WO2016167519A1 - 락탐의 제조방법 - Google Patents

락탐의 제조방법 Download PDF

Info

Publication number
WO2016167519A1
WO2016167519A1 PCT/KR2016/003758 KR2016003758W WO2016167519A1 WO 2016167519 A1 WO2016167519 A1 WO 2016167519A1 KR 2016003758 W KR2016003758 W KR 2016003758W WO 2016167519 A1 WO2016167519 A1 WO 2016167519A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
omega
beta
amino acid
lactam
Prior art date
Application number
PCT/KR2016/003758
Other languages
English (en)
French (fr)
Inventor
이상엽
채동언
송찬우
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160043539A external-priority patent/KR101839595B1/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to DE112016001706.5T priority Critical patent/DE112016001706B4/de
Priority to CN201680019390.4A priority patent/CN107438667B/zh
Priority to JP2017538309A priority patent/JP6602872B2/ja
Priority to US15/545,311 priority patent/US10683512B2/en
Publication of WO2016167519A1 publication Critical patent/WO2016167519A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin

Definitions

  • the present invention relates to a method for producing lactam using an enzyme, and more particularly, to an enzyme for converting an omega-amino acid to omega-aminoacyl-CoA or a lactam using a recombinant microorganism into which a gene encoding the enzyme is introduced. It relates to a manufacturing method.
  • omega-amino acids which are precursors of lactams
  • Typical examples include the production of lactams, 2-pyrrolidone, valerolactam, and omega-amino acids, precursors of caprolactam, gamma-aminobutyric acid (GABA), 5-aminovaleric acid (5AVA), and 6-aminocaproic acid (6ACA).
  • GABA gamma-aminobutyric acid
  • 5AVA 5-aminovaleric acid
  • 6ACA 6-aminocaproic acid
  • the present inventors have tried to develop a method for efficiently producing various lactams using microorganisms, and thus, an enzyme converting omega-amino acid into a substrate and converting it to omega-aminoacyl-CoA I found a new one.
  • the present invention was completed by confirming that lactam can be prepared using the enzyme itself or a recombinant microorganism into which the gene is introduced.
  • An object of the present invention is to provide a recombinant microorganism into which a gene encoding an enzyme for converting an omega-amino acid into an omega-aminoacyl-CoA is introduced.
  • Another object of the present invention is to provide a method for preparing various lactams from omega-amino acids using the recombinant microorganism.
  • Still another object of the present invention is to provide a method for preparing various omega-aminoacyl-CoA from omega-amino acids using recombinant microorganisms in which a gene encoding an enzyme for converting omega-amino acid to omega-aminoacyl-CoA is introduced. It is.
  • the present invention provides a recombinant microorganism having a lactam generating ability from omega-amino acid, a gene encoding beta-alanine coenzyme A transferase is introduced into a microorganism having an omega amino acid biosynthetic metabolic pathway.
  • the present invention also comprises the steps of (a) culturing the recombinant microorganism to produce a lactam; It provides a method for producing lactam from omega-amino acid using a recombinant microorganism into which the beta-alanine coenzyme A transferase gene is introduced, comprising recovering the generated lactam.
  • the present invention also provides a method for preparing omega-aminoacyl-CoA by (a) mixing and reacting beta-alanine coenzyme A transferase with a reaction solution containing omega-amino acids; (b) providing a method for preparing lactam from omega-amino acid using beta-alanine coenzyme A transferase, which comprises preparing lactam by forming a ring structure of the prepared omega-aminoacyl-CoA.
  • the present invention also comprises the steps of (a) culturing the recombinant microorganism to produce omega-aminoacyl-CoA; (b) provides a method for preparing omega-aminoacyl-CoA from omega-amino acids using a recombinant microorganism to which the beta-alanine coenzyme A transferase gene is introduced, comprising recovering the generated omega-aminoacyl-CoA.
  • the present invention is also a mixture of beta-alanine coenzyme A transferase with a reaction solution containing omega-amino acids, followed by reaction, to prepare an omega-aminoacyl-CoA omega using beta-alanine coenzyme A transferase
  • a reaction solution containing omega-amino acids followed by reaction, to prepare an omega-aminoacyl-CoA omega using beta-alanine coenzyme A transferase
  • Figure 1 shows a route for producing various lactams from omega-amino acid to omega-amino acyl coenzyme A.
