing the locking mechanism to lock the battery module.
  • the external unlocking mechanism is connected to the hydraulic locking mechanism through the oil pipe, and the piston moves to move the jaw to a position that is disengaged from the locking block of the battery module. At this time, the locking of the battery module is released, and the battery module can be removed relative to the vehicle body.
  • the battery module is locked to the frame.
  • the external unlocking mechanism will be connected to the lock/release system to enable the battery module to transition from the locked state to the unlocked state that can be replaced.
  • the external unlocking mechanism has a different design depending on the design of the locking/release system.
  • the unlocked external unlocking mechanism is a hydraulic station that provides oil passage communication for the hydraulic lock mechanism to open the hydraulic lock.
  • the unlocked external unlocking mechanism may be a wireless control unit that controls the locking/release system to switch the operating state by transmitting a wireless control signal to a locking/releasing system on the electric vehicle. It can be understood that those skilled in the art can also adopt other structural external unlocking mechanisms.
  • a hydraulic locking circuit In order to enable the battery module to be locked and in the locked position to prevent the battery module from moving under stress, a hydraulic locking circuit is employed.
  • the principle of locking is to close the inlet and return oil passages of the actuator.
  • the power change forklift 720 includes a frame 752, wheels 758 that support the movement of the frame, a lifting mechanism 760 disposed on the frame, and a battery module tray 728 disposed on the lifting mechanism 760.
  • the power change forklift 720 can be a self-moving forklift or a semi-automatic forklift with a mobile push rod.
  • the power-exchange forklift is a semi-automatic forklift that includes a push rod 729 coupled to the frame 752.
  • the push rod 729 is rotatably coupled to the frame 752.
  • the push rod 729 is rotatable relative to the frame about the hand 756.
  • the lift mechanism 760 includes at least three lift units that are movable in a vertical direction relative to the frame to adjust the position of the battery module tray.
  • the lifting mechanism includes four Lifting units 760a, 760b, 760c and 760d. The four lifting units are symmetrically disposed with respect to the bracket 750.
  • the battery module tray 728 can be tilted by a predetermined angle with respect to the frame by the lift mechanism 760.
  • the power change forklift 720 also includes an energy unit that provides energy for the movement of the wheels and a drive mechanism that connects the wheels.
  • the energy unit is a battery pack.
  • the drive mechanism includes an electric motor and a transmission mechanism that connects the electric motor to the wheel.
  • the energy unit is detachably housed in the frame.
  • Wheel 758 is a universal wheel.
  • the power change forklift 720 also includes a turntable 762 that is rotatable relative to the frame.
  • the power change forklift 720 also includes a pressure sensor disposed between the lift mechanism and the battery module tray.
  • the height of the electric forklift is less than 500mm.
  • the electric forklift has a storage state and an operating state for replacing the battery for the electric vehicle.
  • the overall height of the forklift is not more than 500 mm.
  • Electric forklifts include a control unit.
  • the control unit is used to control movement, lifting, and rotation.
  • the pressure sensor detects the pressure between the lifting mechanism and the battery module tray, and when the pressure reaches a preset condition, determines that the battery module falls into the battery module tray.
  • the detection result is transmitted to the control unit, and the control unit controls the movement of the lifting mechanism according to the detection result.
  • the battery replacement device is a schematic diagram of an electric vehicle replacing a battery module from the left side of the vehicle.
  • the operator removes the electric jack 710 from the transport vehicle.
  • the two jacks 710a and 710b are gripped by the sides of the wheels 656a and 656b, respectively.
  • the electric jacks 710a and 710b raise the left side of the electric vehicle by a predetermined height.
  • the predetermined height is 50 to 300 mm.
  • the left side of the electric vehicle is relatively lifted by 200 mm.
  • the wheels 656a and 656b of the electric vehicle are in contact with the lift arm 714, and the other two wheels 656c and 656d of the electric vehicle remain in contact with the ground.
  • the electric vehicle is lifted by a relative angle by a predetermined angle.
  • the predetermined angle may be 1 to 7 degrees. In this embodiment, the predetermined angle is 5 degrees.
  • the power change forklift 720 approaches the vehicle from one side B of the electric vehicle.
  • the operator can hold the handle 725 and push the relative movement of the first battery module 654a loaded on the forklift with the push rod 729.
  • the battery module can enter the underside of the electric vehicle from the left side of the electric vehicle. After entering the lower part of the vehicle, the forklift moves horizontally by the action of the alignment device, so that the battery module reaches the installation position.
  • the lifting mechanism is activated to adjust the relative position of the battery module in the vertical direction, that is, the locking block 658 substantially corresponds to the position of the locking unit 726.
  • the first battery module enters the mounting position under the lift of the tray, and the locking unit enters the locked state.
  • the power change forklift 720 further loads the third battery module 654c into the underside of the vehicle, and only needs to be aligned horizontally with the third battery module locking/unlocking system, and the third battery module can be smoothly moved in and mounted to the locked position.
  • the power change forklift 720 further loads the second battery module 654b into the underside of the vehicle, and the second battery module 654b needs to be rotated 180 degrees to enter the mounting position.
  • the operator can control the electric jack to return to the unlifted position from the lifted position, so that the electric vehicle returns to the state where the four wheels are in contact with the ground.
  • the battery exchange device is a schematic diagram of an electric vehicle replacing a battery module from the front side of the vehicle.
  • the electric jack lifts the front side of the electric vehicle to a predetermined height.
  • the predetermined height is 50 to 300 mm.
  • the front side of the electric vehicle is relatively lifted by 200 mm.
  • the wheels 656a and 656c of the electric vehicle are in contact with the lift arm 714, and the other two wheels 656b and 656d of the electric vehicle remain in contact with the ground.
  • the front side of the electric vehicle is raised by a predetermined angle, which is approximately 1 to 7 degrees, and in the present embodiment, the angle is 4 degrees.
  • the power change forklift 720 approaches the electric vehicle from one side C of the electric vehicle.
  • the power change forklift loads the first battery module 654a to move to the electric vehicle.
  • the first battery module 654a is transferred by the power exchange forklift 720 to the underside of the electric vehicle.
  • the first battery module 654a is rotated by a certain angle under the rotation of the turntable of the power exchange forklift 720 to reach the installation position.
  • the battery module tray 728 moves to move the locking block 658 of the battery module between the jaws 738.
  • the angle of specific rotation is 90 degrees.
  • the locking/unlocking system includes a position detecting device that stops rotating when it is confirmed that the battery module does reach the mounting position. The locking/unlocking system is activated to move the jaws to a position that mates with the recess on the locking block, and the battery module is fixed to the battery receiving frame.
  • the power change forklift 720 further loads the third battery module 654c to move toward the electric vehicle.
  • the third battery module is transferred by the power exchange forklift 720 to the underside of the electric vehicle. Unlike the transfer from the left side of the electric vehicle to the underside of the electric vehicle, the angle of rotation of the battery module after entering the underside of the vehicle is no longer 180 degrees, but is about 90 degrees.
  • the power change forklift 720 further loads the second battery module 654b to move toward the electric vehicle. After the second battery module is transferred to the lower side of the electric vehicle, it also needs to be rotated 90 degrees to reach the installation position.
  • the power exchange forklift 720 can perform battery replacement from the right side A or the rear side D of the electric vehicle.
  • the process of replacing the battery from the right side A of the electric vehicle is similar to the process of replacing the battery from the left side B of the electric vehicle, except that the wheels lifted by the electric jack are the wheels 656c and 656d.
  • the process of replacing the battery from the rear side D of the electric vehicle is similar to the process of replacing the battery from the front side A of the electric vehicle, except that the wheels lifted by the electric jack are 656b and 656d.
  • the length of the vehicle body is slightly longer than the length of the rear side body. Therefore, the horizontal movement distance of the forklift that enters the vehicle from the front side of the electric vehicle to change the power may be different.
  • the battery exchange device 56 includes a transfer system 1a, a positioning system 1b, and a replacement system 1c.
  • the electric vehicle 20 includes a battery pack 20a, a battery compartment 20c for mounting the battery pack 20a, a battery pack locking device for locking the battery pack 20a in the battery compartment 20c, a battery compartment door 20d, and a positioning system for the battery changing device.
  • the battery storage rack 30 is configured to store a fully charged battery pack 20a or a battery pack for receiving at least a portion of the capacity loss that has been replaced from the electric vehicle, and is provided with a second auxiliary unit that cooperates with the positioning system 1b of the battery changing device 1.
  • Positioning system 30a is configured to store a fully charged battery pack 20a or a battery pack for receiving at least a portion of the capacity loss that has been replaced from the electric vehicle, and is provided with a second auxiliary unit that cooperates with the positioning system 1b of the battery changing device 1.
  • the first auxiliary positioning system 20b and the second auxiliary positioning system 30a can assist the positioning system 1b in accurately positioning the electric vehicle 20 and the battery storage rack 30, respectively.
  • the battery storage rack 30 is disposed independently of the electric vehicle 20 and the battery changing device 1, that is, the battery storage rack 30 is a separate device with respect to the electric vehicle 20 and the battery changing device 1, so that the battery storage rack 30 has sufficient space to ensure the battery storage rack 30. Storage capacity.
  • the transfer system 1a moves the replacement system 1c to the first preset position shown in Fig. 53, so that the replacement system 1c reaches the battery compartment door 20d of the electric vehicle 20. position.
  • the replacement system 1c opens the battery compartment door 20d on the electric vehicle 20, and removes the battery pack 20a in the door.
  • the transfer system 1a moves the battery exchange device 56 to the second preset position as shown in FIG. 53, so that the replacement system 1c reaches the battery storage rack 30. position.
  • the replacement system 1c lowers the old battery pack 20a taken out from the electric vehicle 20, and takes out the new battery pack 20a from the battery storage rack 30. Under the combined action of the positioning system 1b and the first auxiliary positioning system 20b, the transfer system 1a moves the replacement system 1c to the first preset position such that the replacement system 1c reaches the position of the battery compartment door 20d of the electric vehicle 20. The replacement system 1c loads the new battery pack 20a into the battery compartment door 20d. Subsequently, the replacement system 1c closes the battery compartment door 20d on the electric vehicle 20. Thereby, the replacement of the battery pack 20a of the electric vehicle 20 is completed.
  • an opening device is disposed in the electric vehicle 20, and the battery compartment door 20d is opened or closed by the opening device.
  • the layout of the battery pack 20a in the battery compartment 20c is shown in FIG.
  • the battery pack 20a includes a plurality of batteries, and the plurality of batteries are distributed at different positions within the battery compartment 20c.
  • Such a battery pack structure makes the battery replacement device 56 need to be specially designed to achieve an optimal battery replacement effect, particularly the positioning accuracy of the battery replacement device 56 and the efficiency of battery replacement.
  • the number of batteries is four, which are battery A, battery B, battery C, and battery D, respectively. Where the batteries C and D are adjacent to each other, Battery A and B are set at intervals.
  • the positioning and transfer process of the battery exchange device 56 with respect to the electric vehicle 20 will be described in detail below.
  • the positioning and transfer process of the battery changing device 1 with respect to the battery storage rack 30 is referred to the positioning and transfer process of the electric vehicle 20, and will not be described again.
  • the transfer system moves the replacement system to the first predetermined position in cooperation with the positioning system and the first auxiliary positioning system.
  • the positioning system and the transfer system can move the replacement system to the first preset position in a fully automated or semi-automatic manner.
  • the transfer system can deliver the replacement system to the first preset position through horizontal movement and vertical movement, and can also send the replacement system through horizontal movement, vertical movement, and rotation. Up to the preset position.
  • the horizontal motion may be a linear motion in the X direction and the Y direction, respectively, or a curved motion in the horizontal plane.
  • the transfer system In the fully automatic mode, the transfer system relies entirely on the guidance of the positioning system. In the semi-automatic mode, part of the transfer system relies on the guidance of the positioning system, and the other part relies on the guidance of the operator.
  • the positioning system includes a position detecting component disposed on the transfer system.
  • the first auxiliary positioning system includes a position sensing component disposed on the electric vehicle. The position sensing component is placed on the battery compartment door.
  • the position detecting component on the positioning system senses the position sensing component of the first auxiliary positioning system, thereby confirming that the transfer system has moved the replacement system to the first predetermined position.
  • the transfer system automatically delivers the replacement system to the preset position.
  • the positioning system includes a video capture device disposed on the replacement system, the first auxiliary positioning system including an operator remote or near-field visual interface.
  • the video capture device captures video images around its location.
  • the operation interface receives and displays the image acquired by the video capture device.
  • the operator sends a corresponding motion command to the transfer system according to the current image information of the operation interface.
  • the transfer system transfers the replacement system to the preset position under the control of the motion command input by the operator.
  • the positioning system includes a position detecting component disposed on the transfer system, the first auxiliary positioning system including a carding device disposed on the electric vehicle, and a position sensing member disposed on the battery door.
  • the motion prior to docking the transfer system with the carding device on the electric vehicle is manually controlled by the operator.
  • the transfer system delivers the replacement system to the preset by horizontal movement, and/or vertical movement, and/or rotation under the common guidance of the position detecting component and the position sensing component. position.
  • the process of positioning by the position detecting component, the position sensing component, and the video capturing device In the case, there may be a problem that the sensing device is reduced in sensitivity due to contamination. Therefore, an auxiliary cleaning device can be added to the battery exchange device 56 to clean the sensing device, thereby ensuring the sensing accuracy of the sensing device. Thereby improving the positioning accuracy of the positioning system.
  • the battery exchange device 56 includes a transfer system, a positioning system, and a replacement system.
  • the transfer system includes a main body 3 and a traveling device 5.
  • the traveling device 5 is disposed below the main body 3, and the support body 3 moves.
  • the replacement system is the replacement component 9, and the replacement component 9 is used for disassembling the battery to remove the battery from the battery compartment door and pull it out or push it into the battery compartment door. Install the battery.
  • the replacement member 9 is selectively extendable from the body 3.
  • the positioning system of the battery exchange device 56 further includes a support device 11 in addition to the sensing device.
  • the support device 11 is disposed below the replacement member 9, and supports the replacement member 9 in the vertical direction.
  • the beneficial effect of the replacement member 9 is that the position of the replacement member 9 is not shifted in the vertical direction due to the gravity of the battery during the process of carrying the battery, thereby improving the positioning accuracy of the replacement member 9. .
  • the support device 11 is in rolling contact with the ground.
  • the support device 11 comprises wheels 11a which are in contact with the ground via wheels 11a.
  • the transfer system further comprises a telescopic device 7 disposed between the body 3 and the replacement member 9.
  • the telescopic device 7 can extend or retract relative to the body 3.
  • the telescopic device 7 may be a sleeve structure, or a cylinder crank structure, or a wire rope linkage telescopic structure or the like.
  • the transfer system further includes a power unit that can be disposed in the body 3 or disposed in the support device 11.
  • the telescopic device 7 can be expanded and contracted by a power unit provided in the main body 3, or can be driven to expand and contract by a power unit provided in the support device 11.
  • the expansion device 7 will be described by taking a sleeve structure as an example.
  • the telescopic device 7 may be a multi-stage hydraulic cylinder.
  • the power device in the main body 3 includes a motor, a hydraulic pump driven by a motor, and a hydraulic pump. Drive hydraulic oil, as well as various hydraulic valves. Under the joint action of the valve and the hydraulic pump, the multi-stage hydraulic cylinder is stepped out or stepped back, thereby realizing the extension or retraction of the telescopic device 7.
  • the telescopic device 7 When the telescopic device 7 is driven by the power device disposed in the support device 11 to expand and contract, the telescopic device 7 is a multi-stage hollow sleeve structure, and the power device in the support device 11 includes a motor, a wheel below the support device 11, and a motor. The transmission between the wheel and the wheel. The motor drives the wheels to travel through the transmission mechanism, thereby driving the multi-stage sleeve to extend or retract step by step, thereby realizing the extension or retraction of the telescopic device 7.
  • the replacement member 9 can also be extended from the main body 3 by other means, such as providing a cantilever having a fixed length on one side of the main body 3.
  • a guide rail is disposed on the cantilever, and a pulley is disposed on the replacement member 9.
  • Replacement part 9 along the suspension The guide rails on the arms slide so that the replacement member 9 is extended out of the main body 3 or retracted into the main body 3.
  • the replacement member 9 when the replacement member 9 is retracted, the replacement member 9 has a different retracted state.
  • the first possible retracted state is that the replacement member 9 is completely housed in the main body 3.
  • the second possible retracted state is that the replacement member 9 is just completely outside the main body 3, that is, the side of the main body 3 facing the replacement member 9 and the side of the replacement member 9 facing the main body 3 are just fitted to each other.
  • the main body 3 horizontally projects the replacement member 9 from one side thereof through the telescopic device 7, and the replacement member 9 includes two replacement assemblies, a first replacement assembly 91 and a second replacement assembly 93, respectively.
  • the first replacement assembly 91 and the second replacement assembly 93 are identical in structure for disassembling different batteries to remove the battery from the battery compartment door and to pull out or push in and install the battery into the battery compartment door.
  • the replacement component 9 may include three or more replacement components. The advantage of the replacement component 9 comprising more than two replacement components is that one position is achieved and a plurality of batteries are replaced, thereby increasing the efficiency of the battery exchange device 56.
  • the replacement member 9 includes a first replacement assembly 91 and a second replacement assembly 93.
  • the telescopic device 7 includes a first telescopic arm 71 horizontally extending from one side of the main body 3, a receiving device 77 disposed at an end of the first telescopic arm 71, and a second telescopic arm 73 and a third telescopic projecting extending from the receiving device 77. Arm 75.
  • the first replacement assembly 91 is disposed at an end of the second telescopic arm 73.
  • the second replacement assembly 93 is disposed at the end of the third telescopic arm 75.
  • the expansion and contraction of the first telescopic arm 71 causes the receiving device 77 to extend or retract relative to the main body 3.
  • the expansion and contraction directions of the second telescopic arm 73 and the third telescopic arm 75 may be the same or different. In the present embodiment, the expansion and contraction directions of the second telescopic arm 73 and the third telescopic arm 75 are different.
  • the second telescopic arm 73 and the third telescopic arm 75 are telescoped in opposite directions, so that the battery A and the battery B on the electric vehicle shown in FIG. 54 can be taken out at one time.
  • the supporting device 11 is also disposed under the receiving device 77 to improve the positioning accuracy of the positioning system.
  • the main body 3 horizontally projects the replacement member 9 from both sides by the telescopic device 7.
  • the retracted state can be referred to the description in the embodiment shown in FIG.
  • the replacement component 9 includes a first replacement component 91, a second replacement component 93, and a third replacement component 95.
  • the telescopic device 7 is disposed between the main body 3 and the replacement member 9.
  • the telescopic device 7 includes a first telescopic arm 71 extending from a first side of the main body 3, a receiving device 77 disposed at an end of the first telescopic arm 71, and a second telescopic arm 73 and a third telescopic projecting extending from the receiving device 77.
  • the first replacement assembly 91 is disposed at an end of the second telescopic arm 73.
  • the second replacement assembly 93 is disposed at the end of the third telescopic arm 75.
  • the telescopic device 7 also includes a fourth telescoping arm 79 that projects from a second side of the body 3.
  • the third replacement component 95 is provided Placed at the end of the fourth telescopic arm 79.
  • the second telescopic arm 73 and the third telescopic arm 75 protrude in opposite directions.
  • the replacement assembly located on the first side of the main body 3 can take out the battery A and the battery B on the electric vehicle shown in Fig. 54 at a time after one positioning.
  • the replacement assembly located on the second side of the main body 3 can take out the battery C and the battery D on the electric vehicle shown in Fig. 54 twice in one positioning.
  • the replacement components at different positions are respectively disposed on two sides of the main body 3, so that the replacement components on the different sides are adapted to disassemble and disassemble the batteries of different structural layouts, thereby improving the disassembly and assembly efficiency of the battery and the utilization rate of the battery replacement device 56.
  • the supporting device 11 is also disposed under the receiving device 77 to improve the positioning accuracy of the positioning system.
  • the main body 3 horizontally projects the replacement member 9 from both sides by the telescopic device 7.
  • the replacement component 9 includes only two replacement components, and the two replacement components respectively protrude from two different sides of the main body 3 through two telescopic arms.
  • the replacement component 9 can include more replacement components.
  • Each of the replacement components protrudes from the same side or different sides of the body 3 by telescopic arms. That is, at least two replacement components are selectively extendable from the same side of the body 3 or from at least two sides of the body 3, and at least two sides of the body 3 respectively extend at least one replacement assembly.
  • the replacement member 9 includes at least two replacement assemblies, and replacement of at least two batteries can be achieved by one positioning, so that the working efficiency of the battery exchange device 56 can be effectively improved.
  • the support device 11 may be provided below the replacement member 9 and the storage device 77, or the support device 11 may not be provided. Alternatively, the support device 11 is provided only below the replacement member 9, and the support device 11 is not provided below the storage device 77. Alternatively, or only the support device 11 is provided below the housing device 77, the support device 11 is not provided below the replacement member 9.
  • the replacement member 9 can also protrude from the vertical direction of the main body 3.
  • the structure of the telescopic device 7 is the same as that when it is horizontally extended.
  • the telescopic device 7 projects from the vertical direction of the main body 3, the transfer of the horizontal plane of the replacement member 9 is completed by the traveling device 5, and the transfer in the vertical direction is performed by the telescopic device 7.
  • the replacement component 9 includes at least two replacement components.
  • the at least two replacement components respectively disassemble different batteries.
  • the at least two replacement components may extend from the same side of the body 3 or may protrude from at least two sides of the body 3.
  • the at least two sides respectively extend at least one replacement component.
  • the at least two replacement components respectively project the body 3 in different directions.
  • the replacement member 9 can be extended from the main body 3 by the telescopic device 7, and the main body 3 can also be extended by other forms as described in the embodiment shown in FIG.
  • the replacement component itself It can be lifted and lowered, so that the replacement assembly is flush with the battery compartment door in the vertical direction.
  • the structure of the replacement assembly is flush with the battery compartment door in the vertical direction relative to the overall lifting and lowering of the telescopic device 7 to simplify the structure.
  • the replacement assembly itself can be raised and lowered so that the power change device can replace the battery for electric vehicles of different chassis heights.
  • the traveling device 5 realizes the alignment of the main body 3 with the battery compartment door of the electric vehicle in the X direction under the guidance of the positioning system and the first auxiliary positioning system.
  • the telescopic device 7 then achieves alignment with the battery compartment door in the Y direction under the guidance of the positioning system and the first auxiliary positioning system.
  • the replacement assemblies are then lifted under the guidance of the positioning system and the first auxiliary positioning system to achieve flush with the battery compartment door in the vertical direction.
  • each replacement component reaches the first preset position.
  • the work is then initiated by the replacement assembly, the old battery is removed from the battery compartment door, or a new battery is inserted into the battery compartment door.
  • the working process of the positioning system and the transfer system for delivering the replacement components to the second preset position is substantially the same as the working process of the first preset position, and details are not described herein again.
  • the replacement component starts working, puts the old battery into the battery storage rack or takes out the new battery from the battery storage rack.
  • the main body 3 may be a body of the robot or a body of the vehicle.
  • the traveling device 5 is a wheel that supports the vehicle body.
  • the battery exchange device 56 can travel long distances, expanding the working area of the battery exchange device 56, thereby enabling one battery exchange device 56 to meet the battery replacement needs of the electric vehicle at any position within a wide range.
  • the replacement system is used to remove the old battery from the battery compartment door and load the new battery into the battery compartment door.
  • the battery compartment door needs to be opened to replace the system. After loading the battery into the battery compartment door, the battery compartment door must be closed when replacing the system.
  • the opening of the battery compartment door and the closing of the battery compartment door can be accomplished by an opening device in the electric vehicle.
  • the replacement system is specifically a replacement component.
  • the replacement component includes at least one replacement component, the replacement component disassembles the battery to remove the old battery from the battery compartment door, and loads the new battery into the battery compartment door.
  • the structure of the replacement assembly matches the mounting structure of the battery in the battery compartment door. When the mounting structure of the battery in the battery compartment door changes, the replacement component changes accordingly.
  • the following is an example in which the battery is mounted in the battery compartment door through the hexagon bolt set 13a, and the structure and working process of the replacement component are introduced in conjunction with FIGS. 58-60.
  • Figures 59-61 show a detailed block diagram of a replacement assembly. Since the replacement system includes at least one replacement component having the same structure, only one of the replacement components will be described herein with reference to FIG.
  • the opening of the battery compartment door and the closing of the battery compartment door are performed by the opening device in the electric vehicle. Completed, the replacement component does not have the structural design of the corresponding function.
  • the replacement assembly includes a liftable lift device 91a, a frame 91b on the lift device 91a, an electric wrench set 91d on the frame 91b, and a working head end on which the electric wrench set 91d is disposed.
  • the lifting device 91a is movable in the vertical direction to drive the frame 91b and the electric wrench set 91d to move up and down to achieve positional matching with the battery in the vertical direction.
  • the positional arrangement of the electric wrench set 91d and the sleeve set 91c is matched with the positional arrangement of the fastening hex bolt set 13a for fixing the battery, so that the sleeve set 91c can just be used for the fastening hex bolt set 13a on the battery.
  • Loosen or tighten The replacement assembly shown in Fig. 59 is in the first state in which the replacement assembly is respectively matched to the position of the battery 13 on the horizontal surface at its corresponding position, but in the vertical position, there is a difference in height.
  • Fig. 60 shows the replacement assembly in the second state.
  • the replacement assembly is respectively matched with the position of the battery 13 on the horizontal surface and the vertical direction at the corresponding position, and the battery 13 is ready to be detached.
  • the electric wrench set 91d drives the sleeve set 91c to rotate, and the rotation of the sleeve set 91d drives the rotation of the hex bolt set 13a, thereby loosening or tightening the hex bolt set 13a, thereby completing Disassembly or assembly of the battery.
  • the sleeve set has a plurality of identically configured sleeves 91c, as shown in Figure 61 for the specific construction of one of the sleeves 91c.
  • the sleeve 91c includes a housing 91c1 having a hollow hexagonal cylinder 91c2 and a spring 91c3 between the housing 91c1 and the frame 91b.
  • the spring 91c3 is disposed such that the housing 91c1 can be vertically expanded and contracted relative to the frame 91b, thereby fitting the hexagon bolt 13a into the hexagonal cylinder 91c2.
  • the housing 91c1 rotates and drives the hex bolt 13a to be tightened or loosened.
  • the hexagon bolt 13a When the hexagon bolt 13a is loosened, it is gradually housed in the hollow hexagonal cylinder 91c2 and held in the hexagonal cylinder 91c2. After the hexagon bolt 13a is loosened, it is always held in the hexagonal cylinder 91c2.
  • the housing 91c1 rotates and drives the hexagon bolt 13a to be gradually screwed into the battery 13 as the electric wrench set 91d rotates, thereby gradually unscrewing from the hexagonal cylinder 91c2.
  • the process of removing the old battery from the battery compartment door is as follows.
  • the battery compartment door is opened by the opening device in the electric vehicle.
  • the lifting device 91a raises the frame 91b to a position flush with the lower surface of the battery 13.
  • the sleeve set 91c is raised to a position flush with the bottom of the bolt set 13a.
  • the electric wrench set 91d starts to work, and the sleeve set 91c is rotated, and the sleeve set 91c drives the hex bolt set 13a to rotate, so that the hex bolt set 13a is loosened, so that the battery 13 is in a state of being separated from the electric vehicle chassis, the battery
  • the weight of 13 is supported by the frame 91b.
  • the sleeve set 91c holds the removed bolt set 13a in its hexagonal cylinder 91c2. Then, the lifting device 91a is lowered and returned to the initial position, and the telescopic arm is retracted to complete the operation of removing the battery.
  • the process of loading a new battery into the battery compartment door is as follows. Under the guidance of the positioning system, the lifting device 91a lifts the frame 91b such that the upper surface of the battery on the frame 91b and the battery 13 in the battery compartment door The mounting surface is flush, and at the same time, the sleeve set 91c is raised to a position flush with the mounting surface of the hexagon bolt set 13a on the battery.
  • the electric wrench set 91d starts to work, and the sleeve set 91c is rotated, and the sleeve set 91c drives the hex bolt set 13a to rotate, so that the hex bolt set 13a is tightened, and the hexagon bolt set 13a held in the sleeve set 91c is mounted to the battery.
  • 13 is such that the battery 13 is fixed in the battery compartment door such that the battery 13 is in a state of being fastened to the chassis of the electric vehicle, and the weight of the battery 13 is supported by the chassis of the electric vehicle.
  • the lifting device 91a is lowered and returned to the initial position, the telescopic arm is retracted, and the battery door is closed by the opening device in the electric vehicle to complete the work of installing the battery.
  • the battery exchange device 56 includes a battery exchange mechanism 960.
  • the battery exchange mechanism 960 is configured to take out at least a portion of the battery having exhausted capacity on the electric vehicle from the electric vehicle, and replace the fully charged battery housed in the first storage space 962 or the second storage space 964 with the electric vehicle.
  • the battery exchange mechanism 960 can be designed as a power change robot.
  • the electric vehicle 52 includes a wheel 105, a chassis 103 supported by the wheel 105, a body 101 supported by the chassis 103, and a battery 107 for powering the electric vehicle 52.
  • the distribution position of the battery 107 and the size of each battery 107 are related to the vehicle size of the electric vehicle 52, the cruising distance, the configuration of the battery exchange device 56, the positioning method of the battery replacement device 56, and the like.
  • the battery 107 is mounted below the chassis 103 and distributed over the front portion 109, the middle portion 111, and the rear portion 113 of the chassis 103.
  • FIG. 62 the battery 107 is mounted below the chassis 103 and distributed over the front portion 109, the middle portion 111, and the rear portion 113 of the chassis 103.
  • the electric vehicle 52 includes four batteries 107, which are a first battery 107a, a second battery 107b, a third battery 107c, and a fourth battery 107d, respectively.
  • the first battery 107a and the second battery 107b are juxtaposed in the middle portion 111 of the chassis 103, and the third battery 107c and the fourth battery 107d are respectively disposed at the front portion 109 of the chassis 103 and the rear portion 113 of the chassis 103.
  • Each of these batteries contains several battery cells. In other embodiments, the number of batteries included in the electric vehicle 52 may be any number of five, six, eight, or the like.
  • the battery exchange device 56 includes a main body 201, a transfer member 203 supported by the main body 201, a replacement member 205 of the removable battery 107, and a connection member 207 provided between the transfer member 203 and the replacement member 205.
  • the bottom of the replacement member 205 is provided with a roller 208 to support the vertical replacement of the replacement member and to reduce friction between the replacement member 205 and the ground.
  • the hinge structure 204 is disposed between the transfer member 203 and the replacement member 204 such that a height difference within a certain range is allowed between the transfer member 203 and the replacement member 204.
  • the main body 201 can move to the side of the electric vehicle 52 due to the height problem of the main body 201, but cannot move below the electric vehicle 52.
  • the replacement component 205 is selectively movable from the side of the electric vehicle 52 in a first direction below the chassis 103 of the electric vehicle 52.
  • the replacement member 205 is moved from the side of the electric vehicle 52 in the first direction to the underside of the chassis of the electric vehicle, and is transferred.
  • the member 203 has the same moving path as the replacement member 205, that is, during the movement, there is no relative displacement between the transfer member 203 and the replacement member 205.
  • the replacement member 205 can drive its movement with its own power unit to drive the transfer member 203 to follow its movement, and the transfer member 203 can also drive the replacement member 205 to move.
  • a connecting member 207 is provided between the transfer member 203 and the replacement member 205.
  • the connecting member 207 drives the replacing member 205 to move in the horizontal plane with respect to the transferring member 203, the replacing member 205 generates displacement in the second direction, the second direction being different from the first direction.
  • the replacement member 205 can be brought to any position of the chassis 103 without changing the side of the main body 201 with respect to the electric vehicle 52, so that the disassembly and assembly of all the batteries 107 on the chassis 103 can be realized.
  • the replacement member 205 Under the action of the transfer member 203, the replacement member 205 reaches directly below the first battery 107a in the first direction, as shown in FIG. The replacement member 205 can then disassemble the first battery 107a and support the removed battery 107. The replacement member 205 transfers the detached battery 107 to the battery storage rack remote from the electric vehicle 52 by the transfer member 203.
  • the replacement member 205 Under the action of the transfer member 203, the replacement member 205 reaches directly below the second battery 107b in the first direction, as shown in FIG. The replacement member 205 can then disassemble the second battery 107b and support the removed battery 107. The replacement member 205 transfers the detached battery 107 to the battery storage rack remote from the electric vehicle 52 by the transfer member 203.
  • the replacement member 205 Under the action of the transfer member 203, the replacement member 205 reaches the position shown in Fig. 67 in the first direction, and the first direction is the upward direction in the drawing. In this position, the central axis of the replacement member 205 is in line with the central axes of the third battery 107c and the fourth battery 107d. Then, the replacement member 205 is moved by the connecting member 207 to the left side in the drawing with respect to the transfer member 203 so as to reach directly below the position where the fourth battery 107d is located, as shown in FIG. 68, that is, the replacement member 205 is at the connecting member 207.
  • the replacement member 205 When the relative transfer member 203 is moved in the horizontal plane by the action, the replacement member 205 generates displacement in the second direction so as to reach directly below the position where the fourth battery 107d is located.
  • the second direction is the leftward direction in the figure, which is different from the first direction.
  • the replacement member 205 can detach the fourth battery 107d and support the detached battery 107.
  • the replacement member 205 Under the action of the connecting member 207, the replacement member 205 is moved to the right side in the drawing, thereby moving the detached battery 107 to the position shown in FIG.
  • the replacement member 205 then moves the battery 107 further to the position shown in FIG. 70 under the action of the transfer member 203 until the battery 107 is transferred to the battery storage rack remote from the electric vehicle 52.
  • the position shown in FIG. 69 is the same as the position shown in FIG. 67. The difference is that in the state shown in FIG. 69, the replacement member 205 supports the detached battery 107. In the state shown in FIG. 67
  • the process of disassembling the third battery 107c can refer to the process of disassembling the fourth battery 107d.
  • the difference is that after the replacement member 205 reaches the position shown in FIG. 67, the replacement member 205 moves to the right side in the drawing with respect to the transfer member 203 by the connection member 207, thereby reaching the position where the third battery 107c is located.
  • the replacement member 205 is moved relative to the transfer member 203 to the left side in the drawing by the connection member 207, and the removed battery 107 is transferred to the position shown in FIG.
  • the replacement member 205 then moves the battery 107 further to the position shown in FIG. 70 under the action of the transfer member 203 until the battery 107 is transferred to the battery storage rack remote from the electric vehicle 52.
  • the connecting member 207 drives the replacing member 205 to move linearly with respect to the transfer member 203 in a direction parallel to the side of the chassis 103 on the side where the main body 201 is located on the side where the electric vehicle 52 is located.
  • the replacement member 205 can reach a position where the transfer member 203 cannot be directly delivered, so that all the batteries 107 of the electric vehicle 52 can be detached from the same side of the electric vehicle 52.
  • the main body 201 is located on the front side or the rear side of the electric vehicle 52, all of the batteries 107 under the chassis 103 can also be detached by the same structure and the like described above.
  • the connecting member 207 includes a first connecting member 209 disposed on the transferring member 203 and a second connecting member 211 disposed on the replacing member 205, and the second connecting member 211 moves along the first connecting member 209.
  • the first connection component 209 can be a rail and the corresponding second connection component 211 can be a pulley.
  • the first connecting component 209 can also be a rack, and the corresponding second connecting component 211 is a gear.
  • the movement of the second connection assembly 211 relative to the first connection assembly 209 is driven by a motor or hydraulic pressure.
  • the replacement member 205 is linearly moved relative to the moving member to the corresponding battery 107 on the chassis 103.
  • the battery 107 can be removed and assembled under the mounting position.
  • the four batteries 107 on the chassis 103 are the same size and are rectangular, and the mounting positions of the fastening members with the chassis 103 are the same, and the central axes of the first battery 107a and the second battery 107b in the longitudinal direction are parallel to each other.
  • the third battery 107c and the fourth battery 107d are parallel to each other in the longitudinal direction.
  • the replacement member 205 is linearly moved relative to the transfer member 203 to the corresponding battery 107.
  • the battery 107 can be attached and detached under the mounting position on the chassis 103.
  • the replacement member 205 has to be linearly moved and rotated by 90° with respect to the transfer member 203 by the action of the connecting member 207.
  • the battery 107 can be detached only when the replacement member 205 is reached below the mounting position of the corresponding battery 107 on the chassis 103.
  • the effect of the above rotation can also be achieved by adjusting the distance between the replacement components 215 on the replacement member 205.
  • the replacement assembly 215 performs an assembly of disassembly and assembly of the mounting fastener between the battery 107 and the chassis 103.
  • the distance between the replacement components 215 on the replacement member 205 is adjustable.
  • Figure 71 shows a sixth preferred embodiment of the battery exchange device 56.
  • the difference in the present embodiment is that the movement of the replacement member 205 in the horizontal plane with respect to the transfer member 203 is a curved motion by the action of the connecting member 207.
  • the connecting member 207 includes a first driving device that connects the replacement member 205 and the transfer member 203, and the first driving device drives the replacement member 205 to rotate relative to the transfer member 203.
  • the movement of the first drive is driven by a motor.
  • a second embodiment for realizing the curve motion is that the connecting member 207 includes a connecting rod 213 disposed between the replacing member 205 and the transferring member 203, and a second driving device 249 and a driving connection for driving the changing member 205 to rotate relative to the connecting rod 213.
  • the rod 213 is rotated relative to the third driving means 251 of the conveying member 203.
  • the movement of the second drive unit 249 and the third drive unit 251 is driven by a motor.
  • the connecting rod 213 drives the replacement member 205 to rotate relative to the transfer member 203, while the replacement member 205 rotates relative to the connecting rod 213.
  • the radius of rotation needs to be changed.
  • the change in the radius of rotation can be achieved by changing the position of the pivot point of the pivoting movement by the transfer member 203, or by adjusting the length of the connecting rod 213.
  • the length of the connecting rod 213 can be adjusted.
  • the process of disassembling the battery 107 by the battery replacement device 56 shown in FIG. 71 will be described with reference to FIGS. 72 to 78 in the battery replacement device 56 on the side where the first battery 107a is located.
  • the process of attaching and detaching the battery 107 can be referred to the following description.
  • the widths of the first battery 107a and the second battery 107b are the same as the lengths of the third battery 107c and the fourth battery 107d.
  • the first battery 107a and the second battery 107b are mounted side by side in the middle portion 111 of the chassis 103, the third battery 107c is mounted on the front portion 109 of the chassis 103, and the fourth battery 107d is mounted on the rear portion 113 of the chassis 103.
  • the central axes of the third battery 107c and the fourth battery 107d in the width direction are in a straight line and are perpendicular to the central axis of the longitudinal direction of the first battery 107a.
  • the transfer member 203 gradually disassembles the first battery 107a and the second battery 107b by adjusting the position of the replacement member 205 with respect to the chassis 103 in the up and down direction in the drawing.
  • the replacement member 205 reaches the central portion 111 of the chassis 103 in the first direction by the transfer member 203, and the first direction is the upward direction in the drawing. Since the central axis of the fourth battery 107d in the longitudinal direction is perpendicular to the central axis of the first battery 107a in the width direction, and the width of the first battery 107a is the same as the length of the fourth battery 107d, the solution for matching the layout of the battery 107 is replaced.
  • the pivotal connection between the member 205 and the connecting rod 213 drives the replacement member 205 to rotate 90° with respect to the connecting rod 213, so that the replacing member 205 reaches the position shown in FIG.
  • the effect of the pivotal connection between the replacement component 205 and the connecting rod 213 can be replaced by adjusting the distance between the replacement components 215 on the replacement component 205.
  • the specific implementation will be described in detail when describing the structure of the replacement component 205. Subsequently, under the action of the transfer member 203, the replacement member 205 is moved to the left side in Fig. 75, so that the replacement member 205 reaches the position shown in Fig. 76.
  • the replacement member 205 cannot be brought closer to the fourth battery 107d by the transfer member 203. Subsequently, the transfer unit drive replacing member 205 is moved upward in FIG. 76, and the third driving device 251 between the connecting rod 213 and the transfer member 203 drives the replacement member 205 to rotate to the left side in the drawing with respect to the transfer member 203, so that The replacement member 205 is further approached to the fourth battery 107d.
  • the second driving device 249 between the connecting rod 213 and the replacing member 205 drives the replacing member 205 to rotate, so as to avoid the interference of the wheel when the replacing member 205 is rotated relative to the moving member 203 to the left side in the figure, and It is ensured that the replacement member 205 is just opposite to the fourth battery 107d when it reaches the fourth battery 107d.
  • the replacement member 205 reaches the position shown in FIG.
  • the above-described Figs. 74 to 77 show that the replacement member 205 generates displacement in the second direction when the replacement member 205 is moved in the horizontal plane relative to the transfer member 203 by the connection member 207.
  • the second direction is the leftward direction in the drawing.
  • the second direction is different from the first direction.
  • the fourth battery 107d is then detached, and the detached fourth battery 107d is transported to the position shown in FIG.
  • the process of the replacement member 205 from the position of FIG. 77 to the position of FIG. 78 is opposite to the process of the replacement member 205 from the position of FIG. 75 to the position of FIG. 77, and details are not described herein again.
  • the disassembly process of the third battery 107c by the replacement member 205 may refer to the disassembly process of the fourth battery 107d.
  • the battery exchange device 56 includes a main body 201, a transfer member 203 supported by the main body 201, and a replacement member 205 supported by the transfer member 203 and detachably attaching the battery 107.
  • the body 201 can be moved under the chassis 103 of the electric vehicle 52.
  • the transfer member 203 is for delivering the replacement member 205 to a preset position with respect to the battery 107.
  • the transfer member 203 and the replacement member 205 may also be selectively disposed or not provided.
  • the same connecting member 207 as the first preferred embodiment or the second preferred embodiment described above is disposed. When the connecting member 207 is provided, the replacing member 205 is moved in the horizontal plane relative to the transferring member 203 by the connecting member 207.
  • the battery 107 is detached from under the chassis 103 of the electric vehicle 52.
  • the distance of the chassis 103 of the electric vehicle 52 from the ground is about 20 cm, and the height of the battery 107 is about 5 cm.
  • the height of the replacement member 205 must be less than 15 cm.
  • the replacement component 205 must also meet another height requirement that the replacement component 215 of the replacement component 205 must be able to reach the height of the fastener between the chassis 103 and the battery 107 when the battery 107 is removed.
  • the replacement part 205 is specially designed based on this need.
  • the battery exchange device 56 includes a main body 201, a transfer member 203 supported by the main body 201, and a replacement member 205 of the detachable battery 107.
  • the main body 201 can be moved to the side of the electric vehicle 52, but cannot be moved below the electric vehicle 52, and the connecting member 207 is disposed between the transfer member 203 and the replacement member 205.
  • the main body 201 can be moved below the electric vehicle 52, and the connecting member 207 can be selectively disposed or not disposed between the transfer member 203 and the replacement member 205.
  • the replacement member 205 includes a replacement body 217 and a replacement assembly 215 supported by the replacement body 217, and the replacement assembly 215 can disassemble the fastener between the chassis 103 and the battery 107.
  • the replacement component 215 When the replacement component 205 is detached from the battery 107, the replacement component 215 has a first height relative to the replacement body 217.
  • the replacement assembly 215 When the replacement component 205 carries the battery 107 through the chassis 103 of the electric vehicle 52, the replacement assembly 215 has a second height relative to the replacement body 217. The second height is not higher than the first height.
  • the height adjustment of the replacement assembly 215 relative to the replacement body 217 may be such that a lifting assembly is disposed between the replacement assembly 215 and the replacement body 217, and the height of the replacement assembly 215 is adjusted relative to the replacement body 217 by the lifting of the lifting assembly.
  • the lifting of the lifting assembly can be driven by a motor or hydraulic pressure.
  • the height adjustment of the replacement assembly 215 relative to the replacement body 217 may also be such that a rotation assembly 219 is disposed between the replacement assembly 215 and the replacement body 217, and the replacement assembly 215 is driven to have different heights relative to the replacement body 217 by the rotation of the rotation assembly 219.
  • the rotation of the rotating assembly 219 can be driven by a motor or hydraulic pressure.
  • the rotating assembly 219 is housed in the replacement body 217, and the replacement assembly 215 is also housed in the replacement body 217 by the rotating assembly 219. At this time, the replacement assembly 215 has the lowest height relative to the replacement body 217.
  • the replacement assembly 215 is rotated relative to the second rotating arm 223 such that the replacement assembly 215 is in a vertical state with respect to the replacement body 217.
  • the rotating assembly 219 is still horizontal relative to the replacement body 217.
  • the rotation of the replacement assembly 215 relative to the second rotating arm 223 can be driven by a motor or hydraulic pressure.
  • the height of the replacement assembly 215 with respect to the replacement body 217 is increased, and the distance between the replacement assemblies 215 is increased.
  • the first rotating arm 221 is rotated relative to the replacement body 217
  • the second rotating arm 223 is rotated relative to the first rotating arm 221
  • the replacement assembly 215 is rotated relative to the second rotating arm 223, thereby further adjusting the replacement assembly 215.
  • the height of the body 217 is relatively changed while the distance between the replacement components 215 is adjusted.
  • the replacement assembly 215 is always maintained in a vertical state relative to the replacement body 217.
  • the replacement assembly 215 is rotated relative to the second rotating arm 223, thereby further adjusting the replacement assembly 215. Relative to the height of the replacement body 217 and the distance between the replacement assemblies 215, the replacement assembly 215 is just aligned with the fasteners of the battery 107 relative to the chassis 103, so that the replacement assembly 215 disassembles the fasteners, thereby disassembling the battery 107. . In this state, the replacement assembly 215 has the highest height relative to the replacement body 217.
  • the replacement assembly 215 has completed the disassembly of the battery 107.
  • the replacement assembly 215 returns to the state shown in FIG. 81 by the first rotating arm 221 and the second rotating arm 223, that is, returns to the lowest height of the replacement body 217 by the highest height of the replacement body 217, so that the battery 107 is carried.
  • the replacement member 205 can smoothly pass through a narrow space between the chassis 103 and the ground.
  • the sliding component driving replacement component 215 needs to be further disposed between the replacement component 215 and the replacement body 217 to horizontally slide relative to the replacement body 217, so as to realize the replacement component 215. Distance adjustment.
  • FIGS. 86-89 A ninth preferred embodiment of the battery exchange device 56 is shown in FIGS. 86-89.
  • the battery exchange device 56 is a battery replacement vehicle.
  • the battery changer includes a main body 201, a transfer member 203 attached to one side of the main body 201, and a replacement member 205 of the battery 107.
  • the main body 201 includes a vehicle body 101, wheels supporting the vehicle body 101, and a power device that drives the wheels to drive the vehicle body to move. Due to the presence of the power unit, the battery changer can be moved to any position, thinking
  • the battery vehicle 100 replaces the battery.
  • the body 101 further includes a first cavity and a second cavity.
  • the first chamber houses an old battery that has been removed from the electric vehicle 52
  • the second chamber houses a new battery that can be loaded into the electric vehicle 52 to provide it with further endurance capabilities.
  • the battery changer can transfer the replacement part 205 to the second chamber through the transfer unit 203 to take a new battery.
  • the replacement unit can also move the replacement unit 205 to the first chamber through the transfer unit 203 to lower the old battery.
  • the replacement member 205 In order for the battery changer to be implemented as the basic function of the electric vehicle 52 to replace the battery 107, the replacement member 205 must be transferred from the side of the electric vehicle 52 in one direction to the underside of the chassis 103 of the electric vehicle 52 by the transfer member 203, the first direction being The leftward direction of Figs. 87 to 89. In order to make the replacement battery take up the space during the running, the action is convenient, and the replacement component 205 can be folded and hung on one side of the main body 201 as shown in FIG.
  • the replacement component 205 needs to be moved from one side of the electric vehicle 52 to the underside of the chassis 103 of the electric vehicle 52 by the transfer member 203, which includes the first transfer assembly 225 and the second transfer assembly 227.
  • the first transfer assembly 225 transfers the replacement member 205 to produce a displacement in the vertical direction relative to the ground.
  • the second transfer unit 227 transfers the replacement member 205
  • the replacement member 205 generates a displacement that is away from or close to the side where the transfer member 203 is disposed, that is, displaced in the first direction, that is, to the left in FIGS. 87 to 89.
  • the first transfer assembly 225 can drive the replacement member 205 in a curved or linear manner to produce a displacement in the vertical direction relative to the ground.
  • the second transfer component 227 can also drive the replacement component 205 to generate a displacement away from or close to the side of the transfer component 203 in any manner.
  • the first transfer unit 225 linearly drives the replacement member 205 to be displaced in the vertical direction with respect to the ground.
  • the first transfer assembly 225 further includes a first horizontal transfer assembly 228, a first vertical transfer assembly 229, and a second vertical transfer assembly 231 disposed on one side of the body 201.
  • the first horizontal transfer assembly 228 drives the replacement member 205 to be positioned in the left-right direction with respect to the electric vehicle 52 in FIG.
  • the first vertical transfer assembly 229 and the second vertical transfer assembly 231 drive the replacement member 205 to be positioned in the up and down direction with respect to the electric vehicle 52 in FIG.
  • the first vertical transfer assembly 229 drives the replacement member 205 to the bottom of the body 101' of the battery changer
  • the second vertical transfer assembly 231 drives the replacement member 205 to the bottom of the wheel 105' of the battery exchange.
  • the replacement component 205 reaches the state shown in FIG. 87, and the bottom of the replacement component 205 reaches the ground where the wheel 105' of the battery changer is located, that is, the ground supporting the electric vehicle 52.
  • the ground thereby moving the replacement component 205 to the lowest position, maximizes the distance of the top surface of the replacement component 205 from the chassis 103 of the electric vehicle 52. Then, under the action of the second transfer member 227, the replacement member 205 is positioned relative to the electric vehicle 52 in the left-right direction in FIG.
  • the replacement member 205 can be folded and hung on one side of the main body 201, and the transfer member
  • the 203 further includes a first pivoting mechanism 243 disposed between the first transfer component 225 and the second transfer component 227, and a second pivoting mechanism 245 disposed between the second transfer component 227 and the coupling component 207.
  • the first pivoting mechanism 243 drives the second transfer assembly 227 to switch between opening and folding relative to the first transfer assembly 225, i.e., switching between the two states shown in FIGS. 87 and 89.
  • the process state of the switching is as shown in Fig. 88, that is, switching between Fig. 89 and Fig. 86.
  • the first transfer component 225 needs to transfer the replacement component 205 to the preset height before the second pivoting mechanism 245 can be executed.
  • the action of the replacement member 205 being folded relative to the second transfer assembly 227.
  • the second transfer component 227 and the replacement component 205 may be fixedly connected or provided with the connecting component 207 in the first preferred embodiment and the second preferred embodiment.
  • the structure of the replacement member 205 itself may be the structure of the aforementioned fourth preferred embodiment.
  • the battery exchange device 56 is composed of a main body 201, a transfer member 203, a connection member 207, and a replacement member 205.
  • the possible configurations of the connecting member 207, the replacing member 205, the main body 201, and the transfer member 203 are mainly described. Based on such an introduction, those skilled in the art can foresee that a plurality of possible forms of the main body 201, the transfer member 203, the connecting member 207, and the replacement member 205 can be arbitrarily combined to form a new battery replacement device 56, which is no longer one by one. Introduce the possibilities of the combination.
  • the battery changing system includes an electric vehicle 52 and a battery exchange device 56.
  • the electric vehicle 52 further includes a positioning mechanism 115 that at least partially identifies the position of the battery 107 on the chassis 103.
  • the positioning mechanism 115 can be a particular mechanical mechanism or a particular color or a particular pattern identification or the like disposed at a determined location of the electric vehicle 52. Regardless of the form of the positioning mechanism 115 described above, which is visible to the naked eye, the positioning mechanism 115 can at least partially indicate to the operator the position of the battery 107 on the chassis 103, helping the operator to manually position the battery changing device 100 relative to the electric vehicle. 200 location.
  • the positioning mechanism 115 is disposed on an outer surface of at least one side of the vehicle body 101, and the outer surface includes a position at which the chassis 103 is adjacent to the vehicle body 101. Since the positioning mechanism 115 is disposed on the outer surface of at least one side of the body 101 such that the operator can extend the head under the chassis, the positioning mechanism 115 can be seen, whereby the battery replacement device 56 can be guided by the operator to quickly position relative to the electric vehicle 52.
  • the battery exchange device 56 can only be positioned on a particular side of the electric vehicle 52, but the particular side is random, possibly left, right, front or rear.
  • the positioning mechanism 115 is set. The outer surfaces of the four sides of the body 101.
  • the electric vehicle 52 further includes a guiding mechanism 119.
  • the guiding mechanism 119 is disposed adjacent to the positioning mechanism 115.
  • the guiding mechanism 119 includes a first sliding rail 121 extending in the vehicle body width direction and a second sliding rail 123 extending in the longitudinal direction of the vehicle body.
  • the battery exchange device 56 of the present embodiment includes a main body 201, a transfer member 203 supported by the main body 201, and a replacement member 205 transferred by the transfer member 203.
  • the battery exchange device 56 of the present embodiment is provided with an alignment mechanism 235.
  • the alignment mechanism 235 can be a specific mechanical structure, or can be a specific color identification or a specific pattern identification.
  • the alignment mechanism 235 is at least partially identifying the position of the replacement component 205 on the battery exchange device 56 such that the approximate position of the replacement component 205 relative to the battery of the electric vehicle 52 can be determined by determining the position of the alignment mechanism 235 relative to the positioning mechanism 115.
  • the position of the replacement member 205 with respect to the electric vehicle 52 in the left-right direction in the drawing can be determined, that is, when the alignment mechanism 235 is engaged with the positioning mechanism 115.
  • the position of the replacement component 205 relative to the battery of the electric vehicle 52 can be determined, at least in part.
  • the alignment mechanism 235 can alternatively move along the first rail 121 or the second rail 123.
  • the replacement member 205 can only achieve positioning in the left-right direction with respect to the electric vehicle 52 in the drawing, and the vertical position of the electric vehicle 52 in the drawing cannot be achieved.
  • the alignment mechanism 235 moves along the second slide rail 123, the replacement member 205 can only achieve positioning in the up and down direction with respect to the electric vehicle 52 in the drawing, and positioning in the left-right direction with respect to the electric vehicle 52 in the drawing cannot be achieved.
  • the cooperation of the positioning mechanism 115 and the guiding mechanism 235 can only achieve the coarse positioning of the battery exchange device 56 with respect to the electric vehicle 52.
  • the operator needs to manually position or set the corresponding structure to achieve precise positioning.
  • the battery exchange device 56 further includes a limit assembly that defines a limit position of the replacement member 205 relative to the electric vehicle 52 in a horizontal plane.
  • the limit assembly includes a first limit assembly disposed on the transfer assembly 203, the first limit assembly defining the transfer assembly 203 extending in the direction of the chassis 103 along the replacement member 205. The extreme position of the movement.
  • the second specific embodiment of the limiting component is that, based on the first embodiment, the battery replacing device 56 further includes a connecting member 207 disposed between the transferring member 203 and the replacing member 205, and the connecting member 207 is driven.
  • the replacement member 205 moves in a horizontal plane with respect to the transfer member 203, and the limit assembly further includes a second limit disposed on the connection member 207.
  • the bit assembly, the second limit assembly defines an extreme position at which the replacement member 205 moves relative to the transfer member 203.
  • the limiting component includes a first limiting component disposed on the transfer component 203.
  • the first limiting component defines an extreme position of the alignment mechanism 235 sliding along the first sliding rail 121, that is, the first limiting component defines the replacement of the transporting component 203.
  • the member 205 extends into the extreme position of movement in the direction of the chassis 103. Under the action of the first limiting component, the replacing component 205 can accurately reach the position of the first battery in the figure along the first sliding rail, so that the first battery can be disassembled.
  • the battery exchange device 56 further includes a connection member 207 disposed between the transfer member 203 and the replacement member 205, and the connection member 207
  • the drive replacement member 205 moves linearly with respect to the transfer member 203, and the direction of movement is parallel to the arrangement direction of the battery 107 on the chassis 103.
  • the linear movement of the replacement member 205 with respect to the transfer member 203 can only realize the positioning of the replacement member 205 with respect to the electric vehicle 52 in the vertical direction in the drawing, and the positioning of the replacement member 205 with respect to the electric vehicle 52 in the left-right direction in the drawing cannot be realized.
  • the connecting member 207 further includes a second limiting component that defines a limit position of the changing component 205 relative to the moving component 203.
  • the extreme position is the extreme position that the replacement member 205 can reach to the left in the figure relative to the transfer member 203 and/or the extreme position that can be reached to the right in the drawing. Specifically, it is determined according to the number of batteries 107 included in the electric vehicle 52 and the arrangement position of the battery 107 in the chassis 103. It will be understood by those skilled in the art that when the layout structure of the battery 107 on the chassis 103 is the same as that of the layout structure shown in FIG.
  • connection member 207 includes a second limiting component that defines an extreme position at which the first driving device, the second driving device, and the third driving device rotate.
  • the electric vehicle 52 further includes a triggering element 117 disposed on the chassis 103
  • the battery exchange apparatus 56 further includes an inductive element 241 disposed on the replacement component 205.
  • the sensing element 241 When the sensing element 241 is close to the triggering element 117, the sensing element 241 emits a corresponding sensing signal.
  • the sensing signal from the sensing element 241 changes.
  • the battery exchange device 56 transmits an inductive signal from the sensing element 241 to accurately recognize whether the transfer member 203 drives the replacement member 205 to move along the positioning structure, and whether the replacement member 205 moves linearly relative to the transfer member 203, and whether the replacement member 205 is in the process of linearly moving the replacement member 205 The location where the battery 107 is located is reached.
  • the battery replacement device can include different specifications. Specifications include large, medium and small. The configuration of battery replacement devices of different specifications is different.
  • Large battery replacement equipment includes The basic battery receiving space and the power changing mechanism, wherein the battery receiving space is adapted to load the battery amount greater than a first preset value.
  • the battery receiving space of the medium-sized battery exchange device is adapted to be loaded with a battery number greater than a second preset value and less than a first predetermined value.
  • the battery accommodating space of the small battery replacement device is adapted to be loaded with a smaller number of batteries than the second preset value.
  • the first preset value is 100 and the second preset value is 50.
  • the mini battery replacement device has a battery loading of less than or equal to 10.
  • Such a battery exchange device is small in size and flexible in movement, and is suitable for replacing a battery for an electric vehicle on a narrow road.
  • the battery exchange device may further include a charging device that provides a float for the battery stored in the housing space of the battery replacement device to ensure that the battery replaced for the electric vehicle is fully charged.
  • Large battery replacement devices have a large number of battery loads. When a small battery replacement device has insufficient battery reserves, it can be supplemented by a large battery replacement device. At this time, a large battery replacement device is equivalent to a temporary battery supply station. In this way, the battery replacement device can acquire the battery reserve in time without moving a very long distance.
  • the present embodiment relates to a battery exchange apparatus for detaching a battery pack for an electric vehicle.
  • the battery exchange device shown in the drawing is merely an example, and its actual configuration is not limited to the configuration in the drawings.
  • the battery exchange device 56 is capable of moving from one location to another to replace the battery for the electric vehicle 52 located at the predetermined location.
  • the movable battery exchange device 56 may be a vehicle having a power unit 54a and a wheel 54b driven by the power unit, or may be other movable equipment.
  • the battery exchange device 56 can be equipped with a number of fully charged battery assemblies 54 for providing battery replacement services for at least one electric vehicle 52.
  • the battery exchange device 56 takes out at least a portion of the battery that is exhausted on the electric vehicle, and replaces the fully charged battery with the electric vehicle.
  • the battery exchange device 56 of FIG. 1 includes a first body 956 and a second body 958.
  • the first body 956 includes a battery exchange mechanism 960 and a first receiving space 962.
  • the second body 958 includes a battery exchange mechanism 960 and a second receiving space 964.
  • the battery exchange device 56 is a transport device that can be moved over long distances, including a power unit 54a.
  • the power unit 54a in this embodiment, is specifically an electric motor for powering the battery exchange unit.
  • the battery exchange device 56 includes at least one wheel 54b that is moved by the motor.
  • the electric vehicle 52 includes a vehicle body 52a and a detachable battery assembly 54 housed in the vehicle body 52a.
  • the vehicle body 52a includes a vehicle body 52d having an electric motor 52c for driving one or more wheel movements.
  • Battery assembly 54 provides power to motor 52c.
  • the battery assembly 54 is electrically and mechanically connected to the vehicle body 52a, thereby providing functions for driving, lighting, sound, and air conditioning of the electric vehicle. Power supply.
  • the electric vehicle 52 referred to herein may be a pure electric vehicle that is completely powered by the battery assembly, or may be a hybrid electric vehicle partially powered by the battery assembly.
  • a pure electric vehicle will be described as an example, and is not intended to limit the specific type of electric vehicle.
  • Battery assembly 54 includes a plurality of battery modules.
  • the number of the battery modules is four, which are respectively disposed at four positions of the electric vehicle near the front, rear, left, and right of the chassis.
  • a battery module is disposed in each of the front part and the rear part, and the shape and size of the two battery modules are detailed, thereby ensuring the arrangement of the battery module to stabilize the center of gravity of the entire electric vehicle.
  • a battery module is disposed on each side of the vehicle body along the upper and lower sides of the drawing surface, and the two battery modules are identical in shape and size.
  • the shape and size of the battery module disposed on the side may be the same as or different from the shape and size of the battery module disposed at the front and rear.
  • the shape and size of the battery module is preferably adapted to make the capacity of the entire battery assembly large enough that the electric vehicle can travel a sufficiently long distance in a fully charged condition.
  • the position of the battery module relative to the ground of the electric vehicle ensures that each battery module can be detached from the vehicle body in an appropriate manner, removed relative to the vehicle body, and thus the battery module capacity is at least partially exhausted. When replaced with a fully charged battery module, the electric vehicle can continue to operate.
  • the number of battery modules may not be four, and may be one or more. Specifically, it can be preferably set to two or more, so that the size and weight of each battery module are not excessively large, and the battery replacement device is convenient and labor-saving to disassemble and install the battery module, and the structure of the battery replacement device can be simple and compact.
  • the number of battery modules is three, two of which are the same in shape and size. The three battery modules are sequentially arranged at the chassis position along the longitudinal extension direction of the vehicle body.
  • the first body 956 also includes a charger 970.
  • a plurality of battery modules 54 are stored in the first housing space 962.
  • the battery pack can be electrically connected to the charger 970 and connected to the external power source 983 by the charger 970 to receive power supplement.
  • the second body 958 can also include a charger 970.
  • a plurality of battery modules 54 are stored in the second receiving space 964.
  • the battery pack can be electrically connected to the charger 970 and connected to the external power source 983 by the charger 970 to receive power supplement.
  • Charger 970 includes a number of power connectors 974 and power connectors 972.
  • the charger also includes a control unit 975 for controlling the charging and discharging process of the battery assembly.
  • the control unit may include an MCU.
  • the number of power interfaces is exemplarily shown as four. It can be understood that the number of interfaces is not limited to four, and may be one or more. Preferably, it is equivalent to the number of battery components housed in the vehicle body.
  • the battery pack housed in the vehicle body can move along with the vehicle body, and can also be charged and charged in the vehicle body. Energy supplementation is obtained when the piles are connected.
  • the battery exchange device 56 has a first receiving space 962 and a second receiving space 964, and can be used to accommodate a fully charged battery or to accommodate at least a portion of the battery that is exhausted.
  • the first accommodating space 962 and the second accommodating space 964 are battery pack accommodating spaces provided on different vehicle bodies. Each of the accommodating spaces may be partitioned into a plurality of storage areas according to the shape and size of the battery assembly.
  • the battery replacing mechanism 960 removes at least a portion of the battery that is exhausted from the electric vehicle, and takes out the fully charged battery from the first receiving space 962 or the second receiving space 964 to install a fully charged battery for the electric vehicle.
  • the replaced battery that has been depleted is stored in the area of the first accommodating space 962 where the original fully charged battery is stored.
  • the structure of the battery pack stored in the battery exchange device is substantially the same as that of the battery pack mounted on the electric vehicle, and therefore, the space occupied by the battery is equivalent.
  • the battery is stored in such a manner that the size of the battery replacement device can be small enough for easy movement.
  • the battery exchange device 56 includes a battery exchange mechanism 960.
  • the battery exchange mechanism 960 is configured to take out at least a portion of the battery having exhausted capacity on the electric vehicle from the electric vehicle, and replace the fully charged battery housed in the first storage space 962 or the second storage space 964 with the electric vehicle.
  • the battery exchange mechanism 960 can be designed as a power change robot.
  • the battery exchange device 56 includes a first body 956 and a second body 958.
  • the first body includes a front end 976 and a body 978, and the body and the front are detachably connected.
  • the battery exchange mechanism 960 and the first housing space 962 are disposed on the vehicle body 978.
  • the second body 958 includes a battery exchange mechanism 960 and a second receiving space 964. The second body 958 is hung behind the first body 956.
  • the battery exchange device 56 includes a first body 956 and a second body 958.
  • the first body 956 includes a battery exchange mechanism 960, a first receiving space 962, and a third receiving space 966.
  • the battery exchange mechanism 960 is used to disassemble and install the battery assembly.
  • the first receiving space 962 is for accommodating the battery assembly.
  • the third receiving space 966 is for receiving the second vehicle body 958.
  • the second body 958 includes a battery exchange mechanism 960 and a second receiving space 964.
  • the second receiving space 964 is for accommodating the battery assembly.
  • the battery assembly can be a fully charged battery assembly or a battery assembly that is at least partially exhausted from the electric vehicle.
  • the third receiving space 966 at least partially houses the second vehicle body 958.
  • the number of the second vehicle bodies may be one or plural.
  • the first body 956 can include the first receiving space 962 and the third receiving space 966 without including the battery changing mechanism 960. At this time, the first vehicle body 956 itself cannot replace the battery assembly for the electric vehicle alone, and only the second vehicle body 958 housed in the third receiving space 966 can replace the battery assembly for the electric vehicle.
  • the first body 956 may further include a third receiving space 966 instead of The first receiving space 962 and the battery replacing mechanism 960 are included.
  • the first vehicle body 956 serves only as a transport carrier of the second vehicle body 958.
  • the second body 958 houses the battery pack while the battery pack is replaced by the battery exchange mechanism 960 for the electric vehicle.
  • the number of the second vehicle bodies accommodated in the accommodating space may be plural according to the size of the second vehicle body and the accommodating space.
  • a battery exchange apparatus is a specific embodiment of a method of replacing a battery assembly for an electric vehicle.
  • the battery exchange device 56 involved in the embodiment of the method is as shown in FIG. 101.
  • the battery replacement device 56 includes a first body 956 and a second body 958.
  • the second body 958 is housed in the first body 956.
  • the first vehicle body 956 includes a first receiving space 962 for accommodating the battery assembly and a third receiving space 966 for accommodating the second vehicle body.
  • the second body 958 is provided with a battery exchange mechanism 960 and a second receiving space 964 for accommodating the battery assembly.
  • the first vehicle body 956 can accommodate a plurality of second vehicle bodies 958, and each of the second vehicle bodies 958 stores a battery assembly that can be directly used for replacement of the electric vehicle. Therefore, the first vehicle body 956 can actually store a large number of battery components. Applicable to the situation where there are many electric vehicles that need to replace the battery pack.
  • the second vehicle body stores a relatively small number of battery components, but the entire second vehicle body is small in size and flexible in movement, and is suitable for different battery replacement locations.
  • the method for replacing the battery component by the battery replacement device for the electric vehicle includes the following steps.
  • step 010 the number N of electric vehicles that need to be replaced is obtained.
  • the battery exchange device receives the demand information of the electric vehicle replacement battery component in a specific area, and confirms the number N of electric vehicles that need to be replaced.
  • step 012 it is determined whether the number N of electric vehicles that need to replace the battery component is greater than a preset value. If N is greater than the preset value, proceed to step 024.
  • the preset value has a different design depending on the size of the battery component of the electric vehicle.
  • the preset value may be an integer between 5 and 50.
  • the preset value can be set to 10.
  • the number of battery components that need to be replaced per electric vehicle may be a multiple of N or N.
  • the battery pack includes a plurality of battery modules, it is necessary to replace each of the battery modules. At this time, the number of battery modules is a multiple of N.
  • step 034 the first vehicle body moves to a predetermined location.
  • the first body 956 houses the second body 958 and drives the second body 958 to move. Different electric vehicles correspond to different predetermined locations, and therefore, the first vehicle body moves to a different predetermined location.
  • the first vehicle body replaces the battery component for the electric vehicle.
  • the first body 956 itself includes a battery exchange mechanism 960.
  • the battery exchange mechanism 960 moves relative to the electric vehicle to disassemble the battery assembly 54 on the electric vehicle that is partially exhausted, and mounts the fully charged battery assembly to the electric vehicle to quickly replenish the electric vehicle with energy.
  • step 012 if N is less than or equal to the preset value, the process proceeds to step 038.
  • step 038 the second vehicle body is removed from the third accommodating space relative to the first vehicle body.
  • the second vehicle body is housed in the first vehicle body, and the second vehicle body 958 includes a battery exchange mechanism 960.
  • step 040 the second vehicle body moves to a predetermined location.
  • step 042 the second vehicle body replaces the battery component for the electric vehicle.
  • the battery exchange mechanism 960 moves relative to the electric vehicle to disassemble the battery assembly 54 on the electric vehicle that is partially exhausted, and mounts the fully charged battery assembly to the electric vehicle to quickly replenish the electric vehicle with energy.
  • a battery exchange apparatus is another embodiment of a method of replacing a battery assembly for an electric vehicle.
  • the battery exchange device 56 involved in the embodiment of the method is as shown in FIG. 101.
  • the battery replacement device 56 includes a first body 956 and a second body 958.
  • the second body 958 is housed in the first body 956.
  • the first vehicle body 956 includes a first receiving space 962 for accommodating the battery assembly and a third receiving space 966 for accommodating the second vehicle body.
  • the second body 958 is provided with a battery exchange mechanism 960 and a second receiving space 964 for accommodating the battery assembly.
  • the first vehicle body 956 can accommodate a plurality of second vehicle bodies 958, and each of the second vehicle bodies 958 stores a battery assembly that can be directly used for replacement of the electric vehicle. Therefore, the first vehicle body 956 can actually store a large number of battery components. Applicable to the situation where there are many electric vehicles that need to replace the battery pack.
  • the second vehicle body stores a relatively small number of battery components, but the entire second vehicle body is small in size and flexible in movement, and is suitable for different battery replacement locations.
  • the method for replacing the battery component by the battery replacement device for the electric vehicle includes the following steps.
  • step 010 the number N of electric vehicles that need to be replaced is obtained.
  • the battery exchange device receives the demand information of the electric vehicle replacement battery component in a specific area, and confirms the number N of electric vehicles that need to be replaced.
  • step 012 it is determined whether the number N of electric vehicles that need to replace the battery component is greater than a preset value. If it is greater than the preset value, proceed to step 024.
  • the preset value has a different design depending on the size of the battery component of the electric vehicle.
  • the preset value may be an integer between 5 and 50.
  • the preset value can be set to 10.
  • the number of battery components that need to be replaced per electric vehicle may be a multiple of N or N.
  • the battery pack includes a plurality of battery modules, it is necessary to replace each of the battery modules. At this time, the number of battery modules is a multiple of N.
  • the first body 956 is moved to a position corresponding to a distance from a plurality of predetermined positions.
  • the first body 956 houses the second body 958 and drives the second body 958 to move.
  • the different positions of the electric vehicle that require replacement of the battery pack are different, and the first body 956 can be moved to a position corresponding to a distance from the predetermined position such that the distance and time at which the second body 958 reaches the predetermined place is equivalent.
  • step 026 the plurality of second bodies 958 are removed from the first body 956.
  • the second vehicle body 958 housed in the third receiving space 966 is removed from the third housing space 966 with respect to the first vehicle body 956.
  • the number of battery assemblies 54 stored in the second vehicle body 958 is equivalent to the number of battery modules 54 that need to be replaced in one electric vehicle 52
  • the number of second vehicle bodies 958 accommodated in the third receiving space 966 is greater than the number of battery components that need to be replaced.
  • the number of electric vehicles 52 is, at this time, only the second body 958 that meets the number of electric vehicles that need to be replaced with the battery pack is removed from the first body 956. If the number of the second vehicle bodies 958 accommodated in the third receiving space 966 is smaller than the number of electric vehicles that need to be replaced, the second vehicle body 958 stored in the third receiving space 966 is removed.
  • the number of second vehicle bodies 958 removed from the first vehicle body 956 is confirmed under the following conditions.
  • N cannot be divisible by m the number of second bodies to be removed is an integer of N/m plus one.
  • N can be divisible by m the number of second bodies that need to be removed is N/m.
  • the plurality of second vehicle bodies are respectively moved to different predetermined locations to replace the battery components for different electric vehicles.
  • the plurality of second bodies 958 are respectively moved to different predetermined locations.
  • Different electric vehicle replacement battery assemblies have different predetermined locations, and a plurality of second vehicle bodies are respectively moved to different predetermined locations to replace batteries for different electric vehicles.
  • the number of battery components stored for the second vehicle body is a multiple of the battery components that need to be replaced by one electric vehicle, and the same second vehicle body is moved to a different predetermined location to replace the batteries for different electric vehicles.
  • step 022 if N is less than or equal to the preset value, the process proceeds to step 030.
  • the second body 958 is removed from the third receiving space 966 relative to the first body 956.
  • the second vehicle body 958 housed in the third accommodating space 966 is removed from the first vehicle body 956 from the third accommodating space 966. Only one or several second bodies 958 need to be removed from the third receiving space 966 relative to the first body 956. If the number of battery components stored in the second vehicle body 958 is m times the number of battery components that need to be replaced in one electric vehicle, and the number of electric vehicles that need to be replaced is N, in this case, the second need to be removed Number of car bodies
  • step 032 the second vehicle body replaces the battery component for the electric vehicle.
  • the battery replacement device in this embodiment includes a first body 956 and a second body 958.
  • the first body 956 includes a battery replacement mechanism 960, a first receiving space 962, and a third receiving space. 966.
  • the second body 958 is housed in the third receiving space 966.
  • the first vehicle body 956 further includes a charger 970 for connecting to the external power source 983 for charging the battery component 54 received in the first receiving space. Further, the charger 970 can also be connected to the second vehicle body 958 to charge the battery assembly 54 received in the second receiving space 964.
  • the first vehicle body in this embodiment may not include the battery replacement mechanism 960.
  • the first vehicle body does not perform the battery replacement work alone, and the second vehicle body specifically performs the battery assembly replacement.
  • the first vehicle body 956 stores a plurality of battery components and can charge the battery components to enable the second vehicle body to perform replacement of the battery components to obtain a fully charged battery assembly.
  • the second body itself stores a number of battery components that facilitate removal directly from the first body to replace the battery components for the electric vehicle.
  • the second vehicle body itself may not store the battery assembly, but acquire the required battery assembly from the first receiving space of the first vehicle body when needed.
  • the battery exchange device 56 includes a front end 976 and a replaceable first body 956 and second body 958 that are coupled to the front end 976.
  • the battery replacement mechanism 960 and the battery receiving space are disposed on the first body 956 and the second body 958, except that the first receiving space 962 on the first body 956 is larger than the second receiving space 964 on the second body 958. Therefore, the first vehicle body 956 can store a larger number of battery assemblies 54, which are suitable for the case where there are many electric vehicles that need to be replaced.
  • a battery exchange device is a third embodiment of a method of replacing a battery in an electric vehicle.
  • the battery exchange device 56 involved in the embodiment of the method is as shown in FIG. 105.
  • the battery exchange device 56 includes a front end 976 and a replaceable first body 956 and second body 958 coupled to the front end 976.
  • the battery replacement mechanism 960 and the battery receiving space are disposed on the first body 956 and the second body 958, except that the battery receiving space on the first body 956 is larger than the battery receiving space on the second body. Therefore, the first body 956 can store a larger number of battery assemblies 54.
  • the method for replacing the battery component by the battery replacement device for the electric vehicle includes the following steps.
  • step 010 the number N of electric vehicles that need to be replaced is obtained.
  • the battery exchange device receives the demand information of the electric vehicle replacement battery component in a specific area, and confirms the number N of electric vehicles that need to be replaced.
  • step 012 it is determined whether the number N of electric vehicles that need to replace the battery component is greater than a preset value. If it is greater than the preset value, proceed to step 014.
  • the preset value has a different design depending on the size of the battery component of the electric vehicle.
  • the preset value may be an integer between 5 and 50.
  • the preset value can be set to 10.
  • the number of battery components that need to be replaced per electric vehicle may be a multiple of N or N.
  • the battery pack includes a plurality of battery modules, it is necessary to replace each of the battery modules. At this time, the number of battery modules is a multiple of N.
  • step 014 the front end 976 is coupled to the first body 956.
  • the front connector 78 is coupled to the first body connector 80 to enable the vehicle head 976 to pull the first body 956 to move.
  • step 016 the front end 976 and the first body 956 are moved to a predetermined location.
  • the front end 976 drives the first body 956 to move, and the destination of the movement is the battery replacement device for the electric vehicle to replace the battery assembly. location.
  • the predetermined location is information obtained by the battery exchange device through a particular database. After arriving at the scheduled location, it can be further determined whether the electric vehicle that needs to be replaced has an identity match.
  • the first body 956 is an electric vehicle replacement battery assembly 54.
  • a battery exchange mechanism 960 is included on the first body 956.
  • the battery exchange mechanism moves relative to the electric vehicle to disassemble the battery assembly 54 on the electric vehicle that is partially exhausted, and mounts the fully charged battery assembly to the electric vehicle to quickly replenish the electric vehicle with energy.
  • the number of electric vehicles may be multiple, and there are a plurality of corresponding predetermined locations.
  • the first receiving space 962 of the first vehicle body 956 is large, the number of battery components that can be stored is large, and correspondingly, the battery number A vehicle body can provide a service for replacing a battery pack for a larger number of electric vehicles.
  • step 012 if N is less than or equal to the preset value, the process proceeds to step 018.
  • step 018 the front end is connected to the second vehicle body.
  • the front connector 78 is coupled to the second body connector 82 such that the nose 976 can pull the second body 958 to move.
  • the front end 976 and the second body 958 are moved to a predetermined location.
  • the front end 976 drives the second body 958 to move, the destination of which is the predetermined location where the battery replacement device replaces the battery assembly for the electric vehicle.
  • the predetermined location is information obtained by the battery exchange device through a particular database. After arriving at the scheduled location, it can be further determined whether the electric vehicle that needs to be replaced has an identity match.
  • step 021 the second vehicle body replaces the battery for the electric vehicle.
  • a battery exchange mechanism 960 is included on the second body 958.
  • the battery exchange mechanism moves relative to the electric vehicle to disassemble the battery assembly 54 on the electric vehicle that is partially exhausted, and mounts the fully charged battery assembly to the electric vehicle to quickly replenish the electric vehicle with energy.
  • the number of electric vehicles may be one or more, and the corresponding predetermined locations may be one or more. Since the second receiving space 964 of the second vehicle body 958 is relatively small in size, the number of battery modules that can be stored is small, and accordingly, the second vehicle body can provide a service for replacing the battery components for a smaller number of electric vehicles.
  • the third body also has a battery exchange mechanism and a receiving space.
  • the size of the accommodating space of the third vehicle body is smaller than the size of the first accommodating space but larger than the size of the second accommodating space.
  • the front end can be connected to a vehicle body having a different housing space size to perform battery replacement.
  • the energy supplement system 50 of the electric vehicle further includes a battery supply station 60.
  • the battery supply station includes a number of charging devices 62 and a battery storage 100.
  • the battery supply station 60 maintains and maintains the batteries in the electric vehicle energy replenishment system.
  • Battery assembly 54 includes a fully charged battery assembly and a battery assembly that is at least partially exhausted.
  • Battery supply station Manage all battery information.
  • the battery information includes, but is not limited to, the age of the battery, the number of charge and discharge cycles, the charge and discharge conditions, the battery model, and the like.
  • the battery supply station manages the identity information of the battery. For users who purchase batteries, the battery belongs to the user. Therefore, the management of the battery at the battery supply station focuses on charging and maintenance.
  • the identity information of the battery includes information of the user, the model of the electric vehicle, the age of the battery, the number of times of charging and discharging, and the level of charging and discharging. In the entire energy supplement system, the identity information of each battery can be unique, and the user can find his own battery according to the identity information. In some emergency situations, the replacement battery that is not your own is replaced.
  • the service center can confirm that the battery belonging to the user is returned under certain conditions to ensure that the user's electric vehicle is equipped with its own battery under normal conditions.
  • Battery supply station 60 provides battery reserve information.
  • the battery information is stored in the battery supply station database.
  • the battery supply station 60 receives the battery to be charged delivered by the battery exchange device 56, and provides a fully charged battery to the battery replacement device.
  • Battery supply station 60 may also include a positioning system 102 that provides a geographic location for the battery supply station. The battery supply station 60 receives the geographical location of the battery exchange device and battery reserve information, and based on this, formulates a charging schedule for the battery.
  • the charging device 62 is configured to perform energy replenishment for at least a portion of the battery that is depleted in capacity.
  • the charging device 62 has a number of charging interfaces through which the battery receives electrical energy from an external power grid.
  • the battery replacement device 56 moves to the battery supply station after providing the battery replacement service for the electric vehicle, and at least a portion of the battery that is exhausted in the second storage space 80 is taken out and placed on the charging device for energy replenishment.
  • the charging device 62 includes a charging stand for electrically connecting to the battery and an external power source, and charging the battery through the charging interface.
  • the battery can be placed on the charging stand or connected to the battery via a cable.
  • the battery supply station 60 can perform overall charging planning on the battery supply station according to the geographical location of the battery replacement device and the battery reserve condition, and take out at least part of the battery to be charged for charging according to requirements.
  • the battery storage 100 is for storing a plurality of fully charged batteries.
  • the battery replacement device 56 takes a fully charged battery from the battery storage 100, and the fully charged battery is placed in the first receiving space 78 of the battery exchange device 56.
  • Battery storage 100 is also used to store a number of batteries that are at least partially exhausted.
  • the storage space of a fully charged battery and at least a partially exhausted battery can be relatively separated or clearly identified to distinguish.
  • the charging time of the battery, the age of the battery, the charging and discharging system, and the like can be identified on the battery or stored in the management module of the battery.
  • the battery supply station controls the speed at which the charging device 62 charges the battery and the total energy based on the overall power demand.
  • the battery supply station 60 includes a communication interface 101 through which the battery supply station can establish a communication connection with the electric vehicle, the battery exchange device, and the service center to obtain relevant information within the energy supplementation system network.
  • the battery supply station 60 includes a control system CPU 103.
  • the control system includes a user interface 104 that includes a display device 104a and an input device 104b. Through the user interface 104, information about the electric vehicle and the battery exchange device within the energy supplement system can be obtained to support the battery supply station for the battery capacity replenishment plan.
  • the battery supply station itself can also be used as a place for battery replacement. If the battery supply station is used as a place for battery replacement, the battery is rich in reserves, which can ensure that the user can obtain the battery replacement service in the first time.
  • the battery supply station has sufficient full battery reserve, and the battery supply station is selected as the power exchange location, which can avoid the situation that the battery replacement speed is affected by the shortage of the full battery installed on the battery replacement device.
  • the battery supply station can be installed in the suburbs of the city to fully utilize the excess power of the power grid to charge the battery, effectively use the power, and avoid the impact of charging on the grid during peak hours.
  • Service center 58 includes a master control operating system 104 and a system database 106.
  • the master control operating system 104 manages the energy supplement of the electric vehicles within the jurisdiction of the service center.
  • Electric vehicles within the scope of the jurisdiction include, but are not limited to, electric vehicles provided by the user whose addresses are within the range and electric vehicles that temporarily pass the range. All users within the service center and their electric vehicle information, battery replacement equipment and battery supply station information can be managed in the service center.
  • the master control operating system 104 receives the geographic location information transmitted by the user's electric vehicle and the status of the battery and the geographic location information transmitted by all of the battery exchange devices, and stores them in the system database 106 accordingly.
  • the master control operating system 104 confirms the number and distribution of the battery replacement devices based on the geographical location information transmitted by the battery replacement device.
  • the master control operating system 104 plans the travel path of the battery exchange device according to the geographic location of the battery exchange device and the geographic location of the vehicle that proposes the battery replacement requirement, and sends a predetermined travel path command to the specific battery replacement device.
  • the battery exchange device 56 performs a battery replacement service for a predetermined electric vehicle in accordance with a predetermined travel path command in a predetermined order. Referring to Figure 53, in accordance with the acquired travel path command, the battery exchange device 56 replaces the batteries for a plurality of electric vehicles at different predetermined positions in the order of A-B-C-D.
  • the service center After receiving the power change request, the service center confirms the location and time of the power change in different ways. In order to achieve effective use of system resources, the service center can uniformly manage battery replacement needs within a specific area.
  • a service provider can divide a specific area into several sub-areas. For example, a city is divided into 5 to 7 sub-areas, which can be divided according to the number of electric vehicles in the area, or It is the population in the area. Of course, there are other divisions that can be considered.
  • a battery supply station can be constructed in a specific sub-area. The number and location of battery supply stations are determined based on factors such as the number of electric vehicle ownership and road settings in the sub-area. The size and number of battery supply stations are determined by the battery replacement needs of a particular area. Therefore, a battery supply station can be set up in a specific area to meet the battery replacement needs of several sub-areas, and multiple battery supply stations can also be provided.
  • the service center can be responsible for managing one sub-area or multiple sub-areas. Each sub-area can be subdivided into several area units.
  • Several mobile battery replacement devices can be set up in the jurisdiction managed by the service center. Several mobile battery replacement devices can be responsible for a particular zone unit, and each zone cell responsible for the battery replacement device is relatively independent.
  • the battery replacement device provides battery replacement services for electric vehicles in the regional unit according to the power exchange plan provided by the service center.
  • the power change plan includes a fixed power exchange plan and a temporary power change plan.
  • the battery replacement device moves according to a preset walking route, and replaces the battery for the agreed electric vehicle.
  • the fixed power change plan is for situations where battery replacement needs are not urgent.
  • the specific area unit corresponds to one or more residential areas, and the electric vehicle parked at a fixed parking space at night is the object of replacing the battery in the fixed power exchange plan, and the battery replacement device is fixed according to the reservation.
  • the cycle is to replace the battery for the electric vehicle.
  • Such an agreement may be determined when the user signs a service agreement with the service provider, or may be determined based on the user's temporary request.
  • the cycle of battery replacement for different electric vehicles can vary.
  • the user Based on fixed-cycle battery replacement, the user no longer needs to consider the problem of charging the electric vehicle in the normal use of the electric vehicle by the user, and the battery of the electric vehicle is always in a sufficient energy when needed.
  • the user further requests a temporary power change.
  • the service center adjusts the power exchange plan of the battery replacement device according to the temporary power change request, and the temporary power exchange request is included in the power exchange plan and sent to the battery replacement device.
  • the battery replacement device prepares a fully charged battery and reconfirms the walking path according to the adjusted power exchange plan.
  • the service area of the battery replacement device is relatively independent, so that the battery reserve and power exchange plan of the battery replacement device is relatively easy.
  • the service center or the battery replacement device can pre-empt the full battery reserve plan.
  • the battery reserve plan is based on a fixed power conversion plan.
  • the battery-replacement equipment reserves N sets of batteries, and further monitors the data according to the battery replacement requirements in the service area, and reserves the M-group batteries as the batteries corresponding to the temporary power-exchange plan. Therefore, the batteries replaced by the battery replacement device when performing the power exchange task have a total of N+M groups.
  • the service center has different service areas within its jurisdiction according to the service area, time period of the battery replacement equipment, and the demand for the power exchange service within the service area.
  • the battery replacement equipment is uniformly dispatched to generally meet the power-changing requirements of the electric vehicle.
  • Specific conditions include, but are not limited to, a particular time period or a particular road segment.
  • a certain time period can be a holiday.
  • Demand for power changes in large commercial center areas is likely to increase, and the ability to replace the battery replacement equipment in the area cannot meet the demand for power exchange within the region.
  • the service center coordinates the battery replacement equipment in other areas to work together.
  • the specific time period can also be the working time period. This time period is usually from 6:00 am to 9:00 am.
  • the service center coordinates multiple battery replacement devices to collectively replace batteries for battery vehicles in the area.
  • the service center can be equipped with different battery replacement devices for different regional units according to the needs of regional power exchange services.
  • a large-size battery replacement device can have a battery loading capacity of up to 100 electric vehicle battery modules, a medium-sized battery replacement device with a loading capacity of no more than 50 electric vehicle battery modules, and a small-sized battery replacement device with a loading capacity of no more than 10 A battery module for electric vehicles.
  • a battery replacement device For large-size battery replacement equipment, it is suitable for areas where battery replacement is required. Due to the large number of batteries loaded, the size of the battery replacement device is relatively large, in addition to being a battery replacement device, it can also be used as a small battery replacement device to obtain a mobile battery library of a fully charged battery.
  • the volume is relatively small, the movement is flexible, and it is more suitable for the situation where the battery replacement location is narrow, and is also suitable for the area where the battery replacement needs are small and dispersed.
  • the above specifications can be changed accordingly to better meet the needs of users.
  • the service center can be equipped with battery replacement equipment of different specifications according to the characteristics of the area. Different battery replacement devices perform different power exchange operations at different times and locations.
  • the particular area unit is configured with a large battery replacement device and a number of small battery replacement devices.
  • the large battery replacement device loads a predetermined number of fully charged batteries from the battery supply station.
  • Several small battery replacement devices move in the area unit to replace the battery for different battery replacement devices.
  • When the battery loaded in the small battery replacement device is insufficient, move to the large battery replacement device to replenish the fully charged battery.
  • the small battery replacement device does not need to travel a very long distance to the battery supply station for full battery replenishment, the overall cost of switching is low, and the power exchange efficiency is high.
  • the service center After the service center obtains the power-request request, it performs unified management and planning for the power-changing request.
  • the service center performs a priority level judgment on the power-on request of each electric vehicle, and the influencing factors of the judgment include at least one of a power-request request time, a demand urgency, and a power-replacement cost.
  • the power change request time includes the time when the electric vehicle proposes a power change request.
  • the urgency of demand refers to the order in which the service center and the user of the electric vehicle agree on the time of the power exchange and the time of the emergency power change request from the electric vehicle.
  • the cost of changing power includes, but is not limited to, the distance determined by a combination of factors such as the distance that the battery exchange device needs to move from the current location to the predetermined location, and the time spent.
  • the planning of the power-on request may also include other variables, including but not limited to the size of the power-changing service and the type of the user.
  • the scale and maturity of the service are not very high, and the specifications and types of battery replacement equipment equipped in the service center are limited.
  • the service center plans the walking path of the battery replacement device to ensure that the electric vehicle completes the power exchange within a predetermined time. When the number of power-changing requirements reaches a certain level, the configuration specifications and quantity of the battery-replacement equipment are adjusted accordingly.
  • the service center can divide the power change request into fixed demand and temporary demand, and the corresponding battery replacement device is configured as a battery replacement device that performs a fixed power exchange plan and a battery replacement device that performs a temporary power change plan.
  • the battery replacement device that performs the fixed power conversion plan the number of fully charged batteries and the traveling path are relatively fixed, and the battery replacement device replaces the battery for the predetermined electric vehicle in accordance with a predetermined path or in a predetermined time sequence.
  • the battery exchange device can be maximally used while being able to meet the power exchange requirements of different vehicles.
  • the type of user is differentiated based on the agreement between the service provider and the user. Based on service content and fee conventions, users can be classified into general users, general users, and important users.
  • the service center scores each electric vehicle according to the priority of the power change demand.
  • the high priority level means that the power request time is early, the demand urgency is high or the power exchange cost is high, and the corresponding vehicle obtains a high score.
  • the corresponding vehicle with low urgency or low cost of switching has a low score. Therefore, according to the agreement with the user, the service center confirms that all the power exchange requirements meet the required number of battery replacement devices as needed, and further confirms the power exchange plan of the battery replacement device according to the position and specifications of the battery replacement device.
  • the sum of the power exchange plans of different battery replacement devices is the power exchange plan of the service center corresponding to all power exchange requirements.
  • the service center plans the walking path of the battery exchange device according to a specific traversal algorithm.
  • the power exchange scheme is confirmed to ensure that the power exchange demand is maximized by the value.
  • the position of the electric vehicle that needs to be replaced with the battery is taken as a node, and the node of the position of the electric vehicle is evaluated in conjunction with the road condition that needs to pass, ensuring that all the power needs to be traversed.
  • the location of the location of the electric vehicle is the largest.
  • the current position of the battery replacement device as a starting point, set the position of the electric vehicle that needs to be replaced with the battery as a node, set the priority to satisfy the high value node as a judgment condition, and traverse all the electric vehicles that need to replace the battery.
  • the above examples are based on the description of the exemplary case, and the specific calculation method can be further changed in combination with conditions such as specifications and service areas of the battery exchange device.
  • the master control operating system 104 has a master control interface 108, including display device 108a and input device 108b.
  • the geographic location of the battery exchange device 56 can be displayed on the master control interface 108.
  • the current position of all battery exchange devices 56 and electric vehicles 52 within the jurisdiction of the service center can be simultaneously displayed on the master control interface 108.
  • the master control interface 108 can also display a preset path of the battery exchange device 56. Further, The battery replacement device can be determined according to the matching relationship between the battery replacement device and its preset path.
  • the service center has a positioning system 109 that acquires location information of the vehicle, the battery replacement device, and the battery supply station in the energy supplementation system.
  • the service center includes a CPU 110 for controlling the internal system operation of the service center.
  • the service center has at least one communication interface 112 through which the service center is able to obtain a communication connection with an electric vehicle, a battery exchange device, and a battery supply station within the energy replenishment system.
  • the system database 106 includes a user database 114 that stores relevant information of all users, including but not limited to the service content agreed by the user and the service provider agreement, the payment method, the model of the user's electric vehicle, and the destination of the user's electric vehicle. Information such as the user's home address, the user's unit address, and the location where the electric vehicle has been.
  • the system database 106 includes a vehicle location database 116 that includes current location data or historical location data for all specific ranges of electric vehicles, or current and historical location data.
  • the system database 106 includes a battery status database 118 that includes the status of the batteries of all of the electric vehicles within a particular range.
  • the state of the battery includes, but is not limited to, the remaining amount of the battery, the number of times the battery is charged and discharged, the age of the battery, the battery temperature, the charge and discharge level of the battery, and the voltage, current, and the like of the battery.
  • the system database 106 can also include a battery replacement device database 120 that includes information for all removable battery exchange devices within the jurisdiction of the service center.
  • the information of the battery replacement device includes, but is not limited to, the geographical position of the battery replacement device, the number of fully charged batteries equipped on the battery replacement device, the number of batteries that are at least partially exhausted on the battery replacement device, and the walking of the battery replacement device Path, working condition of the power exchange mechanism of the battery replacement device, etc.
  • the system database 106 can also include a battery supply station database 122, including information for all battery supply stations within the jurisdiction of the service center.
  • the information of the battery supply station includes, but is not limited to, the geographic location of the battery supply station, the number of fully charged battery reserves of the battery supply station, the number of underpowered batteries supplemented by the received energy, and the charging status.
  • the geographical position of the electric vehicle, the condition of the battery of the electric vehicle, and the geographical position of the battery replacement device are data updated in real time.
  • the master control operating system 104 receives geographic location information and battery status information transmitted by the electric vehicle and geographic location information transmitted by the battery replacement device, and periodically updates related content in the system database 106.
  • the relevant information of the latest electric vehicle and battery replacement equipment is always present in the relevant computer of the entire energy supplement system.
  • the master control operating system 104 provides an overall power plan for the service center jurisdiction. Specifically, the master control operating system 104 plans the walking path of the battery replacing device based on the information provided by the electric vehicle and the battery replacing device.
  • the overall power exchange plan includes the walking of all battery replacement equipment in the service center area. The number and sequence of electric vehicles on the route and path that require battery replacement.
  • the battery exchange device 56 moves in accordance with a preset path to provide a battery replacement service at a predetermined location for a predetermined electric vehicle on a preset path. Therefore, a service center uniformly manages the battery replacement equipment under its jurisdiction, and according to the needs of the users of the electric vehicle, the battery replacement service is provided by the battery replacement device moving to a predetermined place in the quickest manner.
  • the electric vehicle only needs to determine the predetermined place of the power change after receiving the information of the battery replacement reminder, and the battery replacement device can replace the battery for the electric vehicle at the predetermined place at a specific time. Therefore, the electric vehicle can obtain the battery replacement service anytime and anywhere, does not need to move to a specific battery replacement station, and does not need to wait for a long time to charge at the charging station, thereby solving the mileage anxiety of the electric vehicle user.
  • the travel schedule during travel is no longer limited by the position of the battery exchange station, and truly enjoys a worry-free experience similar to driving a gasoline vehicle.
  • the user of the electric vehicle can perform different power exchange mode selections as needed.
  • a power change mode is to change the power of the appointed place.
  • the user and the service center jointly agree on a specific power exchange location.
  • the electric vehicle and the battery replacement device are respectively moved to the place where the electric power is changed, the electric vehicle arrives at the agreed place, the battery replacement device and the electric vehicle recognize the identity, and the battery is replaced for the electric vehicle.
  • the agreed location can be provided by a service center.
  • the agreed place is confirmed based on the geographical location of the electric vehicle and the condition of the battery and the geographical location of the battery replacement device.
  • the agreed location is within the remaining mileage of the electric vehicle.
  • the time at which the battery replacement device moves to the agreed location is less than or equal to the time at which the electric vehicle arrives at the agreed location.
  • Another mode of power change is to park and change power.
  • the user and the service center only confirm the power change request, and the place where the electric vehicle stops driving is the place where the power is changed.
  • the service center confirms the geographical position of the corresponding electric vehicle based on the information that the vehicle stops traveling, and moves the battery replacement device to a location corresponding to the geographical location information transmitted by the positioning system of the electric vehicle to replace the battery for the electric vehicle.
  • the place where the vehicle stops driving is the place where the vehicle battery is exhausted and no longer moves. It may also be the place where the vehicle battery stops providing energy when the vehicle battery level is lower than the preset threshold, or the user may issue a power change request and conform to the agreement.
  • Any parking place of the condition such as the first stop after the request for power change, or the place of parking after the preset time of the power change request.
  • the location where the user temporarily parks is ignored. Eligible location information will be sent to the service center to complete the follow-up work.
  • the battery supply station There is also a power change mode for the battery supply station to change power.
  • the user requests the service center to provide the location and battery reserve of the adjacent battery supply station, and the user selects the predetermined battery supply station as the power exchange location according to the schedule.
  • the electric vehicle travels and is parked in the battery supply station, and the battery replacement device in the battery supply station moves to the vehicle to stop the battery replacement.
  • the service center provides the battery supply station location according to the user's vehicle power and the travel information, and the user selects and confirms and stops the vehicle to The supply station, the battery replacement device is moved to the position where the electric vehicle is located, and the battery is replaced by the vehicle.