  • Figure 2 shows a pET30 ⁇ his-act overexpression plasmid with his-tagging act gene inserted to purify beta-alanine coenzyme A transferase.
  • 3 is an SDS-PAGE photograph of purified beta-alanine coenzyme A.
  • Figure 4 is an analysis of GABA-CoA prepared in vitro conditions using the enzyme beta-alanine coenzyme A transferase.
  • 5 is an analysis result of 6ACA-CoA prepared in vitro using the enzyme of beta-alanine coenzyme A transferase.
  • Figure 6 is an analysis of 2-pyrrolidone prepared in vitro conditions using the enzyme beta-alanine coenzyme A transferase.
  • Figure 7 is an analysis of caprolactam prepared in vitro conditions using the enzyme beta-alanine coenzyme A transferase.
  • Figure 8 shows the pTac15k_act plasmid inserted with the act gene prepared to express beta-alanine coenzyme A transferase in microorganisms.
  • Figure 11 is an analysis of the valerolactam prepared in vitro conditions using the enzyme beta-alanine coenzyme A transferase.
  • Figure 12 shows the metabolic pathways to produce valerolactam from lysine performed in one embodiment of the present invention.
  • Figure 13 shows the pEKEx1_act plasmid inserted with the act gene prepared for expressing beta-alanine coenzyme A transferase in microorganisms.
  • Figure 14 shows the pEKEx1_gadB plasmid inserted with the gadB gene prepared to express glutamic acid decarboxylase in microorganisms.
  • Figure 15 shows the pEKEx1_act_gadB plasmid in which act and gadB genes were inserted to express beta-alanine coenzyme A transferase and glutamic acid decarboxylase in microorganisms.
  • the enzyme beta-alanine coenzyme A transferase accepts various omega-amino acids as a substrate in addition to the beta-alanine, which is a natural omega-amino acid substrate, to form a corresponding omega-amino acyl coenzyme A, and such omega-amino acyl
  • coenzyme A is converted to the corresponding lactam without the help of an enzyme
  • the present invention in one aspect, the ability to produce lactams from omega-amino acids, in which a gene encoding beta-alanine coenzyme A transferase is introduced into a microorganism having an omega amino acid biosynthetic pathway or an omega amino acid biosynthetic pathway introduced therein. It relates to a recombinant microorganism having a.
  • the term "intrinsic” means a metabolic pathway that is retained by the microorganism without adding it to the microorganism by genetic recombination.
  • the metabolic pathway of E. coli producing GABA from glutamic acid performed in one embodiment of the present invention biosynthesizes glutamic acid through glycolysis from glucose, followed by intrinsic glutamic acid decarboxylase (GadA or GadB). Pathway to produce GABA.
  • the omega-amino acid biosynthetic pathway is introduced may be to introduce the corresponding gene.
  • it may be characterized by introducing a metabolic pathway for biosynthesis of 5-aminovaleic acid (5AVA) from lysine in E. coli.
  • 5AVA 5-aminovaleic acid
  • the 5-aminovaleic acid biosynthetic metabolic pathway from the lysine may be characterized by introducing a gene encoding delta-aminovaleramidase and a gene encoding lysine 2-monooxygenase, and encoding the delta-aminovaleramidase
  • the gene is Pseudomonas putida ) davA gene
  • the gene encoding the lysine 2-monooxygenase may be characterized in that the davB gene derived from Pseudomonas putida , but is not limited thereto.
  • the gene encoding the beta-alanine coenzyme A transferase may be an act derived from Clostridium propionicum , but is not limited thereto.
  • the act gene derived from Clostridium propionicum may be represented by SEQ ID NO: 1, but is not limited thereto.
  • beta-alanine coenzyme A transferase may be represented by SEQ ID NO: 2, but is not limited thereto.
  • the enzyme may be characterized by homology, that is, amino acid sequence similarity of 50% or more, preferably 60% or more, and more preferably. It may be characterized by more than 70%.