  • the moving path of the battery exchange device is determined according to the geographical location of the electric vehicle and the state of the battery power. Further, in conjunction with the intended use of the electric vehicle by the user of the electric vehicle, the predetermined battery replacement location and replacement time are pre-agreed with the user. Battery replacement equipment can be moved anywhere, anytime, and users of electric vehicles can complete battery replacement when they need it most. Regardless of the geographic location of the electric vehicle, based on a removable battery replacement device with a specific battery exchange mechanism, battery replacement is done directly by the battery replacement device, and the service provider does not need to build a battery replacement with a specially configured power ramp. Station, adapt to the situation of electric vehicles in different geographical locations.
  • the situation of the geographical location where the electric vehicle may be located includes, but is not limited to, one side of the street, a predetermined parking space of the parking lot, and the like. In the above geographical location, only a relatively small space near the electric vehicle can be used for battery replacement.
  • the master control operating system monitors the daily behavior pattern of the electric vehicle through a detection module provided on the electric vehicle, stores the historical driving data of the electric vehicle (EV) in the memory, and determines whether the electric vehicle needs to be replaced at a specific place. Battery service.
  • a detection module provided on the electric vehicle
  • EV electric vehicle
  • the daily behavior patterns of electric vehicles include, but are not limited to, driving distance data, vehicles' driving paths, frequently parked locations, vehicle usage information, such as vehicle speed, air conditioning frequency and temperature setting, sound usage type, frequency and time, etc. .
  • the user of the electric vehicle generally travels along a fixed line, such as on any line between the user's work location and the point of residence.
  • a fixed line such as on any line between the user's work location and the point of residence.
  • approximately 90% of such electric vehicles travel between two fixed locations. Therefore, the user can choose to charge or replace the electric vehicle in one of two fixed locations.
  • the vehicle is expected to travel a long distance, and the mileage of the electric vehicle's battery after one charge can not reach the far destination.
  • the service center can agree with the service center to replenish the electric vehicle at a preset location.
  • the predetermined location may be one of the travel routes determined by the user and the service center.
  • the service center will instruct the specific battery replacement device to arrive at the predetermined location at a predetermined time, identify the predetermined vehicle, and perform battery replacement for the predetermined electric vehicle.
  • the battery replacement service can also occur based on the condition of the battery of the electric vehicle.
  • a request for replacing the battery is sent to the service center through the input device of the user interface, and the service center can confirm the request for battery replacement according to the request, and provide the corresponding electric vehicle.
  • Exchange service can also occur based on the condition of the battery of the electric vehicle.
  • the user may also send a request to replace the battery through the main control unit on the electric vehicle. That is to say, the main control unit compares the condition of the battery with the preset condition. If the condition of the battery meets the preset condition, it indicates that the battery of the electric vehicle is insufficient, and the main control unit issues a reminder that the battery needs to be replaced. Based on the reminder, the user can selectively confirm the request to replace the battery through the input device. It is also possible for the user to set the running program of the main control unit to, if the condition of the battery meets the preset condition, after delaying the predetermined time or the predetermined driving range, the main control unit automatically issues a request to replace the battery.
  • the service center can manage the battery replacement of multiple electric vehicles in a unified manner, and formulate different power exchange plans according to actual conditions.
  • the service center instructs the specific battery replacement device to follow the predetermined route according to the electric vehicle and its battery usage in the area, and replace the battery for a number of pre-agreed electric vehicles to provide the fastest battery replacement service at the lowest cost.
  • the service center manages all users, electric vehicles, battery replacement equipment and/or battery supply stations within its jurisdiction through a management system.
  • the management system includes one or more processors, one or more network interfaces or other communication interfaces, memory, and positioning systems.
  • the computer system can have a user interface, and similarly, the user interface includes a display device and an input device.
  • the input device can be a keyboard, a mouse or a touch screen.
  • the function of the memory is to store programs and various data, and to automatically complete the access of programs or data while the computer is running.
  • the memory includes a non-permanent memory and a permanent memory.
  • Non-permanent memory memories include, but are not limited to, DRAM, SRAM, DDR RAM.
  • Permanent memory storage includes, but is not limited to, one or more magnetic disks, optical disks, flash memory.
  • the memory may be a storage device disposed with the host computer or one or more storage devices remote from the computer subject.
  • the energy supplement system 50 of the electric vehicle includes a client of the user's electric vehicle, a client of the battery exchange device, a management system of the battery supply station, and a master control operating system of the service center.
  • a client on a user's electric vehicle has a user interface 72 that includes a display device 74 and an input device 76. From the client of the electric vehicle, information such as the geographic location of the electric vehicle, the condition of the battery, the location and time of the power change, and the like can be output.
  • the client of the electric vehicle can receive information such as the remaining mileage estimate sent by the service center's master control operating system, the power change reminder, the change point location and time.
  • the client of the electric vehicle can also receive identity confirmation information sent by the battery replacement device or send identity confirmation information to the battery replacement device.
  • the client of an electric vehicle is usually an onboard computer.
  • the client of the electric vehicle includes a central processing unit (CPU) and a memory.
  • the specific memory includes an operating system 68a, a communication module 68b, a user interface module 68c, a positioning module 68d, a battery control module 68e, a fee module 68f, a database module 68g, a battery status database 68h, and a geographic location database 68i.
  • Operating system 68a includes a number of programs for processing system tasks.
  • the communication module 68b is for connecting to a client of the service center 58, the battery exchange device 56, and the like via one or more communication ports or communication networks.
  • Communication networks include, but are not limited to, local area networks, metropolitan area networks, the Internet, or other wide area networks.
  • User interface module 68c receives user instructions via input device 76 and displays the instructions through display device 74.
  • the positioning module 68d determines the geographic location of the electric vehicle through the positioning system, and is also connected to the user interface module to display the geographical location of the destination specified by the user.
  • the battery control module 68e controls the battery replacement process, including but not limited to controlling the identification between the electric vehicle and the battery replacement device, monitoring the usage process data of the battery of the vehicle, and the like.
  • the cost module 68f is used to manage the expenses of the electric vehicle.
  • the battery detecting module 68j is configured to manage the battery detecting unit.
  • the database module 68g is used to provide an interface of the database of the vehicle for data exchange and connection with other databases in the entire power supplement system.
  • the battery status database 68h includes current and/or historical data for the battery condition of the electric vehicle.
  • the geographic location database 68i includes current and/or historical data for the geographic location of the vehicle.
  • More than one electric vehicle is included in the power supplement system of the entire electric vehicle.
  • the above client can be installed on every electric vehicle.
  • the client of each electric vehicle manages the corresponding electric vehicle, and correspondingly provides relevant information corresponding to the electric vehicle.
  • the service center generally manages the information and data provided by the clients of all electric vehicles.
  • the client of the battery exchange device has a user interface including a display device and an input device.
  • the location of the battery replacement device and the battery reserve of the battery replacement device can be output from the client of the battery replacement device.
  • the client of the battery replacement device can receive the geographical location of the electric vehicle sent by the client of the electric vehicle, the condition of the battery, and can also receive the walking path command sent by the service center's total control operating system, and the time of the vehicle to be replaced. And location.
  • the client of the battery exchange device can also send or receive a key to identify with the electric vehicle.
  • the client of the battery replacement device is usually an onboard computer.
  • the client of the battery replacement device includes a central processing unit (CPU) and a memory.
  • the memory of the battery replacement device includes an operating system 56a, The letter module 56b, the user interface module 56c, the positioning module 56d, the battery replacement management module 56e, the fee module 56f, the database module 56g, the battery status database 56h, the geographical location database 56i, the battery replacement device database 56j, the battery supply station database 56k, and the like.
  • Operating system 56a includes a number of programs for processing system tasks.
  • the communication module 56b is configured to connect to a client of a service center, a battery supply station, an electric vehicle, or the like via one or more communication ports or communication networks.
  • Communication networks include, but are not limited to, local area networks, metropolitan area networks, the Internet, or other wide area networks.
  • the user interface module 56c receives an instruction sent by the service center through the input device and displays the instruction through the display device.
  • the positioning module 56d determines the geographic location of the electric vehicle and the battery exchange device through the positioning system.
  • the battery replacement management module 56e is configured to control a process of replacing the battery for the electric vehicle, and perform identification with the electric vehicle.
  • the fee management module 56f manages account information of the battery exchange device.
  • the database module 56g is configured to provide an interface of the database of the battery replacement device for data exchange and connection with other databases in the entire energy supplement system.
  • the battery status database 56h includes current and/or historical data for the battery of the electric vehicle in the electric vehicle energy replenishment system.
  • the geographic location database 56i includes current and/or historical data for the geographic location of the electric vehicle in the electric vehicle energy replenishment system.
  • the battery replacement device database 56j includes information related to the battery replacement device, including but not limited to the geographical location of the battery replacement device and the battery reserve.
  • the battery supply station database 56k includes information about battery supply stations in the electric vehicle energy replenishment system. This includes, but is not limited to, the geographic location of the battery supply station, battery reserves, and the like.
  • a plurality of battery replacement devices may be included in the energy supplement system of the entire electric vehicle.
  • the above client can be installed on each battery replacement device.
  • the client of each battery replacement device manages information about the battery replacement device and provides it to the service center.
  • the service center obtains information and data for all battery replacement devices.
  • the management system of the battery supply station receives the geographical location and battery reserve sent by the battery replacement device; the number of fully charged batteries and the estimated usage of the battery supply station.
  • the client of the battery supply station usually includes a computer.
  • the client of the battery supply station includes a central processing unit (CPU) and a memory.
  • the management system of the battery supply station includes an operating system 60a, a communication module 60b, a user interface module 60c, a positioning module 60d, a charging management module 60e, and a battery management module.
  • 60f fee management module 60g, database module 60h, battery status database 60i, geographic location database 60j, battery replacement device database 60k, battery supply station database 60l, and the like.
  • Operating system 60a includes a number of programs for processing system tasks.
  • the communication module 60b is configured to connect to a client of a service center, a battery exchange device, or the like via one or more communication ports or communication networks.
  • Communication networks include, but are not limited to, local area networks, metropolitan area networks, the Internet, or other wide area networks.
  • the user interface module 60c receives an instruction or request sent by the service center or the battery exchange device through the input device and displays the instruction or request through the display device.
  • the positioning module 60d determines the geographic location of the electric vehicle and the battery exchange device through the positioning system.
  • the charging management module 60e is configured to be connected to the charging device, monitor the power usage of the charging device, the security of the charging process, and the energy distribution.
  • the battery management module 60f confirms the battery reserve in the battery supply station by battery detection.
  • the fee management module 58g manages battery loading and unloading and charging related account information of the battery supply station.
  • the database module 60h is configured to provide an interface of the database of the battery supply station for data exchange and connection with other databases in the entire energy supplement system.
  • the battery condition database 60i includes current and/or historical data for the battery of the electric vehicle in the electric vehicle energy replenishment system.
  • the geographic location database 60j includes current and/or historical data for the location of the battery replacement device and the electric vehicle in the electric vehicle energy replenishment system.
  • the battery replacement device database 60k includes information about the battery replacement device, including but not limited to the geographic location and battery reserve of the battery replacement device.
  • the battery supply station database 60l includes information about the battery supply station in the electric vehicle energy supplement system. This includes, but is not limited to, the geographic location of the battery supply station, battery reserves, and the like.
  • the service control system 104 of the service center includes an operating system 58a, a communication module 58b, a master control interface module 58c, a positioning module 58d, a power-switching planning module 58e, an account management module 58f, a database module 58g, and a battery status database.
  • 58h a geographical location database 58i, a battery replacement device database 58j, a battery supply station database 58k, and the like.
  • Operating system 58a includes a number of programs for processing system tasks.
  • the communication module 58b is configured to connect to a client of the battery exchange device, the battery supply station, and the electric vehicle or the like via one or more communication ports or communication networks.
  • Communication networks include, but are not limited to, local area networks, metropolitan area networks, the Internet, or other wide area networks.
  • the master control interface module 58c receives the user, the electric vehicle, the battery replacement device, and/or through the input device. Or the information sent by the battery supply station is displayed by the display device.
  • the positioning module 58d determines the geographic location of the electric vehicle and the battery exchange device through the positioning system.
  • the power switching planning module 58e plans a path for the battery replacement device to perform battery replacement for the electric vehicle according to the geographic location and battery state information of the electric vehicle and the geographical location information of the battery replacement device.
  • the account management module 58f manages the current account of the battery replacement of the electric vehicle in the service center jurisdiction.
  • the database module 58g is used to provide an interface of the system database for data exchange and connection with other databases in the entire energy supplement system.
  • the battery condition database 58h includes current and/or historical data for the battery of the electric vehicle in the electric vehicle energy replenishment system.
  • the geographic location database 58i includes current and/or historical data for the geographic location of the electric vehicle in the electric vehicle energy replenishment system.
  • the battery replacement device database 58j includes information related to the battery replacement device, including but not limited to the geographical location of the battery replacement device and the battery reserve.
  • the battery supply station database 58k includes information about battery supply stations in the electric vehicle energy replenishment system. This includes, but is not limited to, the geographic location of the battery supply station, battery reserves, and the like.
  • the energy supplement system 50 of the electric vehicle includes a data network 59.
  • Data networks include wired or wireless communication networks.
  • a data network associates a service center, an electric vehicle, a battery exchange device, and a battery supply station.
  • a service center For the sake of simplicity and clarity, only one electric vehicle, one battery exchange device, one service center, and one battery supply station are disclosed in the drawings. It can be understood that any number of electric vehicles, battery replacement devices, service centers, and battery supply stations can be included in the energy supplement system of the entire electric vehicle.
  • the electric vehicle, the battery exchange device, and the service center each include a communication module that establishes a communication connection through the data network.
  • the power network 63 includes a power plant, a substation, a power transmission line, and the like.
  • the power generated by the power plant is transmitted to the battery supply station via the power network.
  • the battery supply station replenishes the battery through a charging device.
  • Contractual relationships can be established between users and service providers in a variety of ways. Once the service is completed, the user has to pay the corresponding fee for the service received.
  • the energy supplement system includes a payment system that provides users with a fast, flexible, all-weather payment experience.
  • the payment system includes a back-end payment system and a customer quick payment module.
  • the specific method of fee settlement may include, but is not limited to, advance payment, monthly settlement, and current settlement. There are many ways to pay, including but not Only for cash payment, online payment, user credit card related payment, mobile terminal payment, etc.
  • the battery replacement device adopts the battery replacement device in the corresponding first embodiment.
  • the method of energy supplementation of an electric vehicle includes the following steps.
  • the battery replacement device moves to a predetermined location according to the power-changing instruction.
  • the power exchange command received by the battery replacement device is issued by the service center.
  • the service center arranges the power exchange of the battery replacement equipment in the service area according to the power exchange request sent by the electric vehicle.
  • the power-changing command received by the battery-replacement device may include a fixed-cycle power-changing command, or may include an indefinite cycle power-changing command.
  • the battery exchange device moves to a predetermined location at a predetermined time according to the requirements of the power exchange location and the power exchange time provided in the power-changing command, and replaces the battery for the electric vehicle.
  • step 002 the battery replacement device and the electric vehicle perform identity confirmation.
  • the transport vehicle moves to a position that is determined by the electric vehicle.
  • the transport vehicle When the electric vehicle is at a predetermined location sufficient for the transport vehicle to be parked, the transport vehicle will be loaded with the electric trolley system to arrive at the intended location.
  • the changing trolley system When the transportation vehicle is not available at the scheduled location where the electric vehicle is located, the changing trolley system will be removed from the transport vehicle to perform the power exchange work.
  • the battery replacement device is identified by the communication device and the electric vehicle, and the identification method may be key transmission and confirmation. Specifically, the operator of the battery exchange device transmits the identity confirmation information through the communication device, activates the identity recognition program on the electric vehicle, and determines that the electric vehicle is a predetermined electric vehicle when the information of the electric vehicle response is consistent with the predetermined information, the electric vehicle The upper battery module will be in a replaceable state. The operator of the battery exchange device initiates replacement of the battery for the electric vehicle.
  • step 003 one side of the electric vehicle is raised to a predetermined height.
  • the electric car system was removed from the transport vehicle.
  • the electric car system includes an electric jack and a power change forklift.
  • the operator of the battery exchange device removes the electric jack from the transport vehicle and places it on the wheel of one side of the electric vehicle.
  • the operator controls the two electric jacks to start and stop with the same controller to raise one side of the electric vehicle to a predetermined height.
  • the power change forklift 720 receives a new battery that has been released from the brake by the grabber.
  • the battery replacement device can choose to replace the electric vehicle with batteries from different directions. Specifically, if there is sufficient space on the front side or the rear side of the electric vehicle, battery replacement can be performed from the front side or the rear side of the electric vehicle. If the electric vehicle is parked on the side of the road and there is space on the left or right side of the electric vehicle, the battery is replaced from the left or right side of the electric vehicle.
  • the operator of the battery exchange device removes the electric jack 710 from the transport vehicle and grips the wheel from the side of the wheel.
  • the number of jacks is two, respectively holding two wheels on one side of the vehicle.
  • the height of the lift is about 50 to 300 mm. Specifically, it can be lifted by 200mm. At this time, the space under the electric vehicle is sufficient to allow the portion of the electric forklift truck loaded with the battery module to enter.
  • step 004 the battery exchange device is at least partially moved below the electric vehicle.
  • the operator operates the electric forklift to move. If the electric forklift is a push-type type, the electric forklift is moved by the operating handle, and the part of the electric forklift that loads the battery module is moved to the lower side of the electric vehicle. In the case of an automatic power change forklift, the automatic power change forklift will adjust the travel path according to a predetermined procedure until it is confirmed that the battery module has moved to the installation position.
  • the side on which the electric vehicle is lifted may be either one of the front, rear, left and right sides
  • the operation of the electric forklift after pushing the battery module into the lower side of the vehicle may be different.
  • the first battery module may enter the lower side of the vehicle in a direction parallel to the longitudinal direction of the vehicle along the longitudinal direction thereof, or may be parallel to the longitudinal direction of the vehicle along the width direction thereof.
  • the direction enters the underside of the vehicle.
  • the power exchange forklift only needs to move horizontally and then vertically lift the battery module to enter the installation position.
  • the side facing the vehicle can only be in the width direction. Therefore, after entering the underside of the vehicle, the battery module must be rotated to reach the installation position.
  • step 005 the battery replacement device replaces the battery module of the electric vehicle.
  • the electric forklift truck can first lift the battery module tray to reach the installation position, and the battery module to be disassembled is unlocked by the unlocking device, and the battery module tray holds the battery module and then descends to the receiving position.
  • the battery module is in an unlocked state by connecting an external hydraulic station with a hydraulic locking/unlocking system on the electric vehicle, and the battery module is free to fall under the force of gravity to the battery tray.
  • the lifting mechanism is actuated to cause the lifting mechanism to land, and the battery module tray holds the battery module down to the frame.
  • the new battery module is held by the battery module tray and lifted to a predetermined position by the lifting mechanism. Remove the unlocking device to hold the battery module in the locked position.
  • the electric forklift truck is removed from the side of the vehicle from the side of the lift. Control the electric jack to fall from the lift position to the unlifted position. Return the electric vehicle to a free state. The operator removes the electric jack and the electric forklift moves the replaced old battery into the transport vehicle.
  • the lifting mechanism is tilted, the old battery is dropped, and it falls on the battery module tray.
  • the lifting mechanism is lowered, causing the battery module to land to a position where the battery module tray is substantially flush with the frame support surface.
  • step 200 the vehicle is started.
  • the user of the electric vehicle starts the electric vehicle.
  • the client of the electric vehicle is also activated.
  • the client can directly enter the usage interface.
  • the client enters the use interface by inputting a startup command through the input device on the user interface.
  • Step 202 determining the condition of the battery of the electric vehicle.
  • the battery detection unit in the electric vehicle operates to obtain information on the condition of the battery.
  • the battery status module of the electric vehicle determines the status of the battery of the electric vehicle. Determining the condition of the battery includes determining the amount of power of the battery, the age of the battery, and/or the temperature of the battery, and the like. The above information is transmitted to the service center via the data network through the database module.
  • Step 204 determining a geographic location of the electric vehicle.
  • the positioning system of the electric vehicle operates to obtain geographic location information of the electric vehicle.
  • the positioning module determines the geographic location of the vehicle. Similarly, the geographic location information of the vehicle is also transmitted to the service center via the data network.
  • step 206 the remaining mileage is displayed.
  • the client of the electric vehicle confirms the remaining mileage of the electric vehicle based on the condition of the battery and the geographic location of the vehicle, and displays the remaining mileage on the display device.
  • the remaining mileage can be displayed in the form of a map or in the form of a number. Those skilled in the art will appreciate that there are other forms that display the remaining mileage.
  • the display content of the display device includes a map in which the current location of the electric vehicle is marked, and a range of remaining mileage is framed by a circular frame of a certain size.
  • the remaining mileage can also be displayed in other ways, for example, directly displaying the remaining mileage number or using a shadow to gray out the area that cannot be reached within the display range.
  • Step 208 sending a request for battery replacement to the service center.
  • the request to send a battery replacement to the service center may be sent through the input device of the user interface, or may be automatically set when the condition of the battery meets the preset condition, or may be sent by the user in an interactive manner with the service center.
  • Ways of interactive communication include, but are not limited to, making calls, clients through a user's mobile phone, or common social communication tools.
  • step 210 the location of the power change is confirmed.
  • the location of the power change can be confirmed by the user through the input device, or can be agreed by the user and the service center.
  • step 212 the battery replacement device moves to the electric power exchange location to replace the battery.
  • the electric vehicle is docked at the place where the power is changed.
  • the battery replacement device moves to a predetermined power exchange location to replace the battery for the electric vehicle.
  • the battery replacement device moves from one geographic location to another to match the docking position of the electric vehicle. Therefore, the electric vehicle can be replaced without being restricted by the parking place, and the electric exchange experience is good.
  • the client During the driving of the electric vehicle, the client always updates the status of the battery and the geographical position of the electric vehicle. Set and display the updated content on the user interface accordingly. The client periodically sends the status of the battery and the geographic location of the vehicle to the service center.
  • step 208 further comprising step 214, the service center receives the battery replacement request and establishes a communication connection with the vehicle.
  • the service center has a communication interface
  • the electric vehicle also has a communication interface.
  • a communication interface is established between the service center and the electric vehicle through a communication network to establish a connection.
  • Step 216 providing a changeover time and location selection to the vehicle.
  • the service center provides vehicle users with different options for changing the time and location.
  • the selection content can be displayed by the display device.
  • the selection content may include a separate power exchange location, a power change time selection, or a combination of a power exchange location and a power change time.
  • step 218 the user confirms the time and location of the power change.
  • the user selects the time and place of the power exchange through the input device and sends it to the service center.
  • step 220 the service center confirms the power change request.
  • the service center receives the time and place of the power transmission sent by the electric vehicle as confirmation of the power change request.
  • step 222 the service center sends a power exchange key to the vehicle. After the service center confirms the power change demand of the vehicle, the system automatically assigns the power exchange key. The power change key is sent to the electric vehicle.
  • step 224 the electric vehicle receives the power exchange key.
  • Step 226 The service center sends a power exchange key and a power exchange command to the battery replacement device.
  • a specific battery replacement device is the main body of this battery replacement.
  • the power-changing command is for the transmission of a specific battery-replacement device, and informs the electric-changing time of the electric vehicle that needs to be replaced and the place where the battery is changed.
  • a walking path from the current position of the battery exchange device to the place of the power exchange.
  • step 212 the battery replacement device moves to the electric power exchange location to replace the battery.
  • step 214 further comprising step 228, the service center interacts with the user to confirm the time and place of the power change.
  • Step 224 After receiving the power-changing key, the vehicle includes step 230, and the battery replacement device performs identification by using the power-changing key.
  • Step 232 The battery-replacement device receives the power-changing command and the power-changing key.
  • step 2334 the battery replacement device moves to the power exchange location.
  • step 236 the battery replacement device identifies the vehicle with the power exchange key during the power exchange time.
  • step 2308 the battery replacement device replaces the battery for the vehicle.
  • the battery exchange device obtains the battery reserve of the battery supply station through the database of the service center.
  • the specific method includes the following steps.
  • step 240 the service center periodically requests the battery reserve of the battery supply station.
  • Battery storage conditions at the battery supply station include, but are not limited to, the number of fully charged batteries, the number of underpowered batteries, the level of charge of the battery, and the charging time.
  • step 242 the battery supply station periodically receives a request from the service center for the reserve status of the battery.
  • step 244 the battery supply station determines the battery reserve of the battery supply station.
  • step 246 the battery supply station sends the battery reserve status of the supply station to the service center.
  • step 248 the service center receives the battery reserve of the battery supply station.
  • step 250 the service center updates the battery supply station database in the system database.
  • step 252 the service center sends at least a portion of the battery supply station database to the battery replacement device.
  • step 254 the battery replacement device receives at least a portion of the battery supply station database.
  • the battery replacement device can select an appropriate battery supply station to remove the underpowered battery according to the geographical location of the battery supply station and the battery reserve, and replenish the fully charged battery.
  • the battery supply station confirms the battery reserve of the battery supply station according to the update status of the fully-charged battery and the under-powered battery, and sends the updated data to the service center in time.
  • the battery supply station obtains information on the battery replacement device and performs charging planning.
  • the method for the battery supply station to obtain the battery replenishment information includes the following steps.
  • step 256 the service center periodically requests the battery reserve of the battery replacement device.
  • step 258 the battery replacement device periodically receives a request for the battery reserve condition of the device.
  • step 260 the battery replacement device confirms the battery reserve of the device.
  • step 262 the battery replacement device sends the battery reserve of the device to the service center.
  • step 264 the service center receives the battery reserve of the battery replacement device.
  • step 266 the service center periodically requests the geographic location of the battery replacement device.
  • step 268 the battery replacement device periodically receives a request for the geographic location of the device.
  • step 270 the battery replacement device confirms the geographic location of the device.
  • step 272 the battery replacement device periodically sends the geographic location of the device to the service center.
  • step 274 the service center receives the geographic location of the battery replacement device.
  • Step 276 The service center sends the geographical location and battery reserve status of at least part of the battery replacement device to the battery supply station.
  • Step 278, the battery supply station receives the geographical location of the battery replacement device and the battery reserve
  • step 280 the supply station battery supply is planned according to the geographical location of the replacement device and the battery reserve.
  • the battery exchange device moves to the battery supply station to replenish the fully charged battery as needed, while removing the underpowered battery.
  • Battery Replacement Device The method of replenishing a fully charged battery includes the following steps.
  • Step 282 The service center sends a power-changing instruction to the battery replacement device.
  • Step 284 The battery replacement device receives the power-changing instruction sent by the service center.
  • step 2866 the battery replacement device confirms the battery reserve.
  • step 288 it is determined whether the battery reserve is greater than or equal to a preset value.
  • the preset value is set according to the power-changing command. When the power-changing command includes replacing the battery for multiple electric vehicles, the preset value should be greater than or equal to the total number of batteries that the electric vehicle needs to replace.
  • step 290 If it is determined that the battery reserve is greater than or equal to the preset value, proceed to step 290 to move to the predetermined location for the electric vehicle to replace the battery.
  • the service center If it is determined that the battery reserve is less than the preset value, proceeding to step 292, the service center provides battery supply station information to the battery replacement device.
  • the battery replacement device selects the battery supply station.
  • the service center can provide multiple battery supply station options for battery replacement equipment.
  • the battery replacement device selects a suitable battery supply station based on the geographical location information of the battery supply station and the battery reserve.
  • the contents of the reservation include, but are not limited to, the time of loading and unloading, the number of fully charged batteries, and the number of underpowered batteries.
  • Step 298 receiving a battery loading and unloading request of the battery replacement device.
  • the battery supply station confirms whether or not to accept the battery loading and unloading request of the battery replacement device based on the battery reserve and estimated demand. If the acceptance is confirmed, the battery is fully charged.
  • step 300 a fully charged battery is provided to the battery replacement device.
  • the battery replacement device moves to the battery supply station. Remove the underpowered battery and replenish the fully charged battery.
  • a method for completing a power-replacement task after the battery-replacement device receives a power-changing command includes the following steps.
  • Step 302 The service center sends a power-changing instruction to the battery replacement device.
  • the power change command includes, but is not limited to, replacing the battery for the predetermined vehicle at the predetermined location, and may include an agreed time, a predetermined line, and the like.
  • Step 304 The battery replacement device receives the power-changing instruction sent by the service center.
  • step 306 the electric vehicle receives the key.
  • step 308 the battery replacement device travels to the predetermined location according to the planned route.
  • step 310 the battery replacement device uses the key.
  • the key is provided by the service center, and the system assigns a power-changing key after confirming the power-requirement requirement.
  • the keys are sent to the electric vehicle and the battery replacement device, respectively.
  • step 312 the electric vehicle uses the key.
  • the electric vehicle uses the key to issue an acknowledgment signal.
  • step 314 the predetermined electric vehicle is confirmed.
  • the battery exchange device sends a confirmation signal using the key, and if the key transmitted by the electric vehicle matches the battery replacement device, it is determined that the predetermined electric vehicle is identified.
  • step 316 the battery exchange device replaces the battery for the predetermined electric vehicle.
  • step 318 the battery replacement device sends the battery replacement information to the service center. After the battery replacement device completes the battery replacement, establish a communication connection with the service center through the communication interface to confirm the replacement.
  • the electric vehicle accepts a battery replacement service.
  • step 322 the electric vehicle sends the battery replacement information to the service center.
  • the electric vehicle and the service center establish a communication connection through the communication interface, and confirm that the replacement is completed.
  • step 324 the service center receives the battery replacement information. At this point, the battery replacement task ends.
  • step 326 the service center confirms that the task is completed.
  • step 328 the record is updated.
  • the service center updates the status of the corresponding battery replacement task recorded in the system to completion.
  • the expense management module of the corresponding vehicle and battery exchange device records the replacement task and confirms the fee.
  • the payment system automatically performs the fee deduction; for the credit switch to pay the user, the user completes the payment through the mobile platform or pays the payment through the payment module of the vehicle client, and thus completes the single power exchange agreement.
  • a method of replenishing an electric vehicle with an energy supplement system of an electric vehicle includes the following steps.
  • step 350 the vehicle client is started.
  • the user of the electric vehicle starts the electric vehicle, and the client of the electric vehicle starts. After the client starts, it directly enters the user interface.
  • the battery status module of the electric vehicle determines the status of the battery of the electric vehicle and transmits it to the service center via the data network via the database module.
  • the geographic location of the vehicle is confirmed.
  • the positioning module of the electric vehicle determines that the geographic location of the vehicle is transmitted to the service center via the data network.
  • the remaining mileage is displayed.
  • the client of the electric vehicle confirms the remaining mileage of the electric vehicle based on the condition of the battery and the geographic location of the vehicle, and displays the remaining mileage on the display device.
  • the display content of the display device includes a map in which the current position of the electric vehicle is marked, and the range of the remaining mileage is framed by a circular frame of a certain size.
  • step 358 the destination is confirmed.
  • the user inputs the destination of the travel through the input device.
  • step 360 the relationship between the remaining mileage and the destination is analyzed. Including sub-step 361, it is determined whether the remaining mileage is less than the distance between the destination and the current location.
  • step 362 If the remaining mileage is less than or equal to the distance between the destination and the current location of the vehicle, confirm that the destination is left. Within the range of the remaining mileage, proceed to step 362 to display the destination.
  • the client displays the destination on the display device. Further, a route from the current location to the destination may be planned according to the current location of the electric vehicle.
  • step 364 If the remaining mileage is greater than the distance of the destination from the current location of the vehicle, confirming that the destination is outside the range of remaining mileage, proceeding to step 364 to provide a power change selection.
  • the client displays the destination as unreachable on the display device while providing the vehicle user with a power change selection.
  • the power change selection includes a request to send a battery replacement or ignore the selection.
  • step 365 it is determined whether the selection is a request to send a replacement battery.
  • step 366 If the user chooses to confirm the request to send a replacement battery, proceed to step 366 to send a power change request to the service center.
  • Step 368 interacting with the service center to communicate the location of the power exchange.
  • the client will contact the service center through the communication module.
  • step 370 the battery replacement device is moved to the electric power exchange location to replace the battery.
  • the service center and the user After the service center and the user confirm the time and place of replacing the battery, instruct the specific battery replacement device to replace the battery for the electric vehicle. After confirming the user's request to replace the battery, the service center instructs the battery replacement device to start the power exchange task.
  • the battery replacement device receives an instruction to replace the battery sent by the service center, and travels to a predetermined location according to a preset route, and the electric vehicle replaces the battery.
  • step 356 If the user chooses to ignore the selection, proceed to step 356 to display the remaining mileage.
  • the client will continue to update the condition of the battery and the geographic location of the electric vehicle.
  • FIG. 120 another embodiment of an energy supplementing method for an electric vehicle includes the following steps.
  • the battery status module of the electric vehicle determines the status of the battery of the electric vehicle and transmits it to the service center via the data network via the database module.
  • step 374 the geographic location of the vehicle is confirmed.
  • the positioning module of the electric vehicle determines that the geographic location of the vehicle is transmitted to the service center via the data network.
  • the remaining mileage is displayed.
  • the client of the electric vehicle confirms the remaining mileage of the electric vehicle based on the condition of the battery and the geographic location of the vehicle, and displays the remaining mileage on the display device.
  • the display content of the display device includes a map in which the current position of the electric vehicle is marked, and the range of the remaining mileage is framed by a circular frame of a certain size.
  • step 378 the destination is confirmed.
  • the user inputs the destination of the travel through the input device.
  • step 380 the relationship between the remaining mileage and the destination is analyzed. Including sub-step 381, it is determined whether the remaining mileage is less than the distance between the destination and the current location.
  • the confirmation destination is within the range of the remaining mileage, and proceeds to step 382 to display the destination.
  • the client displays the destination on the display device. Further, a route from the current location to the destination may be planned according to the current location of the electric vehicle.
  • the power-change mode selection includes selection 1, battery supply station; selection 2, agreed place; select 3, stop and change power.
  • step 386 it is determined whether the power-change mode selection is selection 1.
  • step 388 a power-change reservation is sent to the battery supply station.
  • step 390 the battery supply station prepares the battery. After receiving the power change reservation, the battery supply station confirms the full battery and battery replacement equipment that need to be provided.
  • step 392 the battery replacement device moves to the battery supply station to replace the battery for the electric vehicle.
  • the vehicle can be parked at a location near the battery supply station or the supply station, and the battery replacement device moves from the battery supply station to the docking point of the electric vehicle to replace the battery for the electric vehicle.
  • step 394 it is determined whether the power-change mode selection is selection 2.
  • step 396 the connection service center requests to change the power.
  • step 398 the location of the power change is confirmed.
  • the manner of confirming the location of the power exchange may not be limited to the interaction with the service center, but may be directly confirmed by the user through the input device.
  • step 400 the power exchange key is confirmed.
  • the system assigns a power exchange key.
  • the power change key will be sent to the predetermined battery replacement device and the predetermined electric vehicle, respectively.
  • the electric vehicle and the battery replacement device respectively receive the power exchange key.
  • step 402 the path planning and power usage scheme are confirmed.
  • the service center provides the electric vehicle with a path plan for moving to the place of the change and a corresponding vehicle power plan based on the agreed change location, based on the condition and geographic location of the battery of the electric vehicle.
  • Power usage scenarios include, but are not limited to, functional modules that can be turned on, time and conditions of use of functional modules, and the like.
  • the battery replacement device moves to a predetermined location for the electric vehicle to replace the battery.
  • the battery exchange device is moved to a predetermined location, the electric vehicle is identified by the power exchange key, and the battery of the electric vehicle is in a replaceable mode.
  • the power exchange mechanism of the battery exchange device removes the battery of the electric vehicle from the vehicle and removes the electric vehicle. Remove the fully charged battery from the battery replacement unit and install it on the electric vehicle.
  • step 406 determine whether the power-change mode selection is selection 3.
  • step 408 a parking power change request is sent.
  • the electric vehicle and the service center only confirm the power change request, and the place where the electric vehicle stops traveling is the place where the electric power is changed.
  • the service center confirms the geographical position of the corresponding electric vehicle based on the information that the vehicle stops traveling, and confirms that the location corresponding to the geographical location information transmitted by the positioning system of the electric vehicle when the vehicle stops traveling is the power exchange location.
  • the battery replacement device moves to the electric vehicle parking place to replace the battery with the electric vehicle.
  • the user selects a request to send a parking change, and the service center instructs the battery replacement device to replace the battery for the electric vehicle at the place where the electric vehicle is parked according to the electric power condition of the electric vehicle.
  • the parking place is sent to the service center.
  • the service center commands the battery replacement device to move to the parking place for the electric vehicle to replace the battery.
  • step 382 If the power-change mode selection is not option 3, proceed to step 382 to display the destination.
  • Another method of energizing an electric vehicle includes the following steps.
  • a geographic location of the electric vehicle is determined.
  • the electric vehicle has a positioning system for determining the geographic location of the electric vehicle.
  • the service center receives the geographical location information and stores it in the system database.
  • the battery replacement device is provided with a main control unit, and the main control unit extracts and receives the geographical location information through the system database in real time.
  • Step 452 determining the condition of the battery of the electric vehicle.
  • a battery detection unit is provided on the electric vehicle to detect the condition of the battery and to issue information indicating the condition of the battery.
  • the condition of the battery includes, but is not limited to, the age of the battery, the remaining capacity of the battery, the discharge time of the battery, and the like.
  • the service center receives the information and stores it in the system database.
  • the battery exchange device is provided with a main control unit, and the main control unit extracts information corresponding to the condition of the battery of the predetermined electric vehicle in real time through the system database.
  • step 453 it is determined whether the condition of the battery meets a predetermined condition.
  • the predetermined condition may be that the battery power is less than a preset value, and the corresponding battery condition is the remaining battery power.
  • the remaining battery power is compared with the preset value of the battery power. If the remaining battery power is less than the preset value, it is determined that the battery condition meets the predetermined condition; if the remaining battery power is greater than the preset value, it is determined that the battery condition does not meet the predetermined condition. .
  • step 454 If the condition of the battery meets the predetermined condition, proceed to step 454 to send a request for battery replacement.
  • step 456 the service center sends a power-changing instruction to the battery-replacement device.
  • step 458 it is confirmed whether the battery replacement device is activated.
  • the battery replacement device Based on the geographic location and battery condition of the electric vehicle, and the geographic location of the battery replacement device, it is identified whether the battery replacement device needs to start moving. Specifically, the distance between the geographical location of the battery replacement device and the geographic location of the electric vehicle, the road condition between the two locations, and the average moving speed of the battery replacement device are factors that confirm whether the battery replacement device needs to start moving. Battery replacement equipment Certainly set off and move to the scheduled location.
  • the battery replacement device may also be an electric vehicle replacement battery that is determined to be activated and moved to a predetermined location according to the overall power exchange plan of the service center.
  • the battery exchange device moves according to the planned path to replace the battery for the predetermined electric vehicle.
  • the scheduled location can be a specific address or a range.
  • the battery replacement device can be moved to a specific address or the range according to the instruction.
  • the battery exchange device transmits a signal through the precision positioning module to finally confirm the predetermined electric vehicle.
  • step 450 If the condition of the battery does not meet the predetermined condition, return to step 450 to confirm the condition of the battery.
  • an energy supplementing method for an electric vehicle includes the steps of replacing a battery for a plurality of electric vehicles.
  • step 470 the battery replacement device receives the power change command.
  • Step 472 the battery replacement device receives the movement to the first predetermined location according to the preset path.
  • Step 474 enabling the first power-changing key to confirm the first predetermined vehicle.
  • Step 476 replacing the battery for the first predetermined vehicle.
  • step 478 the move continues to the second predetermined location.
  • Step 480 enabling the second power-changing key to confirm the predetermined second predetermined vehicle.
  • Step 482 replacing the battery for the second predetermined vehicle.
  • the steps of repeatedly moving to the predetermined location, enabling the key to confirm the scheduled vehicle, and replacing the battery for the predetermined vehicle are all completed until the power exchange command is completed.
  • the first predetermined location is in a different geographic location than the second predetermined location.
  • the battery replacement device After the battery replacement device completes the operation of replacing the battery with one of the plurality of predetermined electric vehicles, the battery replacement device continues to move according to the planned path, and the batteries are sequentially replaced for the other predetermined electric vehicles.
  • the service center's master control operating system controls all battery replacement devices within a specific geographic area.
  • the service center determines the number and distribution of electric vehicles that need to be replaced in the battery replacement range.
  • the walking route is analyzed, and the battery replacement device sequentially performs battery replacement for all the electric vehicles that need to be replaced along the predetermined path.
  • the battery replacement device sequentially performs battery replacement according to the chronological order in which the electric vehicle transmits the battery replacement request.
  • the battery replacement device sequentially performs battery replacement in a specific order according to the time required for the electric vehicle to transmit the battery replacement, in combination with its geographical location and the geographic location of the electric vehicle requiring battery replacement.
  • the specific order can be different from the time sequence required for battery replacement. It can also be the same. The specific order ensures that the sum of the differences between the time each battery vehicle receives the battery replacement service and the time the battery replacement is required is minimized.
  • the service center uniformly receives battery replacement requests for all of the electric vehicles in a particular area.
  • the service center sends a command to a specific battery replacement device according to the geographical location of the electric vehicle and the geographical position of the battery replacement device, and the specific battery replacement device moves to a predetermined place to replace the battery for the predetermined electric vehicle.
  • the distance between a particular battery exchange device and a predetermined electric vehicle is minimal compared to other battery exchange devices. Further, the particular battery replacement device does not operate for battery replacement when selected.
  • the service center calculates the distance between the two according to the geographical location of the electric vehicle and the geographical position of the battery replacement device, and sets the route for the battery replacement device to move according to the road condition between the two specific geographical locations stored in the system database. . Further, according to the average moving speed of the battery replacement device, it is expected that the battery replacement device moves to the position of the electric vehicle.
  • a method of replenishing energy for an electric vehicle includes the following steps.
  • Step 490 triggering a power button on the electric vehicle.
  • the electric vehicle is provided with a replacement button, which may be in the form of a normal button or a special button provided on the input device.
  • the power button can be a virtual button displayed in the display device. The user triggers the power button to initiate a power change request.
  • the service center receives the power change request.
  • the client sends the user's power change request to the service center.
  • the service center will receive the power change request.
  • the power change request includes information such as the number of the electric vehicle that needs to be replaced, the location of the power change, and the time of the power change.
  • the service center can schedule battery replacement devices based on the above information.
  • the service center sends a power-changing instruction.
  • the service center confirms the battery replacement device suitable for providing the electric vehicle with the power exchange service.
  • the service center sends a power change command to the appropriate battery replacement device to start the power exchange service.
  • the battery exchange device confirms the position of the electric vehicle. After receiving the power-changing command sent by the service center, the battery-replacement device confirms the geographical location of the electric vehicle.
  • step 498 the battery exchange device moves to a predetermined location.
  • the route from the current location to the destination is planned.
  • the battery exchange device moves along the path to a predetermined power exchange location.
  • the battery replacement device replaces the battery for the electric vehicle.
  • the battery replacement device After moving to the place where the power is changed, the battery replacement device confirms the identity information of the electric vehicle, and detects the type and power of the battery, records the relevant information, and starts the power exchange.
  • the battery replacement device confirms the position of the battery on the electric vehicle through the detecting device, the power changing mechanism disassembles the battery, and the removed battery is placed in the accommodating space of the battery replacement device.
  • the power changing mechanism further removes the full battery and installs the full battery to the electric vehicle to complete the battery replacement.
  • the energy supplementing method of the electric vehicle can realize the confirmation of the power-changing request only by triggering a power-changing button, and the operation procedure is simple.
  • a method of replenishing energy for an electric vehicle includes the following steps.
  • Step 502 determining a geographic location of the electric vehicle.
  • the positioning system on the electric vehicle confirms the geographic location of the electric vehicle and transmits the geographical location information of the electric vehicle to the service center.
  • a battery condition of the electric vehicle is determined.
  • the battery detecting unit on the electric vehicle detects the condition of the battery, confirms the remaining battery power, and transmits the battery status information to the service center.
  • step 506 the electric vehicle sends a power change request.
  • a power exchange request is sent to the service center through a client installed on the electric vehicle.
  • the power change request can be sent through an input device on the user interface.
  • the power change request includes but is not limited to the location of the power change and the time of the power change.
  • step 508 the service center receives the power change request.
  • the control system of the service center receives the power change request, and stores the location of the power change and the time of the power change into the system database.
  • the service center issues a power-changing command.
  • the power-changing instructions include, but are not limited to, the location of the power-changing, the time of the power-change, the key of the power-changing, and information about the electric vehicle that needs to be replaced.
  • the battery replacement device receives the power change command.
  • the battery replacement device receives the power exchange command through the communication interface, and stores the location of the power exchange, the time of the power exchange, the power exchange key, and information about the electric vehicle that needs to be replaced.
  • step 514 the battery exchange device moves to a predetermined location for the electric vehicle to replace the battery.
  • the battery replacement device starts from the current position and moves to the place where the power is changed.
  • the time to arrive at the location of the change should be earlier than or equal to the time of the change.
  • the electric vehicle that needs to be replaced is confirmed by the power-changing key, so that the electric vehicle is in the replaceable battery mode, and the battery is replaced for the electric vehicle.
  • the power change demand is issued by the electric vehicle. Specifically, it can be issued by the client of the electric vehicle.
  • the power exchange request is sent directly through the client of the electric vehicle, and the internal program can set the predetermined information content.
  • the user of the electric vehicle can directly form a power-changing request and send it to the service center through a simple selection, and the service center can identify the power-changing request accordingly.