  • the lactam is a heteroatomic cyclic ring structure, and any chemicals characterized in that it has an amide bond in the ring (propeller), preferably propiolactam (propiolactam), 2-pyrroli 2-pyrrolidone, valerolactam, caprolactam, heptanolactam, heptanolactam, octanolactam, nonanolactam, decanolactam, dedecanolactam It may be characterized in that it is selected from the group consisting of lactam (undecanolactam) and dodecanolactam.
  • the omega-amino acid may be any chemical substance characterized in that it has an amine and a carboxylic acid functional group at the same time, preferably beta alanine (beta-alanine), gamma-aminobutyric (gamma-aminobutyric acid, GABA), 5-aminovaleric acid (5AVA), 6-aminocaproic acid (6ACA), 7-aminoheptanoic acid (7AHA), 8-aminooctanoic acid, 9-aminononanoic acid, 10-aminodecanoic acid, 11-aminoundecanoic acid aminoundecanoic acid) and 12-aminododecanoic acid may be characterized in that it is selected from the group consisting of.
  • the beta-alanine may be characterized by having a pathway that is biosynthesized by L-aspartate- ⁇ -decarboxylase from aspartic acid
  • the GABA is biosynthesized by glutamic acid carboxylase (GadA or GadB) from glutamic acid
  • the 5AVA may be characterized by having a pathway biosynthesized from lysine by delta-aminobaleramides (DavA) and lysine-2-monoxyoxygenase (DavB)
  • 6ACA and 7AHA may be characterized by having a pathway biosynthesized by homocitrate synthase, 3-isopropylmalate dehydratase, isopropylmalate / isohomocitrate dehydrogenase, branched-chain ⁇ -ketoacid decarboxylase and pyruvate transaminase from alpha-ketoglutamic acid, but is not
  • the omega-amino acid is a carbon source selected from the group consisting of monosaccharides, disaccharides, polysaccharides, including glucose, sucrose, galactose, maltose, xylose, glycerol, fructose and sugar cane (sugar cane) It may be characterized in that the biosynthesis from, but is not limited thereto.
  • the recombinant microorganism may be any microorganism capable of producing the precursor omega-amino acid by itself or using it as a carbon source, but may be preferably selected from the group consisting of bacteria, yeast and mold. .
  • the bacteria may be selected from the group consisting of Corynebacterium (Corynebacterium) and E. coli, but is not limited thereto.
  • the culturing process of the recombinant microorganism can be carried out using a conventionally known culture method, in addition to the specific medium and the specific culture method used in the embodiment of the present invention, whey, corn steep liquor (CSL) Different media such as saccharification solution, etc. can be used, and various methods such as fed-batch culture and continuous culture can be used (Lee et al., Bioprocess) . Biosyst . Eng ., 26: 63, 2003; Lee et al., Appl . Microbiol. Biotechnol ., 58: 663, 2002; Lee et al., Biotechnol . Lett . , 25: 111, 2003; Lee et al., Appl . Microbiol . Biotechnol . 54: 23, 2000; Lee et al., Biotechnol. Bioeng ., 72: 41, 2001).
  • CSL corn steep liquor
  • the enzyme assay was performed to confirm that beta-alanine coenzyme A transferase acts on GABA, 6ACA, and 7AHA, which are omega-amino acids in addition to beta-alanine, which is a natural substrate.
  • the his-act gene encoding his tag beta-alanine coenzyme A transferase was cloned to construct a pET30a_his_act vector (FIG. 2), and the beta-alanine coenzyme A transferase with his tag was purified. (FIG. 3).
  • Enzyme assay was performed by adding purified protein, acetyl coenzyme A, GABA, 6ACA or 7AHA.
  • omega-amino acyl coenzyme A forms of omega-amino acids, GABA coenzyme A, 6ACA coenzyme A and 7AHA coenzyme A were produced by HPLC-MS / MS or HPLC-MS (FIG. 4, FIG. 5, 10).
  • the present invention provides a method for preparing omega-aminoacyl-CoA by (a) mixing beta-alanine coenzyme A transferase in a reaction solution containing omega-amino acid and then reacting the same; (b) a method for preparing lactam from omega-amino acid comprising the step of preparing lactam through ring structure formation of the prepared omega-aminoacyl-CoA.