Abstract

一种电动车辆能量补充的方法,电动车辆(52)包括一个或者多个车轮(52b);电动机(52c),驱动电动车辆(52)的车轮(52b)并由电池供电;方法包括以下步骤:确定车辆(52)的电池的状况;确定车辆(52)的地理位置;基于车辆(52)的电池的状况和车辆(52)的地理位置,电池更换设备(56)移动至预定地点为车辆(52)更换电池。还公开一种电动车辆能量补充的系统及设备,通过移动的电池更换设备(56),灵活方便的为电动车辆(52)提供电池更换,解决了车辆用户的里程焦虑。

Description

电动车辆能量补充系统、方法和设备 技术领域
本发明涉及一种电动车辆的能量补充系统、方法和设备。
背景技术
根据美国能源信息署EIA发布的国际能源展望,世界能源市场消耗量2005年到2030年预计增加50%。随着能源消耗的逐年增加,二氧化碳的排放量也将增加,目前二氧化碳排放中,25%来自于汽车。至2030年,将由2005年的281亿吨增至423亿吨。我国的二氧化碳排放目前已居全球第二,减排二氧化碳的压力将越来越大。其中汽车排放的污染已经成为城市大气污染的重要因素。
我国目前已成为世界第四大汽车生产国和第三大汽车消费国。根据国务院发展研究中心的数据,2010年我国的汽车保有量已经超过6千万辆,2020年将达到1.4亿辆。由此产生的机动车燃油需求分别为1.38亿吨和2.56亿吨,为当年全国石油总需求的43%和57%。化石燃料动力车的节能减排和技术升级,以降低温室气体排放和提升空气质量,是紧迫和重要的任务。其中,大力发展电动车产业是关键手段之一。
电动车辆常用的二次可充电电池包括铅酸电池、镍镉电池、镍氢电池以及锂离子电池。相对传统的铅酸、镍氢和镉镍电池而言,锂离子电池的历史最短,但锂离子电池的性能最为优越,也最具有发展前景。
但是,车用动力蓄电池的能量密度远低于石化燃料。汽油的能量密度可达12000Wh/Kg,而在目前的技术水平下,三元材料锂离子电池能量密度仅为120-200Wh/Kg,两者相差两个数量级。即使考虑到电动车辆能量转换效率(65%)远远高于汽油车能量转换效率(18%),电动汽车的单次行驶里程也远低于汽油车。以相对成熟的纯电动汽车日产聆风(LEAF)为例,其在完全充电的情况下,可以实现160公里以上的续驶里程(USLA4模式)。大部分的消费者的每天驾驶里程低于这个里程。但是,考虑到里程安全(绝大多数用户需要在汽车电量或燃料消耗大部分的时候就会进行补充),大多数人依然是每天或两天就会进行充电。相比而言,普通家用汽油车的油箱一般在40-70L左右,加满油后,可行驶大约500-800公里,足可以保证一到两周才加一次油。因此,电动汽车的充电频率远高于汽油车,对人们使用习惯造成了极大的冲击。而且,对于长途旅行而 言,单次行驶里程160公里也是不够的。
针对电动汽车电池需要频繁进行能量补充的问题,业内主要解决通过提高车用蓄电池的能量密度,来延长电动汽车的续驶行驶里程,如电池制造商比亚迪新研发的车用电池的最高续驶里程可达450-500公里(40公里/小时匀速状态下的理想值)。电池的能量密度的提升,一定程度上减少了电动车辆进行能量补充的频率,但同时,也会进一步延长电池的(常规)充电时间。
充电时间长是电动车辆频繁进行能量补充的另一个问题。蓄电池在放电工作之后,需要通过充电补充能量。车用蓄电池的常规充电方法一般采用小电流的恒压或恒流充电,充电电流相当低,典型的充电电流约为15A。按照常规的电源电压220v计算,将一个容量为16~26KWh的车用蓄电池充满电一般充电时间为5-8小时,甚至更长。这种小电流常规充电所需要的充电器及其安装费用低,整体充电成本低。而且这种方法可以使得电池的活性材料工作充分,电池的使用寿命长。但是,充满电池以获得大的续航里程需要对电动车辆进行较长时间的充电,对于紧急运行的需求难以及时满足。
为了解决小电流充电的问题,人们开发了快速充电技术,又称应急充电。这种方法是以较大电流的恒压或恒流充电,一般充电电流为150~400A。这种模式充电时间短,通常可以在电动汽车停车的20分钟~2小时为其提供短时充电服务,但是快速充电充电效率较低,电池无法充满电,且频繁的快速充电会严重危害电池性能,同时充电电流大,对充电技术方法以及充电的安全性提出了更高的要求。
采用快速充电模式,虽然充电时间已经远比常规充电模式短,但仍然不能满足电动车辆的用户对电池能量快速补充的需求。即使是最新的Tesla电动车,充电速度非常快,也至少需要30分钟充电时间才能够以达到80%的续航里程。这样的充电时间对于电动车辆的用户而言,是相当长的。实际上,消费者能够在充电上等待的耐心远远低于30分钟。
还有一种能量补充模式是直接更换电动汽车电池模组,如Better Place公司所提出的车用蓄电池换电模式。这种模式通过设立专门换电站,直接更换电动汽车的电池组,以达到为其补充能量的目的。这种模式补充能量的耗时短,电池更换过程只需数分钟,解决了用户长时间的充电等待的问题。即使这样,这种换电模式还是存在显著的问题。首先,电池换电站的建设和维护成本高昂, 对于大的城市而言,大量的电池换电站的建设将对城市用地提出很高的需求。其次,电动车辆的用户在行驶过程中,必须将电动车辆开至电池换电站,才能实现能量补充。电动车辆的电量不足以支持车辆开到换电站时,车辆将无法进行能量补充。即使能够支持车辆开到换电站,电动车辆也会因换电的需要不得不改变预期的行驶路径。
因此,有必要提供一种电动车辆的电池续航能力快速实现补充的方法和系统。
发明内容
为克服现有技术的缺陷,本发明所要解决的问题是提供一种快速补充电动车辆能量的方法。
为解决上述问题,本发明的技术方案是:一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动电动车辆的车轮并由电池供电;所述方法包括以下步骤:确定车辆的电池的状况;确定车辆的地理位置;基于车辆的电池的状况和车辆的地理位置,服务中心指令电池更换设备移动至预定的地点为车辆更换电池。
进一步的,根据车辆发出的电池更换请求确认预定的地点。
进一步的,触发电动车辆上的换电钮,发送换电请求给服务中心,确定预定的地点。
进一步的,车辆用户与服务中心交互沟通确认预定的地点。
进一步的,电池更换设备移动至预定的地点之前,还包括以下步骤:确认目的地,基于电动车辆的电池状况和地理位置确认车辆的剩余里程,当所述目的地与剩余里程符合预设条件时,提供换电模式选择。
进一步的,换电模式包括供应站换电模式、预定地点换电模式和停车点换电模式中的至少一种;供应站换电模式中,预定的地点为电池供应站;预定地点换电模式中,预定的地点为用户与服务中心约定的特定的地点;停车点换电模式中,预定的地点为电动车辆停止行驶的地点。
进一步的,所述预设条件为电动车辆的当前位置与目的地之间的距离大于剩余里程。
进一步的,电池更换设备移动至预定的地点之前,还包括以下步骤:基于电动车辆的电池状况和地理位置确认车辆的剩余里程,显示车辆的剩余里程。
进一步的,所述方法进一步包括以下步骤,根据车辆的电池的状况,向车 辆发出换电提醒。
进一步的,所述方法还包括以下步骤,根据电动车辆发送的地理位置信息和车辆的电池的状况,预测特定范围内需要更换电池的电动车辆的数量和分布,服务中心根据预测结果制定换电计划。
进一步的,以预定的地点为目的地,以电池更换设备当前的地理位置为起点,确定电池更换设备的行走路线。
进一步的,所述电池更换设备处于精确定位模式,电池更换设备接收的定位信号与预设信号匹配,电池更换设备确认预定的车辆的具体的地理位置。
进一步的,所述方法还包括以下步骤,预设特定的电子密钥,电池更换设备根据特定的电子密钥识别出预定的车辆并使预定的车辆的电池处于可更换模式。
进一步的,电池更换设备按照预设的路径移动,为至少两辆电动车辆分别在至少两个预定的地点更换电池。
进一步的,所述方法还包括电池更换设备按照预定的周期为预定的车辆更换电池。
进一步的,所述能量补充方法还包括以下步骤,电池更换设备在电池供应站装载满电电池,用于为电动车辆补充能量。
本发明还提供一种电动车辆的能量补充系统,用于为电动车辆补充能量,其中,电动车辆,包括车体;收容于车体中的电池;一个或者多个车轮;电动机,驱动车轮并由电池供电;所述电动车辆能量补充系统包括:电池更换设备,按照预定的换电计划为预定的电动车辆更换电池。
进一步的,预定的换电计划包括对应于预定的电动车辆的约定的换电时间和约定的换电地点。
进一步的,电池更换设备移动到预定的电动车辆所处的位置,自电动车辆的前、后、左、右任意一侧更换电池。
本发明还提供另一种电动车辆的能量补充方法,包括以下步骤:电池更换设备接收换电指令;电池更换设备按照预设路径,移动至第一预定地点,为第一预定车辆更换电池;电池更换设备按照预设路径,继续移动至第二预定地点,为第二预定车辆更换电池。
进一步的,电池更换设备通过第一换电密钥确认第一预定车辆,电池更换设备通过第二换电密钥确认第二预定车辆。
进一步的,第一换电密钥与第二换电密钥不同。
本发明还提供另一种电动车辆的能量补充的方法,包括以下步骤:电池更换设备接收换电指令;电池更换设备按照预设路径,移动至不同的预设地点,分别为不同的预定的电动车辆更换电池。
进一步的,电池更换设备沿预设路径移动,从而,为不同的预定的电动车辆更换电池的时间差的总和最小。
进一步的,电池更换设备沿预设路径移动,从而,电池更换设备为所有预定的电动车辆更换电池所移动的距离最短。
本发明还提供另一种电动车辆的能量补充的方法,包括以下步骤:电池更换设备接收换电指令;电池更换设备按照预设的时间顺序,移动至不同的预设地点,分别为不同的预定的电动车辆更换电池。
本发明提供一种能够快速灵活为电动车辆进行能量补充的系统。
为解决上述问题,本发明提供一种电动车辆能量补充系统,用于为电动车辆补充能量,其中,电动车辆,包括车体;收容于车体中的电池;一个或者多个车轮;电动机,驱动车轮并由电池供电;定位系统,用于确定电动车辆的地理位置;检测单元,用于确定电动车辆的电池的状况;电动车辆能量补充系统包括:服务中心,具有通信模块,发送换电指令给电池更换设备;电池更换设备,根据换电指令移动至预定的地点为预定的电动车辆更换电池。
进一步的,所述电动车辆包括通信模块,用于发送电池更换请求以确认预定的地点。
进一步的,所述电动车辆包括换电钮,通过触发换电钮发送换电请求以确认预定的地点。
进一步的,服务中心包括通信模块,服务中心通过通信模块与车辆用户交互沟通确认预定的地点。
进一步的,电动车辆包括客户端,客户端基于电动车辆行驶的目的地、电池状况和地理位置确认车辆的剩余里程,当所述目的地与剩余里程符合预设条件时,提供换电模式选择。
进一步的,换电模式包括供应站换电模式、预定地点换电模式和停车点换电模式中的至少一种;供应站换电模式中,预定的地点为电池供应站;预定地点换电模式中,预定的地点为用户与服务中心约定的特定的地点;停车点换电模式中,预定的地点为电动车辆停止行驶的地点。
进一步的,所述预设条件为电动车辆的当前位置与目的地之间的距离大于剩余里程。
进一步的,电动车辆包括客户端,客户端基于电动车辆的电池状况和地理位置确认车辆的剩余里程,显示车辆的剩余里程。
进一步的,电动车辆包括客户端,客户端根据车辆的电池的状况,向车辆发出换电提醒。
进一步的,服务中心包括控制系统,控制系统根据电动车辆的地理位置信息和车辆的电池的状况,预测特定范围内需要更换电池的电动车辆的数量和分布,并根据预测结果制定换电计划。
进一步的,服务中心包括控制系统,控制系统以预定的地点为目的地,以电池更换设备当前的地理位置为起点,确定电池更换设备的行走路线。
进一步的,电池更换设备包括精确定位模块,用于发送精确定位信号,以确定预定的车辆的具体的地理位置。
进一步的,服务中心包括控制系统,控制系统预设特定的电子密钥,电池更换设备根据特定的电子密钥识别出预定的车辆并使预定的车辆的电池处于可更换模式。
进一步的,换电指令包括电池更换设备按照预设的路径移动,为至少两辆电动车辆分别在至少两个预定的地点更换电池。
进一步的,换电指令包括电池更换设备按照预定的周期为预定的车辆更换电池。
进一步的,能量补充系统还包括电池供应站,电池供应站包括电池存储库,用于存储若干用于为电动车辆补充能量的电池;充电设备,用于为若干电池充电;以及总控单元,控制充电设备充电和管理电池。
本发明还提供一种电动车辆的能量补充的方法,包括以下步骤:电池更换设备接收换电指令;电池更换设备按照预设路径,移动至不同的预设地点,分别为不同的预定的电动车辆更换电池。
进一步的,定义电池更换设备为预定的电动车辆更换电池的时间与预定的换电时间之间的差值为换电时间差;电池更换设备沿预设路径移动,从而,为所有预定的电动车辆更换电池的换电时间差的总和最小。
进一步的,电池更换设备沿预设路径移动,从而,电池更换设备为所有预定的电动车辆更换电池所移动的距离最短。
本发明还提供一种电动车辆的能量补充的方法,包括以下步骤:电池更换设备接收换电指令;电池更换设备按照预设的时间顺序,移动至不同的预设地点,为不同的预定的电动车辆更换电池。
本发明还提供一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;所述方法包括以下步骤,电动车辆与服务中心通信确定预定的地点;服务中心确定电池更换设备的地理位置;确认邻近预定的地点的电池更换设备为预定的电池更换设备;服务中心向预定的电池更换设备发送换电指令;预定的电池更换设备接收换电指令,移动至预定地点为电动车辆更换电池。
本发明还提供一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;所述方法包括以下步骤,电动车辆与服务中心通信确认预定的地点;服务中心确定电池更换设备到达预定的地点的时间,确认到达预定的地点时间最短的电池更换设备为预定的电池更换设备,服务中心向预定的电池更换设备发送换电指令;预定的电池更换设备接收换电指令,移动至预定地点为电动车辆更换电池。
本发明还提供一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;所述方法包括以下步骤,电动车辆发送换电请求;服务中心接收换电请求;服务中心发送换电指令,电池更换设备接收换电指令,电池更换设备移动至预定的地点为电动车辆更换电池。
进一步的,电动车辆和电池更换设备分别移动至预定的地点。从而,电动车辆能够在最短的时间内获得能量补充,在电动车辆不改变原有行程的基础上,快速实现能量补充。
本发明还提供一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;所述方法包括以下步骤,服务中心发送换电指令,电池更换设备根据换电指令为若干电动车辆依次更换电池。
进一步的,换电指令为电池更换设备在预设的时间段内更换电池。
进一步的,换电指令为电池更换设备在预定的地点更换电池。
本发明还提供一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;所述方法包括以下步骤,服务中心接收换电请求,根据电动车辆和电池更换设备的地理位置,服务中心调度电池更换设备移动至预定的地点为电动车辆更换电池。
进一步的,服务中心接收换电请求后,区分电池更换设备的优先度,按照优先度从高到低的顺序向电池更换设备发送换电指令。
进一步的,根据电池更换设备移动至预定的地点的时间,区分电池更换设备的优先度。
进一步的,根据电池更换设备移动至预定的地点的成本,区分电池更换设备的优先度。
进一步的,根据电池更换设备移动至预定的地点的时间和成本,区分电池更换设备的优先度。
进一步的,服务中心接收换电请求后,区分换电请求的优先度,按照优先度从高到低的顺序处理换电请求。
进一步的,根据电动车辆的用户的类型,确认换电请求的优先度。
进一步的,根据换电时间与当前时间的时间差,确认换电请求的优先度。
进一步的,统计特定区域内换电请求的数量和分布,当换电请求的数量和分布符合预设条件时,启动应急响应策略。
进一步的,应急响应策略为调度特定区域内至少部分位于不同子区域的电池更换设备移动至特定子区域。
本发明提供一种能够快速灵活为电动车辆进行能量补充的设备。
为解决上述技术问题,本发明提供一种电池更换设备,电池更换设备包括可移动的主体;换电机构,用于更换电动车辆的电池;控制单元,设于主体内,接收换电指令并控制电池更换设备移动至预定的地点为预定的车辆更换电池。
进一步的,控制单元接收电动车辆的地理位置和电池的状况,确定电池更换设备预设的行走路线。
进一步的,电池更换设备包括精确定位模块,用于发出精确定位信号,确定预定的电动车辆的具体位置。
进一步的,控制单元根据特定的电子密钥识别预定的车辆并使预定的车辆处于电池可更换模式。
进一步的,电池更换设备还包括通信模块,用于与电动车辆、服务中心、电池供应站至少其中之一通信连接。
为解决上述问题,本发明的技术方案是:一种电动车辆能量补充的方法,所述电动车辆包括车体;能够带动车体移动的多个车轮;电动机,用于驱动车轮并由电池供电;所述方法包括以下步骤:电池更换设备将电动车辆一侧抬升 预定高度,至少部分自电动车辆所述一侧进入电动车辆下方为电动车辆更换电池。
优选的,通过抬升所述电动车辆一侧的车轮将电动车辆一侧抬升。
优选的,所述电动车辆一侧的车轮数量为两个。
优选的,将电动车辆一侧抬升的步骤中,抬升电动车辆使用的工具为电动千斤顶。
优选的,两个电动千斤顶分别抬升车辆一侧的两个车轮。
优选的,同一个控制装置控制两个电动千斤顶同时启停。
优选的,每个电动千斤顶分别由不同的控制装置控制启停。
优选的,每个电动千斤顶包括微动开关,当电动千斤顶的举升高度达到预设值时,触发微动开关控制电动机停止。
优选的,电动车辆一侧被抬升的高度为50-300mm。
优选的,所述电池更换设备为电动车辆更换电池模块之前,解除锁定机构对电池模块的锁定。
优选的,所述锁定机构为液压锁定机构,包括设置在电动车辆上的液压缸和活塞。
优选的,所述电动车辆的一侧包括车辆的前侧、后侧、左侧和右侧中的任一侧。
优选的,电池更换设备将所述电动车辆的前侧抬升,电池更换设备自前侧沿水平方向进入车辆下方,将电池模块自车体上拆卸下来,将位于电池托盘上的电池模块转动预定角度,将电池模块自车辆下方移出。
优选的,电池更换设备将所述电动车辆的左侧或者右侧抬升,电池更换设备自左侧或者右侧沿水平方向进入车辆下方,将电池模块自车体上拆卸下来,沿水平方向移动将电池模块自车辆下方移出。
优选的,电池更换设备进入车辆下方时,先沿着车辆的横向移动,再沿着车辆的纵向移动。
优选的,电池更换设备将电池模块自车辆下方移出时,先沿着车辆的纵向移动,再沿着车辆的横向移动。
优选的,所述电动千斤顶包括举升臂,所述举升臂自车轮侧面夹持车轮。
一种为电动车辆更换电池的电池更换设备,包括运输车和收容在运输车中的换电小车系统,所述换电小车系统包括用于侧面抬升电动车辆的电动千斤顶 和用于更换电池的换电叉车。
优选的,所述换电小车系统还包括用于解除锁定机构对电池模块的锁定的电动液压站。
优选的,所述电动液压站包括液压泵、用于驱动液压泵的电动机、油箱以及与油箱连接的油管,所述油管可选择的与电池模块的锁定机构连接,从而解除锁定机构对电池模块的锁定。
优选的,所述换电叉车包括车架、支撑车架移动的车轮、设于车架上的举升机构以及设于举升机构上的电池模块托盘。
优选的,所述举升机构包括至少三个举升单元,所述举升单元能够相对车架竖直方向移动,从而调整电池模块托盘的位置。
优选的,所述电池模块托盘能够在举升机构的作用下相对车架成预定的角度。
优选的,所述换电叉车还包括为车轮的移动提供能源的能量单元和连接车轮的驱动机构。
优选的,所述能量单元可拆卸的收容于车架中。
优选的,换电叉车的车轮为万向轮。
优选的,所述换电叉车还包括能够相对车架转动的转台。
优选的,所述换电叉车还包括设置于举升机构与电池模块托盘之间的传感器。
优选的,所述换电叉车的高度小于500mm。
优选的,所述换电叉车具有收容状态和为电动车辆更换电池的工作状态,收容状态下,所述叉车的整体高度不大于500mm。
所述运输车包括通信设备,能够与服务中心通信。
优选的,所述换电叉车包括控制单元,根据预定计划控制换电叉车工作。
本发明还提供一种电动车辆,包括车体;能够带动车体移动的多个车轮;电动机,驱动车轮并由电池模块供电;所述电动车辆包括至少两个电池模块,每个电池模块相对独立设置,能够可拆换的与车体连接;所述至少两个电池模块布置在车体底部,沿车体纵长延伸的方向依次设置。
优选的,所述电池模块的数量为3个,三个电池模块沿车体纵长延伸的方向依次设置。
优选的,所述电池模块包括第一电池模块、第二电池模块以及第三电池模 块,第一电池模块与第二电池模块形状相同,第三电池模块与第一电池模块形状不同。
优选的,所述第一电池模块的形状为凸字形。
优选的,所述第三电池模块的形状为长方形。
优选的,每个电池模块的重量约为150~350Kg。
优选的,每个电池模块与车体可单独拆换。
优选的,每个电池模块通过独立的锁定系统与车体固定。
优选的,锁定系统包括设置于车体上的锁定单元,锁定单元与电池模块一一对应。
优选的,每个电池模块的高度小于等于250mm。进一步的,电池模块的高度小于等于200mm。
本发明还提供一种电动车辆,包括车体;能够带动车体移动的多个车轮;电动机,驱动车轮并由电池模块供电;所述车体包括用于收容电池模块的框架以及设置于框架上的锁定/解锁系统,所述锁定/解锁系统可选择的将电池模块锁定在车体上或者解除电池模块与车体之间的锁定。
优选的,所述锁定和解锁系统通过电池更换设备发送的信号启动。
优选的,所述锁定和解锁系统为液压锁定和解锁系统,包括设置于框架上的进油管道、出油管道、与进油管道和出油管道连通的液压缸,可在液压缸内往复移动的活塞,以及由活塞驱动的夹爪。
优选的,所述夹爪与活塞之间设有齿轮齿条机构,从而所述活塞与液压缸的相对往复运动转化为夹爪的枢转运动。
优选的,所述电池模块包括锁定块,用于与锁定/解锁系统配接,将电池模块锁定在车体上。
优选的,所述电动车辆还包括保持机构,用于可选择的将夹爪保持在被锁定的位置。
优选的,所述保持机构包括与夹爪枢转连接的锁定臂,所述锁定臂位于第一位置,夹爪保持在被锁定的状态;所述锁定臂位于第二位置,夹爪能够相对运动。
本发明还提供一种电动车辆用电池模块,包括壳体,收容于壳体内的若干电池单元,其特征在于:所述电池模块包括若干锁定块,用于与电动车辆可拆换的连接。
优选的,所述壳体的形状为凸字形。
优选的,所述电池模块的重量约为150~300kg。进一步的,电池模块的重量约为200kg。
本发明还提供一种电动车辆用电池组,所述电池组包括至少两个电池模块,每个电池模块能够单独与电动车辆可拆换的连接。
优选的,所述电池组包括两个电池模块。
优选的,所述两个电池模块的形状相同。
优选的,所述电池组包括三个电池模块。
优选的,三个电池模块中至少两个电池模块形状相同。
优选的,电池模块中至少包括一个形状为凸字形的电池模块。
优选的,电池组包括两个形状为凸字形的电池模块,第一个凸字形的电池模块能够配接于电动车辆的前侧,第二个凸字形的电池模块能够配接于电动车辆的后侧。
优选的,电池组设置于电动车辆上时,第一个凸字形的电池模块的长边与第二个凸字形的电池模块的长边之间的距离小于其与第二个凸字形的电池模块的短边之间的距离。
优选的,所述电池模块能够自电动车辆下方移出。
优选的,所述电池模块包括锁定单元,用于与车辆上的锁定机构配合,从而相对固定在车辆上。
进一步的,锁定单元是设于电池框架外侧的凹槽。
本发明还提供一种电动车辆能量补充系统,包括电池更换设备和电动车辆,所述电池更换设备包括运输车和收容在运输车中的换电小车系统,所述换电小车系统包括用于侧面抬升电动车辆的电动千斤顶和用于更换电池的换电叉车;所述电动车辆包括车体、能够带动车体移动的多个车轮、驱动车轮并由电池模块供电的电动机;所述电动车辆包括至少两个电池模块,每个电池模块相对独立设置,能够可拆换的与车体连接;所述至少两个电池模块布置在车体底部,沿车体纵长延伸的方向依次设置。
优选的,所述能量补充系统还包括服务中心,所述电动车辆和电池更换设备与服务中心通信连接。
优选的,换电叉车的高度不大于500mm。
优选的,所述换电小车系统还包括用于解除锁定机构对电池模块的锁定的 解锁机构。
优选的,所述解锁机构为电动液压站,包括液压泵、用于驱动液压泵的电动机、油箱以及与油箱连接的油管,所述油管可选择的与电池模块的锁定机构连接。
优选的,所述换电叉车包括车架、支撑车架移动的车轮、设于车架上的举升机构以及设于举升机构上的电池模块托盘。
优选的,所述举升机构包括至少三个举升单元,所述举升单元能够相对车架竖直方向移动,从而调整电池模块托盘的位置。
优选的,所述电池模块托盘能够在举升机构的作用下相对车架成预定的角度。
优选的,所述换电叉车还包括为车轮的移动提供能源的能量单元和连接车轮的驱动机构。
优选的,所述能量单元可拆卸的收容于车架中。
优选的,换电叉车的车轮为万向轮。
优选的,所述换电叉车还包括能够相对车架转动的转台。
优选的,所述换电叉车还包括设置于举升机构与电池模块托盘之间的传感器。
优选的,所述换电叉车具有收容状态和为电动车辆更换电池的工作状态,收容状态下,所述叉车的整体高度不大于500mm。
优选的,所述运输车包括通信设备,能够与服务中心通信。
优选的,所述换电叉车包括控制单元,根据预定计划控制换电叉车工作。
根据以上技术方案,电动车辆的电池被电池更换设备更换的整个过程中,电动车辆的地理位置不发生变化。电动车辆可以在驾驶者不在车内的情况下,获得电池更换的服务,电动车辆的动力补充机动灵活,即使电动车辆因为动力不足不能移动的情况下,也能够快速补充到能量。不再需要预先设计移动线路,专门移动至充电站进行充电。
为克服现有技术的缺陷,本发明所要解决的问题是提供一种电池更换设备,适用于高效便捷的为不同数量的电动车辆更换电池组件。
为解决上述问题,本发明的技术方案是:一种电池更换设备,包括一种电池更换设备,用于为电动车辆更换电池组件,所述电池更换设备包括:第一车体,第一车体包括电池更换机构和收容电池组件的第一收容空间;若干第二车 体,与第一车体连接,第二车体包括电池更换机构和收容电池组件的第二收容空间;第一车体和第二车体能够相对分离并单独为电动车辆更换电池组件。
优选的,所述第一车体还包括充电器,用于为收容在第一收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第一车体还包括充电器,用于为收容在第二收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第二车体还包括充电器,用于为收容在第二收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第一车体还包括第三收容空间,所述第二车体至少部分收容于第三收容空间中。
优选的,所述第二车体拖挂于第一车体。
优选的,所述第一车体包括可分离连接的车头和车身,所述电池更换机构和第一电池收容空间位于车身。
优选的,所述第一车体包括第三收容空间,所述第三收容空间中收容多个第二车体。
优选的,所述第二车体包括多个电池组件。
优选的,电池组件的数量与一台电动车辆包括的电池组件的数量相当。
本发明还提供一种电池更换设备,用于装卸电动车辆的电池组件,所述电池更换设备包括:第一车体,第一车体包括收容电池组件的第一收容空间;若干第二车体,第二车体包括电池更换机构和收容电池组件的第二收容空间;第二车体与第一车体可分离的连接;第一车体还包括第三收容空间,第二车体至少部分的收容于第三收容空间。
优选的,所述第一车体还包括充电器,用于为收容在第一收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第一车体还包括充电器,用于为收容在第二收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第二车体还包括充电器,用于为收容在第二收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第一车体包括可分离连接的车头和车身,所述第三收容空间位于车身。
优选的,所述第三收容空间中收容多个第二车体。
优选的,所述第二车体包括多个电池组件。
优选的,电池组件的数量与一台电动车辆包括的电池组件的数量相当。
本发明还提供一种电池更换设备为电动车辆更换电池组件的方法,包括以下步骤:确认需要更换电池组件的电动车辆的数量大于预设值时,第一车体移动至预定地点为电动车辆分别更换电池;需要更换电池组件的电动车辆的数量小于等于预设值时,第二车体自第三收容空间中相对第一车体移出,移动至预定地点为电动车辆更换电池组件。
优选的,多个第二车体自第三收容空间中相对第一车体移出,分别移动至预定地点为不同的电动车辆更换电池组件。
本发明提供的另一种电池更换设备为电动车辆更换电池组件的方法,包括以下步骤:获取需要更换电池组件的电动车辆的数量N,N为大于等于1的整数;判断N处于预设范围内,第一车体移动至距离多个预定位置距离相当的地点,多个第二车体自第三收容空间相对第一车体移出,分别移动至不同的预定地点为不同的电动车辆更换电池组件。
本发明还提供一种电池更换设备,用于装卸电动车辆的电池组件,所述电池更换设备包括:车头,用于牵引电池更换设备移动;第一车体,第一车体包括电池更换机构和收容电池组件的第一收容空间;第二车体,第二车体包括电池更换机构和收容电池组件的第二收容空间;第一收容空间的尺寸大于第二收容空间的尺寸;第一车体和第二车体可替换的与车头相连。
优选的,所述第一车体还包括充电器,用于为收容在第一收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第二车体还包括充电器,用于为收容在第二收容空间内的电池组件充电,所述充电器包括电源接头和若干充电连接口。
优选的,所述第二车体包括多个电池组件。
优选的,电池组件的数量与一台电动车辆包括的电池组件的数量相当。
本发明还提供一种电池更换设备为电动车辆更换电池组件的方法,包括以下步骤:确认需要更换电池组件的电动车辆的数量大于预设值时,车头连接第一车体,移动至预定地点,第一车体为电动车辆更换电池;需要更换电池组件的电动车辆的数量小于等于预设值时,车头连接第二车体,移动至预定地点,第二车体为电动车辆更换电池。
优选的,所述预设值为5~50之间的一个整数。
与现有技术相比,本发明提供的电池更换设备,包括具有不同收容空间的第一车体和第二车体,根据特定区域内需要更换电池组件的电动车辆的数量的不同,第一车体和第二车体可以分别为不同数量的电动车辆更换电池。电池更换设备能够以更高的效率提供更换电池的服务。
与现有技术相比,本发明提供的电动车辆能量补充系统和方法,通过灵活智能的控制和服务体系,有效消除了电动车辆目前遭遇的技术问题,为电动车辆的用户提供了可靠、安全、类似传统车辆的使用体验,解决了用户的里程焦虑。
电动车辆电池交换系统通过灵活的电量补充方案结合电池快换技术,为电动车辆的用户提供了一种崭新的用户体验。这个系统专门为购买或者租用本系统内的电动车辆的用户提供服务,用户在购买或租用本系统的电动车辆的同时,相关的信息将被录入至系统中,并启用服务。所有本系统中的电动车辆安装车辆客户端,配套的电池模块具有特定的快换接口。
本发明提供的电动车辆能量补充系统和方法,开创性的提供多种电量补充模式,包括呼唤换电、提醒换电。结合传统的充电桩充电模式,构建了全方位、高效率的电动车辆能量补充方案。
电池更换设备的换电结构,方便简单的更换电池,无需在特定的工作平台上升降车辆,即可从车头、车尾或者车辆的一侧完成电池的拆卸和安装。使得绝大多数停放状态下的电动车辆的电池更换简单可行,且更换电池的地点不受特别的限制,电动车辆无论是停靠在马路上、车库中或者停车场的停车位,都能够方便的获得电池更换的服务。
根据本发明,电动车辆能够在车辆用户不在现场的情况下,根据与服务提供商的约定,获得电池更换服务。由此,用户不用专门为了更换电池而移动电动车辆至特定的换电站,使用体验极佳。
附图说明
下面结合附图和实施方式对本发明作进一步说明。
图1是本发明第一实施例提供的电动车辆能量补充系统的示意图。
图2是电动车辆的结构示意图。
图3是电动车辆的构成框图。
图4是电动车辆的用户界面的示意图。
图5是电动车辆上电池模块布局的第一实施方式的示意图。
图6是电动车辆上电池模块布局的第二实施方式的示意图。
图7是第一电池模块的结构示意图。
图8是电动车辆上的电池收容框架示意图。
图9是锁定/解锁系统的第一实施例的示意图。
图10是图9所示的锁定/解锁系统处于解锁状态的示意图。
图11是图9所示的锁定/解锁系统处于锁定状态的示意图。
图12是第一电池模块的锁定/解锁系统的示意图。
图13是第三电池模块的锁定/解锁系统的示意图。
图14是第二电池模块的锁定/解锁系统的示意图。
图15是锁定/解锁系统的第二实施例的示意图,其中电池模块处于锁定状态。
图16是锁定/解锁系统的第二实施例的示意图,其中电池模块处于解锁状态。
图17是锁定/解锁系统的第三实施例的示意图,其中,电池模块处于被锁定的状态。
图18是图17所示的锁定/解锁系统的示意图,其中,电池模块处于解锁的状态。
图19是锁定/解锁系统的第四实施例的示意图,其中,电池模块处于被锁定的状态。
图20是图19所示的锁定/解锁系统的示意图,其中,电池模块处于解锁的状态。
图21是电池更换设备的结构示意图。
图22是电池更换设备的构成框图。图23是电池更换设备的第一实施例的示意图。
图24是电池更换设备中电动千斤顶的立体示意图。
图25是千斤顶处于未举升的状态的主视示意图。
图26是千斤顶处于举升状态的主视示意图。
图27是千斤顶的俯视示意图。
图28是电池更换设备中换电叉车的立体示意图。
图29是换电叉车的立体示意图,其中,电池模块托盘被移除。
图30是换电叉车的侧视示意图,其中,举升机构抬升一定的高度。
图31是电池更换设备为图4所示电动车辆更换电池模块的示意图,其中,电动车辆的一侧被抬升预定高度。
图32是图31中电池更换设备为电动车辆更换电池模块的左视示意图。
图33是图31中电池更换设备为电动车辆更换电池模块的俯视示意图。
图34是图31中电池更换设备为电动车辆更换电池模块的示意图,其中,第一电池模块被移送至安装位置。
图35是图31中电池更换设备为电动车辆更换电池模块的示意图,其中,换电小车准备运送第二电池模块。
图36是图31中电池更换设备为电动车辆更换电池模块的示意图,其中,第二电池模块被移送至安装位置。
图37是图31中电池更换设备为电动车辆更换电池模块的示意图,其中,换电小车准备运送第三电池模块。
图38是图31中电池更换设备为电动车辆更换电池模块的示意图,其中,第三电池模块被移送至电动车辆下方。
图39是图31中电池更换设备为电动车辆更换电池模块的示意图,其中,第三电池模块转动至安装位置。
图40是图31中电池更换设备自电动车辆一侧完成电池模块更换的示意图。
图41是电池更换设备为为图5所示电动车辆更换电池模块的示意图,电动车辆前侧被抬升预定高度。
图42是图41中电池更换设备为电动车辆更换电池模块的左视示意图。
图43是图41中电池更换设备为电动车辆更换电池模块的俯视示意图。
图44是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,第一电池模块被移送至电动车辆下方。
图45是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,第一电池模块转动至安装位置。
图46是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,换电小车准备自电动车辆前侧移送第二电池模块。
图47是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,第二电池模块被移送至电动车辆下方。
图48是图41中电池更换设备为电动车辆更换电池模块的示意图,其中, 第二电池模块转动至安装位置。
图49是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,换电小车准备自电动车辆前侧移送第三电池模块。
图50是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,第三电池模块被移送至电动车辆下方。
图51是图41中电池更换设备为电动车辆更换电池模块的示意图,其中,第三电池模块转动至安装位置。
图52是图41中电池更换设备自电动车辆前侧完成电池模块更换的状态示意图。
图53是电池更换设备的第二实施例为电动车辆更换电池的示意图;
图54是电动车辆的电池布局的第三实施方式的示意图;
图55是电池更换设备的第一较佳实施方式的侧视图;
图56是电池更换设备的第二较佳实施方式的侧视图;
图57是电池更换设备的第三较佳实施方式的俯视图;
图58是电池更换设备的第四较佳实施方式的俯视图;
图59是更换组件的一个较佳实施方式第一状态下的侧视图;
图60是更换组件的一个较佳实施方式第二状态下的侧视图;
图61是图60中A部分的局部放大图。
图62是电动车辆的侧视图;
图63是图62所示电动车辆的仰视图;
图64是电池更换设备的第五实施方式的示意图;
图65是图64所示电池更换设备相对电动车辆在第一位置的示意图;
图66是图64所示电池更换设备相对电动车辆在第二位置的示意图;
图67是图64所示电池更换设备相对电动车辆在第三位置的示意图;
图68是图64所示电池更换设备相对电动车辆在第四位置的示意图;
图69是图64所示电池更换设备相对电动车辆在第五位置的示意图;
图70是图64所示电池更换设备相对电动车辆在第六位置的示意图;
图71是电池更换设备的第六较佳实施方式的示意图;
图72是图71所示电池更换设备相对电动车辆在第一位置的示意图;
图73是图71所示电池更换设备相对电动车辆在第二位置的示意图;
图74是图71所示电池更换设备相对电动车辆在第三位置的示意图;
图75是图71所示电池更换设备相对电动车辆在第四位置的示意图;
图76是图71所示电池更换设备相对电动车辆在第五位置的示意图;
图77是图71所示电池更换设备相对电动车辆在第六位置的示意图;
图78是图71所示电池更换设备相对电动车辆在第七位置的示意图;
图79是电池更换设备的第七较佳实施方式的示意图;
图80是电池更换设备的第八较佳实施方式的示意图;
图81是图80所示电池更换设备相对示电动车辆在第一位置的示意图;
图82是图80所示电池更换设备相对电动车辆在第二位置的示意图;
图83是图80所示电池更换设备相对电动车辆在第三位置的示意图;
图84是图80所示电池更换设备相对电动车辆在第四位置的示意图;
图85是图80所示电池更换设备相对电动车辆在第五位置的示意图;
图86是电池更换设备的第九较佳实施方式的示意图;
图87是图86所示电池更换设备在第一状态的示意图;
图88是图86所示电池更换设备在第二状态的示意图;
图89是图86所示电池更换设备在第三状态的示意图;
图90是电池更换系统的实施方式的示意图;
图91是图90所示电池更换系统实现精确定位的第一较佳实施方式;
图92是图90所示电池更换系统在第一状态的示意图;
图93是图90所示电池更换系统在第二状态的示意图
图94是图90所示电池更换系统实现精确定位的第二较佳实施方式。
图95是电池更换设备的第三实施例的示意图。
图96是电池更换设备的第二车体为电动车辆更换电池组件的示意图。
图97是电池更换设备的第一车体与外部电源连接充电的示意图。
图98是电池更换设备的第二车体与外部电源连接充电的示意图。
图99是充电器的基本构成示意图。
图100是电池更换设备的第九较佳实施方式的示意图。
图101是电池更换设备的第十较佳实施方式的示意图。
图102是电池更换设备为电动车辆更换电池组件的方法的第一实施例的示意图。
图103是电池更换设备为电动车辆更换电池组件的方法的第二实施例的示意图。
图104是电池更换设备的第十一较佳实施方式的示意图。
图105是电池更换设备的第十二较佳实施方式的示意图。
图106是电池更换设备为电动车辆更换电池组件的方法的第三实施例的示意图。
图107是电池供应站的构成框图。
图108是电池服务中心的操作系统界面示意图。
图109是电池服务中心的系统构成示意图。
图110是服务中心的管理系统构成框图。
图111是电池更换设备的行走路径规划示意图。
图112是第一实施例提供的电动车辆能量补充方法的流程示意图。
图113是电动车辆能量补充方法的另一种流程示意图。
图114是电动车辆能量补充方法的再一种流程示意图。
图115是电池更换设备获取电池供应站信息的方法的流程示意图。
图116是电池供应站获取电池补给信息的方法的流程示意图。
图117是电池更换设备补充满电电池的方法的流程示意图。
图118是电池更换装置接收换电指令后完成换电任务的方法的流程示意图。
图119是电动车辆能量补充方法的第四实施例的流程示意图。
图120是电动车辆能量补充方法的第五实施例的流程示意图。
图121是电动车辆能量补充方法的第六实施例的流程示意图。
图122是电动车辆能量补充方法的第七实施例的流程示意图。
图123是电动车辆能量补充方法的第八实施例的流程示意图。
图124是电动车辆能量补充方法的又一种实施例的流程示意图。
图125是服务中心调度电池更换设备的流程示意图。
图126是电动车辆能量补充方法的又一种实施例的流程示意图。
图127是电动车辆能量补充方法的另一种实施例的流程示意图。
图128是电动车辆能量补充方法的另一种实施例的流程示意图。
其中,
50 能量补充系统  53 用户          58 服务中心
51 服务提供商    54 电池          59 数据网络
52 电动车辆      56 电池更换设备  60 电池供应站
62  充电设备            80  第二收容空间        98  精确定位单元
63  电源网络            82  换电机构            100  电池存储库
64  金融机构            84  定位系统            102  定位系统
65  定位系统            86  用户界面            104  总控操作系统
66  电池检测单元        86a  显示装置           106  系统数据库
68  主控单元            86b  输入装置           108  总控界面
70  通信接口            88  控制单元            110  用户数据库
72  用户界面            90  通信模块            112  车辆位置数据库
74  显示装置            92  初步定位子系统      114  电池状态数据库
76  输入装置            94  精确定位子系统      116电池更换设备数据库
78  第一收容空间        96  精确定位模块
具体实施方式
【电动车辆的能量补充系统】
图1揭示了一种电动车辆的能量补充系统50。电动车辆52可以是完全由电池组件54提供能量的纯电动车,也可以是部分由电池提供能量的混合电动车辆。此处,以纯电动车为例来说明本发明的具体构思。下面的具体实施例并不用于限定电动车辆的类型。
能量补充系统50是一个包含电动车辆的电池能量补充服务网络。该服务网络包括服务提供商51,可移动的电池更换设备56,以及接受电池更换的电动车辆52及其用户53。
服务提供商51、电动车辆的用户53之间通过协议建立联系。基于相关协议,电动车辆的用户53接受服务提供商51提供的电池更换服务,而服务提供商则基于电池更换的服务对车辆的用户53收取相应的费用。服务提供商51确保为用户53提供充满电的电池,并负责相应的电池的保养与维护。用户在有需求时更换电池,而不再需要关注电池的保养与维护。由于服务提供商51对电池组件54有统一的管理,电池的性能和寿命都能够得到最有效的管理,能源的利用率最大化。电动车辆的用户的里程焦虑问题也得到了有效的解决。
用户53拥有电动车辆52。电动车辆中的电池组件54可以由用户直接购买,也可以由用户向服务提供商租用。当然,有些情况下,用户也可以直接租用车辆,也就是说连同电池一起整个租用电动车辆。金融机构64能够为服务提供商和用户之间建立连接。用户接受服务提供商提供的服务,通过金融机构向服务提供商支付相关费用。
服务提供商提供服务中心58,管理能量补充系统中的服务需求及需求的满足。服务中心通过数据网络59与电动车辆52及其用户53、电池更换设备56、电池供应站60建立数据连接。电池供应站60包括充电设备62,充电设备从电源网络63获取电力补充。
根据具体的实施例,电动车辆的动力补充系统50包括动力补充装置。动力补充装置由服务提供商51提供。电动车辆52的用户53可根据需要,选择到固定的电池服务站进行能量补充或者选择由可移动的电池更换设备56移动到预定的位置为电动车辆提供换电服务。电池服务站可以是包括若干充电桩的充电站,也可以是提供满电电池的换电站。
基于此,用户可以与服务提供商签订不同性质的协议,以获得更换电池的服务。服务提供商对用户的上述信息进行管理,以确定对不同的用户提供不同的服务内容。
用户与服务提供商签订不同性质的协议,基于协议内容,用户可以被区分为不同类型。用户的类型可以包括重要客户,一般客户以及普通客户。不同类型的客户的换电请求的优先度不同,对应的服务内容也可能不同。通常,重要客户的换电请求可以被优先处理。服务内容包括充电、换电、电池保养和电池维护等。
服务提供商通过服务中心可以将多个用户提出的更换需求进行统一管理,根据用户提出需求的先后顺序以及时间、地点要求,规划最佳换电路径,指令特定的电池更换设备执行。也可以根据用户提出需求的先后顺序指令多个特定的电池更换设备,分别为不同的电动车辆提供更换电池的服务,以保证电动车辆获得最快捷的电池更换服务。
可以理解的是,这里所说的服务中心,可以是具有实际工作场所的服务中心,也可以是仅通过云计算等方式实现数据处理和交换的虚拟的服务中心。虚拟的服务中心包括虚拟的服务器。虚拟的服务器采集电动车辆和电池更换设备的相关信息,根据预定的算法调度电池更换设备为电动车辆更换电池。
服务提供商可以将多个用户提出的更换需求进行统一管理,根据用户提出需求的先后顺序以及时间、地点要求,规划最佳换电路径,指令特定的电池更换设备执行。也可以根据用户提出需求的先后顺序指令多个特定的电池更换设备,分别为不同的电动车辆提供更换电池的服务,以保证电动车辆获得最快捷的电池更换服务。
根据本发明,电动车辆的动力补充系统中的电池被系统的管理。为了保证电池的更换与维护安全有效,电动车辆使用的电池最好与服务提供商提供的电 池规格一致。基于此,电动车辆的用户可以购买电池,也可以租用电池。当然租用是更好的选择,这样,对于用户来说,购买电动车辆的成本将大大降低。同时,减少了电池维护的风险。总体而言,用户可以与服务提供商签订不同性质的协议,以获得更换电池的服务。服务提供商对用户的上述信息进行管理,以确定对不同的用户提供不同的服务内容。
【电动车辆】
参见附图2,电动车辆52包括车辆主体52a和可拆卸的收容于车辆主体的电池组件54。车辆主体52a包括车体52d,车体内设有用于驱动一个或者多个车轮52b运动的电动机52c。电池组件54为电动机52c提供能量,从而保证车辆能够行驶。电池组件54与车辆主体电气和机械连接,从而与车辆相连并为车辆的行使、照明、音响、空调等功能提供电能。电动车辆上还包括充电器52e,充电器与电池组件54电连接,通过外部充电接口,充电器与外部电源连接从而为电池充电。
参见附图3和附图4,电动车辆52包括定位系统65,用于确定车辆所处的地理位置。定位系统65可以是全球卫星定位系统(GPS)、北斗定位系统、无线电塔定位系统、无线保真度Wi-Fi定位系统或者是上述系统的组合。电动车辆还52可以进一步包括导航系统,用于为车辆提供从一个目的地移动至另一个目的地的路径指引。此时,车辆上相应的设置有显示器,显示车辆所处的地理位置和车辆周围一定范围内的地图信息。
基于本发明,电动车辆还包括电池检测单元66,用于检测电池的状况。电池的状况包括但不仅限于电池的电量、电池的充放水平、电池的年龄及其组合。电池的电量一般指电池当前的剩余电量。
电动车辆包括主控单元68,用于控制电动车辆的各功能模块的工作。主控单元68通常包含CPU和存储器。主控单元68接收电池检测单元66发送的电池状况信息,并由存储器存储。存储器还存储电动车辆上各功能模块的用电情况,包括但不仅限于不同功能模块的耗电量,使用时间,使用频率等等。
电动车辆上包括传动控制单元69,用于控制电动车辆的动力传递,将电动机输出的动力传递至各个功能部件。
电动车辆上可以设置通信接口70,用于连通通信网络,从而发送信息给服务中心和接收服务中心发送的信息。服务中心与电动车辆52通过通信网络建立通信联系。通过与电动车辆上的通信接口70通信,接收存储器中的相关信息,并以这些信息为基础,确认电动车辆的电池使用模式。
电动车辆上还包括电池控制单元71,用于控制电池的能量使用。包括车辆 上不同功能模块的使用电量的分配,电池充放电的控制等。
电动车辆上可以设置用户界面72。用户界面72包含显示装置74和输入装置76。显示装置74通常是显示器,比如LCD显示器,也可以是其他具有显示功能的装置,比如触摸屏等。显示器上可以显示表示电池的使用状态的标识,并实时显示电池的剩余电量。显示标识的形式可以是百分比,也可以是块状的电池图标,图标块的数量不同,表示电池的剩余电量不同。以上描述的标识的形式仅用于举例,并不因此限制发明为该具体的实例。显示装置74还可以显示地图信息。通过输入装置76,用户可以至少部分的与主控单元68建立联系。输入装置76和显示装置74可以设置为同一个以使用户界面简洁。
电动车辆上安装有客户端。
参见附图3,用户的电动车辆上的客户端,具有包含显示装置74和输入装置76的用户界面72。从电动车辆的客户端可以输出电动车辆的地理位置、电池的状况、换电地点和时间等信息。电动车辆的客户端可以接收服务中心的总控操作系统发送的剩余里程预估、换电提醒、换点地点和时间等信息。电动车辆的客户端还可以接收电池更换设备发送的身份确认信息或者给电池更换设备发送身份确认信息。
电动车辆的客户端包括操作系统68a,通信模块68b、用户界面模块68c、定位模块68d、电池控制模块68e、费用模块68f、数据库模块68g、电池状况数据库68h以及地理位置数据库68i等。
操作系统68a,包括用于处理系统任务的若干程序。
通信模块68b,用于经由一个或者多个通信端口或通信网络与服务中心58、电池更换设备56等的客户端连接。通信网络包括但不仅限于局域网、城域网、英特网或者其他的广域网等。
用户界面模块68c,通过输入装置76接收用户指令并将指令通过显示装置74显示。
定位模块68d,通过定位系统确定电动车辆的地理位置,还与用户界面模块连接,显示用户指定的目的地的地理位置。
电池控制模块68e,控制电池的更换过程,包括但不仅限于控制电动车辆与电池更换设备之间的身份识别,车辆的电池的使用过程数据的监控等。
费用模块68f,用于管理电动车辆的费用支出。
电池检测模块68j,用于管理电池检测单元。
数据库模块68g,用于提供车辆的数据库的接口,与整个能量补充系统中的其他数据库进行数据交换和连接。
电池状况数据库68h,包括电动车辆的电池状况的当前和/或历史数据。
地理位置数据库68i,包括车辆的地理位置的当前和/或历史数据。
整个电动车辆的能量补充系统中,包含不止一辆电动车辆。每辆电动车辆上都安装上述客户端。每个电动车辆的客户端管理对应的电动车辆,相应的提供对应电动车辆的相关信息。从而,服务中心总体管理所有电动车辆的客户端提供的信息和数据。
服务提供商也可以在与用户签订服务协议后在车辆上安装客户端,用户界面72中显示的内容与客户端的程序对应。
参见附图4,服务中心接收电动车辆52的地理位置和电池状态信息,确定电动车辆能够行驶的最远里程,并将相应的信息提供给用户。车辆能够行驶的最远里程,也可以称为车辆的剩余里程可以显示在地图上。用户根据接收的信息,进一步根据预期行程,判断是否需要预约电池更换服务。也可以由服务中心做后台判断,当电池的状况符合特定条件的时候,判断电动车辆需要更换电池,服务中心向电动车辆的用户发送更换电池的提醒。电动车辆的用户收到换电提醒后,根据需要确认是否需要更换电池。如果用户确认需要更换电池,用户可以通过输入装置76向服务中心发送电池更换的要求。
具体的,服务中心可以进一步与用户确认具体的电池更换的时间和地点,确认的方式可以是通过用户界面72之间的信息沟通,也可以是电话确认等其他方式。服务中心确认用户的换电需求后,将电池更换的计划和指令发送给特定的电池更换设备。电池更换设备执行电池更换计划,移动至预定的地点为预定的电动车辆更换电池。
能量补充系统中的电动车辆,装备特定形式的电池模块。电动车辆上安装电池模块的结构适于电池更换设备从车辆的前、后或者侧面等不同方向将电池模块取出。电动车辆稳定停靠的情况下,无论电动车辆的前、后或者侧面任意一个方位上有约一个车位的空间,电池更换设备都能够为电动车辆进行电池更换。更换的过程中,电动车辆的地理位置信息不发生变化。即使电动车辆的用户不在场,也能够完成对电动车辆的电池更换,真正实现电动车辆的用户的无忧行驶体验。
本发明中涉及的电池,包括若干个电池模块,每个电池模块包括若干个电池单元。每个电池单元包括正负电极和位于正负电极之间的电解液。每个电池单元的额定电压基本相同。多个电池单元通过串并联的方式形成具体特定电压和电流的电池模块。电池单元可以是单个的18650电池,也可以是单个的板式电池,也可以是其他类型的电池单元。电池单元是可充电电池。可以是锂离子 电池、镍氢电池、铅酸蓄电池等。若干个电池单元组合在一起形成电池模块,每个电池模块有充放电控制组件监控电池单元的充放电情况,一旦其中的电池单元出现问题,控制组件的内部电路控制保护电池单元不会损坏或者影响其他电池单元充放电。
电池组件包括多个电池模块。
参见图5-7,电动车辆652上设置有电池模块654。电池模块654相对车辆主体652可拆换的连接。电动车辆包括至少两个电池模块,每个电池模块相对独立设置,能够可拆换的与车体连接。电池模块布置在车体底部,沿车体纵长延伸的方向依次设置。
附图5所示的一个具体的实施例中,电动车辆包括三个电池模块。三个电池模块分别为第一电池模块654a、第二电池模块654b和第三电池模块654c。三个电池模块沿车体纵长方向依次设置,从而,车体底部布置了电动车辆所需的所有电池模块。其中,第一电池模块654a和第二电池模块654b的形状相同,均为凸字形。第三电池模块654c的形状与第一电池模块654a和第二电池模块654b的形状不同,为长方形。第三电池模块654c位于第一电池模块654a和第二电池模块654b之间。作为补充的电池模块,第三电池模块设置于第一电池模块和第二电池模块之间。可以理解的是,第三电池模块的数量可以是一个或者多个。由于第三电池模块的设置位置位于车辆底盘中部,不受车轮位置的影响,因此,第三电池模块的形状可以是长方形或者正方形,易于作为标准化模块匹配不同类型的车辆。
附图6所示的另一个具体的实施例中,电动车辆包括第一电池模块654a和第二电池模块654b。两个电池模块形状相同,沿着电动车辆的纵长方向依次设置,分别布置于车体的前侧和后侧。更具体的,电池模块的形状为凸字形,避让开车轮所占空间的基础上,尽可能大的使用车辆底部的空间,确保电动车辆能够获得尽可能大的行驶里程。这个实施例中,电动车辆仅包括两个形状相同的电池模块,没有第三个电池模块。此时,电动车辆的行驶里程由两个电池模块确定。对于一些小型乘用车而言,两块电池模块已经能够满足行驶里程的需要。而两块电池模块从体积和重量上讲,适于电池更换设备进行快速更换。本领域技术人员应该知道,根据电动车辆的行驶里程的设计需要,电池模块的形状和数量可以有其他不同的组合。
附图7所示电池模块654a包括电池壳体655,收容于壳体655中的若干电池单元(图未示)。
电池模块包括锁定块658,用于与通过锁定和解锁系统将电池模块锁定在 车体上。一个具体的实施例中,锁定块658为伸出壳体设置的凸耳。
附图7中所示的电池模块的形状基本为凸字形。
电池模块654a具有长度为L1的第一安装侧,长度为L2的第二安装侧,第一安装侧和第二安装侧平行设置,且L1小于L2。第一安装侧的两边分别为内凹部分。两内凹部分形成了电池模块的两个肩部。可以理解的是,两个内凹部分可以半径为R的弧形,也可以是折线形,还可以是呈直角设置的台阶,只要电池模块安装在电动车辆上时,两内凹部分不会与车辆的车轮部分干涉即可。
为了能够将电池模块快速的安装至电动车辆上,或者快速的自电动车辆上拆卸下来,电池模块上设置有锁定块,用于与设置与电动车辆车体上的电池模块锁定/释放系统配合。图7所示的电池模块中,每个安装侧设置有两个锁定块658。第一安装侧上设置的两个锁定块之间的间距为L3,第二安装侧上设置的两个锁定块之间的间距为L4。其中,L3小于L4。第一、第二安装侧垂直于第三和第四安装侧。其中,第一安装侧与第二安装侧之间的距离为L6,第三和第四安装侧设置的两个锁定块之间的间距为L5,其中L5小于L6。
电池模块相对车体可拆换的连接。每个电池模块与车体通过单独的锁定系统固定。从而,每个电池模块的拆换不受其他电池模块的拆换的影响,电池模块的拆换过程简单方便。
电动车辆的车体包括用于收容电池模块的框架以及设置与框架上的锁定/解锁系统。
参见附图8,电动车辆上的电池收容框架结构示意图。电池收容框架包括纵长支撑杆804a和804b,横向支撑杆812a,812b,812c和812d,从而形成第一收容空间806,第二收容空间808和第三收容空间810。三个收容空间沿纵长方向依次设置,用于分别收容第一电池模块654a、第二电池模块654c和第三电池模块654b。纵长支撑杆和横向支撑杆上,设置有电池模块锁定/解锁系统726,用于将电池模块固定在电池收容框架上。电池收容框架包括与纵长支撑杆平行的纵短支撑杆802a,802b,802c和802d与横短支撑杆803a,803b,803c和803d共同形成台阶避开车轮所在位置。
【电池模块锁定/解锁系统的第一实施方式】
参见附图9,电池模块的锁定/解锁系统的第一个实施例中,锁定/解锁系统包括固定在框架上的进油管道、出油管道、与进油管道和出油管道连通的液压缸740,可在液压缸740内往复移动的活塞770,以及在液压系统驱动下移动的夹爪762。
夹爪762与液压缸740之间设有齿轮齿条机构,从而活塞770的往复运动 转化为夹爪762的枢转运动。齿轮齿条机构包括相对液压缸740固定设置的齿条742,设于夹爪一端的齿部772。夹爪762围绕枢轴744转动,从而使锁紧部处于不同的位置。
参见附图10,电池模块的锁定/解锁系统处于锁定状态,电池模块656被固定在电池收容框架上。活塞在液压缸内轴向移动,通过移动的齿条742驱动齿部772转动,使夹爪762移动。液压缸740两侧对称的设置两个夹爪762,每个夹爪762的其中一端都具有能够与齿条742啮合的齿部772。在齿条742的驱动下,其中一侧的齿部772顺时针转动,另一侧的齿部772逆时针转动,从而,对应的夹爪762a和762b相对靠拢,夹爪远离齿部的一端具有弯钩部738,弯钩部738收容于凸耳上的凹槽内,使电池模块654相对电池收容框架固定。
参见附图11,电池模块的锁定/解锁系统处于解锁状态,电池模块能够被从电池收容框架上拆卸下来。活塞沿着液压缸的轴向移动,通过移动的齿条742驱动齿部772转动,使夹爪762移动。在齿条742的驱动下,其中一侧的齿部772逆时针转动,另一侧的齿部772顺时针转动,从而,对应的夹爪762a和762b相对分离,夹爪762远离齿部772的一段具有弯钩部,弯钩部738自电池模块上的锁定块658的凹槽内脱开,是电池模块654处于能够被拆卸的状态。