  • the gene encoding the beta-alanine coenzyme A transferase may be characterized in that act derived from Clostridium propionicum , but is not limited thereto.
  • the lactam is a heteroatomic phantom ring structure, and any chemicals characterized in that it has an amide bond in the ring (acrylamide bond), any one, preferably propiolactam, 2-pyrrolidone, valero It may be characterized in that it is selected from the group consisting of lactam, caprolactam, heptanolactam, octanolactam, nonenolactam, decanolactam, undecanolactam and dodecanolactam.
  • omega-aminoacyl-CoA In another aspect, (a) culturing the recombinant microorganism to produce omega-aminoacyl-CoA; (b) a method for preparing omega-aminoacyl-CoA from an omega-amino acid using a recombinant microorganism into which a beta-alanine coenzyme A transferase gene is introduced, comprising recovering the generated omega-aminoacyl-CoA.
  • Recovering the produced omega-aminoacyl-CoA in the present invention comprises the steps of crushing the cells to obtain a mixture comprising omega-aminoacyl-CoA; And it may be characterized in that consisting of the step of recovering the omega-aminoacyl-CoA through a purification process, but is not limited thereto.
  • Cell disruption of the present invention can be carried out by various methods known to those skilled in the art, preferably characterized in that it is performed by a sonic treatment method, but is not limited to this, the purification process is preferably a method using a chromatogram. However, the present invention is not limited thereto.
  • Recovering the generated omega-aminoacyl-CoA in the present invention further comprises the step of fixing the cells, or processing the compound to prevent cyclization of the omega-aminoacyl-CoA prior to disrupting the cells. It can be characterized by.
  • the present invention is a mixture of beta-alanine coenzyme A transferase in a reaction solution containing omega-amino acid, and then reacted to prepare omega-aminoacyl-CoA.
  • a method for producing aminoacyl-CoA is a mixture of beta-alanine coenzyme A transferase in a reaction solution containing omega-amino acid, and then reacted to prepare omega-aminoacyl-CoA.
  • the gene encoding the beta-alanine coenzyme A transferase may be characterized in that act derived from Clostridium propionicum , but is not limited thereto.
  • the lactam is a heteroatomic phantom ring structure, and any chemicals characterized in that it has an amide bond in the ring (acrylamide bond), any one, preferably propiolactam, 2-pyrrolidone, valero It may be characterized in that it is selected from the group consisting of lactam, caprolactam, heptanolactam, octanolactam, nonenolactam, decanolactam, undecanolactam and dodecanolactam.
  • the term "vector” refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in a suitable host.
  • the vector may be a plasmid, phage particles, or simply a potential genomic insert. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. However, the present invention includes other forms of vectors having functions equivalent to those known or known in the art. Typical expression vectors for mammalian cell culture expression are based on, for example, pRK5 (EP 307,247), pSV16B (WO 91/08291) and pVL1392 (Pharmingen).
  • expression control sequence refers to a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism.
  • regulatory sequences include promoters for performing transcription, any operator sequence for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control termination of transcription and translation.
  • suitable control sequences for prokaryotes include promoters, optionally operator sequences, and ribosomal binding sites.
  • Eukaryotic cells include promoters, polyadenylation signals, and enhancers. The factor that most influences the amount of gene expression in the plasmid is the promoter.
  • an SR ⁇ promoter a promoter derived from cytomegalovirus, and the like are preferably used.
  • any of a wide variety of expression control sequences can be used in the vector.
  • useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter region of phage lambda, fd Regulatory regions of the code protein, promoters for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoters of the yeast alpha-crossing system and prokaryotic or eukaryotic cells or viruses thereof And other sequences of constitution and induction known to modulate the expression of the genes, and various combinations thereof.
  • the T7 RNA polymerase promoter ⁇ 10 is two. It can be usefully used to express protein NSP in E. coli.
  • Nucleic acids are "operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to allow gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • DNA for a pre-sequence or secretion leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
  • expression vector generally refers to a fragment of DNA that is generally double stranded as a recombinant carrier into which fragments of heterologous DNA have been inserted.
  • heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells.
  • the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host.
  • the expression control sequence and the gene of interest are included in one expression vector including the bacterial selection marker and the replication origin. If the expression host is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
  • Host cells transformed or transfected with the above-described expression vectors constitute another aspect of the present invention.
  • transformation means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • transfection means that the expression vector is accepted by the host cell whether or not any coding sequence is actually expressed.
  • the host cell of the invention may be a prokaryotic or eukaryotic cell.
  • a host having a high DNA introduction efficiency and a high expression efficiency of the introduced DNA is usually used.
  • Well-known eukaryotic and prokaryotic hosts such as E. coli, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera pruperferida (SF9), animal cells such as CHO and mouse cells, COS 1, COS African green monkey cells such as 7, BSC 1, BSC 40 and BMT 10, and tissue cultured human cells are examples of host cells that can be used.
  • the plasmid having the origin of replication of SV40 is present as a large number of copies of the episome in the cells. Higher expression can be expected.
  • the introduced DNA sequence may be obtained from the same species as the host cell, may be of a different species than the host cell, or it may be a hybrid DNA sequence comprising any heterologous or homologous DNA.
  • the relative strength of the sequence, the controllability, and the compatibility with the DNA sequences of the present invention should be considered, particularly with regard to possible secondary structures.
  • Single cell hosts may be selected from a host for the selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretory properties, the ability to accurately fold the protein, culture and fermentation requirements, the product encoded by the DNA sequence of the invention from the host. It should be selected in consideration of factors such as the ease of purification. Within the scope of these variables, one skilled in the art can select various vector / expression control sequence / host combinations that can express the DNA sequences of the invention in fermentation or large scale animal culture.
  • binding method binding method
  • panning method panning method
  • film emulsion method film emulsion method
  • substantially pure in the definition of the present invention is meant that the polypeptides according to the invention and the DNA sequences encoding the polypeptides are substantially free of other proteins derived from bacteria.
  • Host cells for expressing recombinant proteins are widely used by prokaryotic cells, such as Escherichia coli and Bacillus subtillis , which are capable of culturing high concentrations of cells in a short time, are easily genetically engineered, and whose genetic and physiological characteristics are well known. Has been.
  • the recent single cell eukaryotic yeast line Pichia) pastoris , Saccharomyces cerevisiae , Hansenula polymorpha, etc.
  • filamentous fungi insect cells, insect cells, plant cells, mammalian cells, etc.
  • E. coli exemplified in the above is readily applicable to those skilled in the art.
  • the amino acid sequence of the beta-alanine coenzyme A transferase derived from Clostridium propionicum strain and the base sequence of the act gene encoding the same are shown in SEQ ID NOs: 2 and 1.
  • PCR was carried out using primers of SEQ ID NOs: 3 and 4 to prepare beta-alanine coenzyme A with his-tag at the N terminus. the his_ act gene fragment encoding was produced.
  • the plasmid pETa_his_act obtained in Example 1-1 was transferred to Escherichia coli BL21 (DE3) (F-ompT hsdSB (rB-mB-) gal dcm (DE3) a prophage carrying the T7 RNA polymerase gene. (New England Biolabs, USA).
  • the transformed strains were inoculated in 10 mL LB liquid medium containing 25mg / L kanamycin (tryamyton 10g / L, yeast extract 5g / L, NaCl 10g / L) and shaken continuously at 37 ° C at 200 rpm. After incubation, inoculate 1% in 200mL of the medium as described above and incubated with shaking at 200rpm at 37 ° C continuously, and when the optical density (OD) measured at 600nm wavelength with a spectrophotometer is 0.4, 1mM IPTG was added thereto. his_ act to induce expression.
  • OD optical density
  • the culture solution was treated with a centrifuge (Hanil Science Industrial, Korea) at 3000rpm and 4 ° C for 10 minutes to separate the microorganisms, the supernatant was removed, and the separated microorganisms were equilibrium buffer (50mM Na 3 PO 4 , 300mM NaCl, pH 7.0) and re-dissolved in 40 mL, and dissolved the microorganisms for 2 hours in a pulse of 5 seconds with a 30% intensity and 5 seconds of rest using a cell sonicator (Sonics & Materials, Inc., USA). Next, cell debris was obtained after centrifugation at 13200 rpm and 4 ° C. for 10 minutes to remove cell debris.