电池模块的锁定/解锁系统采用液压锁定机构,电池模块能够获得较大的夹持力,以保证即使是在电动车辆运动的过程中,电池模块也能够处于稳定的状态。液压系统能够通过简单的结构提供稳定的夹持。
当然,可以理解的是,由于液压锁定机构中需要用液体提供驱动力,一旦出现进出油的管路中有油泄漏的情况,就会存在锁定机构不稳定的可能,夹爪对电池模块的夹持可能产生松动。为了避免这种情况的发生,可以在液压锁定机构上进一步增加保持机构,以防止产生因漏油而导致的锁定失效。
参见附图10和11,一个具体的实施例中,保持机构包括能够相对夹爪762转动的锁定臂748。锁定臂748可相对夹爪762处于不同的位置。当锁定臂748包括与液压缸740枢转连接的第一端和与第一端相对的自由端764。锁定臂748能够相对液压缸枢转,从而处于自由端764与夹爪抵靠面766相对靠近的第一位置和自由端764与夹爪抵靠面766相对远离的第二位置。锁定臂748处于第一位置时,能够将夹爪762保持在锁定状态,锁定臂748处于第二位置时,能够使夹爪762移动至解锁状态。
锁定臂748的枢转轴线与夹爪762的转动轴线平行设置。具体的实施例中,每个夹爪762都对应的设置有锁定臂748,用于使其保持在锁定位置。
为了能够让电池模块获得稳定的夹持,电池收容框架上设置有多个锁定单元726。锁定单元726的数量与电池模块上的锁定块658的数量相当。一个具体的实施例中,电动车辆652包括三个电池模块654,每个电池模块包括八个锁定块658,相应的,电池收容框架上设置有24个锁定单元。八个锁定单元构成一个电池模块锁定/解锁系统,单独对一个电池模块进行锁定和解锁。
参见附图12,对应于第一电池模块,锁定/解锁系统包括八个间隔设置的锁定单元726,其中,两个锁定单元设置于电池收容框架的其中一个纵长支撑杆804a上,两个锁定单元之间的间隔为L5,与纵长支撑杆平行设置的另一个纵长支撑杆804b上,也设置有两个间隔为L5的锁定单元。与纵长支撑杆垂直设置的两个横向支撑杆之间形成第一电池模块的收容空间806。其中一个横向支撑杆812d上,设置有间隔为L3的两个锁定单元,与其中一个横向支撑杆812d平行的另一个横向支撑杆812c上,设置有间隔为L4的两个锁定单元。锁定单元相对电池收容框架的纵长延伸轴线对称设置,从而与电池模块上的锁定块位置对应。当电池模块在更换过程中到达预定的安装位置时,锁定单元能够高效与锁定块对应,实现快速夹紧电池模块。每个锁定单元的夹爪张开后,能够预留出足够的空间收容锁定块,不需要特别高的精度也能够将电池模块夹紧定位。
参见附图13,第三电池模块654c的锁定/解锁系统包括的八个间隔设置的锁定单元726位于电池模块收容框架的中部,其中,设置与横向支撑杆上的锁定单元位于第一和第二电池模块的锁定/解锁系统中位于横向支撑杆上的锁定单元之间。两个锁定单元设置于电池收容框架的其中一个纵长支撑杆804a上,两个锁定单元之间的间隔为L7,另一个纵长支撑杆804b上,也设置有两个锁定单元,两锁定单元之间的间隔为L7。两个锁定单元位于横向支撑杆812c上,两锁定单元之间的间隔为L8,横向支撑杆812b与横向支撑杆812c平行设置,横向支撑杆812b上同样设置有两个锁定单元,且两锁定单元之间的间隔为L8。
参见附图14,对应于第二电池模块654b,锁定/解锁系统也包括八个间隔设置的锁定单元726。第一电池模块的锁定/解锁系统与第二电池模块的锁定/解锁系统相对第三电池模块对称设置。其中,两个锁定单元设置于电池收容框架的其中一个纵长支撑杆804a上,两个锁定单元之间的间隔为L5,与纵长支撑杆平行设置的另一个纵长支撑杆804b上,也设置有两个间隔为L5的锁定单元。与纵长支撑杆垂直设置的两个横向支撑杆之间形成第二电池模块的收容空间806。其中一个横向支撑杆812a上,设置有间隔为L3的两个锁定单元,与其中一个横向支撑杆812d平行的另一个横向支撑杆812b上,设置有间隔为 L4的两个锁定单元。
整个电动车辆的三个电池模块的锁定/解锁系统相对独立且空间上互不干涉。电池模块的布置合理,充分利用了电动车辆底盘部分的有效空间,既保证电池模块能够提供足够的有效容量,又能够以紧凑的结构实现对不同形状电池模块的锁紧固定。可以理解的是,锁定单元的数量和结构形式可以根据需要有不同的设计。
【电池模块锁定/解锁系统的第二实施方式】
参见附图15和16,电池模块锁定/解锁系统的第二实施例。本实施例中,电池收容框架上设置有能够枢转的锁定件670。电池收容框架上设有通孔688以及相对通孔688同轴设置的收容槽682,锁定件670包括转动臂和锁定部,可枢转的设置于收容槽内。转动臂通过转轴672与电池收容框架可相对转动。锁定部具有锁紧面678,用于与设置于电池收容框架上的抵接面680配接。
相应的,电池模块上设置有锁定块686,锁定块686能够沿着通孔688移动,从而使锁定件670转动。当锁定块686未进入通孔688时,锁定件670处于释放状态,锁定块686随着电池模块的位置移动进入通孔688中,锁定块686上的锥面674逐步推动锁定件670围绕转轴672转动,当锁定块686的圆柱部分与锁定件670接触时,锁定部的锁紧面678与抵接面680配接,从而将电池模块654相对电池收容框架固定,电池模块处于被锁定的状态。锁定块686自通孔688中反方向移出,锁定件670逐步由与锁定块686上的圆柱面配接转换为与锁定块686上的圆锥面674配接。锁定件670失去锁定块686的抵靠,从而自锁定状态转动至解锁状态,锁紧面678与抵接面680脱开啮合。
图示的具体实施例中,锁定件的数量为2个,相对通孔对称设置。可以理解的是,锁定件的数量还可以是3个或者更多,以便提供可靠的夹紧力。锁定件的转动轴线相对通孔垂直设置,也可以成其他角度。
【电池模块锁定解锁系统的第三实施方式】
参见附图17和18,电池模块锁定/解锁系统的第三实施例。本实施例中,锁定单元包括电机698以及由电机698驱动的锁定脚700。锁定脚700具有倾斜设置的锁定面693,电池模块690上相应的设置有倾斜的抵接面691,当锁定面693与抵接面691配接时,锁定脚700位于锁定状态;当锁定面693与抵接面691脱开配接时,锁定脚700处于解锁状态。具体的,电机698能够驱动锁定脚700转动预定的角度,使倾斜的锁定面693与抵接面691不再相对。电池模块收容框架上还开设有内锥面孔696,电池模块上相对应的设置有锥面凸块692。当锁定脚700处于与抵接面691相对的位置时,电池模块上的锥面 凸块的外部锥面694能够与内锥面孔的内部锥面696保持抵接,从而使电池模块保持在锁定状态。当锁定脚700转过预定的角度,与抵接面691不再相对时,外部锥面694不再与内部锥面696保持抵接,在重力的作用下,电池模块690与锥面凸块692一起朝远离电池模块收容框架的方向移动。锁定单元还包括为电机提供电能的电能提供单元。电能提供单元可以是蓄电池。由于锁定脚是由电机驱动的,而电机的启停能够通过无线方式控制,因此,在一种具体的实施方式中,外部解锁机构为无线控制电机的控制单元。控制单元包括无线发射单元,用于发射无线信号。对应的,锁定单元包括无线接收单元,用于接收无线信号。当无线发射单元发送的信号与接收单元内部预设的信号一致时,启动电机,驱动锁定脚转动预设角度。可以理解的是,电机698的转动方向可以包括正转和反转。正转时,驱动锁定脚沿着方向e转动,使锁定面与抵接面相对。反转时,驱动锁定脚衍射与方向e相反的方向转动,使锁定面与抵接面错开。由此,锁定单元既可以使电池模块锁定,也可以使电池模块释放。
【电池模块锁定/解锁系统的第四实施方式】
参见附图19和20,电池模块锁定/解锁系统的第四实施例。本实施例中,锁定单元包括电磁铁。电磁铁的铁心786作为锁定件轴向移动,与设置在电池模块上的凹槽788配接和脱开,从而实现对电池模块的锁定与解锁。具体的,当电磁铁的铁心786通电线圈780的作用下,由推杆784推动朝向凹槽788移动,使铁心端部786收容于凹槽788中时,电池模块782被锁定;当铁心786在通电线圈780作用下远离凹槽788移动,使铁心端部脱开凹槽788,电池模块782处于被释放的状态,在重力的作用下,电池模块782能够向下移动,自电池收容框架上拆卸下来。
另一个具体的实施例中,电池模块的数量是4个,分别设置于电动车辆靠近底盘的前后左右四个位置。其中,前部和后部各设置一个电池模块,这两个电池模块的形状和尺寸详单,从而保证电池模块的布置使得整个电动车辆的重心稳定。车体侧方沿图面中的上方和下方各设置一个电池模块,这两个电池模块的形状和尺寸相当。侧方设置的电池模块的形状和尺寸与前后方设置的电池模块的形状和尺寸可以一致,也可以不同。根据整个电动车辆的车体的总体尺寸,电池模块的形状和尺寸优选的适于使整个电池组件的容量足够大,从而电动车辆能够在一次充满电的条件下行驶足够长的距离。优选的,电池模块相对于电动车辆的地盘设置的位置确保每个电池模块都能够被以适当的方式从车体上拆卸下来,相对于车体移除,从而,在电池模块容量至少部分耗尽时,用充满电的电池模块替换,使电动车辆能够继续运行。
本领域技术人员可知,电池模块的数量可以不是4个,可以是一个或者多个。具体的,可以优选的设置为2个以上,这样,每个电池模块的尺寸和重量不会过大,电池更换设备拆卸和安装电池模块方便省力,电池更换设备的结构可以简单紧凑。
每个电池模块包括多个电池单元,电池单元包括正负电极和位于正负电极6之间的电解液。每个电池单元的额定电压基本相同。多个电池单元通过串并联的方式形成具体特定电压和电流的电池模块。电池单元可以是单个的18650电池,也可以是单个的21700电池,或者单个的板式电池以及其他类型的电池单元。电池单元是可充电电池。可以是锂离子电池、镍氢电池、铅酸蓄电池等。电池模块包括充放电控制组件监控电池单元的充放电情况,一旦其中的某个电池单元出现问题,控制组件的内部电路将保护电池单元不会损坏或者影响其他电池单元充放电。
锂电池的保护功能通常由保护电路板和PTC或TCO等电流器件协同完成,保护板是由电子电路组成保护板通常包括控制集成电路(IC)、MOS开关、热敏电阻、ID存储器,PCB等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电池电芯与外电路保持沟通,而当电池电压或回路电流超过规定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。
一种具体的实施例中,电动车辆上设置有换电钮,用于直接发送换电请求给服务中心。通过触发该换电钮,电动车辆的客户端发送换电请求信息给服务中心,服务中心接收到换电请求信息,核实电池更换设备状况,确认换电请求。电动车辆的客户端发送换电请求的同时,可以发送电动车辆的当前地理位置信息给服务中心,作为预约的更换电池的地点。服务中心发送换电指令给电池更换设备。服务中心确认换电请求可以通过反馈换电密钥实现。电动车辆的客户端接收到换电密钥,换电请求被确认。换电密钥也被发送给电池更换设备,作为电池更换设备识别电动车辆的标识。这个实施例中,用户不需要与服务中心进行复杂的沟通,只需要通过简单的触发一个换电钮就可以与服务中心达成一个换电协议。换电协议的建立简单方便,操作容易。对于服务中心而言,换电请求的接收和确认界面也相对简洁。当然,换电钮触发的换电请求信息也可以由用户设定,用户根据日常换电习惯,将换电钮对应的换电地点和换电时间设置为固定的时间点和固定的地点。比如,固定的时间为星期六中午12:00,固定的地点是某商业中心停车场。由此,电动车辆的用户与服务中心能够简单便捷的达成服务协议,服务中心也可以根据用户的行车习惯的数据,更准确的预测换电需求,储备适量的满电电池,避免能量浪费。
根据本发明,电动车辆的能量补充系统中的电池被系统的管理。为了保证电池的更换与维护安全有效,电动车辆使用的电池最好与服务提供商提供的电池规格一致。基于此,电动车辆的用户可以购买电池,也可以租用电池。当然租用是更好的选择,这样,对于用户来说,购买电动车辆的成本将大大降低。同时,减少了电池维护的风险。
电动车辆的电池可以通过设置在电动车辆上的充电接口与外部电源连接进行常规或者快速充电,也可以由换电机构通过换电接口更换。特定的换电接口设计确保电池的拆卸和安装方便。
【电池更换设备】
参见附图21-22,动力补充装置包括至少一个可移动的电池更换设备56。
根据一些具体的实施例,电池更换设备56能够从一个地点移动至另一个地点,为位于预定地点的电动车辆更换电池。可移动电池更换设备可以是一种车辆,具有动力装置和被动力装置驱动的车轮,也可以是其他能够移动的设备。
电池更换设备能够配备若干充满电的电池,用于为至少一辆电动车辆提供电池更换服务。电池更换设备将电动车辆上至少部分电量耗尽的电池取出,将充满电的电池更换至电动车辆上。
参见附图21,电池更换设备56具有第一收容空间78,用于收容充满电的电池。电池更换设备具有第二收容空间80,用于收容至少部分容量耗尽的电池。第一收容空间78和第二收容空间80可以设置为电池更换设备56的主体上的两个腔体,分别收容用于更换给电动车辆的充满电的电池和自电动车辆上更换下来的至少部分容量耗尽的电池。两个腔体分隔设置,电池的维护和更换容易,避免了充满电的电池与至少部分容量耗尽的电池混淆。当然,为了节省空间,可以将第一收容空间78和第二收容空间80整合为一个。进行电池更换时,从电动车辆上取下电量耗尽的电池,从第一收容空间78中取出充满电的电池,为电动车辆安装充满电的电池,再换下的电量耗尽的电池存放至第一空间78中原充满电的电池存放的空间内。由于整个动力补充系统中电池的结构形式基本一致,因此,电池占用的空间相当。按照这样的方式存放电池,电池更换设备的体积可以足够小,移动便捷。
电池更换设备56包括换电机构82。换电机构82用于将收容于第一收容空间78中的充满电的电池更换到电动车辆上。换电机构82还可用于将电动车辆上至少部分容量耗尽的电池从电动车辆上取出,进一步接收至第二收容空间80内。换电机构82可以设计为换电机械手。换电机构可以设置在第一收容空间78和第二收容空间80之间。第一收容空间78和第二收容空间80相对换电 机构82对称设置,这样,电池更换设备的重心相对平衡。特定的实施例中,电池更换设备的第一收容空间位于换电机构竖直方向的下方,第二收容空间位于换电机构竖直方向的上方。当然,本领域技术人员能够想到,第一收容空间和第二收容空间的设置位置还可以是其他的方式,比如相对换电机构左右对称,或者同时位于换电机构的一侧,但是所占空间尺寸相当。
参见图22,电池更换设备56包括定位系统84,用于确定电池更换设备的地理位置。同样的,电池更换设备也配备有导航系统,用于引导电池更换设备按照预定的行走路线移动,到达预定的地点,为预定的电动车辆提供更换电池的服务。
电池更换设备56上配备有客户端,用于接收服务提供商发出的指令,并与电动车辆建立联系。
客户端具有用户界面86。电池更换设备的用户界面同样包括显示装置86a和输入装置86b。显示装置86a用于显示电池更换设备的地理位置、需要更换电池的电动车辆的位置以及行驶至预定地点的路径等。输入装置86b用于确认接收服务提供商的换电计划、指令,也可以与电动车辆的用户确认服务地点和进行身份识别。
电池更换设备包括控制单元88,用于根据电动车辆的地理位置和电池的状况,控制电池更换设备移动至预定的地点为预定的车辆更换电池。电池更换设备具有通信接口90。通过通信接口90,接收电动车辆发送的车辆地理位置和电池状况的信息。通信接口90还进一步用于与电池供应站以及服务供应商之间通信。通信接口90包括设置于电池更换设备上的硬件和软件。服务提供商与电池更换设备之间通过通信网络建立联系。
电池更换设备56可以直接接收服务中心或者服务提供商发出的指令,按照预设的行走路径移动,为预定的电动车辆提供电池更换服务。也可以接收服务中心或者服务提供商发出的换电计划后,按照控制单元根据电动车辆的地理位置和电池状况规划的路径行驶。电池更换设备通过数据网络接收车辆的电池状况和车辆的地理位置信息。电池更换设备56可以与服务提供商保持相同的数据更新频率,以保证能够及时准确的确认自己和待更换电池的电动车辆的地理位置。
一些具体的实施例中,控制单元88接收表示电动车辆的地理位置和电池的状况的信息,并据此确定电池更换设备预设的行走路线。此时,控制单元88接收电动车辆发送的车辆的电池的状况,当电池的状况符合预设条件时,控制单元88向电动车辆发出信号,提醒电动车辆的用户需要进行电池更换。控制 单元88接收到电动车辆发送的电池更换信号,根据当前电池更换设备的地理位置和电动车辆的地理位置,提供最快捷的路线,引导电池更换设备按照设定的路线,移动至电动车辆所在的位置。
另一些具体的实施例中,控制单元88直接接收服务中心或者服务提供商发送的指令,控制电池更换设备56按照预定的行走路线移动,并为位于行走路线上的预定的电动车辆提供电池更换服务。预定的电动车辆可以是一辆,也可以是多辆。电池更换设备的行走路线由服务提供商直接提供,控制单元并不需要基于电动车辆的地理位置信息设定电池更换设备的行走路线。
电池更换设备56上的定位系统84包括包括初步定位子系统92和精确定位子系统94。初步定位子系统92可以是GPS定位系统,GPS民用系统的误差范围在20米左右。因此,通过初步定位子系统92,可以将电动车辆的位置锁定在一个大致的范围内。但是,为了能够为电动车辆进行电池更换,需要更准确的确定电动车辆和电池更换设备之间的相对位置,保证电池更换设备能够找到正确的电动车辆,并且获得电动车辆的电池的具体位置信息。精确定位子系统94包括设置于电池更换设备上的精确定位模块96,用于在初步定位子系统确定预定电动车辆的大致范围后启动。此时,初步定位子系统已经判断预定的电动车辆在电池更换设备的邻近的范围内。精确定位模块96发出精确定位信号,以确定预定的电动车辆的具体的地理位置。精确定位模块96的定位精度可以达到1米以内。电动车辆上也包括对应的精确定位单元98,精确定位模块96接收电动车辆的精确定位单元98发送的特定信号,当特定信号与精确定位模块96中预先设置的识别信号匹配时,电池更换设备的控制单元88确认找到预定的电动车辆。电池更换设备的控制单元88发出特定的讯号,表示确认预定的电动车辆。特定的讯号可以是“嘀嘀”的声音,也可以是闪烁的光等等。当然,可以理解的是,电池更换设备可以在操作者的操作下移动,当电池更换设备到达特定范围时,操作者可以通过识别电动车辆的车牌号来识别需要更换电池的特定电动车辆及其具体位置。
另一种具体的实施例中,电池更换设备发送特定的通信信号,电池更换设备与电动车辆临近时,电动车辆上的精确定位单元98接收信号,精确定位单元98中预先设置的信号与特定的通信信号匹配时,电动车辆的主控单元68发出特定的讯号做出确认响应。同样的,特定的讯号可以是电动车辆的车灯闪烁或者是发出“嘀嘀”的声音。
电动车辆向服务中心或服务提供商发出电池更换的请求,服务提供商可以由计算机系统为预定的电动车辆分配一个特定的密钥,在特定的时间段内,该 密钥有效。
电池更换设备包括存储单元,存储服务中心分配的密钥。电池更换设备还包括识别单元,用于识别预定的电动车辆的密钥是否与存储单元中的密钥相匹配。存储单元中存储的密钥可能有多个,分别对应于不同的电动车辆的换电请求。识别单元接收电动车辆的密钥,并与存储单元中的密钥比较,当电动车辆的密钥与存储单元中的密钥之一匹配时,确认识别预定的电动车辆。
电池更换设备与预定的电动车辆的密钥匹配,才能够为电动车辆进行电池的更换。电池更换完毕后或者特定时间段之后,密钥自动失效。密钥用于使电池模块与电动车辆车体之间的连接处于可解锁状态。换电机构82仅能够在密钥有效期内将需要替换的电池模块取出。特定的时间段可以根据电池更换的时间设定。电池更换设备56为电动车辆进行一次电池更换所需的时间为T,那么特定的时间段应大于T。优选的,特定的时间段可以小于2T。
密钥基于计算机系统确认预定电动车辆的换电需求生成。密钥生成之后,密钥的有效期并不一定直接开始计算。可以在电池更换确认识别预定车辆后,密钥开始启动,密钥一旦启动,电池更换设备56要在密钥的有效期间内完成电池的更换,否则,密钥时效。电动车辆的用户可以手动接开启电池防盗锁,或者电池更换设备向计算机系统重新申请密钥以便再次为预定的电动车辆更换电池。
另一种实例中,密钥自计算机系统确认换电需求时生成并启动,电池更换设备要在密钥有效期内移动至预定的地点,确认预定的车辆,并相应的完成电池更换。此时,密钥的有效期显然要远大于电池更换设备为电动车辆进行一次电池更换所需的时间,还应包含电池更换设备的移动时间和电池更换设备与电动车辆进行身份识别的时间。
密钥可以至少部分解除电池与电动车辆车体之间的锁定。进一步解除电池模块与车体之间的机械锁,电动车辆的电池才能够完全处于能够被拆卸的状态。
具体的,电池更换设备发送密钥给电动车辆,电动车辆中的密钥与电池更换设备发送的密钥匹配,发送确认信号,从而触发电池更换系统的启动开关,使电动车辆处于电池可更换模式。启动开关触发后,电池更换系统中的动力单元开始运转,驱动电池与车体之间的解锁机构作用。
电池与车体之间还设置有机械锁扣,进一步解除电池与车体之间的机械锁,电动车辆的电池才完全处于能够被拆卸的状态。
当然,密钥也可以直接用于电动车辆和电池更换设备之间的身份识别,电动车辆的密钥与电池更换设备的预设密钥匹配时,电池更换设备将电动车辆识 别为预定的车辆。
具体的,电池更换设备和电动车辆通过共用密钥方式交换数据。在数据的处理中使用同一内容的密钥信息。以通信系统发送信息为例进行说明。电池更换设备获得密钥信息MM-1H。电动车辆获得密钥信息MM-1C。由于电池更换设备的密钥信息和电动车辆的密钥信息共同包含“1”的数据,当电池更换设备发送密钥信息给电动车辆时,电动车辆识别到相同的数据信息,判断身份识别成功,启动电池更换系统的开关,从而电动车辆处于电池可以更换的模式。
对应于密钥的存储和识别,电动车辆和电池更换设备上分别设有密钥存储部分和密钥识别部分。电动车辆的通信单元接收电池更换设备发送的电子密钥,当接收的电子密钥的代码与存储部分存储的密钥代码匹配对应时,判断接收的密钥的有效密钥。相应的,识别发送相应电子密钥的电池更换设备为预定的电池更换设备。识别的结果可以进一步的发送至电动车辆的电池锁定单元,用于解除电池锁定单元,使电池处于可更换状态。此时,可以进一步的将识别结果通过无线的方式发送给电动车辆用户的移动通信设备,以提醒电动车辆的用户,电动车辆处于电池可更换的状态。如果用户并没有更换电池的预约,用户可以判断是否通过远程发送锁定指令,锁定电池锁定单元,使电池处于不可更换的状态。
电池更换设备包括通信模块,能够与电动车辆、服务中心和电池供应站至少其中之一通信。
作为电动车辆能量补充系统中的一个重要单元,电池更换设备与电动车辆通信,获取电动车辆的位置信息,与电动车辆相互识别身份,为电动车辆提供电池更换相关数据等。
电池更换设备与服务中心通信,能够获取换电计划和确认换电计划的完成情况。换电计划包括需要换电的电动车辆的相关信息,包括但不仅限于电动车辆的位置、电池状况、不同电动车辆的换电顺序以及对应的换电密钥等。服务中心传送信息给电池更换设备,电池更换设备接收相关信息,并根据相关信息为不同的电动车辆更换电池。完成换电后,电池更换设备发送相关信息给服务中心,确认换电计划完成。
电池更换设备与电池供应站通信,能够获取电池供应站的地理位置信息和电池储备情况。电池更换设备也可以将自身的电池储备情况发送给电池供应站,以便电池供应站制定合理的充电计划,保证电池更换设备能够及时获取满电电池补充,为电动车辆更换电池。电池更换设备需要补充满电电池储备时,将需求发送给电池供应站,电池供应站可以预先备好满电电池,待电池更换设备移 动至电池供应站后,将预先备好的满电电池装载至电池更换设备上。
通过与电动车辆、服务中心以及电池供应站相互通信,电池更换设备能够及时准确的为电动车辆更换电池。
电池更换设备能够远距离移动,因其移动灵活、通信便捷,能够在电动车辆移动或者电动车辆的用户不在车内的情况下,及时方便的为电动车辆提供换电服务。
【电池更换设备的第一实施例】
参见附图23~30,电池更换设备的一个具体的实施例中,电池更换设备856包括运输车857和换电小车系统858。
电池更换设备包括运输车,安装在运输车857的一个侧面的移送部件860用于移送电池模块。其中,运输车包括驾驶室、车身、支撑车身和驾驶室的车轮、以及驱动车轮以带动车身移动的动力装置。由于动力装置的存在,电池更换设备可远距离移动,为电池车辆更换电池。车身进一步包括第一容腔和第二容腔。第一容腔放置从电动车辆上拆下的旧电池,第二容腔放置可装入电动车辆以为其提供进一步续航能力的新电池。电池更换设备的移送部件860包括桁车864和电池模块移动臂862。通过移送部件将第二容腔的新电池移出。换电池车还可以通过移送部件将旧电池移送到第一容腔。
运输车857包括通信装置,用于与服务中心通信,获取换电指令信息。运输车具有电池收容空间,用于收容电池模块。电池模块包括被更换下来的至少部分容量耗尽的电池模块(旧电池),也可以包括用于更换至电动车辆上的容量基本达到额定容量的电池模块(新电池)。新旧电池模块的收容根据需要分区放置,也可以在同一区域放置,但是采用其他的方式识别电池类型。
运输车上设有桁车860和电池模块移动臂862。电池模块移动臂能够将电池模块自运输车上的收容空间移送至换电小车系统,也可以将换电小车系统中的电池模块移送至运输车上的收容空间中。换电小车系统858收容于运输车857中。
换电小车系统858包括用于侧面抬升电动车辆的电动千斤顶710和用于更换电池的换电叉车720。
电动千斤顶710包括提供动力的直流电动机。电动千斤顶还包括为直流电动机提供能量的直流电源。直流电源可以为电池包或者蓄电池。电池包的电压为12v、18v、36v、48v、56v、80v或120v。
参见附图24-27,电动千斤顶710的结构示意图。
电动千斤顶710包括主体712、相对主体横向伸出的举升臂714以及与举 升臂同向伸出的支撑座717。举升臂714与支撑座717相对主体712沿同侧伸出,从而,千斤顶710在竖直方向升起和落下的过程中,重心位于待举升的车轮一侧,千斤顶能够稳定的支撑车轮和电动车辆的车体。
举升臂714包括两个相对设置的夹持臂714a和714b,两个夹持臂相互间隔设置,从而从侧面托住车轮,并在主体驱动机构的作用下竖直方向举升车轮。举升臂714相对主体横向伸出,操作者可以自车轮的侧面放置千斤顶,而且,千斤顶的举升臂不需要插入车轮的下方就可以将车轮举起,安放和操作的过程简单易行。两夹持臂分别具有内凹的弧形面,相对设置形成托举空间。两弧形面适于抵接车轮的圆周轮廓。两夹持臂通过连接件与举升机构相连。具体的,连接件包括连接两夹持臂的连接板以及相对连接板垂直延伸的延伸臂715,延伸臂715呈L型,其中一侧与举升机构连接,连接板与延伸臂的一侧平行设置。举升机构至少部分位于延伸臂的一侧与连接板之间形成的空间中。
主体包括举升机构866。举升机构与举升臂714相连,用于带动举升臂竖直移动。举升机构为剪叉式结构,包括对称设置的四个枢转臂719a,719b,719c和719d。举升机构还包括驱动枢转臂运动的驱动机构。驱动机构通过电动机718驱动。具体的,驱动机构包括可以左旋或者右旋的丝杠716。驱动机构与枢转臂之间通过连接件750连接。电能供给装置为电动机提供电能。电能供给装置可以是可充电电池包,也可以是其他能够提供电能的装置,比如蓄电池等。电动千斤顶启动,控制电动机运转,使电动机带动丝杠左旋或者右旋,从而驱动举升机构运动。举升臂在举升机构的带动下移动至预定位置,从而将电动车辆的一侧抬升起预定的高度,以确保电动叉车至少部分能够自电动车辆的一侧进入电动车辆的下方。
支撑座717与主体712相连,包括连接主体的连接部和自连接部朝向一侧延伸的支撑脚717a和717b。支撑脚有两个,相对设置,从而支撑座基本呈U型结构。支撑座与举升臂均为U型结构,从而,电动千斤顶能够自车轮的侧面夹持车轮。车轮具有圆周轮廓,支撑座的两个支撑脚间隔设置,两个支撑脚之间的间隔大于车轮的圆周轮廓与地面接触的部分的尺寸,从而支撑脚在放置在车轮侧面时,不需要对车轮进行额外的抬升。举升臂714的两个夹持臂同样间隔设置,两个夹持臂714a和714b之间的间隔同样大于车轮的圆周轮廓与地面接触的部分的尺寸,以方便的从车轮侧面夹持车轮。更优选的,两个夹持臂之间的间隔小于两个支撑脚之间的间隔,从而为车轮提供稳定的支撑。
电动千斤顶能够处于举升状态和非举升状态。
参见附图25和26,四个枢转臂为第一枢转臂719a、第二枢转臂719b、 第三枢转臂719c和第四枢转臂719d。其中,第一枢转臂719a和第二枢转臂719b之间形成第一夹角,第二枢转臂与第三枢转臂之间形成第二夹角。第一夹角与第二夹角之和为180度。
电动千斤顶处于非举升状态时,第一夹角的角度为A1,第二夹角的角度为B1。电动千斤顶处于举升状态时,第一夹角的角度为A2,第二夹角的角度为B2。A2大于A1,B2小于B1。
换电小车系统还包括用于解除锁定/释放系统对电池模块的锁定的外部解锁机构721。
一个具体的实施例中,外部解锁机构为电动液压站。
电动液压站相对换电叉车独立设置。电动液压站包括液压泵、用于驱动液压泵的电动机、油箱以及与油箱连接的油管,油管可选择的与设置于车架上的电池模块的锁定机构连接,从而解除锁定机构对电池模块的锁定。外部解锁机构通过油管连接液压锁定机构,活塞移动,使夹爪移动至与电池模块的锁定块脱开啮合的位置,此时,电池模块的锁定被解除,电池模块能够相对车体移除。
通常情况下,电池模块被锁定在车架上。当电池模块需要被拆卸下来进行更换时,外部解锁机构将与锁定/释放系统连接,使电池模块能够从锁定的状态转换为能够被更换的解锁状态。
外部解锁机构根据锁定/释放系统的设计有不同的设计。比如,当电池模块被通过液压锁定机构锁定时,解除锁定的外部解锁机构是液压站,为液压锁定机构提供油路的连通,使液压锁打开。当电池模块被通过其他类型的锁定机构锁定时,解除锁定的外部解锁机构则可以是无线控制单元,通过发送无线控制信号给电动车辆上的锁定/释放系统,控制锁定/释放系统转换工作状态。可以理解的是,本领域技术人员还可以采用其他的结构方式外部解锁机构。
为了使电池模块能够被锁定,并且在锁定位置时,防止电池模块在受力的情况下发生移动,采用液压锁紧回路。锁紧的原理是将执行元件的进、回油路封闭。
换电叉车720包括车架752、支撑车架移动的车轮758、设于车架上的举升机构760以及设于举升机构760上的电池模块托盘728。
换电叉车720可以是自移动的叉车,也可以是带有移动推杆的半自动式叉车。参见附图28-30,一个换电叉车的具体实施例中,换电叉车为半自动式叉车,叉车的包括与车架752相连的推杆729。推杆729与车架752可转动的连接。具体的,推杆729能够相对车架围绕转手756转动。
举升机构760包括至少三个举升单元,举升单元能够相对车架竖直方向移动,从而调整电池模块托盘的位置。一个具体的实施例中,举升机构包括四个 举升单元760a,760b,760c和760d。四个举升单元相对托架750对称设置。
电池模块托盘728能够在举升机构760的作用下相对车架倾斜预定的角度。
换电叉车720还包括为车轮的移动提供能源的能量单元和连接车轮的驱动机构。能量单元为电池组。驱动机构包括电动机和连接电动机与车轮的传动机构。能量单元可拆卸的收容于车架中。车轮758为万向轮。
换电叉车720还包括能够相对车架转动的转台762。
换电叉车720还包括设置于举升机构与电池模块托盘之间的压力传感器。
换电叉车的高度小于500mm。
换电叉车具有收容状态和为电动车辆更换电池的工作状态,收容状态下,所述叉车的整体高度不大于500mm。
电动叉车包括控制单元。控制单元用于控制移动、举升、转动。压力传感器检测举升机构与电池模块托盘之间的压力,当压力达到预设条件时,判断电池模块落入电池模块托盘中。传递检测结果给控制单元,控制单元根据检测结果控制举升机构移动。
参见附图31-40,电池更换设备为电动车辆自车辆左侧更换电池模块的示意图。
操作者自运输车上取下电动千斤顶710。两个千斤顶710a和710b分别被自车轮656a和656b的侧面夹持车辆。启动千斤顶,举升电动车辆一侧。具体的,电动千斤顶710a和710b将电动车辆左侧抬升预定高度。预定高度为50~300mm。一个具体的实施方式中,电动车辆的左侧相对抬升200mm。电动车辆的车轮656a和656b与举升臂714接触,电动车辆的另外两个车轮656c和656d保持与地面的接触。由此,电动车辆被相对倾斜抬升一个预定的角度。具体的,该预定的角度可以在1~7度。本实施例中,预定的角度为5度。
换电叉车720自电动车辆的一侧B向车辆靠近。操作者可以握持把手725,用推杆729推动装载在叉车上的第一电池模块654a相对移动。电池模块能够自电动车辆左侧进入电动车辆下方。进入车辆下方后,通过对准定位装置的作用,手推叉车水平方向移动,使电池模块到达安装位置。启动举升机构,调整电池模块竖直方向的相对位置,是锁定块658与锁定单元726位置基本对应。第一电池模块在托盘的托举下进入安装位置,锁定单元进入锁定状态。
换电叉车720进一步装载第三电池模块654c进入车辆下方,只需要水平方向对准第三电池模块锁定/解锁系统,第三电池模块就能够被顺利的移入和安装至锁定位置。
换电叉车720进一步装载第二电池模块654b进入车辆下方,第二电池模块654b需要转动180度,方可进入安装位置。
三个电池模块均被安装至电池收容框架内后,操作者可以控制电动千斤顶自举升位置回复至未举升位置,使电动车辆回复至四个车轮均接触地面的状态。
参见附图41-52,电池更换设备为电动车辆自车辆前侧更换电池模块的示意图。
电动千斤顶将电动车辆前侧抬升预定高度。预定高度为50~300mm。一个具体的实施方式中,电动车辆的前侧相对抬升200mm。电动车辆的车轮656a和656c与举升臂714接触,电动车辆的另外两个车轮656b和656d保持与地面的接触。电动车辆前侧被抬升预定的角度,该角度大致为1~7度,本实施例中,该角度为4度。
换电叉车720自电动车辆的一侧C向电动车辆靠近。
换电叉车装载第一电池模块654a向电动车辆移动。第一电池模块654a被换电叉车720移送至电动车辆下方。
第一电池模块654a在换电叉车720的转盘转动下,转动一定的角度,到达安装位置。电池模块托盘728移动,使电池模块的锁定块658移入夹爪738之间。具体转动的角度是90度。当然,由于电池模块在进入电动车辆下方时,相对电动车辆底盘基准线的位置不一定正好平行,因此,转盘转动的角度可能因为电池进入的角度不同而不同。优选的实施方式中,锁定/解锁系统包括定位探测装置,在确认电池模块确实到达安装位置时,转盘停止转动。启动锁定/解锁系统,使夹爪移动至与锁定块上的凹槽配合的位置,电池模块固定在电池收容框架上。
换电叉车720进一步装载第三电池模块654c向电动车辆移动。第三电池模块被换电叉车720移送至电动车辆下方。与自电动车辆左侧移送至电动车辆下方不同的,电池模块进入车辆下方后转动的角度不再是180度,而是约为90度。
换电叉车720进一步装载第二电池模块654b向电动车辆移动。第二电池模块被移送至电动车辆的下方后同样需要转动90度方可到达安装位置。
可以理解的是,换电叉车720可以自电动车辆的右侧A或者后侧D进行电池更换。自电动车辆的右侧A更换电池的流程与自电动车辆的左侧B更换电池的流程类似,不同的是,电动千斤顶举升的车轮为车轮656c和656d。自电动车辆的后侧D更换电池的流程与自电动车辆的前侧A更换电池的流程类似,不同的是,电动千斤顶举升的车轮为656b和656d。另外,由于电动车辆前侧的 车体长度比后侧车体的长度略长,因此,自电动车辆前侧进入车辆下方进行换电的叉车的水平方向移动距离会有不同。
【电池更换设备的第二实施例】
如图53所示,电池更换设备56包括移送系统1a、定位系统1b、以及更换系统1c。电动车辆20包括电池组20a,安装电池组20a的电池舱20c、将电池组20a锁紧在电池舱20c内的电池组锁紧装置及电池舱门20d、以及与换电池装置的定位系统配合的第一辅助定位系统20b。电池储存架30用于存放充满电的电池组20a或者用于接收从电动车辆上更换下来的至少部分容量损失的电池组,其上设置有与换电池装置1的定位系统1b配合的第二辅助定位系统30a。第一辅助定位系统20b和第二辅助定位系统30a能辅助定位系统1b分别相对电动车辆20及电池储存架30进行准确定位。电池储存架30独立于电动车辆20及换电池装置1设置,即电池储存架30相对于电动车辆20及换电池装置1是一个独立的装置,使得电池储存架30空间充足,保证电池储存架30的储存容量。
在定位系统1b和第一辅助定位系统20b的共同作用下,移送系统1a将更换系统1c移送到图53所示的第一预设位置,使得更换系统1c达到电动车辆20的电池舱门20d的位置。更换系统1c打开电动车辆20上的电池舱门20d,取下舱门内的电池组20a。随后,在定位系统1b和第二辅助定位系统30a的共同作用下,移送系统1a将电池更换设备56移送到如图53所示的第二预设位置,使得更换系统1c达到电池储存架30的位置。更换系统1c放下从电动车辆20中取出的旧电池组20a,并从电池存储架30中取出新电池组20a。在定位系统1b和第一辅助定位系统20b的共同作用下,移送系统1a将更换系统1c移送到第一预设位置,使得更换系统1c达到电动车辆20的电池舱门20d的位置。更换系统1c将新电池组20a装入到电池舱门20d中。随后,更换系统1c关闭电动车辆20上的电池舱门20d。从而完成对电动车辆20的电池组20a的更换。
可选的,电动车辆20内设置开启装置,由开启装置打开或关闭电池舱门20d。
如图54所示为电池组20a在电池舱20c内的布局。电池组20a包括多块电池,多块电池分布在电池舱20c内的不同位置。此种电池组结构使得,电池更换设备56需要进行相应的特殊设计才能达到最佳的换电池效果,特别是电池更换设备56的定位精度及换电池的效率。本实施方式中,电池的数量为4块,分别为电池A、电池B、电池C以及电池D。其中电池C、D相邻设置, 电池A、B间隔设置。
以下对电池更换设备56相对电动车辆20的定位及移送过程进行详细介绍。换电池装置1相对电池储存架30的定位及移送过程参考相对电动车辆20的定位及移送过程,不再赘述。
一、移送+定位
在定位系统和第一辅助定位系统的共同作用下,移送系统将更换系统移送到第一预设位置。为实现此目标,定位系统及移送系统可以通过全自动的方式或半自动的方式将更换系统移送到第一预设位置。
无论在全自动方式下还是在半自动方式下,移送系统均可以通过水平运动、竖直运动将更换系统送达第一预设位置,还可以通过水平运动、竖直运动、以及转动将更换系统送达预设位置。其中水平运动可以为分别沿X方向和Y方向的直线运动,还可以为水平面内的曲线运动。
全自动方式下,移送系统完全依赖定位系统的引导。半自动方式下,移送系统一部分依赖定位系统的引导,另一部分依赖操作者的引导。
全自动方式下,定位系统包括设置在移送系统上的位置探测部件。第一辅助定位系统包括设置在电动车辆上的位置感应部件。位置感应部件设置在电池舱门上。当移送系统将更换系统送达电池舱门的位置时,定位系统上的位置探测部件感应到第一辅助定位系统的位置感应部件,从而确认移送系统已将更换系统移送到第一预设位置。实现在定位系统和第一辅助定位系统的共同的引导下,移送系统全自动地将更换系统送达预设位置。
在第一种半自动方式下,定位系统包括设置在更换系统上的视频采集装置,第一辅助定位系统包括操作者远程或近程可视的操作界面。视频采集装置采集其位置周围的视频图像。操作界面接收并显示视频采集装置采集的图像。操作者根据操作界面当前的图像信息,由操作界面输入相应的运动指令发送给移送系统。移送系统在操作者输入的运动指令的控制下,将更换系统移送到预设位置。
在第二种半自动方式下,定位系统包括设置在移送系统上的位置探测部件,第一辅助定位系统包括设置在电动车辆上的卡位装置,以及设置在电池舱门上的位置感应部件。在将移送系统与电动车辆上的卡位装置对接之前的运动,由操作者手动控制。当移送系统与电动车辆上的卡位装置对接后,移送系统在位置探测部件和位置感应部件的共同引导下通过水平运动、和/或竖直运动、和/或转动将更换系统送达预设位置。
在上述通过位置探测部件、位置感应部件、视频采集装置进行定位的过程 中,可能会发生传感装置因受到污染而降低传感精度的问题。因此,电池更换设备56上可增加辅助清洗装置,以对传感装置进行清洗,从而保证传感装置的传感精度。由此提高定位系统的定位精度。
以下结合图55至58揭示全自动方式将电池更换系统移送到第一预设位置的实施方式。
电池更换设备56包括移送系统、定位系统、更换系统。如图55所示,移送系统包括主体3和行走装置5。行走装置5设置在主体3的下方,支撑主体3移动。本实施方式及以下具体的实施方式中,更换系统即为更换部件9,更换部件9用于拆装电池,以将电池从电池舱门中拆下并拉出或向电池舱门中推入并安装电池。更换部件9可选择地自主体3伸出。电池更换设备56的定位系统除包含传感装置以外,还进一步包括支撑装置11。支撑装置11设置在更换部件9的下方,沿竖直方向支撑更换部件9。由此带来的有益效果是,更换部件9在承载电池的过程中,不会因为电池的重力作用而导致更换部件9的位置在竖直方向上发生偏移,从而提高更换部件9的定位精度。
为减小支撑装置11与地面的摩擦,支撑装置11与地面为滚动接触。优选的,支撑装置11包括轮子11a,通过轮子11a与地面接触。
可选的,移送系统进一步包括设置在主体3与更换部件9之间的伸缩装置7。伸缩装置7可相对主体3伸出或收回。伸缩装置7可以为套筒结构,或者为油缸曲柄结构,或者钢丝绳联动伸缩结构等。移送系统还进一步包括动力装置,动力装置可以设置在体3中,或设置在支撑装置11中。伸缩装置7可由设置在主体3中的动力装置驱动而进行伸缩,也可由设置在支撑装置11 中的动力装置带动其进行伸缩。
伸缩装置7以套筒结构为例进行说明。当伸缩装置7由设置在主体3中的动力装置驱动而进行伸缩时,伸缩装置7可以为多级液压缸的结构,主体3中的动力装置包括马达,由马达驱动的液压泵,由液压泵驱动的液压油,以及各类液压阀。在阀门和液压泵的共同作用下,多级液压缸被逐级伸出或逐级收回,从而实现伸缩装置7的伸出或收回。当伸缩装置7由设置在支撑装置11中的动力装置带动其进行伸缩时,伸缩装置7为多级中空套筒结构,支撑装置11中的动力装置包括马达,支撑装置11下方的轮子,以及马达与轮子之间的传动机构。马达通过传动机构驱动轮子行走,从而带动多级套筒逐级伸出或收回,从而实现伸缩装置7的伸出或收回。
更换部件9还可以通过其他方式从主体3中伸出,如在主体3的一侧设置长度固定的悬臂。悬臂上设置导轨,更换部件9上设置滑轮。更换部件9沿悬 臂上的导轨滑动,从而实现将更换部件9伸出主体3或收回到主体3中。
基于主体3的结构,更换部件9收回时,更换部件9存在不同的收回状态。第一种可能收回状态为,更换部件9完全收容于主体3中。第二种可能收回状态为,更换部件9恰好完全置于主体3之外,即主体3朝向更换部件9的侧面与更换部件9朝向主体3的侧面恰好相互贴合。
在如图56所示的实施方式中,主体3通过伸缩装置7从其一侧水平伸出更换部件9,更换部件9包括两个更换组件,分别为第一更换组件91和第二更换组件93。第一更换组件91和第二更换组件93的结构相同,分别用于拆装不同的电池,以将电池从电池舱门中拆下并拉出或向电池舱门中推入并安装电池。可选的,更换部件9可以包括三个或更多个更换组件。更换部件9包括两个以上更换组件的优势在于,实现一次定位,更换多块电池,从而提高电池更换设备56的工作效率。
如图56所示,更换部件9包括第一更换组件91和第二更换组件93。伸缩装置7包括从主体3的一侧水平伸出的第一伸缩臂71,设置在第一伸缩臂71末端的收容装置77,以及从收容装置77伸出的第二伸缩臂73及第三伸缩臂75。第一更换组件91设置在第二伸缩臂73的末端。第二更换组件93设置在第三伸缩臂75的末端。第一伸缩臂71的伸缩带动所述收容装置77相对主体3伸出或收回。第二伸缩臂73和第三伸缩臂75的伸缩方向可以相同,也可以不同。本实施方式中,第二伸缩臂73和第三伸缩臂75的伸缩方向不相同。
可选的,第二伸缩臂73与第三伸缩臂75沿相反的方向伸缩,从而可实现一次定位取出图54所示电动车辆上的电池A和电池B。
可选的,收容装置77下方也设置支撑装置11,从而提高定位系统的定位精度。
在如图57所示的实施方式中,主体3通过伸缩装置7从两侧水平伸出更换部件9。其收回状态可参考在图55所示实施方式中的描述。图56所示的实施方式中,更换部件9包括第一更换组件91、第二更换组件93和第三更换组件95。伸缩装置7设置在主体3与更换部件9之间。伸缩装置7包括从主体3的第一侧伸出的第一伸缩臂71,设置在第一伸缩臂71末端的收容装置77,以及从收容装置77伸出的第二伸缩臂73及第三伸缩臂75。第一更换组件91设置在第二伸缩臂73的末端。第二更换组件93设置在第三伸缩臂75的末端。伸缩装置7还包括从主体3的第二侧伸出的第四伸缩臂79。第三更换组件95设 置在第四伸缩臂79的末端。可选的,第二伸缩臂73与第三伸缩臂75沿相反的方向伸出。位于主体3的第一侧的更换组件可实现一次定位后,一次性取出图54所示电动车辆上的电池A和电池B。位于主体3的第二侧的更换组件可实现一次定位后,分两次取出图54所示电动车辆上的电池C和电池D。在主体3的两侧分别设置不同位置上的更换组件,使得不同侧的更换组件适应于拆装不同结构布局的电池,提高电池的拆装效率及电池更换设备56的利用率。
可选的,收容装置77下方也设置支撑装置11,从而提高定位系统的定位精度。
在图58所示的实施方式中,主体3通过伸缩装置7从两侧水平伸出更换部件9。本实施方式中,更换部件9仅包括两个更换组件,两个更换组件分别通过两个伸缩臂从主体3的两个不同侧面伸出。在其他可选的实施方式中,更换部件9可包括更多个更换组件。每个更换组件通过伸缩臂自主体3的相同侧面或不同侧面伸出。也就是说,至少两个更换组件可选择地自所述主体3的同一侧伸出,或者自主体3的至少两侧伸出,且主体3的至少两侧分别伸出至少一个更换组件。
在图56至58所示的实施方式中,更换部件9包括至少两个更换组件,通过一次定位即可实现更换至少两个电池,从而可有效提高电池更换设备56的工作效率。更换部件9及收容装置77的下方可以设置支撑装置11,也可以不设置支撑装置11。或者仅在更换部件9下方设置支撑装置11,在收容装置77下方不设置支撑装置11。或者或者仅在收容装置77下方设置支撑装置11,在更换部件9下方不设置支撑装置11。
更换部件9也可自主体3的竖直方向伸出。竖直方向伸出时,伸缩装置7的结构同水平伸出时的结构。当伸缩装置7自主体3的竖直方向伸出时,更换部件9水平面的移送由行走装置5完成,竖直方向的移送由伸缩装置7完成。
更换部件9包括至少两个更换组件。该至少两个更换组件分别拆装不同的电池。该至少两个更换组件可以自主体3的同一侧伸出,也可以自主体3的至少两侧伸出。该至少两侧分别伸出至少一个更换组件。优选的,该至少两个更换组件分别沿不同的方向伸出主体3。更换部件9可通过伸缩装置7伸出主体3,也可通过如图53所示的实施方式所述的其他形式伸出主体3。
在前述更换部件9沿水平方向伸出的实施方式中,优选的,更换组件本身 可升降,从而实现更换组件在竖直方向与电池舱门的平齐。相对通过伸缩装置7整体进行升降实现更换组件在竖直方向与电池舱门平齐的方案,简化了结构。更换组件本身可升降使得换电装置可以为不同底盘高度的电动车辆更换电池。
在前述更换部件9沿水平方向伸出的实施方式中,行走装置5在定位系统和第一辅助定位系统的引导下,实现主体3与电动车辆的电池舱门在X方向的对齐。随后伸缩装置7在定位系统和第一辅助定位系统的引导下,实现与电池舱门在Y方向的对齐。随后各更换组件在定位系统和第一辅助定位系统的引导下升降实现与电池舱门在竖直方向的齐平。至此,定位系统、第一辅助定位系统、以及移送系统的工作下,各更换组件到达第一预设位置。随后,由更换组件启动工作,将旧电池从电池舱门中取出,或将新电池装入到电池舱门中。定位系统与移送系统将各更换组件送达第二预设位置的工作过程与送达第一预设位置的工作过程基本相同,在此不再赘述。当各更换组件到达第二预设位置后,更换组件启动工作,将旧电池放入电池存储架或从电池存储架中取出新电池。以下,通过对更换系统的介绍,详细阐述各更换组件将旧电池从电池舱门中取出,或将新电池装入到电池舱门中的过程。
在前述实施方式中,主体3可以为机器人的机身,也可以为车辆的车身。当主体3为车辆的车身时,行走装置5为支撑车身的车轮。此时,电池更换设备56可进行远距离行驶,扩大了电池更换设备56的工作区域,从而使得一个电池更换设备56能够满足一个较大范围内的任意位置上的电动车辆的换电池需求。
如前所述,更换系统用于从电池舱门中取出旧电池,并将新电池装入到电池舱门中。为从电池舱门中取出旧电池,更换系统需打开电池舱门。将电池装入到电池舱门后,更换系统需关闭电池舱门。可选的,打开电池舱门及关闭电池舱门的工作可由电动车辆内的开启装置完成。
本发明中,更换系统具体为更换部件。更换部件包括至少一个更换组件,更换组件拆装电池,以从电池舱门中取出旧电池,并将新电池装入到电池舱门中。更换组件的结构与电池在电池舱门内的安装结构相匹配。电池在电池舱门内的安装结构发生改变,则更换组件相应地发生改变。以下以电池通过六角螺栓组13a安装在电池舱门中为例,结合图58-60对更换组件的结构及工作过程进行介绍。
图59-61示出了一个更换组件的具体结构图。由于更换系统包含的至少一个更换组件的结构相同,在此,仅结合图58对其中的一个更换组件进行介绍。本实施方式中,打开电池舱门及关闭电池舱门的工作由电动车辆内的开启装置 完成,更换组件不具备相应功能的结构设计。
如图58-60所示,更换组件包括可升降的举升装置91a,位于举升装置91a上的框架91b,位于框架91b上的电动扳手组91d,以及设置电动扳手组91d的工作头末端的套筒组91c。举升装置91a可在竖直方向上移动,带动框架91b及电动扳手组91d上下移动,以与电池在竖直方向上实现位置匹配。电动扳手组91d及套筒组91c的位置排布与用于固定电池的紧固六角螺栓组13a的位置排布相匹配,使得套筒组91c恰好可以对电池上的紧固六角螺栓组13a进行松开或拧紧。图59所示更换组件处于第一状态,该状态下,更换组件分别与其对应位置上的电池13在水平面上的位置匹配,但在竖直位置上,存在高度差。图60所示为更换组件处于第二状态下,该状态下,更换组件分别与其对应位置上的电池13在水平面上及竖直方向上的位置匹配,准备对电池13进行拆装。更换组件对电池13进行拆装的过程中,电动扳手组91d驱动套筒组91c转动,套筒组91d的转动带动六角螺栓组13a的转动,从而使六角螺栓组13a松开或拧紧,从而完成电池的拆或装。
套筒组具有多个结构相同的套筒91c,如图61所示为其中一个套筒91c的具体结构。套筒91c包括壳体91c1,壳体91c1具有中空的六方筒91c2,壳体91c1与框架91b之间的弹簧91c3。弹簧91c3的设置,使得壳体91c1相对框架91b可上下伸缩,从而将六角螺栓13a套入六方筒91c2中。随着电动扳手组91d的旋转,壳体91c1旋转并带动六角螺栓13a拧紧或松开。当六角螺栓13a松开时,其逐步被收容到中空的六方筒91c2中,并保持在六方筒91c2中。六角螺栓13a被松开后,始终保持在六方筒91c2中。当六角螺栓13a再次需要拧紧时,随着电动扳手组91d的旋转,壳体91c1旋转并带动六角螺栓13a逐步被拧入电池13中,从而逐渐从六方筒91c2中旋出。
将旧电池从电池舱门中拆除的过程如下。在电动车辆内的开启装置的作用下,电池舱门被打开。在定位系统的引导下,举升装置91a将框架91b抬升至与电池13下表面平齐的位置。同时,套筒组91c上升至与螺栓组13a底部平齐的位置。随后,电动扳手组91d启动工作,带动套筒组91c转动,套筒组91c带动六角螺栓组13a转动,使得六角螺栓组13a被松开,从而使得电池13处于同电动车辆底盘分离的状态,电池13的重量由框架91b支撑。套筒组91c将拆下的螺栓组13a保持其六方筒91c2中。随后举升装置91a下降并退回到初始位置,伸缩臂收回,完成拆电池的工作。
将新电池装入到电池舱门的过程如下。在定位系统的引导下,举升装置91a将框架91b抬升,使得框架91b上的电池的上表面与电池舱门内的电池13安 装表面平齐,同时,套筒组91c上升至与电池上的六角螺栓组13a安装表面平齐的位置。随后,电动扳手组91d启动工作,带动套筒组91c转动,套筒组91c带动六角螺栓组13a转动,使得六角螺栓组13a被拧紧,将套筒组91c内保持的六角螺栓组13a安装到电池13上,使得电池13固定在电池舱门内,从而使得电池13处于同电动车辆底盘紧固的状态,电池13的重量由电动车辆的底盘支撑。举升装置91a下降并退回到初始位置,伸缩臂收回,电池舱门在电动车辆内的开启装置的作用下关闭,完成安装电池的工作。
电池更换设备56包括电池更换机构960。电池更换机构960用于将电动车辆上至少部分容量耗尽的电池从电动车辆上取出,并将收容于第一收容空间962或者第二收容空间964中的充满电的电池更换到电动车辆上。电池更换机构960可以设计为换电机械手。
如图62所示,电动车辆52包括车轮105,由车轮105支撑的底盘103,由底盘103支撑的车身101,以及为电动车辆52供电的电池107。电池107的分布位置及每一块电池107的尺寸大小与电动车辆52的车型大小、续航距离、电池更换设备56的结构、电池更换设备56的定位方式等相关。在图62所示的实施方式中,电池107安装于底盘103的下方,分布于底盘103的前部109、中部111、后部113。在如图63所示的实施方式中,电动车辆52包括四块电池107,分别为第一电池107a、第二电池107b、第三电池107c、第四电池107d。其中第一电池107a和第二电池107b并列设置在底盘103中部111,第三电池107c和第四电池107d分别设置在底盘103的前部109和底盘103的后部113。其中每一块电池均包含若干电池单元。在其他实施方式中,电动车辆52包括的电池数可以为5个、6个、8个等任意个数。
如图64所示为电池更换设备56第五较佳实施方式的示意图。本实施方式中,电池更换设备56包括主体201、由主体201支撑的移送部件203、可拆装电池107的更换部件205、以及设置在移送部件203与更换部件205之间的连接部件207。优选的,更换部件205的底部设置滚轮208实现对更换部件在竖直方向的支撑并减小更换部件205与地面之间的摩擦。更为优选的,移送部件203与更换部件204之间设置铰接结构204,使得移送部件203与更换部件204之间允许一定范围内的高度差。
本实施方式中,由于主体201的高度问题,主体201可移动到电动车辆52的侧方,但不能移动到电动车辆52的下方。更换部件205可选择地从电动车辆52的侧方沿第一方向移动到电动车辆52的底盘103下方。更换部件205从电动车辆52的侧方沿第一方向移动到电动车辆的底盘下方的过程中,移送 部件203与更换部件205具有相同的移动路径,也就是说在这段移动过程中,移送部件203与更换部件205之间没有相对位移产生。在上述移动过程中,更换部件205可自身带动力装置驱动其移动而带动移送部件203跟随其移动,也可由移送部件203驱动更换部件205移动。
移送部件203与更换部件205之间设置了连接部件207。连接部件207带动更换部件205相对移送部件203在水平面内运动时,更换部件205产生沿第二方向的位移,第二方向不同于第一方向。由此使得无需改变主体201相对电动车辆52所在的侧面也可使得更换部件205到达底盘103的任意位置,实现对底盘103上所有电池107的拆装。
以主体201定位在第一电池107a所在侧为例,结合图65至图70对电池更换设备56拆卸所有四块电池107的过程进行描述。
在移送部件203的作用下,更换部件205沿第一方向到达第一电池107a的正下方,如图65所示。随后更换部件205可以对第一电池107a进行拆卸,并对拆下的电池107进行支撑。在移送部件203的作用下,更换部件205将拆下的电池107移送到远离电动车辆52的电池储存架中。
在移送部件203的作用下,更换部件205沿第一方向到达第二电池107b的正下方,如图66所示。随后更换部件205可以对第二电池107b进行拆卸,并对拆下的电池107进行支撑。在移送部件203的作用下,更换部件205将拆下的电池107移送到远离电动车辆52的电池储存架中。
在移送部件203的作用下,更换部件205沿第一方向到达图67所示的位置,第一方向为图中向上的方向。此位置上,更换部件205中轴线与第三电池107c和第四电池107d的中轴线在一条直线上。随后更换部件205在连接部件207的作用下,相对移送部件203向图中的左侧移动,从而到达第四电池107d所在位置的正下方,如图68所示,即更换部件205在连接部件207的作用下相对移送部件203在水平面内运动时,更换部件205产生沿第二方向的位移,从而到达第四电池107d所在位置的正下方。第二方向为图中向左的方向,不同于第一方向。随后,更换部件205可以对第四电池107d进行拆卸,并对拆下的电池107进行支撑。在连接部件207的作用下,更换部件205向图中的右侧移动,从而将拆下的电池107移送到如图69的位置。然后在移送部件203的作用下,更换部件205将电池107进一步移送到图70所示的位置,直到将电池107移送到远离电动车辆52的电池储存架中。其中,图69所示的位置与图67所示的位置相同,区别在于图69所示的状态下,更换部件205支撑拆下的电池107,图67所示的状态下,更换部件205上没有电池107。
拆卸第三电池107c的过程可参考拆卸第四电池107d的过程。所不同的是,更换部件205到达图67所示的位置后,在连接部件207的作用下,更换部件205相对移送部件203向图中的右侧移动,从而到达第三电池107c所在位置的正下方。拆下电池107后,在连接部件207的作用下,更换部件205相对移送部件203向图中的左侧侧移动,从而将拆下的电池107移送到如图69的位置。然后在移送部件203的作用下,更换部件205将电池107进一步移送到图70所示的位置,直到将电池107移送到远离电动车辆52的电池储存架中。
在图67至图70所示的实施例中,连接部件207驱动更换部件205相对移送部件203进行直线移动,直线运动的方向与主体201相对电动车辆52所在侧的底盘103边沿平行。在直线运动的作用下,更换部件205可到达移送部件203不能直接送达的位置,从而实现从电动车辆52的同一侧移送更换部件205可以拆装电动车辆52的所有电池107。当主体201位于电动车辆52的前侧或后侧,也可通过上述相同的结构和类似的过程对底盘103下方的所有电池107进行拆装。
为实现上述直线运动,连接部件207包括设置在移送部件203上的第一连接组件209和设置在更换部件205上的第二连接组件211,第二连接组件211沿第一连接组件209移动。第一连接组件209可以为导轨,对应的第二连接组件211可以为滑轮。第一连接组件209还可以为齿条,对应的第二连接组件211为齿轮。第二连接组件211相对第一连接组件209的移动由电机或液压驱动。
当底盘103上的四块电池107大小相同,且均为正方形,且与底盘103之间的紧固部件的安装位置相同时,更换部件205相对移动部件直线运动到相应电池107在底盘103上的安装位置的下方即可对电池107进行拆装。
当底盘103上的当四块电池107大小相同,且均为长方形,且与底盘103之间的紧固部件的安装位置相同,且第一电池107a与第二电池107b长度方向的中轴线相互平行,第三电池107c与第四电池107d长度方向的中轴线相互平行,第一电池107a与第三电池107c长度方向的中轴线相互垂直时,更换部件205相对移送部件203直线运动到相应电池107在底盘103上的安装位置的下方即可对电池107进行拆装。
当底盘103上的四块电池107大小相同,且均为长方形,且与底盘103之间的紧固部件的安装位置相同,且第一电池107a、第二电池107b、第三电池107c、以及第四电池107d长度方向的中轴线均相互平行时,在连接部件207的作用下,更换部件205相对移送部件203既要直线运动又要旋转90°运动, 才能保证更换部件205到达相应电池107在底盘103上的安装位置的下方时,才能对电池107进行拆装。当然也可通过调整更换部件205上的更换组件215之间的距离来实现上述旋转的效果。更换组件215对电池107与底盘103之间的安装紧固件进行拆装的执行组件。
当电池107与底盘103之间的紧固部件在四块电池107安装区域的布局均不相同时,更换部件205上的更换组件215之间的距离要可调节。
上述更换部件205上的更换组件215之间的距离可调节的具体方案,将在介绍更换部件205时进行详细介绍。
图71所示为电池更换设备56的第六较佳实施方式。与第一较佳实施方式相比,本实施方式的不同在于,在连接部件207的作用下,更换部件205相对移送部件203在水平面内的运动为曲线运动。为实现曲线运动的方式有多种,其中第一种实施方式为,连接部件207包括连接更换部件205与移送部件203的第一驱动装置,第一驱动装置驱动更换部件205相对移送部件203转动。第一驱动装置的运动通过电机驱动。实现曲线运动的第二种实施方式为,连接部件207包括设置在更换部件205与移送部件203之间的连接杆213,以及驱动更换部件205相对连接杆213转动的第二驱动装置249和驱动连接杆213相对移送部件203转动的第三驱动装置251。第二驱动装置249和第三驱动装置251的运动通过电机驱动。
在第二驱动装置249和第三驱动装置251工作时,连接杆213带动更换部件205相对移送部件203转动,同时更换部件205相对连接杆213自转。在转动的过程中,为使更换部件205能到达底盘103上的任意电池107安装位置的正下方,转动半径需发生变化。转动半径的变化可通过移送部件203改变枢转运动的枢转点的位置来实现,也可通过调节连接杆213的长度来实现。通过调节连接杆213的长度来实现时,连接杆213的长度可调节。
以电池更换设备56在第一电池107a所在侧方为例,结合图72至78对图71所示的电池更换设备56拆卸电池107过程进行描述。电池更换设备56在电动车辆52的其他侧方时,其对电池107的拆装过程可参考下述描述。
如图72所示,电动车辆52的底盘103上设置了4块电池107,第一电池107a和第二电池107b的宽度与第三电池107c和第四电池107d的长度相同。其中,第一电池107a、第二电池107b并列安装在底盘103中部111,第三电池107c安装在底盘103的前部109,第四电池107d安装在底盘103的后部113。第三电池107c和第四电池107d的宽度方向的中轴线在一条直线上,且与第一电池107a的长度方向的中轴线相互垂直。
参考图72和图73,移送部件203通过调节更换部件205相对底盘103在图中上下方向的位置逐步拆卸第一电池107a和第二电池107b。
图74至78为更换装置拆卸第四电池107d的过程。具体的,如图74所示,更换部件205在移送部件203的作用下沿第一方向到达底盘103的中部111位置,第一方向为图中向上的方向。由于第四电池107d长度方向的中轴线与第一电池107a宽度方向的中轴线相互垂直,且第一电池107a的宽度与第四电池107d的长度相同,为匹配此种电池107布局的方案,更换部件205与连接杆213之间的枢转连接驱动更换部件205相对连接杆213转动90°,使得更换部件205到达图75所示的位置。在其他的实施方式中,可通过调节更换部件205上的更换组件215相互之间的距离取代更换部件205与连接杆213之间的枢转连接的作用。具体实现方式将在更换部件205的结构描述时进行详细介绍。随后,在移送部件203的作用下,更换部件205向图75中的左侧移动,使得更换部件205到达图76所示的位置。由于车轮的存在,更换部件205无法在移送部件203的作用下,进一步向第四电池107d靠近。随后,移送组件驱动更换部件205向图76中的上方移动,且连接杆213与移送部件203之间的第三驱动装置251驱动更换部件205相对移送部件203向图中的左侧转动,以使得更换部件205向第四电池107d进一步靠近。与此同时连接杆213与更换部件205之间的第二驱动装置249驱动更换部件205自转,以避免更换部件205相对移送部件203向图中的左侧转动时遇到车轮的干涉,同时还可保证更换部件205达到第四电池107d正下方时正好与第四电池107d正对。在上述多个部件的共同作用下,更换部件205达到图77所示的位置。上述图74至图77展示的过程为,更换部件205在连接部件207的带动下相对移送部件203在水平面内运动时,更换部件205产生沿第二方向的位移。本实施方式中,第二方向即为图中向左的方向。第二方向不同于第一方向。
随后对第四电池107d进行拆卸,并将拆卸的第四电池107d运送到图78所示的位置。更换部件205由图77的位置到达图78的位置的过程与更换部件205由图75的位置到达图77的位置的过程相反,在此不再赘述。更换部件205对第三电池107c的拆卸过程可参考对第四电池107d的拆卸过程。
如图79所示为电池更换设备56的第七较佳实施方式。本实施方式中,所述电池更换设备56包括主体201、由主体201支撑的移送部件203、以及由移送部件203支撑的且可拆装电池107的更换部件205。主体201可移动到电动车辆52的底盘103下方。移送部件203用于将更换部件205送达相对电池107的预设位置。移送部件203与更换部件205之间也可以选择地设置或不设 置与前述第一较佳实施方式或第二较佳实施方式相同的连接部件207。当设置连接部件207时,更换部件205在连接部件207的带动下相对移送部件203在水平面内运动。
在电池更换设备56的前述三种实施方式中,均从电动车辆52的底盘103下方拆装电池107。通常电动车辆52的底盘103距离地面的距离为20cm左右,且电池107的高度约为5cm左右。要使得携带电池107的更换部件205顺利地通过底盘103与地面之间的空间,更换部件205的高度必须低于15cm。更换部件205必须同时还满足另一个高度要求,即在对电池107进行拆装时,更换部件205的更换组件215必须能达到底盘103与电池107之间的紧固件所在的高度。基于此需要对更换部件205进行特殊设计。
以下结合图80至85对电池更换设备的第八较佳实施方式进行详细介绍。本实施方式中,电池更换设备56包括主体201、由主体201支撑的移送部件203、可拆装电池107的更换部件205。一种情况下,主体201可移动到电动车辆52的侧方,但不能移动到电动车辆52的下方,此时移送部件203与更换部件205之间设置连接部件207。另一种情况下,主体201可移动到电动车辆52的下方,此时移送部件203与更换部件205之间可选择设置或不设置连接部件207。更换部件205包括更换本体217和由更换本体217支撑的更换组件215,更换组件215可对底盘103与电池107之间的紧固件进行拆装。更换部件205拆装电池107时,更换组件215相对更换本体217具有第一高度。更换部件205携带电池107通过电动车辆52底盘103时,更换组件215相对更换本体217具有第二高度。第二高度不高于第一高度。通过调节更换组件215的高度既可满足携带电池107的更换部件205顺利通过底盘103与地面之间的空间,同时也可满足拆装电池107时对更换组件215的高度要求。
更换组件215相对更换本体217的高度调节,可以为在更换组件215与更换本体217之间设置升降组件,由升降组件的升降带动更换组件215相对更换本体217的高度调节。升降组件的升降可由电机或液压驱动。
更换组件215相对更换本体217的高度调节还可以为,在更换组件215与更换本体217之间设置转动组件219,通过转动组件219的转动带动更换组件215相对更换本体217具有不同高度。转动组件219的转动可由电机或液压驱动。
如图81所示的状态下,转动组件219收容于更换本体217中,更换组件215在转动组件219的作用下也收容于更换本体217中。此时更换组件215相对更换本体217具有最低的高度。
在图82所示的状态下,更换组件215相对第二转动臂223转动,使得更换组件215相对更换本体217呈竖直状态。转动组件219相对更换本体217仍处于水平状态。更换组件215相对第二转动臂223的转动可由电机或液压驱动。相对图81所示的状态,图82所示的状态下,更换组件215相对更换本体217的高度升高,更换组件215之间的距离增大。
在图83所示的状态下,第一转动臂221相对更换本体217转动,第二转动臂223相对第一转动臂221转动,更换组件215相对第二转动臂223转动,从而进一步调节更换组件215相对更换本体217的高度,同时对更换组件215之间的距离进行调节。在调节过程中,始终保持更换组件215相对更换本体217呈竖直状态。
在图84所示的状态下,第一转动臂221相对更换本体217转动,第二转动臂223相对第一转动臂221转动,更换组件215相对第二转动臂223转动,从而进一步调节更换组件215相对更换本体217的高度以及更换组件215之间的距离,使得更换组件215恰好与电池107相对底盘103的紧固件对准,以便更换组件215对紧固件进行拆装,从而拆装电池107。此状态下,更换组件215相对更换本体217具有最高高度。
在图85所示的状态下,更换组件215已完成对电池107的拆卸。更换组件215在第一转动臂221、第二转动臂223的作用下回复到图81所示的状态,即由相对更换本体217的最高高度回复到相对更换本体217的最低高度,使得携带电池107的更换部件205能顺利通过底盘103与地面之间的狭窄空间。
在前述实施方式中,由于电池107尺寸、安装位置、连接部件207的结构等因素,导致在某些情况下需要对更换组件215相对更换本体217的高度进行调节的同时还要对更换组件215之间的距离进行调节。在图80至85的实施方式中,由于转动组件219的存在,既可以实现更换组件215相对更换本体217的高度调节又可以实现更换组件215之间的距离调节。而当更换组件215相对更换本体217的高度通过升降组件来实现时,需要在更换组件215与更换本体217之间进一步设置滑动组件驱动更换组件215相对更换本体217水平滑动,实现更换组件215之间的距离调节。
如图86至89所示为电池更换设备56的第九较佳实施方式。本实施方式中,电池更换设备56为换电池车。如图86所示,换电池车包括主体201,安装在主体201的一个侧面的移送部件203,可拆装电池107的更换部件205。其中,主体201包括车身101、支撑车身101的车轮、以及驱动车轮以带动车身移动的动力装置。由于动力装置的存在,换电池车可移动到任何位置,以为 电池车辆100更换电池。车身101进一步包括第一容腔和第二容腔。第一容腔放置从电动车辆52上拆下的旧电池,第二容腔放置可装入电动车辆52以为其提供进一步续航能力的新电池。换电池车可通过移送部件203将更换部件205移送到第二容腔以拿取新电池,换电池车还可以通过移送部件203将更换部件205移动到第一容腔以放下旧电池。
为使换电池车实现为电动车辆52更换电池107的基本功能,更换部件205需可由移送部件203自电动车辆52的一个侧面沿第一方向移送到电动车辆52的底盘103下方,第一方向为图87至89的向左的方向。为使得换电池车在行驶过程中占用空间最小,行动便捷,要求更换部件205能如图76所示,折叠悬挂于主体201的一侧。
针对第一种需求,更换部件205需可由移送部件203自电动车辆52的一个侧面移送到电动车辆52的底盘103下方,移送部件203包括第一移送组件225和第二移送组件227。第一移送组件225移送更换部件205时产生相对地面在竖直方向上的位移。第二移送组件227移送更换部件205时,更换部件205产生相对设置移送部件203的侧面远离或靠近的位移,即沿第一方向位移,也就是沿图87至89中向左的位移。第一移送组件225可以曲线、或直线方式带动更换部件205产生相对地面在竖直方向上的位移。同理,第二移送组件227也可以任意的运动方式带动更换部件205产生相对设置移送部件203的侧面远离或靠近的位移。本实施方式中,第一移送组件225以直线方式带动更换部件205相对地面产生竖直方向的位移。参考86和88,第一移送组件225进一步包括设置在主体201的一个侧面的第一水平移送组件228、第一竖直移送组件229、以及第二竖直移送组件231。第一水平移送组件228驱动更换部件205相对电动车辆52在图86中左右方向定位。第一竖直移送组件229以及第二竖直移送组件231驱动更换部件205相对电动车辆52在图86中上下方向定位。其中,第一竖直移送组件229带动更换部件205到达换电池车的车身101’的底部,第二竖直移送组件231带动更换部件205到达换电池车的车轮105’的底部。综上,在第一移送组件225的作用下,更换部件205到达图87所示的状态,更换部件205的底部到达换电池车的车轮105’所在的地面,该地面也就是支撑电动车辆52的地面,从而将更换部件205移送到最低的位置,以最大限度地扩大更换部件205的顶面相对电动车辆52的底盘103的距离。随后在第二移送组件227的作用下,更换部件205相对电动车辆52在图87中左右方向定位。
针对第二种需求,更换部件205可折叠悬挂于主体201的一侧,移送部件 203进一步包括设置在第一移送组件225与第二移送组件227之间的第一枢转机构243,以及设置在第二移送组件227与连接部件207之间的第二枢转机构245。第一枢转机构243带动第二移送组件227相对第一移送组件225在打开与折叠之间进行切换,即在图87与图89所示的两种状态之间进行切换。切换的过程状态如图88所示,即在图89与图86之间进行切换。在此需要说明的是,为实现换电池车由图86的状态切换到图89的状态,第一移送组件225需将更换部件205移送到预设高度后,才能执行第二枢转机构245带动更换部件205相对第二移送组件227折叠的动作。此外,本领域技术人员可以理解的是,第二移送组件227与更换部件205之间可以为固定连接或设置前述第一较佳实施方式和第二较佳实施方式中的连接部件207。更换部件205本身的结构可以为前述第四较佳实施方式的结构。前述电池更换设备56是由主体201、移送部件203、连接部件207、更换部件205组成的。
在前述的多个实施方式分别重点介绍了连接部件207、更换部件205、主体201、移送部件203的可能结构。基于这样的介绍本领域技术人员可以预见,多种可能形式的主体201、移送部件203、连接部件207、更换部件205之间可任意组合形成一个新的电池更换设备56,在此不再一一对组合的可能性进行介绍。
以下结合图90至图94对换电池系统的另一较佳实施方式进行介绍。
如图90所示,换电池系统包括电动车辆52及电池更换设备56。
本实施方式相对图62所示实施方式的改进之处在于,电动车辆52进一步包括定位机构115,定位机构115至少部分的标识底盘103上的电池107的位置。定位机构115可以为设置在电动车辆52的一个确定位置上的具体的机械机构或特定的颜色或特定的图案标识等。无论定位机构115为上述何种形式,其均为肉眼可见,所以定位机构115可以向操作者至少部分地指示底盘103上的电池107的位置,帮助操作者手动快速定位换电池装置100相对电动车辆200的位置。
优选的,定位机构115设置在车身101至少一个侧面的外表面,外表面包括底盘103与车身101相邻的位置。由于定位机构115设置在车身101至少一个侧面的外表面使得操作者将头伸到底盘下方即可看见定位机构115,由此,可由操作者引导电池更换设备56迅速相对电动车辆52定位。
在车辆拥挤的场景下,电池更换设备56仅能定位于电动车辆52的特定一侧,但该特定侧是随机的,可能是左侧、右侧、前侧或后侧。为实现电池更换设备56相对电动车辆52任意一侧均能快速定位,优选的,定位机构115设置 在车身101的四个侧面的外表面。
电动车辆52进一步包括引导机构119。引导机构119与定位机构115相邻设置。引导机构119包括沿车身宽度方向延伸的第一滑轨121和沿车身长度方向延伸的第二滑轨123。
本实施方式的电池更换设备56包括主体201、由主体201支撑的移送部件203、由移送部件203移送的更换部件205。对应于本实施方式的电动车辆52的改进,本实施方式的电池更换设备56上设置有对准机构235。同定位机构115一样,对准机构235可以为一个具体的机械结构,也可以为一个特定的颜色标识或特定的图案标识。对准机构235为至少部分标识更换部件205在电池更换设备56上的位置,从而通过判断对准机构235相对定位机构115的位置即可确定更换部件205相对电动车辆52的电池的大致位置。
如图90所示,当对准机构235与定位机构115配合时,可确定更换部件205相对电动车辆52在图中左右方向上的位置,也就是说当对准机构235与定位机构115配合时可至少部分地确定更换部件205相对电动车辆52的电池的位置。
当电动车辆52进一步包括引导机构时,对准机构235可择一地沿第一滑轨121或第二滑轨123移动。当对准机构235沿第一滑轨121移动时,更换部件205仅能实现相对电动车辆52在图中左右方向的定位,不能实现相对电动车辆52在图中上下方向的定位。当对准机构235沿第二滑轨123移动时,更换部件205仅能实现相对电动车辆52在图中上下方向的定位,不能实现相对电动车辆52在图中左右方向的定位。也就是说,上述定位机构115与引导机构235的配合仅能实现电池更换设备56相对电动车辆52的粗定位。为实现电池更换设备56能准确地拆装电动车辆52上的电池107,需要操作者手动定位或设定相应的结构实现精确定位。
当通过设定相应的结构实现精确定位时,可通过机械结构实现,也可通过电子结构实现。当通过机械结构实现精确定位时,电池更换设备56进一步包括限位组件,限位组件限定更换部件205相对电动车辆52在水平面内的极限位置。限位组件的第一种具体的实施方式为,限位组件包括设置在移送组件203上的第一限位组件,第一限位组件限定移送组件203沿更换部件205伸入底盘103的方向上移动的极限位置。限位组件第二种具体的实施方式为,在第一种具体实施方式的基础上,电池更换设备56还进一步包括设置在移送部件203与更换部件205之间的连接部件207,连接部件207驱动更换部件205相对移送部件203在水平面内移动,限位组件还包括设置在连接部件207上的第二限 位组件,第二限位组件限定更换部件205相对移送部件203移动的极限位置。
以下结合如图91至图93对通过机械方式实现精确定位的方案进行介绍。限位组件包括设置在移送组件203上的第一限位组件,第一限位组件限定对准机构235沿第一滑轨121滑动的极限位置,即第一限位组件限定移送组件203沿更换部件205伸入底盘103的方向上移动的极限位置。在第一限位组件的作用下,更换部件205沿第一滑轨可准确到达图中第一电池所在的位置,从而可以对第一电池进行拆装。
为了实现更换部件205可以对第二电池和第三电池进行拆装,如图91所示,电池更换设备56还进一步包括设置在移送部件203与更换部件205之间的连接部件207,连接部件207驱动更换部件205相对移送部件203直线移动,且移动的方向与电池107在底盘103上的排布方向平行。更换部件205相对移送部件203直线移动仅能实现更换部件205相对电动车辆52在图中上下方向的定位,不能实现更换部件205相对电动车辆52在图中左右方向的定位,因此,在通过机械方式实现精确定位的设计原理下,连接部件207还包括第二限位组件,第二限位组件限定更换部件205相对移送组件203移动的极限位置。极限位置为更换部件205相对移送部件203在图中向左能到达的极限位置和/或在图中向右能到达的极限位置。具体需根据电动车辆52包含的电池107个数及电池107在底盘103的排布位置确定。本领域技术人员可以理解的是,当底盘103上的电池107的布局结构同图72所示布局结构相同时,更换部件205与移送部件203之间的连接部件207的结构与电池更换设备56的第二较佳实施方式中所示的连接部件的结构相同。此方案下,连接部件207包含的第二限位组件限定第一驱动装置、第二驱动装置、第三驱动装置转动的极限位置。
如图94所示为实现精确定位的第二较佳实施方式。本实施方式中,通过电子方式实现精确定位。具体的,电动车辆52进一步包括设置在底盘103上的触发元件117,电池更换设备56进一步包括设置在更换部件205上的感应元件241。当感应元件241靠近触发元件117时,感应元件241会发出相应的感应信号。根据感应元件241相对触发元件117位置的改变,感应元件241发出的感应信号发生改变。电池更换设备56通过感应元件241发出的感应信号,从而可精确识别移送部件203驱动更换部件205沿定位结构移动的过程中,以及更换部件205相对移送部件203直线移动的过程中,更换部件205是否到达所述电池107所在位置。
根据装载电池的能力,电池更换设备可以包括不同的规格。规格包括大型、中型和小型。不同规格的电池更换设备的配置不同。大型的电池更换设备包括 基本的电池收容空间和换电机构,其中电池收容空间适于装载电池数量大于第一预设值。中型的电池更换设备的电池收容空间适于装载的电池数量大于第二预设值并且小于第一预设值。小型的电池更换设备的电池收容空间适于装载的电池数量小于第二预设值。一个具体的实施例中,第一预设值为100,第二预设值为50。当然,电池更换设备的规格还可以有更多种,比如大型、中型、小型和迷你型。对应的电池数量的预设值相应增加。优选的实施例中,迷你型的电池更换设备的电池装载数量小于等于10。这样的电池更换设备体积小,移动灵活,适于在狭窄的道路上为电动车辆更换电池。电池更换设备还可以包括充电装置,为存储在电池更换设备的收容空间中的电池提供浮充,以确保为电动车辆更换的电池都处于满充状态。大型的电池更换设备电池装载数量大,小型的电池更换设备电池储备不足时,可以由大型的电池更换设备补充,此时,大型的电池更换设备相当于一个临时的电池供应站。这样,电池更换设备不需要移动非常远的距离就能够及时的获取电池储备补充。
【电池更换设备的第三实施例】
参见附图95-96,本实施例涉及一种电池更换设备,用于为电动车辆拆装电池组件。图中所示的电池更换设备仅为示例,其实际构成并不仅限于图示中的配置。
电池更换设备56能够从一个地点移动至另一个地点,为位于预定地点的电动车辆52更换电池。可移动的电池更换设备56可以是一种车辆,具有动力装置54a和被动力装置驱动的车轮54b,也可以是其他能够移动的设备。
电池更换设备56可配备若干充满电的电池组件54,用于为至少一辆电动车辆52提供电池更换服务。电池更换设备56将电动车辆上至少部分电量耗尽的电池取出,将充满电的电池更换至电动车辆上。
图1中的电池更换设备56包括第一车体956和第二车体958。第一车体956包括电池更换机构960和第一收容空间962。第二车体958包括电池更换机构960和第二收容空间964。电池更换设备56是可以远距离移动的运输设备,包括动力装置54a。动力装置54a在本实施例中具体的是电动机,用于为电池更换设备提供动力。电池更换设备56包括至少一个在电动机的驱动下移动的车轮54b。
电动车辆52包括车辆主体52a和可拆卸的收容于车辆主体52a的电池组件54。车辆主体52a包括车身52d,车身内设有用于驱动一个或者多个车轮运动的电动机52c。电池组件54为电动机52c提供电力。电池组件54与车辆主体52a电气和机械连接,从而为电动车辆的行驶、照明、音响、空调等功能提 供电能。
需要说明的是,这里所说的电动车辆52可以是完全由电池组件提供能量的纯电动车,也可以是部分由电池组件提供能量的混合电动车辆。此处,以纯电动车为例予以说明,并不用于限定电动车辆的具体类型。
电池组件54包括多个电池模块。
具体的,电池模块的数量是4个,分别设置于电动车辆靠近底盘的前后左右四个位置。其中,前部和后部各设置一个电池模块,这两个电池模块的形状和尺寸详单,从而保证电池模块的布置使得整个电动车辆的重心稳定。车体侧方沿图面中的上方和下方各设置一个电池模块,这两个电池模块的形状和尺寸相当。侧方设置的电池模块的形状和尺寸与前后方设置的电池模块的形状和尺寸可以一致,也可以不同。根据整个电动车辆的车体的总体尺寸,电池模块的形状和尺寸优选的适于使整个电池组件的容量足够大,从而电动车辆能够在一次充满电的条件下行驶足够长的距离。优选的,电池模块相对于电动车辆的地盘设置的位置确保每个电池模块都能够被以适当的方式从车体上拆卸下来,相对于车体移除,从而,在电池模块容量至少部分耗尽时,用充满电的电池模块替换,使电动车辆能够继续运行。
本领域技术人员可知,电池模块的数量可以不是4个,可以是一个或者多个。具体的,可以优选的设置为2个以上,这样,每个电池模块的尺寸和重量不会过大,电池更换设备拆卸和安装电池模块方便省力,电池更换设备的结构可以简单紧凑。优选的,电池模块的数量是3个,其中两个形状和尺寸相同。三个电池模块沿着车身纵长延伸方向依次布置在底盘位置。
参见附图95-97,第一车体956还包括充电器970。第一收容空间962内,存储有若干电池组件54。电池组件能够与充电器970电性连接,并由充电器970与外部电源983连接后,接收电力补充。
第二车体958也可以包括充电器970。第二收容空间964内,存储有若干电池组件54。电池组件能够与充电器970电性连接,并由充电器970与外部电源983连接后,接收电力补充。
充电器970包括若干电源接口974和电源接头972。充电器还包括控制单元975,用于控制电池组件的充放电过程。具体的,控制单元可以包括MCU。
图中,电源接口的数量示例性的示出了4个,可以理解的是,接口的数量并不仅限于4个,可以是一个或者多个。优选的,与车体中收容的电池组件的数量相当。通过充电器970连接外部电源983,能够为车体中收容的电池组件充电。收容于车体中的电池组件能够跟随车体一起移动,也可以在车体与充电 桩连接时获得能量补充。
电池更换设备56具有第一收容空间962和第二收容空间964,既可以用于收容充满电的电池,也可以用于收容至少部分容量耗尽的电池。第一收容空间962和第二收容空间964是不同车体上设置的电池组件收容空间。每个收容空间可以根据电池组件的形状尺寸分隔为若干个子的收容区域。进行电池更换时,电池更换机构960从电动车辆上取下至少部分电量耗尽的电池,从第一收容空间962或者第二收容空间964中取出充满电的电池,为电动车辆安装充满电的电池,再换下的电量耗尽的电池存放至第一收容空间962中原充满电的电池存放的区域内。电池更换设备中存储的电池组件的结构形式与电动车辆上安装的电池组件的结构形式基本一致,因此,电池占用的空间相当。按照这样的方式存放电池,电池更换设备的体积可以足够小,移动便捷。
电池更换设备56包括电池更换机构960。电池更换机构960用于将电动车辆上至少部分容量耗尽的电池从电动车辆上取出,并将收容于第一收容空间962或者第二收容空间964中的充满电的电池更换到电动车辆上。电池更换机构960可以设计为换电机械手。
参见附图100,电池更换设备的第九较佳实施方式。本实施方式中,电池更换设备56包括第一车体956和第二车体958。第一车体包括车头976和车身978,车身和车头可分离的连接。电池更换机构960和第一收容空间962设置于车身978上。第二车体958包括电池更换机构960和第二收容空间964。第二车体958拖挂于第一车体956之后。
参见附图101,电池更换设备的第十较佳实施方式。本实施方式中,电池更换设备56包括第一车体956和第二车体958。第一车体956包括电池更换机构960、第一收容空间962和第三收容空间966。电池更换机构960用于拆卸和安装电池组件。第一收容空间962用于收容电池组件。第三收容空间966用于收容第二车体958。第二车体958包括电池更换机构960和第二收容空间964。第二收容空间964用于收容电池组件。电池组件可以是充满电的电池组件,也可以是从电动车辆上拆卸下来的容量至少部分耗尽的电池组件。第三收容空间966至少部分收容第二车体958。第二车体的数量可以是一个,也可以是多个。
可以理解的是,第一车体956可以包括第一收容空间962和第三收容空间966,而不包括电池更换机构960。此时,第一车体956本身并不能够单独为电动车辆更换电池组件,而只能由收容于第三收容空间966中的第二车体958为电动车辆更换电池组件。第一车体956还可以包括第三收容空间966,而不 包括第一收容空间962和电池更换机构960。此时,第一车体956仅作为第二车体958的运输载体。第二车体958收容电池组件,同时通过电池更换机构960为电动车辆更换电池组件。
根据第二车体和收容空间的尺寸,收容空间中收容的第二车体的数量可以是多个。
参见附图102,一种电池更换设备为电动车辆更换电池组件的方法的具体实施例。本方法的实施例中涉及的电池更换设备56如附图101所示,具体的,电池更换设备56包括第一车体956和第二车体958。第二车体958收容于第一车体956。第一车体956包括用于收容电池组件的第一收容空间962和收容第二车体的第三收容空间966。第二车体958上设置电池更换机构960和用于收容电池组件的第二收容空间964。第一车体956中可以收容若干个第二车体958,每个第二车体958中均存储有电池组件,可以直接用于为电动车辆更换。因此,第一车体956实际上能够存储的电池组件数量多。适用于需要更换电池组件的电动车辆较多的情况。而第二车体存储的电池组件数量相对较少,但是,整个第二车体的尺寸小,移动灵活,适用于不同的电池更换地点。本实施例中,电池更换设备为电动车辆更换电池组件的方法包括以下步骤。
步骤010,获取需更换电池组件的电动车辆的数量N。电池更换设备接收特定区域内电动车辆更换电池组件的需求信息,确认需要更换电池组件的电动车辆的数量N。
步骤012,判断需要更换电池组件的电动车辆的数量N是否大于预设值。如果N大于预设值,进入步骤024。预设值根据电动车辆的电池组件的尺寸有不同的设计。优选的,预设值可以是5-50之间的一个整数。具体的,预设值可以设置为10。每台电动车辆所需要更换的电池组件的数量可以是N或者N的倍数。当电池组件包括多个电池模块时,需要更换的是每个电池模块。此时,电池模块的数量是N的倍数。
步骤034,第一车体移动至预定地点。第一车体956收容第二车体958并带动第二车体958移动。不同的电动车辆对应的预定地点不同,因此,第一车体会移动到不同的预定地点。
步骤036,第一车体为电动车辆更换电池组件。第一车体956本身包括电池更换机构960。电池更换机构960相对电动车辆移动,从而将容量部分耗尽的位于电动车辆上的电池组件54拆卸下来,将充满电的电池组件安装至电动车辆上,快速为电动车辆补充能量。
步骤012中,如果N小于等于预设值,进入步骤038。
步骤038,第二车体自第三收容空间相对第一车体移出。第二车体收容于第一车体内,第二车体958包括电池更换机构960。
步骤040,第二车体移动至预定地点。
步骤042,第二车体为电动车辆更换电池组件。电池更换机构960相对电动车辆移动,从而将容量部分耗尽的位于电动车辆上的电池组件54拆卸下来,将充满电的电池组件安装至电动车辆上,快速为电动车辆补充能量。
参见附图103,一种电池更换设备为电动车辆更换电池组件的方法的另一种具体实施例。本方法的实施例中涉及的电池更换设备56如附图101所示,具体的,电池更换设备56包括第一车体956和第二车体958。第二车体958收容于第一车体956。第一车体956包括用于收容电池组件的第一收容空间962和收容第二车体的第三收容空间966。第二车体958上设置电池更换机构960和用于收容电池组件的第二收容空间964。第一车体956中可以收容若干个第二车体958,每个第二车体958中均存储有电池组件,可以直接用于为电动车辆更换。因此,第一车体956实际上能够存储的电池组件数量多。适用于需要更换电池组件的电动车辆较多的情况。而第二车体存储的电池组件数量相对较少,但是,整个第二车体的尺寸小,移动灵活,适用于不同的电池更换地点。本实施例中,电池更换设备为电动车辆更换电池组件的方法包括以下步骤。
步骤010,获取需更换电池组件的电动车辆的数量N。电池更换设备接收特定区域内电动车辆更换电池组件的需求信息,确认需要更换电池组件的电动车辆的数量N。
步骤012,判断需要更换电池组件的电动车辆的数量N是否大于预设值。如果大于预设值,进入步骤024。预设值根据电动车辆的电池组件的尺寸有不同的设计。优选的,预设值可以是5-50之间的一个整数。具体的,预设值可以设置为10。每台电动车辆所需要更换的电池组件的数量可以是N或者N的倍数。当电池组件包括多个电池模块时,需要更换的是每个电池模块。此时,电池模块的数量是N的倍数。
步骤024,第一车体956移动至距离多个预定位置距离相当的地点。第一车体956收容第二车体958并带动第二车体958移动。不同的电动车辆需要更换电池组件的预定位置不同,第一车体956可以移动至一个与若干预定位置的距离相当的地点,使第二车体958到达预定地点的距离和时间相当。
步骤026,多个第二车体958自第一车体956移出。到达符合上述条件的地点后,收容在第三收容空间966中的第二车体958自第三收容空间966相对于第一车体956移出。
当第二车体958中存储的电池组件54与一台电动车辆52需要更换的电池组件54的数量相当时,如果第三收容空间966中收容的第二车体958的数量大于需要更换电池组件的电动车辆52的数量,此时,只需符合需要更换电池组件的电动车辆的数量的第二车体958从第一车体956中移出。如果第三收容空间966中收容的第二车体958的数量小于需要更换电池组件的电动车辆的数量,此时,所有存储于第三收容空间966的第二车体958均移出。
当第二车体958中存储的电池组件的数量是一台电动车辆需要更换的电池组件的数量m倍时,如果第三收容空间966中收容的第二车体958的数量大于需要更换电池组件的电动车辆52的数量,此时,从第一车体956中移出的第二车体958的数量按照下面的条件确认。N不能被m整除时,需要移出的第二车体的数量为N/m后的整数加上1。N能被m整除时,需要移出的第二车体的数量为N/m。
步骤028,多个第二车体分别移动至不同的预定地点为不同电动车辆更换电池组件。多个第二车体958分别移动至不同的预定地点。不同的电动车辆更换电池组件的预定地点不同,多个第二车体分别移动至不同的预定地点,为不同的电动车辆更换电池。针对第二车体存储的电池组件的数量是一台电动车辆需要更换的电池组件的倍数的情况,同一个第二车体会移动到不同的预定地点为不同的电动车辆更换电池。
步骤022中,如果N小于等于预设值,进入步骤030。
步骤030,第二车体958自第三收容空间966相对第一车体956移出。收容在第三收容空间966中的第二车体958自第三收容空间966相对于第一车体956移出。仅需一个或者几个第二车体958自第三收容空间966相对第一车体956移出。如果第二车体958中存储的电池组件的数量为一台电动车辆需要更换的电池组件的数量的m倍,而需要更换电池组件的电动车辆的数量为N,此时,需要移出的第二车体的数量
步骤032,第二车体为电动车辆更换电池组件。
参见附图104,本发明电池更换设备的第十一较佳实施方式。与第三实施例类似的,本实施例中的电池更换设备包括第一车体956和第二车体958,第一车体956包括电池更换机构960、第一收容空间962以及第三收容空间966。第二车体958收容于第三收容空间966中。不同的,本实施例中,第一车体956还包括充电器970,用于与外部电源983连接,为收容于第一收容空间中的电池组件54充电。进一步的,充电器970还能够与第二车体958连接,为收容于第二收容空间964中的电池组件54充电。
可以理解的是,本实施方式中的第一车体可以不包括电池更换机构960。此时,第一车体不单独执行电池更换的工作,第二车体具体执行电池组件的更换。第一车体956存储若干电池组件,并为电池组件充电以使第二车体执行电池组件的更换时能够获得充满电的电池组件。第二车体本身存储若干电池组件,方便直接从第一车体中移出从而为电动车辆更换电池组件。同样的,第二车体本身可以不存储电池组件,而是在需要时从第一车体的第一收容空间中获取所需的电池组件。
参见附图105,电池更换设备的第十二较佳实施方式。本实施方式中,电池更换设备56包括车头976和可替换的与车头976连接的第一车体956和第二车体958。第一车体956和第二车体958上均设置电池更换机构960和电池收容空间,只是第一车体956上的第一收容空间962大于第二车体958上的第二收容空间964。因此,第一车体956能够存储数量更多的电池组件54,适用于需要更换电池组件的电动车辆较多的情况。
参见附图106,电池更换设备为电动车辆更换电池的方法的第三种具体实施例。本方法的实施例中涉及的电池更换设备56如附图105所示,具体的,电池更换设备56包括车头976和可替换的与车头976连接的第一车体956和第二车体958。第一车体956和第二车体958上均设置电池更换机构960和电池收容空间,只是第一车体956上的电池收容空间大于第二车体上的电池收容空间。因此,第一车体956能够存储数量更多的电池组件54。本实施例中,电池更换设备为电动车辆更换电池组件的方法包括以下步骤。
步骤010,获取需更换电池组件的电动车辆的数量N。电池更换设备接收特定区域内电动车辆更换电池组件的需求信息,确认需要更换电池组件的电动车辆的数量N。
步骤012,判断需要更换电池组件的电动车辆的数量N是否大于预设值。如果大于预设值,进入步骤014。预设值根据电动车辆的电池组件的尺寸有不同的设计。优选的,预设值可以是5-50之间的一个整数。具体的,预设值可以设置为10。每台电动车辆所需要更换的电池组件的数量可以是N或者N的倍数。当电池组件包括多个电池模块时,需要更换的是每个电池模块。此时,电池模块的数量是N的倍数。
步骤014,车头976连接第一车体956。车头连接器78与第一车体连接器80相连,使车头976能够牵引第一车体956移动。
步骤016,车头976与第一车体956移动至预定地点。车头976带动第一车体956移动,移动的目的地是电池更换设备为电动车辆更换电池组件的预定 地点。该预定地点是电池更换装置通过特定数据库获得的信息。到达预定地点后,可以进一步判断需要更换电池的电动车辆是否身份匹配。
步骤017,第一车体956为电动车辆更换电池组件54。第一车体956上包括电池更换机构960。电池更换机构相对电动车辆移动,从而将容量部分耗尽的位于电动车辆上的电池组件54拆卸下来,将充满电的电池组件安装至电动车辆上,快速为电动车辆补充能量。这个步骤中,电动车辆的数量可以是多台,相应的预定地点也有多个,但是,由于第一车体956的第一收容空间962大,能够存储的电池组件数量多,相应的,电池第一车体能够为较大数量的电动车辆提供更换电池组件的服务。
步骤012中,如果N小于等于预设值,进入步骤018,。
步骤018,车头连接第二车体。车头连接器78与第二车体连接器82相连,从而车头976能够牵引第二车体958移动。
步骤020,车头976与第二车体958移动至预定地点。车头976带动第二车体958移动,移动的目的地是电池更换设备为电动车辆更换电池组件的预定地点。该预定地点是电池更换装置通过特定数据库获得的信息。到达预定地点后,可以进一步判断需要更换电池的电动车辆是否身份匹配。
步骤021,第二车体为电动车辆更换电池。第二车体958上包括电池更换机构960。电池更换机构相对电动车辆移动,从而将容量部分耗尽的位于电动车辆上的电池组件54拆卸下来,将充满电的电池组件安装至电动车辆上,快速为电动车辆补充能量。这个步骤中,电动车辆的数量可以是一台或者多台,相应的预定地点可以是一个或者多个。由于第二车体958的第二收容空间964尺寸相对较小,能够存储的电池组件数量少,相应的,第二车体能够为较少数量的电动车辆提供更换电池组件的服务。
本实施例中,仅示例性的揭示了一种具体的更换电池的方法。本领域技术人员可知,进一步的车头还可以与第三车体可替换的连接。第三车体同样具有电池更换机构和收容空间。第三车体的收容空间尺寸比第一收容空间尺寸小但是比第二收容空间的尺寸大。根据需要更换电池组件的电动车辆的数量的不同,车头可以连接具有不同收容空间尺寸的车体执行电池更换。
【电池供应站】
参见附图107,电动车辆的能量补充系统50还包括电池供应站60。电池供应站包括若干充电设备62和电池存储库100。
电池供应站60对电动车辆能量补充系统中的电池进行维护与保养。电池组件54包括充满电的电池组件和至少部分容量耗尽的电池组件。电池供应站 对所有电池的信息进行管理。电池的信息包括但不仅限于电池的年龄、充放电次数、充放电条件、电池型号等。
电池供应站对电池的身份信息进行管理。对于购买电池的用户,电池属于用户个人,因此,电池供应站对电池的管理重点是充电和保养。电池的身份信息中包括所属用户的信息,电动车辆的型号、电池的年龄、充放电的次数和充放电的水平。整个能量补充系统中,每个电池的身份信息可以是唯一的,用户可以按照身份信息找到属于自己的电池。有些应急情况下更换了不属于自己的替换电池,可以由服务中心确认将属于用户的电池在特定的条件下返还,以保证用户的电动车辆在正常情况下都配备自己的电池。
电池供应站60提供电池储备信息。电池的信息存储于电池供应站数据库中。电池供应站60接收电池更换设备56输送的待充电电池,提供充满电的电池给电池更换设备。电池供应站60也可以包括定位系统102,提供电池供应站的地理位置。电池供应站60接收电池更换设备的地理位置和电池储备信息,并基于此制定电池的充电计划。
充电设备62,用于为至少部分容量耗尽的电池进行能量补充。充电设备62具有若干充电接口,电池通过充电接口接收来自外部电网提供的电能。电池更换设备56为电动车辆提供电池更换服务后移动至电池供应站,存储在第二收容空间80中的至少部分容量耗尽的电池将被取出,放置在充电设备上进行能量补充。充电设备62包括充电座,用于与电池和外部电源电性连接,并通过充电接口为电池充电。电池可以置于充电座上,也可以通过电缆与电池连接。
电池供应站60可以根据电池更换设备的地理位置以及电池储备情况,对电池供应站进行总体的充电规划,根据需求取出至少部分需要充电的电池进行充电。
电池存储库100,用于存储若干充满电的电池,电池更换设备56从电池存储库100中获取充满电的电池,充满电的电池被放置到电池更换设备56的第一收容空间78中。电池存储库100也用于存储若干至少部分容量耗尽的电池。充满电的电池和至少部分容量耗尽的电池的存储空间可以相对分离,或者有明确的标识,以示区别。对于充满电的电池,电池的充电时间、电池的年龄、充放电的制式等内容可以标识在电池上或者存储在电池的管理模块中。电池供应站根据总体的用电需求,控制充电设备62为电池充电的速度和总能量。
电池供应站60包括通信接口101,通过通信接口101,电池供应站能够与电动车辆、电池更换设备以及服务中心建立通信连接,从而获取能量补充系统网络内的相关信息。
电池供应站60包括控制系统CPU103。控制系统包括用户界面104,用户界面包括显示装置104a和输入装置104b。通过用户界面104,可以获取能量补充系统内的电动车辆和电池更换设备的相关信息,以支持电池供应站进行电池容量补充计划。
当然,电池供应站本身也可以作为电池更换的地点。如果将电池供应站作为电池更换的地点,电池的储备丰富,可以保证用户在第一时间获得电池更换服务。电池供应站拥有充足的满电电池储备,选择电池供应站作为换电地点,可以避免发生因电池更换设备上装备的满电电池不足而影响电池更换速度的情况。
电池供应站可以设置在城市的郊区,充分利用电网的用电低谷时多余的电能对电池进行充电,有效利用电能,又避免用电高峰时充电对电网带来的冲击。
【服务中心】
参见附图108-111,服务提供商将特定的地域划分为若干子区域,每个子区域设置一个服务中心。服务中心58包括总控操作系统104和系统数据库106。
总控操作系统104管理服务中心所辖范围内的电动车辆的能量补充。所辖范围内的电动车辆包括但不仅限于用户提供的地址位于该范围内的电动车辆以及临时经过该范围的电动车辆。服务中心所辖范围内的所有用户及其电动车辆的信息、电池更换设备以及电池供应站的相关信息能够统一在服务中心管理。总控操作系统104接收用户的电动车辆发送的地理位置信息和电池的状况的信息以及所有电池更换设备发送的地理位置信息,并相应的存储至系统数据库106中。总控操作系统104根据电池更换设备发送的地理位置信息,确认电池更换设备的数量和分布情况。总控操作系统104根据电池更换设备的地理位置和提出电池更换需求的车辆的地理位置,规划电池更换设备的行走路径,发送预定的行走路径指令给特定的电池更换设备。电池更换设备56根据预定的行走路径指令,按照一定的顺序,为预定的电动车辆进行电池更换服务。参见附图53,根据获取的行走路径指令,电池更换设备56按照A-B-C-D的顺序,为处于不同预定位置的多台电动车辆更换电池。
服务中心接收换电请求后,通过不同的方式确认换电地点和时间。为了达到系统资源的有效利用,服务中心可以统一管理特定区域范围内的电池更换需求。
服务提供商可以将特定的区域划分为若干子区域。比如,将一个城市划分为5~7个子区域,子区域的划分依据可以是区域内的电动车辆的数量,也可以 是区域内的人口数量。当然,还有其他的划分依据可以考虑,综合不同的考量因素划分子区域后,可以在特定的子区域内构建电池供应站。电池供应站的数量和位置根据子区域的电动车辆拥有量和道路设置等因素确定。电池供应站的规模和数量由特定的区域的电池更换需求确定,因此,特定的区域内可以设置一个电池供应站以满足若干子区域的电池更换需求,也可以设置多个电池供应站。
服务中心可以负责管理一个子区域或者多个子区域。每个子区域可以再细分为若干区域单元。服务中心管理的辖区内可以设置若干辆可移动的电池更换设备。若干辆可移动的电池更换设备可以分别负责特定的区域单元,每个电池更换设备负责的区域单元相对独立。电池更换设备根据服务中心提供的换电计划,为区域单元内的电动车辆提供电池更换的服务。
换电计划包括固定换电计划和临时换电计划。根据固定换电计划,电池更换设备按照预设的行走路线移动,为约定的电动车辆更换电池。固定换电计划针对于电池更换需求不紧急的情况。一个具体的实施例中,特定的区域单元对应于一个或者多个住宅小区,夜间停靠在固定的停车位上的电动车辆作为固定换电计划中更换电池的对象,电池更换设备根据预约,按照固定的周期为电动车辆更换电池。这样的约定,可以在用户与服务提供商签署服务协议时确定,也可以根据用户的临时请求确定。不同的电动车辆更换电池的周期可以不同。基于固定周期的电池更换,在用户对电动车辆的常规使用情况下,用户不再需要考虑对电动车辆进行充电的问题,电动车辆的电池在需要的时候总是处于具有足够能量的情况。用户需要进行长途旅行时,进一步提出临时换电请求,服务中心根据临时换电请求调整电池更换设备的换电计划,将临时换电请求纳入换电计划中,发送给电池更换设备。电池更换设备根据调整的换电计划,准备满电电池以及重新确认行走路径。
电池更换设备的服务区域相对独立,这样,电池更换设备的电池储备和换电计划相对容易。根据服务中心提供的服务区域内的电池更换需求的数据监控,服务中心或者电池更换设备可以预先做好满电电池储备计划。电池储备计划基于固定换电计划制定。根据固定换电计划,电池更换设备储备N组电池,进一步的根据服务区域内的电池更换需求的数据监控,储备M组电池作为临时换电计划对应的电池。从而,电池更换设备出发执行换电任务时装备的电池共有N+M组。
但是,某些特定的条件下,服务中心根据电池更换设备的服务区域、时间段、以及服务区域内的换电业务需求量的变化,对所辖范围内服务区域不同的 电池更换设备进行统一调度,以总体符合电动车辆的换电需求。
特定的条件包括但不仅限于特定的时间段或者特定的路段。特定时间段可以是节假日。大型的商业中心区域范围内的换电需求可能激增,负责该区域的电池更换设备的换电能力无法满足该区域范围内的换电需求量。服务中心协调其他区域的电池更换设备进行协同工作。特定的时间段还可以是上班时间段。这个时间段通常是上午6:00~9:00。服务中心协调多台电池更换设备共同为该区域内的电池车辆更换电池。
服务中心可以根据区域换电业务需求的不同,为不同的区域单元配备不同规格的电池更换设备。比如,大规格的电池更换设备的电池装载能力能够达到100台电动车辆电池模组,中等规格电池更换设备的装载能力不超过50台电动车电池模组,小规格电池更换设备的装载能力不超过10台电动车电池模组。对于大规格的电池更换设备而言,适应于电池更换需求量大的区域。由于装载的电池数量多,电池更换设备的体积相应的比较大,除了可以作为电池更换设备以外,还可以作为小型电池更换设备获取满电电池的可移动的电池库。对于中等规格的电池更换设备而言,适应于电池更换需求量中等的区域。对于小规格电池更换设备,体积相对小,移动灵活,更适应于电池更换地点位置狭窄的情况,也适应于电池更换需求少且分散的区域。当然,可以根据实际需求量,上述的规格相应变化,以更好配合满足用户需求。
基于不同区域的电池更换需求不同,服务中心可以根据区域的特点,配备不同规格的电池更换设备。不同规格的电池更换设备在不同的时间和地段执行不同的换电工作。一种具体的实施例中,特定的区域单元配置一辆大型电池更换设备和若干小型电池更换设备。大型电池更换设备从电池供应站装载预定数量的满电电池。若干小型电池更换设备在区域单元中移动,为不同的电池更换设备更换电池。小型电池更换设备装载的电池不足时,移动至大型电池更换设备,补充满电电池。小型电池更换设备不需要行驶非常远的距离移动至电池供应站进行满电电池补充,总体换电成本低,换电效率高。
服务中心获取换电请求后,对换电请求进行统一管理和规划。服务中心会对每台电动车辆的换电请求进行优先度等级判断,判断的影响因素包括换电请求时间、需求紧急程度以及换电成本中的至少一个。具体的,换电请求时间包括电动车辆提出换电需求的时间。需求紧急程度是指服务中心与电动车辆的用户约定的换电时间、电动车辆发出的紧急换电请求的时间的先后顺序。换电成本包括但不仅限于电池更换设备从当前位置移动到预定地点所需要移动的距离,花费的时间等综合因素决定的成本。
进一步的,换电请求的规划还可以包括其他的变化因素,变化因素包括但不仅限于换电业务的规模和用户的类型等。对于起步阶段的换电业务,业务的规模和成熟度不是很高,服务中心配备的电池更换设备的规格和类型有限。服务中心规划电池更换设备的行走路径,确保电动车辆在预定的时间内完成换电。换电需求的数量达到一定程度时,电池更换设备的配置规格和数量相应的调整。服务中心可以将换电请求划分为固定需求和临时需求,相应的电池更换设备配置为执行固定换电计划的电池更换设备和执行临时换电计划的电池更换设备。对于执行固定换电计划的电池更换设备而言,满电电池的装载数量以及行走路径相对固定,电池更换设备按照预定的路径或者按照预定的时间顺序为预定的电动车辆更换电池。基于这样的设置,电池更换设备能够被最大化的使用,同时又能够满足不同车辆的换电需求。用户的类型基于服务提供商与用户之间协议约定区分。基于服务内容和费用约定,用户可以被区分为一般用户、普通用户和重要用户等。
服务中心根据换电需求的优先级,给每台电动车辆进行打分。优先度等级高,意味着换电请求时间早,需求紧急程度高或者换电成本高,相应的车辆获得的分值就高。而需求紧急程度低或者换电成本低的相应车辆获得的分值就低。由此,服务中心根据与用户的协议约定,确认所有换电需求按需满足所需的电池更换设备的数量,并进一步根据电池更换设备的位置和规格,确认电池更换设备的换电计划。不同的电池更换设备的换电计划的总和是服务中心对应所有换电需求的换电规划。
具体的实施例中,服务中心按照特定遍历算法规划电池更换设备的行走路径。根据电动车辆的分值,确认换电方案以保证换电需求被价值最大化的满足。以一个具体的电池更换设备的当前位置为起始点,将需要更换电池的电动车辆的位置作为节点,结合需要经过的道路情况,给电动车辆的位置的节点评估分值,确保遍历所有需要换电的电动车辆的位置的节点的价值最大。
也可以以不同的电池更换设备的当前位置为起点,将需要更换电池的电动车辆的位置作为节点,设定优先满足高价值节点为判断条件,遍历所有需要更换电池的电动车辆。以上的实例是基于示例性的情况作出的说明,具体的计算方法可以进一步结合电池更换设备的规格和服务区域等条件作出改变。
总控操作系统104具有总控界面108,包括显示装置108a和输入装置108b。电池更换设备56的地理位置能够显示在总控界面108上。总控界面108上能够同时显示服务中心所辖范围内的所有电池更换设备56和电动车辆52的当前位置。总控界面108还可以显示电池更换设备56的预设路径。进一步的, 可以根据电池更换设备与其预设路径的匹配关系确定电池更换设备是否正常工作。
服务中心具有定位系统109,获取能量补充系统内车辆、电池更换设备、电池供应站的位置信息。
服务中心包括CPU110,用于控制服务中心内部系统运行。服务中心具有至少一个通信接口112,通过通信接口112,服务中心能够与能量补充系统内的电动车辆、电池更换设备以及电池供应站获得通信连接。
系统数据库106包括用户数据库114,存储有所有用户的相关信息,包括但不仅限于用户与服务提供商协议约定的服务内容、付费方式、用户的电动车辆的型号、用户的电动车辆经常行驶的目的地、用户家庭地址、用户单位地址和电动车辆曾经去过的地点等信息。
系统数据库106包括车辆位置数据库116,包括所有特定范围内的电动车辆的当前位置数据或者历史位置数据,或者当前和历史位置数据。
系统数据库106包括电池状态数据库118,包括所有特定范围内的电动车辆的电池的状态。电池的状态包括但不仅限于电池的剩余电量、电池的充放电次数、电池的年龄、电池温度、电池的充放电水平以及电池的电压、电流等。
系统数据库106还可以包括电池更换设备数据库120,包括服务中心管辖范围内的所有可移动的电池更换设备的信息。电池更换设备的信息包括但不仅限于电池更换设备的地理位置,电池更换设备上装备的充满电的电池的数量、电池更换设备上接收的至少部分容量耗尽的电池的数量、电池更换设备的行走路径、电池更换设备的换电机构的工作状况等。
进一步的,系统数据库106还可以包括电池供应站数据库122,包括服务中心管辖范围内的所有电池供应站的信息。电池供应站的信息包括但不仅限于电池供应站的地理位置,电池供应站的满电电池储备数量、接收能量补充的欠电电池的数量和充电情况等。
其中,电动车辆的地理位置、电动车辆的电池的状况以及电池更换设备的地理位置等是实时更新的数据。总控操作系统104接收电动车辆发送的地理位置信息和电池的状况信息以及电池更换设备发送的地理位置信息,并定期更新系统数据库106中的相关内容。从而,整个能量补充系统的相关计算机中,始终有最新的电动车辆和电池更换设备的相关信息。
总控操作系统104提供服务中心辖区内的总体换电规划。具体的,总控操作系统104根据电动车辆和电池更换设备提供的信息,系统规划电池更换设备的行走路径。总体换电规划包括服务中心辖区内的所有的电池更换设备的行走 路径及路径上需要进行电池更换的电动车辆的数量和顺序。电池更换设备56按照预设的路径移动,为处于预设路径上的预定的电动车辆在预定地点提供电池更换服务。从而,一个服务中心对所辖的电池更换设备进行统一管理,根据电动车辆的用户的需求,按照最快捷的方式由电池更换设备移动至预定的地点提供电池更换服务。电动车辆只需要在接收到电池更换提醒的信息之后,确定预定的换电地点,电池更换设备就可以在特定的时间于该预定的地点为电动车辆更换电池。由此,电动车辆可以随时随地获得电池更换服务,不需要一定移动到特定的电池更换站,也不需要到充电站等待长时间的充电,解决了电动车辆的用户的里程焦虑。对于电动车辆的用户来说,出行时的行程安排不再受电池更换站位置的限制,真正获得了与驾驶汽油车类似的全程无忧的使用体验。
由于电动车辆的换电地点可以不受特殊的限制,电动车辆的用户可以根据需要进行不同的换电模式选择。
一种换电模式为约定地点换电。此种模式下,用户与服务中心共同约定一个具体的换电地点。约定完成后,电动车辆和电池更换设备分别向换电地点移动,电动车辆到达约定地点,电池更换设备与电动车辆识别身份,进而为电动车辆更换电池。该约定地点可以由服务中心提供。根据电动车辆的地理位置和电池的状况以及电池更换设备的地理位置,确认约定地点。约定地点处于电动车辆的剩余里程范围内。电池更换设备移动至约定地点的时间小于或等于电动车辆到达约定地点的时间。
另一种换电模式为停车换电。此种模式下,用户与服务中心仅确认换电请求,约定电动车辆停止行驶的地点为换电地点。服务中心根据车辆停止行驶的信息确认对应的电动车辆的地理位置,由电池更换设备移动至电动车辆的定位系统发送的地理位置信息对应的地点,为电动车辆更换电池。车辆停止行驶的地点是车辆电池电量耗尽不再移动的地点,也可以是车辆电池电量低于预设阀值时车辆电池停止提供能量的地点,也可以是用户发出换电请求后并符合约定条件的任何一个停车地点,如,发出换电请求后的第一次停车,或者发出换电请求预设时间后的停车地点等等。用户临时停车的地点予以忽略。符合条件的换电地点信息将发送给服务中心以完成后续工作。
还有一种换电模式为电池供应站换电。此种模式下,用户请求服务中心提供邻近的电池供应站的位置和电池储备情况,用户根据行程安排,选择预定的电池供应站为换电地点。电动车辆行驶并停靠在电池供应站内,电池供应站中的电池更换设备移动至车辆停靠地点为车辆更换电池。也可以是服务中心根据用户车辆电量和行程信息提供电池供应站地点,用户选择确认并将车辆停靠至 供应站,电池更换设备移动至电动车辆所在的位置为车辆更换电池。
以上换电模式中,电动车辆停靠的地点均没有特别的要求,只要在电动车辆车体的前后左右的至少一个方向上,有空间足以使电池更换设备停靠且进行电池更换即可。
电池更换设备的移动路径根据电动车辆的地理位置和电池电量状态确定。更进一步的,结合电动车辆的用户对于电动车辆的预期使用,与用户预先约定预定的电池更换地点和更换时间。电池更换设备可以随时随地移动,电动车辆的用户能够在最需要的时候完成电池更换。无论电动车辆的地理位置如何,基于具有特定的电池更换机构的可移动的电池更换设备,电池的更换由电池更换设备直接完成,服务提供商不需要构建具有特殊结构的换电坡道的电池更换站,适应电动车辆处于不同地理位置的状况。其中,电动车辆可能所处的地理位置的状况包括但不仅限于街道的一侧,停车场的预定车位等。处于以上地理位置,电动车辆附近仅有相对狭小的空间能够用于电池更换。
总控操作系统通过设置在电动车辆上的检测模块监测电动车辆的日常行为模式,将电动车辆(EV)的历史驾驶数据存储在存储器中,并据此判断电动车辆是否需要在特定的地点获取更换电池服务。
电动车辆的日常行为模式包括但不仅限于行驶距离数据、车辆行驶的路径,经常停靠的地点、车辆使用信息,比如车辆的速度、空调使用频率和温度设定、音响的使用类型、频率和时间等。
具体的实施例中,电动车辆的用户一般情况下,沿着固定的线路行驶,比如在用户的工作地点和居住地点两点之间的任意线路上行使。从而,这样的电动车辆大约90%的行驶是在两个固定的地点之间进行。因此,用户可以选择在两个固定的地点之一为电动车辆进行充电或者进行电池更换。