  • a centrifuge Hanil Science Industrial, Korea
  • beta-alanine coenzyme A transferase with his-tag was isolated using Talon resin (Clontech Laboratories, Inc., USA). Isolation of beta-alanine coenzyme A transferase on talon resin was performed using equilibrium buffer containing 7.5, 15, 30, 45, 60, 90, 120, and 150 mM imidazole, respectively. Subsequently, 12% SDS-PAGE was used to separate the whole cell lysate, protein solution passed through talon resins, and protein solution obtained with each concentration of imidazole with 5x Laemmli sample buffer (LPS Solution, Korea). And stained with Coomassie brilliant blue R250 (Bio-Rad, USA) solution (FIG. 3). As a result, the highest purity beta-alanine coenzyme A transferase was purified to 120mM.
  • Enzyme assay was performed in 50 mM potassium phosphate buffer (pH 7.5). Substrates and enzymes required for enzyme assay were added in the following amounts. Add 10 mM GABA, 6ACA or 7AHA, 1 mM acetyl-CoA and 2.5 ⁇ g of purified beta-alanine coenzyme A transferase to proceed the reaction at 30 ° C for 2 hours and to separate only the coenzyme A derivatives from the enzyme assay mixture. The following protocol was used with an OASIS HLB SPE cartridge (Waters, USA).
  • the first MS analysis of the enzyme assay mixture using 6ACA as a substrate showed a peak at 881.3, which is similar to the expected m / z value of 6ACA coenzyme A, 881, which was fragmented into secondary MS for analysis.
  • beta-alanine coenzyme A transferase successfully converts GABA, 6ACA and 7AHA into GABA coenzyme A, 6ACA coenzyme A and 7AHA coenzyme A, respectively.
  • Example 1-3 GABA coenzyme A, 5AVA coenzyme A and 6ACA coenzyme A were prepared by enzyme assay by the method described. The prepared GABA coenzyme A, 5AVA coenzyme A and 6ACA coenzyme A was left without treatment for 48 hours at 37 °C, and analyzed by HPLC-MS whether 2-pyrrolidone, valerolactam and caprolactam were produced.
  • a chromosomal DNA of Clostridium propionicum strain was used as a template, and PCR was performed using primers of SEQ ID NOs: 5 and 6 to prepare an act gene fragment encoding beta-alanine coenzyme A.
  • Escherichia coli coli chromosomal DNA of the strain as a template
  • PCR was carried out by primers of SEQ ID NOs: 8 and 9 to prepare a gadB gene fragment encoding glutamic acid decarboxylase.
  • the gadB After treatment with the restriction enzymes ( BamH I and Sal I) to the pEKEx1 (Eikmanns et al. , Gene. 102, 93-98,1991) plasmid that undergoes strong gene expression of the fragment and tac promoter, T4 DNA ligase was applied.
  • the recombinant plasmid pEKEx_gadB was constructed by conjugation of the gadB fragment cleaved with restriction enzyme and the pEKEx1 plasmid (FIG. 14).
  • the pEKEx1-act plasmid prepared in Example 3-2 and the gadB fragment prepared in Example 3-2 were treated with restriction enzymes ( BamH I and Sal I), followed by treatment with T4 DNA ligase.
  • the recombinant plasmid pEKEx_act_gadB was constructed by conjugating the cleaved gadB fragment and the pEKEx1_act plasmid (FIG. 15).
  • PTac15k_act plasmid prepared in Example 3-1 was introduced into Escherichia coli WL3110 (Lee et al., Mol . Syst. Biol . 3: 149 2007) to express the act gene encoding beta-alanine coenzyme A gene in the microorganism .
  • Recombinant microorganisms were prepared (WL3110 / pTac15k-act), and coliform bacterium (WL3110 / pTac15k) into which pTac15k was introduced as a blank was used as a control strain.
  • the pTac15k_act plasmid prepared in Example 3-1 was expressed in E. coli XQ56 / pKE112-davAB (Park) to express the act gene encoding the beta-alanine coenzyme A gene in the microorganism. et al., Metab. Eng . 16: 42-47 2013) to prepare recombinant microorganisms (XQ56 / pKE112-davAB / pTac15k-act) and E. coli (XQ56 / pKE112-davAB / pTac15k) was used as a control strain.