但是,一旦电动车辆的用户有出游计划,车辆预计行驶的距离比较远,电动车辆的电池进行一次充电后能够行驶的里程不能够到达较远的目的地,此时,根据电动车辆行驶的目的地和基本的电池使用情况,用户可以与服务中心约定在预设的地点为电动车辆进行能量补充。该预定的地点可以是用户与服务中心之间协商确定的出游路途中的一个地点。为了快速的完成电池的能量补充,服务中心会指令特定的电池更换设备在预定的时间到达预定地点,识别预定车辆,并为该预定的电动车辆进行电池更换。
当然,电池更换的服务也可以基于电动车辆的电池的状况发生。电动车辆的用户认为需要更换电池时,通过用户界面的输入装置,向服务中心发出更换电池的请求,服务中心可以据此确认电池更换的请求,为对应的电动车辆提供 换电服务。
另一些具体的实施例中,用户也可以通过电动车辆上的主控单元发送更换电池的请求。也就是说,主控单元将电池的状况与预设的条件进行比较,如果电池的状况符合预设的条件,表示电动车辆的电池电量不足,主控单元发出需要更换电池的提醒。基于该提醒,用户可以通过输入装置选择性的确认发送更换电池的请求。也可以由用户将主控单元的运行程序设置为,如果电池的状况符合预设的条件,延迟预定时间或者预定行驶里程后,主控单元自动发出更换电池的请求。
基于以上信息,服务中心能够对多台电动车辆的电池更换进行统一管理,根据实际情况制定不同的换电规划。服务中心指令特定的电池更换设备根据所在区域的电动车辆及其电池使用状况,按照预定的路径行驶,为预先约定的若干电动车辆更换电池,以最少的成本提供最快捷的电池更换服务。
【管理系统】
服务中心通过管理系统来管理所辖范围内所有用户、电动车辆、电池更换设备和/或电池供应站。
通常管理系统包括一个或多个处理器、一个或多个网络接口或者其他的通信接口、存储器以及定位系统。计算机系统可以具有用户界面,同样的,用户界面包括显示装置和输入装置。输入装置可以是键盘、鼠标或者触摸屏。
存储器的功能是存储程序和各种数据,并能在计算机运行过程中自动完成程序或数据的存取。存储器包括非永久记忆的存储器和永久记忆性存储器。非永久记忆的存储器包括但不仅限于DRAM、SRAM、DDR RAM。永久记忆性存储器包括但不仅限于一个或者多个磁盘、光盘、闪存。存储器可以是与计算机主机设置在一起的存储设备,也可以是与计算机主题距离较远的一个或者多个存储设备。
电动车辆的能量补充系统50包括用户的电动车辆的客户端、电池更换设备的客户端,电池供应站的管理系统以及服务中心的总控操作系统。
【车辆客户端】
参见附图3,用户的电动车辆上的客户端,具有包含显示装置74和输入装置76的用户界面72。从电动车辆的客户端可以输出电动车辆的地理位置、电池的状况、换电地点和时间等信息。电动车辆的客户端可以接收服务中心的总控操作系统发送的剩余里程预估、换电提醒、换点地点和时间等信息。电动车辆的客户端还可以接收电池更换设备发送的身份确认信息或者给电池更换设备发送身份确认信息。
电动车辆的客户端通常是一台车载电脑。电动车辆的客户端包括中央处理器(CPU)和存储器。具体的存储器包括操作系统68a,通信模块68b、用户界面模块68c、定位模块68d、电池控制模块68e、费用模块68f、数据库模块68g、电池状况数据库68h以及地理位置数据库68i等。
操作系统68a,包括用于处理系统任务的若干程序。
通信模块68b,用于经由一个或者多个通信端口或通信网络与服务中心58、电池更换设备56等的客户端连接。通信网络包括但不仅限于局域网、城域网、英特网或者其他的广域网等。
用户界面模块68c,通过输入装置76接收用户指令并将指令通过显示装置74显示。
定位模块68d,通过定位系统确定电动车辆的地理位置,还与用户界面模块连接,显示用户指定的目的地的地理位置。
电池控制模块68e,控制电池的更换过程,包括但不仅限于控制电动车辆与电池更换设备之间的身份识别,车辆的电池的使用过程数据的监控等。
费用模块68f,用于管理电动车辆的费用支出。
电池检测模块68j,用于管理电池检测单元。
数据库模块68g,用于提供车辆的数据库的接口,与整个动力补充系统中的其他数据库进行数据交换和连接。
电池状况数据库68h,包括电动车辆的电池状况的当前和/或历史数据。
地理位置数据库68i,包括车辆的地理位置的当前和/或历史数据。
整个电动车辆的动力补充系统中,包含不止一辆电动车辆。每辆电动车辆上都可以安装上述客户端。每个电动车辆的客户端管理对应的电动车辆,相应的提供对应电动车辆的相关信息。从而,服务中心总体管理所有电动车辆的客户端提供的信息和数据。
【电池更换设备客户端】
参见附图22,电池更换设备的客户端,具有包含显示装置和输入装置的用户界面。从电池更换设备的客户端可以输出电池更换设备的地理位置、电池更换设备的电池储备情况。电池更换设备的客户端可以接收电动车辆的客户端发送的电动车辆的地理位置、电池的状况,还可以接收服务中心的总控操作系统发送的行走路径指令、需更换电池的车辆的换电时间和地点。电池更换设备的客户端还可以发送或者接收与电动车辆进行身份识别的密钥。
电池更换设备的客户端通常是一台车载电脑。电池更换设备的客户端包括中央处理器(CPU)和存储器。电池更换设备的存储器包括操作系统56a、通 信模块56b、用户界面模块56c、定位模块56d、电池更换管理模块56e、费用模块56f、数据库模块56g、电池状况数据库56h、地理位置数据库56i、电池更换设备数据库56j以及电池供应站数据库56k等。
操作系统56a,包括用于处理系统任务的若干程序。
通信模块56b,用于经由一个或者多个通信端口或通信网络与服务中心、电池供应站、电动车辆等的客户端连接。通信网络包括但不仅限于局域网、城域网、英特网或者其他的广域网等。
用户界面模块56c,通过输入装置接收服务中心发送的指令并将指令通过显示装置显示。
定位模块56d,通过定位系统确定电动车辆和电池更换设备的地理位置。
电池更换管理模块56e,用于控制为电动车辆进行电池更换的过程,与电动车辆之间进行身份识别等。
费用管理模块56f,管理电池更换设备的账目信息。
数据库模块56g,用于提供电池更换设备的数据库的接口,与整个能量补充系统中的其他数据库进行数据交换和连接。
电池状况数据库56h,包括电动车辆能量补充系统中的电动车辆的电池的当前和/或历史数据。
地理位置数据库56i,包括电动车辆能量补充系统中的电动车辆的地理位置的当前和/或历史数据。
电池更换设备数据库56j,包括电池更换设备的相关信息,包括但不仅限于电池更换设备的地理位置和电池储备情况。
电池供应站数据库56k,包括电动车辆能量补充系统中的电池供应站的相关信息。包括但不仅限于电池供应站的地理位置、电池储备等。
整个电动车辆的能量补充系统中,可以包括多个电池更换设备。每个电池更换设备上都可以安装上述客户端。每个电池更换设备的客户端管理电池更换设备的相关信息并提供给服务中心。从而,服务中心获得所有电池更换设备的信息和数据。
【供应站管理系统】
参见附图107,电池供应站的管理系统,接收电池更换设备发送的地理位置、电池储备情况;发送电池供应站的充满电的电池数量和预计使用量等。
电池供应站的客户端通常包括一台电脑。电池供应站的客户端包括中央处理器(CPU)和存储器。电池供应站的管理系统包括操作系统60a,通信模块60b、用户界面模块60c、定位模块60d、充电管理模块60e、电池管理模块 60f、费用管理模块60g、数据库模块60h、电池状况数据库60i、地理位置数据库60j、电池更换设备数据库60k以及电池供应站数据库60l等。
操作系统60a,包括用于处理系统任务的若干程序。
通信模块60b,用于经由一个或者多个通信端口或通信网络与服务中心、电池更换设备等的客户端连接。通信网络包括但不仅限于局域网、城域网、英特网或者其他的广域网等。
用户界面模块60c,通过输入装置接收服务中心或者电池更换设备发送的指令或请求并将指令或者请求通过显示装置显示。
定位模块60d,通过定位系统确定电动车辆和电池更换设备的地理位置。
充电管理模块60e,用于与充电设备连接,监控充电设备的电能使用,充电过程的安全以及能量分配。
电池管理模块60f,通过电池检测确认电池供应站内电池储备情况。
费用管理模块58g,管理电池供应站的电池装卸、充电相关的账目信息。
数据库模块60h,用于提供电池供应站的数据库的接口,与整个能量补充系统中的其他数据库进行数据交换和连接。
电池状况数据库60i,包括电动车辆能量补充系统中的电动车辆的电池的当前和/或历史数据。
地理位置数据库60j,包括电动车辆能量补充系统中的电池更换设备和电动车辆的地理位置的当前和/或历史数据。
电池更换设备数据库60k,包括电池更换设备的相关信息,包括但不仅限于电池更换设备的地理位置和电池储备情况。
电池供应站数据库60l,包括电动车辆能量补充系统中的电池供应站的相关信息。包括但不仅限于电池供应站的地理位置、电池储备等。
【服务中心管理系统】
参见附图110,服务中心的总控操作系统104包括操作系统58a、通信模块58b、总控界面模块58c、定位模块58d、换电规划模块58e、账目管理模块58f、数据库模块58g、电池状况数据库58h、地理位置数据库58i、电池更换设备数据库58j以及电池供应站数据库58k等。
操作系统58a,包括用于处理系统任务的若干程序。
通信模块58b,用于经由一个或者多个通信端口或通信网络与电池更换设备、电池供应站以及电动车辆等的客户端连接。通信网络包括但不仅限于局域网、城域网、英特网或者其他的广域网等。
总控界面模块58c,通过输入装置接收用户、电动车辆、电池更换设备和/ 或电池供应站发送的信息并通过显示装置显示。
定位模块58d,通过定位系统确定电动车辆和电池更换设备的地理位置。
换电规划模块58e,根据电动车辆的地理位置和电池状态信息,以及电池更换设备的地理位置信息,规划电池更换设备为电动车辆进行电池更换的路径。
账目管理模块58f,管理服务中心辖区内电动车辆的电池更换的往来账目。
数据库模块58g,用于提供系统数据库的接口,与整个能量补充系统中的其他数据库进行数据交换和连接。
电池状况数据库58h,包括电动车辆能量补充系统中的电动车辆的电池的当前和/或历史数据。
地理位置数据库58i,包括电动车辆能量补充系统中的电动车辆的地理位置的当前和/或历史数据。
电池更换设备数据库58j,包括电池更换设备的相关信息,包括但不仅限于电池更换设备的地理位置和电池储备情况。
电池供应站数据库58k,包括电动车辆能量补充系统中的电池供应站的相关信息。包括但不仅限于电池供应站的地理位置、电池储备等。
【数据网络】
电动车辆的能量补充系统50包括数据网络59。
数据网络包括有线或者无线通信网络。参见附图1,数据网络将服务中心、电动车辆、电池更换设备以及电池供应站关联起来。仅仅是为了表达简单清楚的目的,附图中仅揭示了一辆电动车辆、一个电池更换设备、一个服务中心和一个电池供应站。可以理解的是,整个电动车辆的能量补充系统中,可以包括任何数量的电动车辆、电池更换设备、服务中心以及电池供应站。
一些具体的实施例中,电动车辆、电池更换设备以及服务中心均包括通信模块,通过数据网络,建立通信连接。
【电源网络】
电源网络63包括发电厂、变电站、电力传输线等。通过电源网络将发电厂产生的电能传输给电池供应站。电池供应站通过充电设备为电池补充能量。
【与金融机构之间的关联】
用户和服务提供商之间可以通过多种途径建立合同关系。一旦服务完成,用户要为接受的服务付出相应的费用。
能量补充系统包括支付系统,为用户提供快捷、灵活、全天候的支付体验。支付系统包括后台支付系统和客户快捷支付模块等。具体的费用结算的方式可以包括但不仅限于预付款、月结以及现结等。支付方式可以有多种,包括但不 仅限于现金支付、在线支付、用户信用卡关联支付、移动终端支付等。
【电动车辆的能量补充的方法】
【第一实施方式】
本实施方式中,电池更换设备采用对应的第一实施方式中的电池更换设备。具体的,电动车辆的能量补充的方法包括以下步骤。
步骤001,电池更换设备根据换电指令出发移动至预定地点。电池更换设备接收的换电指令由服务中心发出。服务中心根据电动车辆发送的换电请求,统筹安排服务区域内的电池更换设备的换电工作。电池更换设备接收的换电指令可以包括固定周期的换电指令,也可以包括不定周期的换电指令。根据换电指令中提供的换电地点和换电时间的要求,电池更换设备在预定的时间移动至预定的地点,为电动车辆更换电池。
步骤002,电池更换设备与电动车辆进行身份确认。
运输车移动至与电动车辆确定的换电位置。电动车辆所在的预定地点足以使运输车停靠时,运输车将装载换电小车系统一起到达预定地点。电动车辆所在的预定地点运输车无法到达时,换电小车系统将自运输车上移出执行换电工作。
电池更换设备通过通信设备与电动车辆进行身份识别,识别方式可以是密钥发送与确认。具体的,电池更换设备的操作者通过通信装置发送身份确认信息,激活电动车辆上的身份识别程序,当电动车辆响应的信息与预定的信息一致时,判断电动车辆为预定的电动车辆,电动车辆上的电池模块将处于可更换状态。电池更换设备的操作者启动为电动车辆更换电池。
步骤003,将电动车辆的一侧抬升预定高度。
换电小车系统自运输车上移出。换电小车系统包括电动千斤顶和换电叉车。电池更换设备的操作者将电动千斤顶自运输车上取下,放置在电动车辆的一侧的车轮处。一种具体的实施方式中,操作者用同一个控制器控制两个电动千斤顶启动和停止,以抬升电动车辆的一侧至预定的高度。
换电叉车720接收自桁车上通过抓取手释放的新电池。根据电动车辆的停放位置不同,电池更换设备可以选择从不同的方向对电动车辆进行电池更换。具体的,如果电动车辆的前侧或者后侧有足够的空间,可从电动车辆的前侧或者后侧进行电池更换。如果电动车辆停靠在路边,电动车辆的左侧或者右侧有空间,则从电动车辆的左侧或者右侧进行电池更换。电池更换设备的操作者将电动千斤顶710自运输车上移出,从车轮的侧面夹持车轮。千斤顶的数量为两个,分别夹持车辆一侧的两个车轮。启动电动千斤顶,将电动车辆一侧抬升预 定的高度,抬升的高度范围约为50~300mm。具体的,可以抬升200mm。此时,电动车辆的下方空间足以使装载有电池模块的换电叉车部分进入。
步骤004,电池更换设备至少部分移动至电动车辆下方。
操作者操作换电叉车移动,如果换电叉车是手推式,则通过操作手柄移动换电叉车,将换电叉车中装载电池模块的部分移动至电动车辆的下方。如果是自动换电叉车,自动换电叉车会按照预定的程序调整行走轨迹,直至确认电池模块移动至安装位置。
由于电动车辆被抬升的一侧可能是前后左右侧中的任一侧,换电叉车将电池模块推入车辆下方后的操作会有差异。具体的,如果自电动车辆的左侧或者右侧进入,第一电池模块可以沿其纵长方向与车辆纵长方向平行的方向进入车辆下方,也可以沿其宽度方向与车辆纵长方向平行的方向进入车辆下方。电池模块的安装位置与电池模块进入车辆下方时的位置不存在角度变换的要求,因此,换电叉车只需要水平移动后进一步竖直举升电池模块,即可使电池模块进入安装位置。如果自电动车辆的前侧或者后侧进入,电池模块进入车辆下方时,面向车辆的一侧只能是宽度方向,因此,进入车辆下方后,要通过转动才能使电池模块到达安装位置。
步骤005,电池更换设备更换电动车辆的电池模块。
换电叉车可以先举升电池模块托盘使其到达安装位置,通过解锁装置使待拆卸的电池模块处于解锁状态,电池模块托盘将电池模块托住后下降至收容位置。具体的实施例中,通过连接外部液压站与电动车辆上的液压锁定/解锁系统,使电池模块处于解锁状态,电池模块在重力的作用下自由落下至电池托盘托住。启动举升机构使举升机构降落,电池模块托盘托着电池模块下降至车架。新电池模块由电池模块托盘托住,由举升机构举升至预定位置。移出解锁装置,使电池模块保持在锁定位置。换电叉车自抬升侧方移出车底。控制电动千斤顶自举升位置落下至未举升位置。使电动车辆回复至自由状态。操作者将电动千斤顶移出,换电叉车将换下的旧电池移入运输车上。
举升机构倾斜,旧电池落下,落在电池模块托盘上。举升机构下降,使电池模块降落至电池模块托盘与车架支撑表面基本平齐的位置。
【第二实施方式】
参见附图112,一种为电动车辆补充能量的方法。
步骤200,车辆启动。
电动车辆的用户启动电动车辆。电动车辆的客户端也随之启动。
一些具体的实施例中,客户端可以直接进入使用界面。另一些具体的实施 例中,客户端通过用户在用户界面上通过输入装置输入启动的指令才进入使用界面。
步骤202,确定电动车辆的电池的状况。
电动车辆中的电池检测单元运行,获得电池的状况的相关信息。
具体的实施例中,客户端进入使用界面后,电动车辆的电池状况模块确定电动车辆的电池的状态。确定电池的状况包括确定电池的电量、电池年龄和/或电池的温度等。上述信息通过数据库模块经由数据网络传送给服务中心。
步骤204,确定电动车辆的地理位置。
电动车辆的定位系统运行,获得电动车辆的地理位置信息。
具体的实施例中,定位模块确定车辆的地理位置。同样的,车辆的地理位置信息也经由数据网络传送给服务中心。
步骤206,显示剩余里程。
电动车辆的客户端基于电池的状况以及车辆的地理位置,确认电动车辆的剩余里程,并将该剩余里程显示在显示装置上。剩余里程的显示方式可以通过地图的形式实现,也可以是数字的形式。本领域技术人员可以想到,还有其他的形式显示剩余里程。
具体的实施例中,显示装置的显示内容包括地图,地图中标记出电动车辆的当前位置,同时用一定尺寸的圆形框出剩余里程的范围。当然,也可以采用其他的方式显示剩余里程,比如,直接显示剩余里程的数字或者用阴影的方式灰掉显示范围内不能够到达的区域。
步骤208,向服务中心发送电池更换的请求。
向服务中心发送电池更换的请求可以通过用户界面的输入装置发出,也可以系统设置为电池的状况符合预设条件时自动发出,或者由用户采用其他与服务中心互动沟通的方式发出。互动沟通的方式包括但不仅限于打电话、通过用户手机的客户端或者常见的社交通信工具等。
步骤210,确认换电地点。
换电地点可以通过用户由输入装置确认,也可以由用户与服务中心约定。
步骤212,电池更换设备移动至换电地点为电动车辆更换电池。
电动车辆停靠在换电地点。电池更换设备移动至预定的换电地点,为电动车辆更换电池。电池更换设备从一个地理位置移动至另一个地理位置,以配合电动车辆的停靠位置。从而,电动车辆不用受到停车地点的限制就可以实现电池更换,换电体验佳。
电动车辆行驶的过程中,客户端始终更新电池的状况和电动车辆的地理位 置,并相应的将更新的内容显示在用户界面上。客户端定期向服务中心发送电池的状况和车辆的地理位置。
参见附图113,电动车辆的能量补充的另一种方法。
与图112所示方法相同的步骤,采用了相同的编号,在此不做详细说明。本方法中,步骤208之后,进一步包括步骤214,服务中心接收电池更换请求并与车辆建立通信连接。
服务中心具有通信接口,电动车辆上也具有通信接口。服务中心与电动车辆之间基于通信接口,通过通信网络,建立连接。
步骤216,提供换电时间和地点选择给车辆。
服务中心为车辆用户提供不同的换电时间和地点的选择。选择内容可以通过显示装置显示。选择内容可以包括单独的换电地点、换电时间选择,也可以包括换电地点与换电时间的组合选择。
步骤218,用户确认换电时间和地点。用户通过输入装置选择换电时间和地点,发送给服务中心。
步骤220,服务中心确认换电请求。服务中心以接收到电动车辆发送的换电时间和地点作为对换电请求的确认。
步骤222,服务中心发送换电密钥给车辆。服务中心对车辆的换电需求进行确认后,系统自动分配换电密钥。换电密钥被发送给电动车辆。
步骤224,电动车辆接收换电密钥。
步骤226,服务中心发送换电密钥和换电指令给电池更换设备。
特定的电池更换设备作为此次电池更换的执行主体。换电指令针对特定的电池更换设备的发送,告知需要更换电池的电动车辆的换电时间和换电地点。当然,还可以包括自电池更换设备当前位置移动至换电地点的行走路径。
步骤212,电池更换设备移动至换电地点为电动车辆更换电池。
参见附图114,电动车辆的能量补充的另一种方法。
与图5113所示方法相同的步骤,采用了相同的编号,在此不做详细说明。本方法中,步骤214后,进一步包括步骤228,服务中心与用户交互确认换电时间和地点。
步骤224车辆接收换电密钥后,包括步骤230,通过换电密钥与电池更换设备进行身份识别。
步骤226发送换电指令和换电密钥给电池更换设备之后,包括步骤232,电池更换设备接收换电指令和换电密钥。
步骤234,电池更换设备移动至换电地点。
步骤236,电池更换设备在换电时间与车辆通过换电密钥进行身份识别。
步骤238,电池更换设备为车辆更换电池。
参见附图115,电池更换设备通过服务中心的数据库获取电池供应站的电池储备情况。具体的方法包括以下步骤。
步骤240,服务中心定期请求电池供应站的电池储备情况。
电池供应站的电池储备情况包括但不仅限于满电电池的数量、欠电电池的数量、电池的充电水平和充电时间等。
步骤242,电池供应站定期接收服务中心对电池的储备情况的请求。
步骤244,电池供应站确定电池供应站的电池储备情况。
步骤246,电池供应站发送供应站的电池储备情况给服务中心。
步骤248,服务中心接收电池供应站的电池储备情况。
步骤250,服务中心更新系统数据库中电池供应站数据库。
步骤252,服务中心发送至少部分电池供应站数据库给电池更换设备。
步骤254,电池更换设备接收至少部分电池供应站据库。
由此,电池更换设备可以根据电池供应站的地理位置和电池储备情况选择合适的电池供应站卸下欠电电池,补充满电电池。电池供应站根据满电电池和欠电电池的更新情况,确认电池供应站的电池储备,并及时将更新数据发送给服务中心。
参见附图116,电池供应站获取电池更换设备的信息,并进行充电规划。
电池供应站获取电池补给信息的方法包括以下步骤。
步骤256,服务中心定期请求电池更换设备的电池储备情况。
步骤258,电池更换设备定期接收设备的电池储备情况的请求。
步骤260,电池更换设备确认设备的电池储备情况。
步骤262,电池更换设备发送设备的电池储备情况给服务中心。
步骤264,服务中心接收电池更换设备的电池储备情况。
步骤266,服务中心定期请求电池更换设备的地理位置。
步骤268,电池更换设备定期接收设备的地理位置的请求。
步骤270,电池更换设备确认设备的地理位置。
步骤272,电池更换设备定期发送设备的地理位置给服务中心。
步骤274,服务中心接收电池更换设备的地理位置。
步骤276,服务中心将至少部分电池更换设备的地理位置和电池储备情况发送给电池供应站。
步骤278,电池供应站接收电池更换设备的地理位置和电池储备情况
步骤280,根据更换设备的地理位置和电池储备情况规划供应站电池补给。
参见附图117,电池更换设备根据需要,移动至电池供应站补充满电电池,同时卸下欠电电池。电池更换设备补充满电电池的方法包括以下步骤。
步骤282,服务中心给电池更换设备发送换电指令。
步骤284,电池更换设备接收服务中心发送的换电指令。
步骤286,电池更换设备确认电池储备情况。
步骤288,判断电池储备量是否大于等于预设值。预设值根据换电指令设置,换电指令包含为多台电动车辆更换电池时,预设值应大于等于电动车辆需要更换的电池总数。
如果判断电池储备大于等于预设值,进入步骤290,移动至预定地点为电动车辆更换电池。
如果判断电池储备小于预设值,进入步骤292,服务中心提供电池供应站信息给电池更换设备。
步骤294,电池更换设备选择电池供应站。服务中心可以为电池更换设备提供多个电池供应站选择。电池更换设备根据电池供应站的地理位置信息和电池储备情况,选择合适的电池供应站。
步骤296,与电池供应站预约电池装卸。预约内容包括但不仅限于装卸的时间,满电电池的数量,欠电电池的数量等。
步骤298,接收电池更换设备的电池装卸请求。电池供应站根据电池储备情况以及预计需求,确认是否接受电池更换设备的电池装卸请求。如果确认接受,则预备满电电池。
步骤300,提供满电电池给电池更换设备。电池更换设备移动至电池供应站。卸下欠电电池,补充满电电池。
参见附图118,电池更换装置接收换电指令后完成换电任务的方法,包括以下步骤。
步骤302,服务中心给电池更换设备发送换电指令。换电指令包括但不仅限于在预定地点为预定车辆更换电池,还可以包括约定的时间,预定的线路等。
步骤304,电池更换设备接收服务中心发送的换电指令。
步骤306,电动车辆接收密钥。
步骤308,电池更换设备按照规划路径行驶至预定地点。
步骤310,电池更换设备使用密钥。密钥由服务中心提供,确认换电需求后系统分配换电密钥。密钥分别发送给电动车辆和电池更换设备。
步骤312,电动车辆使用密钥。电动车辆使用密钥发出确认信号。
步骤314,确认预定的电动车辆。电池更换设备使用密钥发出确认信号,如果电动车辆发送的密钥与电池更换设备一致,判断识别预定的电动车辆。
步骤316,电池更换设备为预定的电动车辆更换电池。
步骤318,电池更换设备发送电池更换完毕信息给服务中心。电池更换设备完成电池更换后,与服务中心通过通信接口建立通信连接,确认更换完毕。
步骤320,电动车辆接受电池更换服务。
步骤322,电动车辆发送电池更换完毕信息给服务中心。电动车辆与服务中心通过通信接口建立通信连接,确认更换完毕。
步骤324,服务中心接收电池更换完毕信息。此时,电池更换的任务结束。
步骤326,服务中心确认任务完成。
步骤328,更新记录。服务中心将系统内记录的对应的电池更换任务的状态更新为完成。从而,相应的车辆和电池更换设备的费用管理模块记录该更换任务,并确认费用。对于预付费的用户,支付系统自动进行费用扣除;对于信用开关联支付用户,用户通过移动平台完成支付或者通过车辆客户端的支付模块快捷支付,至此,完成单次换电协议。
参见附图119,电动车辆的能量补充系统为电动车辆补充动力的方法,包括以下步骤。
步骤350,车辆客户端启动。电动车辆的用户启动电动车辆,电动车辆的客户端启动。客户端启动后直接进入使用界面。
步骤352,确认电池的状况。
进入使用界面后,电动车辆的电池状况模块确定电动车辆的电池的状态并通过数据库模块经由数据网络传送给服务中心。
步骤354,确认车辆的地理位置。电动车辆的定位模块确定车辆的地理位置经由数据网络传送给服务中心。
步骤356,显示剩余里程。电动车辆的客户端基于电池的状况以及车辆的地理位置,确认电动车辆的剩余里程,并将该剩余里程显示在显示装置上。显示装置的显示内容包括地图,地图中标记出电动车辆的当前位置,同时用一定尺寸的圆形框出剩余里程的范围。
步骤358,确认目的地。
用户通过输入装置输入行驶的目的地。
步骤360,分析剩余里程与目的地之间的关系。包括子步骤361,判断剩余里程是否小于目的地与当前位置的距离。
如果剩余里程小于等于目的地与车辆当前位置的距离,确认目的地位于剩 余里程的范围内,进入步骤362,显示目的地。客户端在显示装置上显示该目的地。进一步的,可以根据电动车辆的当前位置规划出自当前位置行驶至该目的地的路径。
如果剩余里程大于目的地与车辆当前位置的距离,确认目的地在剩余里程的范围之外,进入步骤364,提供换电选择。客户端在显示装置上显示该目的地为不可到达,同时为车辆用户提供换电选择。换电选择包括发送电池更换的请求或者忽略该选择。
步骤365,判断选择是否为发送更换电池的请求。
如果用户选择确认发送更换电池的请求,进入步骤366,发送换电请求给服务中心。
步骤368,与服务中心交互沟通换电地点。客户端会通过通信模块与服务中心取得联系。
步骤370,电池更换设备移动至换电地点为电动车辆更换电池。
服务中心与用户确认更换电池的时间和地点后,指令特定的电池更换设备为电动车辆更换电池。服务中心确认用户更换电池的请求后,指令电池更换设备出发执行换电任务。电池更换设备接收服务中心发送的更换电池的指令,并按照预设的路径行驶至预定的地点,电动车辆更换电池。
如果用户选择忽略该选择,进入步骤356,显示剩余里程。客户端会继续更新电池的状况和电动车辆的地理位置。
参见附图120,电动车辆的能量补充方法的另一种实施例,包括以下步骤。
步骤372,确认电池的状况。
进入使用界面后,电动车辆的电池状况模块确定电动车辆的电池的状态并通过数据库模块经由数据网络传送给服务中心。
步骤374,确认车辆的地理位置。电动车辆的定位模块确定车辆的地理位置经由数据网络传送给服务中心。
步骤376,显示剩余里程。电动车辆的客户端基于电池的状况以及车辆的地理位置,确认电动车辆的剩余里程,并将该剩余里程显示在显示装置上。显示装置的显示内容包括地图,地图中标记出电动车辆的当前位置,同时用一定尺寸的圆形框出剩余里程的范围。
步骤378,确认目的地。
用户通过输入装置输入行驶的目的地。
步骤380,分析剩余里程与目的地之间的关系。包括子步骤381,判断剩余里程是否小于目的地与当前位置的距离。
如果剩余里程小于等于目的地与车辆当前位置的距离,确认目的地位于剩余里程的范围内,进入步骤382,显示目的地。客户端在显示装置上显示该目的地。进一步的,可以根据电动车辆的当前位置规划出自当前位置行驶至该目的地的路径。
如果剩余里程大于目的地与车辆当前位置的距离,确认目的地在剩余里程的范围之外,进入步骤384,提供换电模式选择。换电模式选择包括选择1,电池供应站;选择2,约定地点;选择3,停车换电。
步骤386,判断换电模式选择是否为选择1。
如果换电模式选择为选择1,进入步骤388,发送换电预约给电池供应站。
步骤390,电池供应站准备电池。电池供应站接收换电预约后,确认需要提供的满电电池和电池更换设备。
步骤392,电池更换设备移动至电池供应站为电动车辆更换电池。车辆可以停靠在电池供应站或者供应站附近的位置,电池更换设备自电池供应站移动至电动车辆的停靠地点,为电动车辆更换电池。
如果换电模式选择不是选择1,进入步骤394,判断换电模式选择是否为选择2。
如果换电模式选择为选择2,进入步骤396,连接服务中心请求换电。
步骤398,确认换电地点。此处,确认换电地点的方式可以不仅限于与服务中心交互沟通,也可以由用户通过输入装置直接确认。
步骤400,确认换电密钥。服务中心确认换电请求后,系统分配换电密钥。换电密钥将被分别发送给预定的电池更换设备和预定的电动车辆。电动车辆和电池更换设备分别接收换电密钥。
步骤402,确认路径规划和用电方案。服务中心根据约定的换电地点,基于电动车辆的电池的状况和地理位置,为电动车辆提供移动至换电地点的路径规划以及相应的车辆用电方案。用电方案包括但不仅限于可以开启的功能模块,功能模块的使用时间和条件等。
步骤404,电池更换设备移动至预定地点为电动车辆更换电池。电池更换设备移动至预定地点,通过换电密钥与电动车辆进行身份确认,并使电动车辆的电池处于可更换的模式。电池更换设备的换电机构将电动车辆的电池从车辆上拆卸下来,移出电动车辆。将充满电的电池从电池更换设备上取下,安装到电动车辆上。
如果换电模式选择不是选择2,进入步骤406,判断换电模式选择是否为选择3。
如果换电模式选择是选择3,进入步骤408,发送停车换电请求。此时,电动车辆与服务中心仅确认换电请求,约定电动车辆停止行驶的地点为换电地点。服务中心根据车辆停止行驶的信息确认对应的电动车辆的地理位置,确认车辆停止行驶时电动车辆的定位系统发送的地理位置信息对应的地点即为换电地点。
步骤410,电池更换设备移动至电动车辆停车地点为电动车辆更换电池。用户选择发送停车换电的请求,服务中心会根据电动车辆的电量状况,指令电池更换设备在电动车辆停车的地点为电动车辆更换电池。电动车辆的电池电量耗尽或者用户主动停车并确认停止行驶后,发送停车的地点给服务中心。服务中心指令电池更换设备移动至停车的地点为电动车辆更换电池。
如果换电模式选择不是选择3,进入步骤382,显示目的地。
参见附图121,另一种电动车辆的能量补充方法,包括以下步骤。
步骤450,确定电动车辆的地理位置。电动车辆上具有定位系统,用于确定电动车辆的地理位置。服务中心接收到该地理位置信息,存储于系统数据库中。电池更换设备设置有主控单元,主控单元通过系统数据库实时提取接收该地理位置信息。
步骤452,确定电动车辆的电池的状况。电动车辆上设置有电池检测单元,检测电池的状况并发出表示电池的状况的信息。电池的状况包括但不仅限于电池的年龄,电池的剩余电量,电池的放电时间等。步骤452中,服务中心接收到该信息,存储于系统数据库中。电池更换设备设置有主控单元,主控单元通过系统数据库实时提取对应于预定的电动车辆的电池的状况的信息。
步骤453,判断电池的状况是否符合预定条件。
预定条件可以是电池电量小于低于预设值,对应的电池的状况是电池的剩余电量。电池的剩余电量与电池电量的预设值相比较,如果电池的剩余电量小于预设值,判断电池的状况符合预定条件;如果电池的剩余电量大于预设值,判断电池的状况不符合预定条件。
如果电池的状况符合预定条件,进入步骤454,发送电池更换的请求。
步骤456,服务中心向电池更换设备发送换电指令。
步骤458,确认电池更换设备是否启动。
基于电动车辆的地理位置和电池状况,以及电池更换设备的地理位置,识别电池更换设备是否需要开始移动。具体的,电池更换设备所处的地理位置与电动车辆的地理位置之间的距离、两个地点之间的路况以及电池更换设备的平均移动速度,是确认电池更换设备是否需要开始移动的因素。电池更换设备确 认需要出发并移动到达预定的地点。电池更换设备也可以是根据服务中心的总体换电规划确认是否启动并移动至预定地点为预定的电动车辆更换电池。
步骤460,电池更换设备根据规划路径移动,为预定的电动车辆更换电池。预定的地点可以是一个具体的地址,也可以是一个范围。电池更换设备可以根据指令移动到具体的地址或者是该范围。当预定的地点是一个范围时,电池更换设备通过精确定位模块发送信号,以最终确认预定的电动车辆。
如果电池的状况不符合预定条件,返回步骤450,确认电池的状况。
参见附图122,一种电动车辆的能量补充方法,包括为多台电动车辆更换电池的步骤。
步骤470,电池更换设备接收换电指令。
步骤472,电池更换设备接收按照预设路径,移动至第一预定地点。
步骤474,启用第一换电密钥确认第一预定车辆。
步骤476,为第一预定车辆更换电池。
步骤478,继续移动至第二预定地点。
步骤480,启用第二换电密钥确认预定第二预定车辆。
步骤482,为第二预定车辆更换电池。
当电池更换设备接收的换电指令包含更多换电密钥时,重复移动至预定地点、启用密钥确认预定车辆以及为预定车辆更换电池的步骤,直至换电指令全部完成。
在上面的步骤中,第一预定地点与第二预定地点处于不同的地理位置。
根据该方法,电池更换设备完成对若干预定的电动车辆之一更换电池的操作后,继续按照规划路径移动,依次为其他的预定电动车辆更换电池。
服务中心的总控操作系统控制特定地域范围内的所有电池更换设备。服务中心确定电池更换设备工作范围内需要更换电池的电动车辆的数量和分布情况。根据电池更换设备的当前地理位置,分析行走路线,使电池更换设备沿着预定的路径对所有需要更换电池的电动车辆依次进行电池更换。
在同一工作范围内,需要更换电池的电动车辆有多辆。不同的电动车辆提出换电需求的时间不同,相应的,确认的进行电池更换的时间也不同。
一种具体的实施例中,电池更换设备根据电动车辆发送电池更换的要求的时间先后顺序,依次进行电池更换。
另一种具体的实施例中,电池更换设备根据电动车辆发送电池更换的要求的时间,结合自身地理位置与需要电池更换的电动车辆的地理位置,按照特定的顺序依次进行电池更换。特定的顺序可以与电池更换要求的时间顺序不同, 也可以相同。特定的顺序可以保证每辆电动车辆获得电池更换服务的时间与发送电池更换的要求的时间之间的差值总和最小。
另一种具体的实施例中,服务中心统一接收特定区域内所有电动车辆的电池更换请求。服务中心根据电动车辆的地理位置和电池更换设备的地理位置,发送指令给特定的电池更换设备,特定的电池更换设备移动至预定的地点为预定的电动车辆更换电池。与其他的电池更换设备相比,特定的电池更换设备与预定的电动车辆之间的距离最小。进一步的,特定的电池更换设备在被选定时不在进行更换电池工作。
服务中心根据电动车辆的地理位置和电池更换设备的地理位置,计算两者之间的间距,并根据系统数据库中存储的两个特定地理位置之间的道路情况,设定电池更换设备移动的路线。并进一步根据电池更换设备的平均移动速度,预计电池更换设备移动至电动车辆所在位置的时间。
参见附图123,一种为电动车辆补充能量的方法,包括以下步骤。
步骤490,触发电动车辆上的换电钮。电动车辆上设置换电钮,换电钮的形式可以是普通的按钮,也可以是设置在输入装置上的特殊按键。在触摸屏作为输入装置和显示装置的实施方式中,换电钮可以是显示装置中显示的一个虚拟的按钮。用户触发换电钮,启动换电请求。
步骤492,服务中心接收换电请求。用户启动换电请求后,客户端发送用户的换电需求给服务中心。服务中心会接收到该换电请求。该换电请求包括需要更换电池的电动车辆的编号、换电地点和换电时间等信息。服务中心能够基于上述信息调度电池更换设备。
步骤494,服务中心发送换电指令。根据电池更换设备的地理位置、与换电地点之间的路况,服务中心确认适合为电动车辆提供换电服务的电池更换设备。服务中心向适合的电池更换设备发送换电指令,启动换电服务。
步骤496,电池更换设备确认电动车辆位置。电池更换设备接收到服务中心发送的换电指令后,确认电动车辆的地理位置。
步骤498,电池更换设备移动至预定地点。通过电池更换设备上的客户端,设定电动车辆的地理位置为目的地,规划自当前位置移动至目的地的路径。电池更换设备沿着该路径移动至预定的换电地点。
步骤500,电池更换设备为电动车辆更换电池。移动到换电地点后,电池更换设备确认电动车辆的身份信息,并检测电池的型号、电量等状况,记录相关信息并启动换电。电池更换设备通过检测装置确认电动车辆上电池的位置,换电机构将电池拆卸下来,拆下来的电池被放入电池更换设备的收容空间中。 换电机构进一步取下满电电池,将满电电池安装到电动车辆上,完成电池更换。
该电动车辆的能量补充方法仅通过触发一个换电钮就可以实现换电请求的确认,操作步骤简单。
参见附图124,一种为电动车辆补充能量的方法,包括以下步骤。
步骤502,确定电动车辆的地理位置。电动车辆上的定位系统确认电动车辆的地理位置,将电动车辆的地理位置信息发送给服务中心。
步骤504,确定电动车辆的电池状况。电动车辆上的电池检测单元检测电池的状况,确认电池的剩余电量,将电池的状况信息发送给服务中心。
步骤506,电动车辆发送换电请求。通过安装在电动车辆上的客户端,发送换电请求给服务中心。具体的,可以通过用户界面上的输入装置发送换电请求。换电请求包括但不仅限于换电地点和换电时间信息。
步骤508,服务中心接收换电请求。服务中心的控制系统接收到换电请求,将换电地点和换电时间信息存储至系统数据库中。
步骤510,服务中心发出换电指令。换电指令包括但不仅限于换电地点、换电时间、换电密钥和需换电的电动车辆的相关信息等。
步骤512,电池更换设备接收换电指令。电池更换设备通过通信接口接收换电指令,存储换电地点、换电时间、换电密钥和需换电的电动车辆的相关信息等。
步骤514,电池更换设备移动至预定的地点为电动车辆更换电池。电池更换设备自当前位置出发,将换电地点作为目的地,移动至换电地点。到达换电地点的时间应早于或等于换电时间。通过换电密钥确认需要换电的电动车辆,使电动车辆处于可更换电池模式,为电动车辆更换电池。
本方法中,换电需求由电动车辆发出。具体可通过电动车辆的客户端发出。直接通过电动车辆的客户端发送换电请求,内部程序可以设置预定的信息内容,电动车辆的用户通过简单的选择就可以直接形成换电请求发送给服务中心,服务中心能够相应识别出换电请求的内容,并根据请求内容确认换电指令。
在其他的实施例中,电动车辆还可以通过与服务中心双向通信确定预定的地点。
服务中心发送换电指令之前,包括判断符合预定条件的电池更换设备为预定的电池更换设备的步骤。
通过确定电池更换设备的地理位置,判断电池更换设备的数量和分布。预定条件为与预定的地点距离最近。从而,邻近预定的地点的电池更换设备判断为预定的电池更换设备。判断确定预定的电池更换设备后,服务中心会将换电 指令发送给预定的电池更换设备。预定的电池更换设备接收换电指令,移动至预定地点为电动车辆更换电池。
预定的条件还可以是到达预定的地点时间最短。
参见附图125,电动车辆补充能量的方法中调度电池更换设备的步骤包括以下步骤。
步骤516,根据换电请求信息确定符合换电需求的电池更换设备。
步骤518,根据预定的条件对电池更换设备进行分组,并向电池更换设备的一个分组发送基本信息。
对于符合换电需求的电池更换设备数量大于1的情况,可以将符合换电需求的所有电池更换设备根据预定的条件进行分组。具体的,预定的条件可以是电池更换设备到达预定的地点所需要的时间。不同的时间分为不同的组。具体的,可以将时间划分为不同的区间,大于第一预定时间为一组;小于第一预定时间和大于第二预定时间的为另一组;小于第二预定时间并且大于第三预定时间的为第三组;小于第三预定时间的为第四组。其中,第一预定时间大于第二预定时间,第二预定时间大于第三预定时间。比如,30分钟以上为一组,15到30分钟为一组,15到5分钟为一组,5分钟以内为一组。当然,上述分组仅为示例意义,实际的预定条件还可以是其他类型,比如,电池更换设备与预定的地点之间的直线距离等。
步骤520,收到电池更换设备的分组成员对基本信息的肯定回复后,从分组成员中选取成员,向选取成员发送详细换电请求信息。组内成员均接收到基本信息,成员可以对基本信息给予回复或者忽略。根据成员的回复情况,选取成员。详细换电请求信息仅向选取的成员发送,其他未选取的成员不接收详细换电请求信息。
步骤518包含以下子步骤。步骤518a,根据电池更换设备的位置信息计算出到达预定的地点所需要的时间;步骤518b,以该时间为参数对电池更换设备进行优先级排序;步骤518c,向优先级高的电池更换设备发送基本信息,在预定的时间内未收到肯定回复,依次向更低优先级的电池更换设备发送基本信息,直至收到肯定回复。优选的,可以结合当前路况信息进行时间估算。
基本信息包括预定区域和换电请求数量。详细换电请求信息包括预定的地点、电动车辆信息、换电时间要求等。
进一步的,距离换电请求中约定的换电时间到达之前,还可以包括步骤518d,服务中心向确认接收换电指令的电池更换设备再次发送详细换电请求信息,提醒并要求再次确认。确认接收换电指令的电池更换设备回复确认信息给 服务中心。服务中心为每一个确认的换电请求系统的分配换电密钥,换电密钥将被发送给确认接收换电指令的电池更换设备和需要更换电池的电动车辆。
步骤516中,选定能够在换电请求要求的换电时间之前到达预定地点的电池更换设备作为分组的对象。基本信息可以通过无线通信单元发送,同时,可以启动定时设备,如果预定的时间内没有电池更换设备肯定回复,则重复上面的步骤。如果收到肯定回复,仍然可以通过无线通信单元发送详细换电请求信息。发送的对象是确认接收换电指令的电池更换设备。
根据换电需求的变化情况,单纯依据到达预定的地点的时间选择电池更换设备对于系统资源的运用还不是最佳实践,可以进一步结合成本因素选择电池更换设备。由此,可以使选择的电池更换设备到达时间符合要求,同时运营成本相对合理。成本因素包括但不仅限于电池更换设备移动至预定地点所需移动的距离以及花费的费用等。
参见附图126,电动车辆补充能量的方法包括以下步骤。
步骤522,服务中心接收换电请求。换电请求的数量大于等于1,且为自然数。服务中心能够接收到预定的地点为服务中心所辖区域的所有换电请求。
步骤524,根据电动车辆和电池更换设备的地理位置,服务中心调度电池更换设备移动至预定的地点为电动车辆更换电池。
其中,步骤524包括以下子步骤。
步骤524a,区分电池更换设备的优先度,按照优先度等级从高到低的顺序发送换电指令。
步骤524b,服务中心接收确认换电指令的信息。
步骤524c,服务中心向特定电池更换设备发送换电指令的详细信息。
步骤524d,电池更换设备接收详细信息。
步骤524a的一种具体的实施方式中,根据电池更换设备移动至预定的地点的时间,区分电池更换设备的优先度。
步骤524a的另一种具体的实施方式中,根据电池更换设备移动至预定的地点的成本,区分电池更换设备的优先度。
步骤524a的再一种具体的实施方式中,根据电池更换设备移动至预定的地点的成本,为电池更换设备评分C1。根据电池更换设备移动至预定的地点的时间,为电池更换设备评分C2。根据C1与C2的评分总和,确认电池更换设备的优先度。评分C1可以定义为成本越高评分越低。具体的可以将成本划分为不同的档位,对应于不同的评分分值。评分C2可以定义为时间越长评分越低。同样的,可以将时间划分为不同的档位,对应于不同的评分分值。这个实 施方式中,综合考虑了时间和成本的影响,电池更换设备的调度更合理。
步骤524还可以包括子步骤524e,区分换电请求的优先度,按照优先度等级从高到低的顺序处理换电请求。
步骤524e的一种具体的实施方式中,根据电动车辆提出的换电请求所要求的换电时间的紧急程度,确认换电请求的优先度等级,按照优先度等级从高到底的顺序处理换电请求。
步骤524e的另一种具体的实施方式中,根据电动车辆的用户的类型,确认换电请求的优先度等级,按照优先度等级从高到底的顺序处理换电请求。
步骤524e的再一种具体的实施方式中,根据电动车辆的用户的类型,为换电请求评分B1。根据电动车辆提出的换电请求所要求的换电时间的紧急程度,为换电请求评分B2。根据B1与B2的评分总和,确认换电请求的优先度。评分B1可以定义为用户的类型对应的等级越高,评分越高。用户的类型包括VIP,普通,一般等不同档位,不同档位对应于不同的评分分值。评分B2可以定义为换电时间与当前时间的差值。将时间差值划分为不同的档位,对应于不同的评分分值。同样的,综合考虑用户的类型和换电时间紧急程度,可以更有效的符合用户的需求,电池更换设备的调度更合理。多个VIP用户同时提出换电请求的情况下,通过该步骤,判断多台电池更换设备需要同时作业,调度多台电池更换设备为不同的电动车辆更换电池。而不同类型的用户提出不同紧急程度的换电请求时,可以调度同一辆电池更换设备为不同电动车辆依次更换电池。因此,上述步骤可以有效合理的调度电动车辆,满足不同换电请求。
步骤524还可以包括子步骤524f,统计特定区域内换电请求的数量和分布,当换电请求的数量和分布符合预设条件时,启动应急响应策略。
预设条件可以是换电请求的数量大于子区域内电池更换设备换电能力,且换电请求在特定子区域的分布比例高于特定区域的换电请求的分布比例均值。也可以是特定区域内特定子区域的换电请求的数量超过预设门限值。预设条件还可以是换电请求的分布在特定子区域内达到或者超过预设门限值。
当换电请求的数量和分布不符合预设条件时,采用常规调度策略。常规调度策略为特定区域内不同子区域的电池更换设备仅在对应的子区域内移动。应急响应策略为调度特定区域内至少部分位于不同子区域的电池更换设备跨域当前子区域,移动至特定子区域。
参见附图127和128,另一种电动车辆能量补充的方法,包括以下步骤。
步骤530,服务中心接收换电请求。服务中心接收到电动车辆的换电请求,确认电动车辆的地理位置和电池的状况。其中,换电请求中仅涉及电动车辆信 息,未涉及电动车辆更换电池的预定的地点的信息。
步骤532,确认预定的电池更换设备。
步骤534,发送换电指令给预定的电池更换设备。
步骤536,预定的电池更换设备移动至预定的地点,为电动车辆更换电池。预定的地点是电池更换设备与电动车辆相遇的地点。
其中,步骤532可以包括以下子步骤。
步骤532a,根据电动车辆的地理位置,确认电动车辆的地理位置所属的区域单元中电池更换设备的数量。所属区域单元内的电池更换设备的数量大于等于1,且为自然数。
步骤532b,判断电池更换设备的数量是否大于1。
当电池更换设备的数量为1时,执行步骤532c,确认该唯一的电池更换设备为预定的电池更换设备。
当电池更换设备的数量大于1时,执行步骤532d,确认电池更换设备与电动车辆之间距离最小的电池更换设备为预定的电池更换设备。
参见附图128,步骤532之前还可以进一步包括步骤531,根据电动车辆的地理位置变化,确认电动车辆的行驶路线和行驶方向。
步骤534之后还可以进一步包括步骤535,确认预定的电池更换设备的行驶方向为与电动车辆行驶的方向相向的方向。
上述步骤531之后,还可以进一步包括步骤531a,定位电动车辆。步骤531b,根据电动车辆的位置变化,确认电动车辆的新的行驶路线和行驶方向是否变化。如果行驶路线和行驶方向不变,执行步骤532,确认预定的电池更换设备。如果行驶路线和行驶方向变化,执行步骤531c,取消原来确认的预定的电池更换设备。步骤531d,根据新的行驶路线和行驶方向确认预定的电池更换设备。
对于电池更换设备而言,完成一次电池更换作业,记录换下的电池的相关信息,包括但不仅限于电池的电压、年龄、电池的剩余容量。电池更换设备可以根据电池的相关信息确认电池更换作业对应需要收取的费用。
基于不同的付费模式,电动车辆支付的电池更换的费用会有不同。一种付费模式中,电池的使用量不受限制,但使用期限有限制。基于这种付费模式,电池更换设备记录对应的电动车辆更换电池的时间点,确认时间点是否位于使用期限内,如果位于使用期限内,判断电池更换作业的费用已支付;如果位于使用期限之外,判断电池更换作业的费用未支付,记录电动车辆换下的容量不足的电池和换上的容量充足的电池的相关信息,为后续电动车辆缴纳电池更换作业的费用提供基础数据。
另一种付费模式中,更换电池的服务的使用期限有限制,同时基于电池更换获得的电池容量的使用量也有限制。具体的,使用量分不同档位,单价不同。I段,使用量小于等于X1,单价为Y1。II段,使用量小于等于X2大于X1,单价为Y2,其中,Y2小于Y1。
当然,也可以根据用电需求的不同设置不同的换电请求触发条件。一种具体的实施例中,电动车辆可以设定电动车辆的行驶里程达到或者超过预定里程即触发换电请求。也可以设定电池电量低于预定容量值即触发换电请求。同时,对于电池的更换,可以要求更换的电池为满电电池,也可以要求更换的电池容量满足一定的行驶里程即可。对应付费时可以根据电动车辆所获得的电池容量的差值结合电池容量的单价缴纳,也可以根据电池更换的次数结合更换电池的单价进行缴纳。
下面就电池更换设备的具体调度算法进行进一步的说明。可以理解的是,下面的实施例仅用于示例,并不限制基于本发明构思的其他可以想到的简单的替换方式。
【实施例1】
基本调度:同一区域内的换电需求,按照换电时间、地点的要求,由同一台电池更换设备来完成。具体的实施例中,换电需求如下表所示。
Figure PCTCN2016079998-appb-000001
表1
根据不同电动车辆提出的换电时间和地点要求,需要对电池更换设备在特定时间段内的电池更换工作进行规划。将电池更换设备为电动车辆单次更换电池的时间记为T1,电池更换设备与预定的电动车辆之间的距离为S,电池更换设备的移动速度为V,电池更换设备移动至预定的电动车辆所在位置所需的时间为T2=S/V。将电动车辆预约的换电时间按顺序排列,计算电池更换设备自当前位置移动至每个预定的电动车辆所在的位置所需花费的时间,记为T2n。计算电池更换设备在不同的电动车辆之间移动所需花费的时间,记为T3n。电池更换设备为n台电动车辆更换电池所要经过的路径,根据道路状况和电动车辆的位置,被理解为包括自电池更换设备所在位置起,经过的道路与道路之间的节点、道路与车辆所在位置的连线的节点,构成的线段的总和。根据预定的规则为每条线段赋值,各个节点之间连线的赋值总和最小的组合为电池更换设备 移动的较佳路线。
以表1中所列的情景为例,说明电池更换设备的换电计划的规划是如何实现的。根据换电时间要求可知,电池更换设备的换电顺序应该为N3-N1-N2-N4-N6-N5。最早的换电时间是8:30,对应的换电地点与电池更换设备当前位置之间的距离为2km。以60km/h的车速计算,电池更换设备到达N3对应的地点所需的时间是t2=2分钟,更换电池的时间t1=5分钟,预留5分钟的车辆识别和响应等待时间,电池更换设备自当前位置的最晚出发时间是8:18分。完成换电后,电池更换设备继续移动至N1对应的地点,为N1更换电池。电池更换设备为所有的电动车辆更换电池后,换下的电池需要补充电量以便用于后续的电池更换。换下的电池的能量的补充可以由带有充电装置的电池更换设备完成,也可以由电池更换设备将换下的电池装载并运输至特定的电池供应站进行充电。本实施例中,电池更换设备的移动和换电时间间隔充足,同一台电池更换设备能够满足所有电动车辆的换电需求。
【实施例2】
当同一台电池更换设备无法在约定的时间为电动车辆更换电池时,需要其他电池更换设备予以协助。本实施例中,同一区域中有多台电池更换设备为多台电动车辆更换电池。此时,电池更换设备的调度算法与实施例1中不同。
本实施例中,同一区域中有N台电池更换设备和M台电动车辆。N台电池更换设备所处的位置在地图上的坐标为(Xj,Yj),j=1,2,3,…n。提出换电需求的电动车辆有m台,约定的换电地点在地图上的坐标为(xi,yi),i=1,2,3,…m。根据上面的坐标,可以计算出不同的电池更换设备到不同的换电地点的距离D。这里,坐标可以是地理上的经度与纬度的绝对值,也可以是以一个特定地点为起始点,沿着不同的方向计算获得的相对值。无论是何种坐标值,都能够计算出电池更换设备与电动车辆之间的相对距离。在一个具体的实施方案中,n=5,m=6,不同电池更换设备和电动车辆的位置坐标如下表2所示。
电池更换设备 N1 N2 N3 N4 N5 N6
坐标 1,1 2,2 5,4 3,9 4,8 2,10
电动车辆 M1 M2 M3 M4 M5  
坐标 2,1 4,3 2,8 5,10 1,5  
表2
根据上述坐标计算获得电池更换装置与电动车辆之间的距离如下表3所示。
Figure PCTCN2016079998-appb-000002
表3
根据表3中的数据显示,与电动车辆M1相距最近的电池更换设备是N1和N2,与电动车辆M2相距最近的电池更换设备为N3,电动车辆M3相距最近的电池更换设备为N4,与电动车辆M4相距最近的电池更换设备为N4和N5,与电动车辆M5相距最近的电池更换设备为N2。对于电池更换设备N1来讲,由于N1仅与M1距离最近,可以据此指令N1为与电动车辆M1对应的预定的电池更换设备。而N2与电动车辆M1和M5的距离均为最近,M1确定了对应的电池更换设备,因此,确定N2为与电动车辆M5对应的预定的电池更换设备。M2对应N3,M3对应N4,M4对应N5。电池更换设备N6由于距离所有电动车辆的距离均比较远,未被纳入匹配的计划中。根据以上数据,可以为每台电动车辆均匹配相距最近的电池更换设备。
【实施例3】
多台电池更换设备均符合为电动车辆更换电池的要求的情况下,电动车辆动力补充系统根据预设条件,选择发送换电指令给特定的电池更换设备,确保系统运作的成本最低。具体的,在预定的时间要求内到达预定地点的电池更换设备的数量大于1辆。此时,系统根据道路状况和电池更换设备与电动车辆之间的位置关系,计算电池更换设备在当前道路状况下到达预定电动车辆的时间,发送换电指令给到达预定电动车辆的时间最短的电池更换设备,或者发送换电指令给到达预定电动车辆的距离最短的电池更换设备。
【实施例4】
电池更换设备在通常情况下仅在自己负责的区域内工作。然而,也有一些情况下,某一工作区域的电池更换设备不能够及时满足用户的需求。本实施例中,服务中心调度相邻的工作区域内的电池更换设备至特定的工作区域内。
【实施例5】
特定时间范围内,完成对若干电动车辆的电池更换。本实施例中,若干电动车辆提出的换电请求符合特定的条件。该特定的条件是电池更换完成的时间是确定的,相对于其他实施例而言,电池更换设备调度的一个影响因子是固定不变的。由于若干电动车辆的换电地点并不相同,因此,服务中心基于换电请求和区域范围内电池更换设备的补给情况,规划电池更换设备的换电路径,以使换电路径在符合换电时间要求的基础上成本尽可能低。
【实施例6】
由于电池更换设备可能存在不同的型号,对应的,电池更换设备的体积大小不同。体积较大的电池更换设备,更换电池时所需要的位置比较大,系统规划电池更换设备的换电计划时,同时要考虑电池更换设备的体积与预定地点的匹配情况。对于大型电池更换设备来说,比较狭窄的小巷是无法进入的,此时,需要释放体积较小的换电小车为电动车辆更换电池。
由于换电方式和充电方式均为电动车辆能量补充可选择的方式,因此,实际的换电需求具有一定的随机性,对于车辆的换电需求、具体的换电地点进行预测比较困难,因此,需要对电池更换设备的调度管理进行动态规划。
按时间分为若干个阶段,对每个子时间段内电动车辆的换电需求以及电池更换设备的储备情况进行一次规划,获得最佳换电方案。下一个子时间段内,根据换电需求和电池更换设备的储备情况重新进行规划,确保每个子时间段内的换电方案均为最佳。
具体的,在子时间段的初始阶段,获取所有电池更换设备的使用情况信息,包括但不仅限于电池更换设备的位置、电池储备量以及是否有电池更换任务正在和将要执行,排除不能用于执行电池更换任务的电池更换设备。被排除的电池更换设备只能在达到特定的条件的情况下,才能够重新被纳入规划中。具体的特定条件包括但不仅限于电池更换任务完成、电池储备量足以为至少一辆电动车辆更换电池等。由此,电池更换设备的调度计划中需要规划的对象就被缩小。进一步的,还可以获取电动车辆的电池使用情况,包括但不仅限于电池的电量、电池电量降低的速率等。将电量充足、短期内不需要更换电池的电动车辆排除在需要进行规划的范围之外。
一个具体的实施例中,电池更换设备包括大中小三种车型,其中,大型车装载的电池模块的数量大,一次能够为多台电动车辆更换电池,但是大型车的体积大,空间狭小的区域是无法进入的。小型车装载的电池模块的数量小,一次能够更换的电池模块有限,但是小型车体积小,适合各种不同的停车环境。因此,根据电动车辆约定的换电地点的环境的不同,不同类型的电池更换设备 能够用于执行不同的任务。由于电池更换设备本身增加了一种属性,因此,调度不同类型的电池更换设备的算法中相应的增加了一个参数。
电池更换设备的调度,主要的影响因素包括:电池更换设备、电动车辆、用户等。其中,电池更换设备的属性包括但不仅限于车辆的数量、换电能力、电池装载情况以及行驶里程或者时间限制。换电能力,指电池更换装置的容量限制,最多能够装载多大容量的电池。电池装载情况,指电池更换设备实际装载的电池容量,可以是满电电池的数量,也可以是满电电池相对额定电池装载容量的比例。行驶里程或者时间限制,指电池更换设备最远能够行驶的距离或者最长能够行驶的时间。电动车辆的基本属性包括但不仅限于车辆的数量、换电需求、换电地点和时间以及行驶里程或者时间限制。换电需求,指电动车辆需要更换的电池数量。用户的属性包括但不仅限于用户的类型、用户的付费方式等。除了一些固定的影响因素外,还有一些变化的影响因素,比如天气情况和路况等等。
根据上述能量补充的方法,特定区域单元内的换电需求能够按照最高效的方式被满足。电池更换设备的行走距离短,电动车辆更换电池花费的时间短,用户不需要为了更换电池而刻意调整行走路线,真正实现了与汽油车类似的使用体验。
服务提供商根据电动车辆的地理位置和电池更换设备的地理位置,计算两者之间的间距,并根据系统数据库中存储的两个特定地理位置之间的道路情况,设定电池更换设备移动的路线。并进一步根据电池更换设备的平均移动速度,预计电池更换设备移动至电动车辆所在位置的时间。
本发明中电动车辆的用户界面简洁,可以在接收到换电提醒时及时预约换电服务,从而在预定时间和预定地点接受换电服务,用户界面上不需要显示不同类型的电池服务站的位置,通过用户界面进行的选择也相对简单。对于电动车辆的用户来说,用户界面友好。
服务中心通过获取电动车辆、电池更换设备,以及电池供应站的相关信息,对整个系统中的电动车辆的电池更换与维护进行系统的管理,最大程度上实现了电动车辆用户无忧行驶。
本领域技术人员可以想到的是,本发明还可以有其他的实现方式,但只要其采用的技术精髓与本发明相同或相近似,或者任何基于本发明做出的变化和替换都在本发明的保护范围之内。

Claims (45)

  1. 一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动电动车辆的车轮并由电池供电;其特征在于:所述方法包括以下步骤:确定车辆的电池的状况;确定车辆的地理位置;基于车辆的电池的状况和车辆的地理位置,服务中心指令电池更换设备移动至预定的地点为车辆更换电池。
  2. 如权利要求1所述的方法,其特征在于:预定的地点根据车辆发出的电池更换请求确认。
  3. 如权利要求1所述的方法,其特征在于:电池更换设备自电动车辆的前、后、左、右任意一侧更换电池。
  4. 如权利要求1所述的方法,其特征在于:预定的地点通过车辆用户与服务中心交互沟通确认。
  5. 如权利要求1所述的方法,其特征在于:电池更换设备移动至预定的地点之前,还包括以下步骤:确认目的地,基于电动车辆的电池状况和地理位置确认车辆的剩余里程,当所述目的地与剩余里程符合预设条件时,提供换电模式选择。
  6. 如权利要求5所述的方法,其特征在于:换电模式包括供应站换电模式、预定地点换电模式和停车点换电模式中的至少一种;供应站换电模式中,预定的地点为电池供应站;预定地点换电模式中,预定的地点为用户与服务中心约定的特定的地点;停车点换电模式中,预定的地点为电动车辆停止行驶的地点。
  7. 如权利要求1所述的方法,其特征在于:所述方法还包括以下步骤,预设特定的电子密钥,电池更换设备根据特定的电子密钥识别出预定的车辆并使预定的车辆的电池处于可更换模式。
  8. 如权利要求1所述的方法,其特征在于:电池更换设备按照预设的路径移动,为至少两辆电动车辆分别在至少两个预定的地点更换电池。
  9. 如权利要求1所述的方法,其特征在于:所述方法还包括电池更换设备按照预定的周期为预定的车辆更换电池。
  10. 一种电动车辆能量补充系统,用于为电动车辆补充能量,其中,电动车辆,包括
    车体;
    收容于车体中的电池;
    一个或者多个车轮;
    电动机,驱动车轮并由电池供电;
    定位系统,用于确定电动车辆的地理位置;
    检测单元,用于确定电动车辆的电池的状况;
    所述电动车辆能量补充系统包括:
    服务中心,具有通信模块,发送换电指令给电池更换设备;
    电池更换设备,根据换电指令移动至预定的地点为预定的电动车辆更换电池。
  11. 如权利要求10所述的系统,其特征在于:所述电动车辆包括通信模块,用于发送电池更换请求以确认预定的地点。
  12. 如权利要求10所述的系统,其特征在于:所述电动车辆包括换电钮,通过触发换电钮发送换电请求以确认预定的地点。
  13. 如权利要求10所述的系统,其特征在于:服务中心包括通信模块,服务中心通过通信模块与车辆用户交互沟通确认预定的地点。
  14. 如权利要求10所述的系统,其特征在于:电动车辆包括客户端,客户端基于电动车辆行驶的目的地、电池状况和地理位置确认车辆的剩余里程,当所述目的地与剩余里程符合预设条件时,提供换电模式选择。
  15. 如权利要求14所述的系统,其特征在于:换电模式包括供应站换电模式、预定地点换电模式和停车点换电模式中的至少一种;供应站换电模式中,预定的地点为电池供应站;预定地点换电模式中,预定的地点为用户与服务中心约定的特定的地点;停车点换电模式中,预定的地点为电动车辆停止行驶的地点。
  16. 如权利要求14所述的系统,其特征在于:所述预设条件为电动车辆的当前位置与目的地之间的距离大于剩余里程。
  17. 如权利要求10所述的系统,其特征在于:服务中心包括控制系统,控制系统预设特定的电子密钥,电池更换设备根据特定的电子密钥识别出预定的车辆并使预定的车辆的电池处于可更换模式。
  18. 如权利要求10所述的系统,其特征在于:换电指令包括电池更换设备按照预设的路径移动,为至少两辆电动车辆分别在至少两个预定的地点更换电池。
  19. 如权利要求12所述的系统,其特征在于:换电指令包括电池更换设备按照预定的周期为预定的车辆更换电池。
  20. 一种电动车辆能量补充系统,用于为电动车辆补充能量,其中,
    电动车辆,包括
    车体;
    收容于车体中的电池;
    一个或者多个车轮;
    电动机,驱动车轮并由电池供电;
    所述电动车辆能量补充系统包括:
    电池更换设备,按照预定的换电计划为预定的电动车辆更换电池。
  21. 如权利要求20所述的电动车辆能量补充系统,其特征在于,预定的换电计划包括对应于预定的电动车辆的约定的换电时间和约定的换电地点。
  22. 如权利要求20所述的电动车辆能量补充系统,其特征在于,电池更换设备移动到预定的电动车辆所处的位置,自电动车辆的前、后、左、右任意一侧更换电池。
  23. 一种电动车辆的能量补充方法,包括以下步骤:
    电池更换设备接收换电指令;电池更换设备根据换电指令,移动至第一预定地点,为第一预定车辆更换电池;电池更换设备根据换电指令,继续移动至第二预定地点,为第二预定车辆更换电池。
  24. 如权利要求23所述的电动车辆的能量补充方法,其特征在于:电池更换设备通过第一换电密钥确认第一预定车辆,电池更换设备通过第二换电密钥确认第二预定车辆。
  25. 如权利要求24所述的电动车辆的能量补充方法,其特征在于:第一换电密钥与第二换电密钥不同。
  26. 一种电动车辆的能量补充的方法,包括以下步骤:
    电池更换设备接收换电指令;
    电池更换设备按照预设路径,移动至不同的预设地点,分别为不同的预定的电动车辆更换电池。
  27. 如权利要求26所述的电动车辆的能量补充方法,其特征在于:定义电池更换设备为预定的电动车辆更换电池的时间与预定的换电时间之间的差值为换电时间差;电池更换设备沿预设路径移动,从而,为所有预定的电 动车辆更换电池的换电时间差的总和最小。
  28. 如权利要求26所述的电动车辆的能量补充方法,其特征在于:电池更换设备沿预设路径移动,从而,电池更换设备为所有预定的电动车辆更换电池所移动的距离最短。
  29. 一种电动车辆的能量补充的方法,包括以下步骤:
    电池更换设备接收换电指令;
    电池更换设备按照预设的时间顺序,移动至不同的预设地点,为不同的预定的电动车辆更换电池。
  30. 一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;其特征在于:所述方法包括以下步骤,电动车辆与服务中心通信确定预定的地点;服务中心确定电池更换设备的地理位置;确认邻近预定的地点的电池更换设备为预定的电池更换设备;服务中心向预定的电池更换设备发送换电指令;预定的电池更换设备接收换电指令,移动至预定地点为电动车辆更换电池。
  31. 一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;其特征在于:所述方法包括以下步骤,电动车辆与服务中心通信确认预定的地点;服务中心确定电池更换设备到达预定的地点的时间,确认到达预定的地点时间最短的电池更换设备为预定的电池更换设备,服务中心向预定的电池更换设备发送换电指令;预定的电池更换设备接收换电指令,移动至预定地点为电动车辆更换电池。
  32. 一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动车轮并由电池供电;其特征在于:所述方法包括以下步骤,服务中心接收换电请求,根据电动车辆和电池更换设备的地理位置,确认能够提供换电服务的电池更换设备,服务中心根据确认结果调度电池更换设备移动至预定的地点为电动车辆更换电池。
  33. 如权利要求32所述的方法,其特征在于:服务中心接收换电请求后,区分电池更换设备的优先度,按照优先度从高到低的顺序向电池更换设备发送换电指令。
  34. 如权利要求33所述的方法,其特征在于:根据电池更换设备移动至预定的地点的时间和/或成本,区分电池更换设备的优先度。
  35. 如权利要求32所述的方法,其特征在于:服务中心接收换电请求后,区 分换电请求的优先度,按照优先度从高到低的顺序处理换电请求。
  36. 如权利要求32所述的方法,其特征在于:根据电动车辆的用户的类型和/或换电时间与当前时间的时间差确认换电请求的优先度。
  37. 如权利要求32所述的方法,其特征在于:统计特定区域内换电请求的数量和分布,当换电请求的数量和分布符合预设条件时,启动应急响应策略。
  38. 如权利要求37所述的方法,其特征在于:应急响应策略为调度特定区域内至少部分位于不同子区域的电池更换设备移动至特定子区域。
  39. 一种电池更换设备,其特征在于:电池更换设备包括,
    可移动的主体;
    换电机构,用于更换电动车辆的电池;
    控制单元,设于主体内,接收换电指令并控制电池更换设备移动至预定的地点为预定的车辆更换电池。
  40. 如权利要求39所述的电池更换设备,其特征在于:电池更换设备包括精确定位模块,用于发出精确定位信号,确定预定的电动车辆的具体位置。
  41. 如权利要求39所述的电池更换设备,其特征在于:控制单元根据特定的电子密钥识别预定的车辆并使预定的车辆处于电池可更换模式。
  42. 如权利要求39所述电池更换设备,其特征在于:电池更换设备还包括通信模块,用于与电动车辆、服务中心、电池供应站至少其中之一通信连接。
  43. 一种电动车辆能量补充的方法,所述电动车辆包括一个或者多个车轮;电动机,驱动电动车辆的车轮并由电池供电;其特征在于:所述方法包括以下步骤:确定车辆的电池的状况;确定车辆的地理位置;基于车辆的电池的状况和车辆的地理位置,服务中心指令电池更换设备在预定的时间段内移动至预定的地点为车辆更换电池。
  44. 根据权利要求43所述的方法,其特征在于:所述服务中心确定电池更换设备的地理位置和电池配置状况,基于电池更换设备的地理位置和电池配置状况,指令符合预定条件的电池更换设备为电动车辆更换电池。
  45. 根据权利要求44所述的方法,其特征在于:所述预定条件为电池更换设备与电动车辆之间的直线距离为若干电池更换设备与电动车辆之间的直线距离中最短的。
PCT/CN2016/079998 2015-04-23 2016-04-22 电动车辆能量补充系统、方法和设备 WO2016169515A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201510197579 2015-04-23
CN201510197579.X 2015-04-23
CN201510292980 2015-06-01
CN201510292980.1 2015-06-01
CN201510358052 2015-06-25
CN201510358052.0 2015-06-25
CN201510442610.1 2015-07-24
CN201510442610 2015-07-24
CN201510541563.6 2015-08-28
CN201510541563 2015-08-28
CN201610082437.3 2016-02-05
CN201610082437 2016-02-05

Publications (1)

Publication Number Publication Date
WO2016169515A1 true WO2016169515A1 (zh) 2016-10-27

Family

ID=57142833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079998 WO2016169515A1 (zh) 2015-04-23 2016-04-22 电动车辆能量补充系统、方法和设备

Country Status (2)

Country Link
CN (1) CN106064568A (zh)
WO (1) WO2016169515A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109436176A (zh) * 2018-11-30 2019-03-08 上海钧正网络科技有限公司 一种防盗系统、防盗方法及电动车
CN110356212A (zh) * 2019-06-27 2019-10-22 博众精工科技股份有限公司 一种旋转加解锁装置
CN110893790A (zh) * 2018-08-22 2020-03-20 富泰华工业(深圳)有限公司 电动车自动充换电系统及电动车自动充换电方法
CN111791746A (zh) * 2020-06-30 2020-10-20 中国第一汽车股份有限公司 车辆的柔性换电系统、换电方法、电子设备及存储介质
CN111868477A (zh) * 2018-03-23 2020-10-30 本田技研工业株式会社 服务管理系统、信息处理装置、服务管理方法、终端装置以及移动电池
CN112297938A (zh) * 2019-07-24 2021-02-02 杭州海康机器人技术有限公司 一种全自动电池拆换方法、装置及系统
CN112560325A (zh) * 2019-09-25 2021-03-26 奥动新能源汽车科技有限公司 换电业务的预测方法、系统、设备及存储介质
CN112622682A (zh) * 2019-10-08 2021-04-09 奥动新能源汽车科技有限公司 电动汽车电池换电里程管理方法、系统、电子设备及介质
CN113269567A (zh) * 2021-05-18 2021-08-17 武汉蔚来能源有限公司 电池流转追溯方法、装置及计算机存储介质
TWI751396B (zh) * 2017-12-29 2022-01-01 英屬開曼群島商睿能創意公司 管理複數個裝置交換站的方法及伺服器系統
CN113928172A (zh) * 2021-10-22 2022-01-14 上海融和智电新能源有限公司 一种移动送电车的智能送电方法及系统
CN114161981A (zh) * 2020-09-11 2022-03-11 蓝谷智慧(北京)能源科技有限公司 一种换电控制方法、装置及换电站
CN114312447A (zh) * 2020-09-30 2022-04-12 奥动新能源汽车科技有限公司 换电设备控制方法、系统、电子设备和存储介质
CN114683949A (zh) * 2018-07-23 2022-07-01 奥动新能源汽车科技有限公司 换电加密系统及方法
CN115880933A (zh) * 2022-10-21 2023-03-31 长安大学 一种基于大数据分析的新能源车辆换电分配系统及方法
US11698611B2 (en) * 2019-12-10 2023-07-11 Toyota Jidosha Kabushiki Kaisha Server and power management system
CN116504693A (zh) * 2023-06-26 2023-07-28 上海新创达半导体设备技术有限公司 侧向换电的物料搬运系统及控制方法
US11833913B2 (en) * 2021-07-12 2023-12-05 Beta Air, Llc System and method for disconnecting a battery assembly from an electric aircraft
CN115084686B (zh) * 2022-05-07 2024-04-26 武汉交通职业学院 一种低温环境下的agv电池系统及热管理策略

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568455A (zh) * 2016-11-15 2017-04-19 云蜂汽车有限公司 一种电动汽车低电量处理方法及电动汽车
US10375636B2 (en) * 2016-12-22 2019-08-06 U-Blox Ag Systems and methods for battery management in a network
CN106816924A (zh) * 2017-01-06 2017-06-09 成都聚立汇信科技有限公司 一种充电桩的外壳
CN106696743A (zh) * 2017-01-11 2017-05-24 贵州大学 一种纯电动汽车智能充电提醒和预约充电方法及系统
CN106627239B (zh) * 2017-01-18 2019-06-14 上海蔚来汽车有限公司 移动充换电设备调度方法
CN106910288B (zh) * 2017-03-14 2019-11-08 北京佰才邦技术有限公司 一种充电的方法及管理平台、充电桩、电动车
JP6309128B1 (ja) * 2017-03-24 2018-04-11 本田技研工業株式会社 システム及び制御用プログラム
CN108688479B (zh) * 2017-04-06 2023-09-01 中兴通讯股份有限公司 一种电池管理方法、装置及系统
US10380711B2 (en) * 2017-06-01 2019-08-13 GM Global Technology Operations LLC System and method for rideshare vehicle chaining
CN107310412A (zh) * 2017-06-21 2017-11-03 广东高标电子科技有限公司 一种电动车的换电方法、装置及服务器和移动换电站
CN107310534A (zh) * 2017-06-21 2017-11-03 广东高标电子科技有限公司 一种电动车的电池更换方法及移动换电站和服务器
CN107689116A (zh) * 2017-07-28 2018-02-13 浙江齐享科技有限公司 一种无固定取还点的电动助力车租赁运营系统及方法
CN107526040A (zh) * 2017-07-28 2017-12-29 广州亿程交通信息有限公司 新能源汽车管理方法及系统
CN107643741B (zh) * 2017-09-15 2019-11-05 北京京东尚科信息技术有限公司 动力补给系统和方法以及移动动力补给站
CN107622388A (zh) * 2017-09-21 2018-01-23 成都宇能通能源开发有限公司 一种能源共享平台运营管理系统及方法
CN107933336A (zh) * 2017-10-27 2018-04-20 申成龙 电动汽车电池共享系统及方法
CN109978205A (zh) * 2017-12-27 2019-07-05 奥动新能源汽车科技有限公司 用于电动汽车的换电消费套餐推荐方法及系统
CN110077193B (zh) * 2018-01-25 2021-03-26 宝沃汽车(中国)有限公司 车辆的控制方法、系统及车辆
CN109146255A (zh) * 2018-07-26 2019-01-04 蔚来汽车有限公司 移动充电宝的调度方法、系统、调度服务器和设备
CN109166242B (zh) * 2018-07-26 2021-09-14 蔚来(安徽)控股有限公司 移动换电装置的调度方法、系统、调度服务器和设备
CN109050301A (zh) * 2018-08-08 2018-12-21 陈超 一种新能源车移动供电系统
CN109040265A (zh) * 2018-08-13 2018-12-18 深圳市旭发智能科技有限公司 消息的推送方法
CN109088930A (zh) * 2018-08-13 2018-12-25 深圳市旭发智能科技有限公司 消息推送设备
CN109263612B (zh) * 2018-10-06 2021-10-01 贵州师范大学 一种基于物联网的智能新能源汽车蓄电池输送装置
CN111038335B (zh) * 2018-10-11 2022-04-08 北京骑胜科技有限公司 电池的充电管理方法、充电管理装置及计算机设备
US20200164762A1 (en) * 2018-11-27 2020-05-28 Robert Bosch Gmbh Method of Achieving an Optimal Operating Point in Battery Swapping Process
US10937113B2 (en) * 2018-12-06 2021-03-02 GM Global Technology Operations LLC Energy resource pre-allocation and delivery based on demand
JP6918032B2 (ja) * 2019-01-17 2021-08-11 本田技研工業株式会社 送受電管理装置及びプログラム
CN109941146A (zh) * 2019-04-04 2019-06-28 昂华(上海)自动化工程股份有限公司 一种车辆电池更换系统
CN110341547B (zh) * 2019-07-22 2021-04-20 广汽蔚来新能源汽车科技有限公司 电动车辆充电方法、装置、系统和计算机设备
WO2021026896A1 (en) * 2019-08-15 2021-02-18 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for replenishing energy resources for vehicles
CN110667413A (zh) * 2019-09-29 2020-01-10 陕西科技大学 一种用于电动汽车的应急充电设备
CN111832881A (zh) * 2020-04-30 2020-10-27 北京嘀嘀无限科技发展有限公司 基于路况信息预测电动车能耗的方法、介质和电子设备
JP2021181141A (ja) * 2020-05-20 2021-11-25 セイコーエプソン株式会社 充電方法および充電システム
CN111682140A (zh) * 2020-06-23 2020-09-18 曹良 一种用于新能源汽车的电池包、电池舱及换电站
CN113910975A (zh) * 2020-07-09 2022-01-11 上海墨泉网络科技有限公司 一种纯电动汽车停车换电提醒方法及系统
US20220036330A1 (en) * 2020-07-30 2022-02-03 Lyves Hatcher Pte. Ltd. Swappable Battery System And Method, Electric Vehicles, Battery As A Service (BaaS)
CN112622686A (zh) * 2020-12-25 2021-04-09 李龙德 一种充电仓的调配管理系统
CN114683908B (zh) * 2020-12-31 2023-06-23 奥动新能源汽车科技有限公司 换电站的换电能力评估方法、系统、电子设备和介质
CN114290946B (zh) * 2021-12-28 2024-02-27 浙江科力车辆控制系统有限公司 换电系统及方法
CN117068027A (zh) * 2022-05-08 2023-11-17 岳秀兰 服务基地电能补给和被补给车通过物联网架构的补给体系
CN114884198A (zh) * 2022-06-09 2022-08-09 上海玫克生储能科技有限公司 基于移动换电车的换电方法、存储介质、服务端及系统
CN116039699B (zh) * 2023-03-28 2023-06-23 湖北工业大学 一种宽窄轨列车转向架更换系统
CN117094538B (zh) * 2023-10-19 2024-02-06 深圳市菲尼基科技有限公司 一种基于电池分析的换电路径管理方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737694B1 (fr) * 1995-08-09 1997-09-26 Belaud Maurice Joseph Procede d'adaptation de l'energie embarquee aux besoins de vehicules electriques de types et de gabarits differents avec les dispositifs specialement concus pour la mise en oeuvre
JP2004215468A (ja) * 2003-01-09 2004-07-29 Oki Electric Ind Co Ltd 二次電池電源供給方法及びその通信システム並びにプログラム
US20090327165A1 (en) * 2008-06-30 2009-12-31 Kaufman Jonathan J System and method for re-supplying energy to a battery-powered electric vehicle
CN101823473A (zh) * 2010-05-31 2010-09-08 团国兴 利用移动换电车对电动汽车移动换电的系统
CN102164773A (zh) * 2008-09-19 2011-08-24 佳境有限公司 用于操作电动车辆的系统和方法
KR20110129518A (ko) * 2010-05-26 2011-12-02 나병호 블랙박스 기능을 내장한 배터리펙시스템과 방법
US20120041804A1 (en) * 2010-07-21 2012-02-16 Zafer Sahinoglu System and Method for Ad-Hoc Energy Exchange Network
CN102358266A (zh) * 2011-09-11 2012-02-22 山东电力研究院 一种应急移动换电车及其换电方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233622B2 (en) * 2008-03-11 2016-01-12 General Electric Company System and method for managing an amount of stored energy in a powered system
US8006793B2 (en) * 2008-09-19 2011-08-30 Better Place GmbH Electric vehicle battery system
KR101245566B1 (ko) * 2012-01-31 2013-03-22 한국항공대학교산학협력단 전기버스 및 전기버스 배터리 교환 시스템
CN109213123A (zh) * 2012-07-26 2019-01-15 苏州宝时得电动工具有限公司 机器人的控制方法及机器人系统
CN104175898A (zh) * 2014-08-18 2014-12-03 同济大学 一种为电动车提供补电服务的方法以及补电服务系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737694B1 (fr) * 1995-08-09 1997-09-26 Belaud Maurice Joseph Procede d'adaptation de l'energie embarquee aux besoins de vehicules electriques de types et de gabarits differents avec les dispositifs specialement concus pour la mise en oeuvre
JP2004215468A (ja) * 2003-01-09 2004-07-29 Oki Electric Ind Co Ltd 二次電池電源供給方法及びその通信システム並びにプログラム
US20090327165A1 (en) * 2008-06-30 2009-12-31 Kaufman Jonathan J System and method for re-supplying energy to a battery-powered electric vehicle
CN102164773A (zh) * 2008-09-19 2011-08-24 佳境有限公司 用于操作电动车辆的系统和方法
KR20110129518A (ko) * 2010-05-26 2011-12-02 나병호 블랙박스 기능을 내장한 배터리펙시스템과 방법
CN101823473A (zh) * 2010-05-31 2010-09-08 团国兴 利用移动换电车对电动汽车移动换电的系统
US20120041804A1 (en) * 2010-07-21 2012-02-16 Zafer Sahinoglu System and Method for Ad-Hoc Energy Exchange Network
CN102358266A (zh) * 2011-09-11 2012-02-22 山东电力研究院 一种应急移动换电车及其换电方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751396B (zh) * 2017-12-29 2022-01-01 英屬開曼群島商睿能創意公司 管理複數個裝置交換站的方法及伺服器系統
CN111868477A (zh) * 2018-03-23 2020-10-30 本田技研工业株式会社 服务管理系统、信息处理装置、服务管理方法、终端装置以及移动电池
CN114683949A (zh) * 2018-07-23 2022-07-01 奥动新能源汽车科技有限公司 换电加密系统及方法
CN114683949B (zh) * 2018-07-23 2024-04-12 奥动新能源汽车科技有限公司 换电加密系统及方法
CN110893790A (zh) * 2018-08-22 2020-03-20 富泰华工业(深圳)有限公司 电动车自动充换电系统及电动车自动充换电方法
CN110893790B (zh) * 2018-08-22 2022-12-23 富泰华工业(深圳)有限公司 电动车自动充换电系统及电动车自动充换电方法
CN109436176A (zh) * 2018-11-30 2019-03-08 上海钧正网络科技有限公司 一种防盗系统、防盗方法及电动车
CN109436176B (zh) * 2018-11-30 2023-11-28 上海钧正网络科技有限公司 一种防盗系统、防盗方法及电动车
CN110356212A (zh) * 2019-06-27 2019-10-22 博众精工科技股份有限公司 一种旋转加解锁装置
CN112297938A (zh) * 2019-07-24 2021-02-02 杭州海康机器人技术有限公司 一种全自动电池拆换方法、装置及系统
CN112297938B (zh) * 2019-07-24 2023-11-03 杭州海康机器人股份有限公司 一种全自动电池拆换方法、装置及系统
CN112560325A (zh) * 2019-09-25 2021-03-26 奥动新能源汽车科技有限公司 换电业务的预测方法、系统、设备及存储介质
CN112622682A (zh) * 2019-10-08 2021-04-09 奥动新能源汽车科技有限公司 电动汽车电池换电里程管理方法、系统、电子设备及介质
CN112622682B (zh) * 2019-10-08 2022-03-01 奥动新能源汽车科技有限公司 电动汽车电池换电里程管理方法、系统、电子设备及介质
US11698611B2 (en) * 2019-12-10 2023-07-11 Toyota Jidosha Kabushiki Kaisha Server and power management system
CN111791746A (zh) * 2020-06-30 2020-10-20 中国第一汽车股份有限公司 车辆的柔性换电系统、换电方法、电子设备及存储介质
CN114161981A (zh) * 2020-09-11 2022-03-11 蓝谷智慧(北京)能源科技有限公司 一种换电控制方法、装置及换电站
CN114161981B (zh) * 2020-09-11 2023-04-25 蓝谷智慧(北京)能源科技有限公司 一种换电控制方法、装置及换电站
CN114312447A (zh) * 2020-09-30 2022-04-12 奥动新能源汽车科技有限公司 换电设备控制方法、系统、电子设备和存储介质
CN114312447B (zh) * 2020-09-30 2024-02-13 奥动新能源汽车科技有限公司 换电设备控制方法、系统、电子设备和存储介质
CN113269567B (zh) * 2021-05-18 2022-10-14 武汉蔚来能源有限公司 电池流转追溯方法、装置及计算机存储介质
CN113269567A (zh) * 2021-05-18 2021-08-17 武汉蔚来能源有限公司 电池流转追溯方法、装置及计算机存储介质
US11833913B2 (en) * 2021-07-12 2023-12-05 Beta Air, Llc System and method for disconnecting a battery assembly from an electric aircraft
CN113928172B (zh) * 2021-10-22 2023-12-15 上海融和智电新能源有限公司 一种移动送电车的智能送电方法及系统
CN113928172A (zh) * 2021-10-22 2022-01-14 上海融和智电新能源有限公司 一种移动送电车的智能送电方法及系统
CN115084686B (zh) * 2022-05-07 2024-04-26 武汉交通职业学院 一种低温环境下的agv电池系统及热管理策略
CN115880933A (zh) * 2022-10-21 2023-03-31 长安大学 一种基于大数据分析的新能源车辆换电分配系统及方法
CN115880933B (zh) * 2022-10-21 2023-10-27 长安大学 一种基于大数据分析的新能源车辆换电分配系统及方法
CN116504693B (zh) * 2023-06-26 2023-09-12 上海新创达半导体设备技术有限公司 侧向换电的物料搬运系统及控制方法
CN116504693A (zh) * 2023-06-26 2023-07-28 上海新创达半导体设备技术有限公司 侧向换电的物料搬运系统及控制方法

Also Published As

Publication number Publication date
CN106064568A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2016169515A1 (zh) 电动车辆能量补充系统、方法和设备
US10549729B2 (en) Vehicular accessory
US10549645B2 (en) Smart-charging apparatus for use with electric-vehicle-sharing stations
US9566954B2 (en) Vehicular accessory
US9177306B2 (en) Kiosks for storing, charging and exchanging batteries usable in electric vehicles and servers and applications for locating kiosks and accessing batteries
CN110880054B (zh) 一种电动网约车充换电路径的规划方法
CN109213141A (zh) 自主行驶车、行驶控制装置和方法及记录程序的记录介质
CN115515815A (zh) 高功率充电站
CN107757398A (zh) 电动汽车的电池更换站更换电池的方法
JP2022539061A (ja) モジュール式電池を動力源とするシステムおよび方法
KR102190351B1 (ko) 전기이륜차의 배터리 교환 시스템 및 방법
CN109345643A (zh) 一种智慧停车agv系统
AU2018393346B2 (en) Electric vehicle navigation method and system based on power guidance of energy-storage charging pile
JP2011142779A (ja) エネルギ配送システム
CN111452664B (zh) 充换分离模式下的电动汽车换电系统及方法
CN110605986B (zh) 一种离网可移动快充系统及其管理方法
CN106476770A (zh) 电池更换设备及更换电池的方法
Chen et al. An electric vehicle battery-swapping system: Concept, architectures, and implementations
CN105813884B (zh) 用于电动汽车的电池组的使用方法
CN110356259B (zh) 充电电池的预约方法及电动载具系统
CN104318357B (zh) 电动汽车换电网络协调规划方法
CN109050301A (zh) 一种新能源车移动供电系统
CN213501923U (zh) 一种换电站
CN107650727A (zh) 一种用于电动汽车共享充电的装置及其商业模式
CN108790875A (zh) 公交车充电管理装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782662

Country of ref document: EP

Kind code of ref document: A1