  • the gadB gene encoding the glutamic acid decarboxylase gene for the biosynthesis of GABA in the microorganism and the act gene encoding the beta-alanine coenzyme A gene are expressed in Example 3 PEKEx1_act_gadB plasmid prepared in -4 was introduced into the wild-type Corynebacterium glutamicum ATCC 13032 to prepare a recombinant microorganism (ATCC 13032 / pEKEx1_act_gadB), and produced in Example 3-3 expressing only the gadB gene.
  • Corynebacterium glutamicum (ATCC 13032 / pEKEx1_gadB) into which the pEKEx1_gadB plasmid was introduced was used as a control strain.
  • Recombinant microorganisms prepared in Example 3-5 were inoculated in 10 mL LB medium and pre-cultured at 37 ° C. for 8 hours, and 1.5 mL of the pre-incubated culture was placed in a 350 mL flask with 50 mL of modified MR Incubated in -1 medium.
  • the composition of modified MR-1 medium (pH 7.0) is 10 g glucose, 5 g GABA, 9 g (NH 4 ) 2 SO 4 , 6.67 g KH 2 PO 4 , 4.0 g (NH 4 ) 2 HPO 4 , 0.8 g citric acid, 0.8 g MgSO 4 ⁇ 7H 2 O, 0.01 g CaCl 2 ⁇ 2H 2 0, 5 mL trace metal solution (10 g FeSO 4 ⁇ 7H 2 O, per liter of distilled water, 2.2 g ZnSO 4 ⁇ 4H 2 O, 0.58 g MnSO 4 ⁇ 4H 2 O, 1 g CuSO 4 ⁇ 5H 2 O, 0.1 g (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O, 0.02 g Na 2 B 4 O 7 ⁇ 10H 2 O).
  • GABA was fed as a carbon source in the composition.
  • the culture was performed in a shaking incubator (jSR, Korea) operating at 37 ° C. and 200 rpm for 48 hours. After the incubation, the culture solution was centrifuged at 13,200 rpm for 10 minutes, and only the supernatant was collected and subjected to HPLC-MS analysis to confirm 2-pyrrolidone production.
  • Recombinant microorganisms prepared in Example 3-5 were inoculated in 10 mL LB medium and pre-cultured at 37 ° C. for 8 hours, and 1.5 mL of the pre-incubated culture was placed in a 350 mL flask with 50 mL of modified MR Incubated in -2 medium.
  • the composition of modified MR-2 medium (pH 7.0) is 10 g glucose, 5 g 5 AVA, 9 g (NH 4 ) 2 SO 4 , 6.67 g KH 2 PO 4 , 4.0 g (NH 4 ) 2 HPO 4 , 0.8 g citric per liter of distilled water acid, 0.8 g MgSO 4 ⁇ 7H 2 O, 0.01 g CaCl 2 ⁇ 2H 2 0, 5 mL trace metal solution (10 g FeSO 4 ⁇ 7H 2 O, per liter of distilled water, 2.2 g ZnSO 4 ⁇ 4H 2 O, 0.58 g MnSO 4 ⁇ 4H 2 O, 1 g CuSO 4 ⁇ 5H 2 O, 0.1 g (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O, 0.02 g Na 2 B 4 O 7 ⁇ 10H 2 O).
  • 5AVA was supplied as a carbon source.
  • the culture was performed in a shaking incubator (jSR, Korea) operating at 37 ° C. and 200 rpm for 48 hours. After the incubation, the culture solution was centrifuged at 13,200 rpm for 10 minutes, and only the supernatant was collected and subjected to HPLC-MS analysis to confirm the production of valerolactam.
  • Recombinant microorganisms prepared in Example 3-5 were inoculated in 10 mL LB medium and precultured at 37 ° C. for 8 hours, and 1.5 mL of the precultured culture medium was added to 50 mL of modified M9 in a 350 mL flask. The medium was inoculated and cultured.
  • the composition of the modified M9 medium was 10 g glucose, 5 g glutamic acid, 6.78 g Na 2 HPO 4 , 3.0 g KH 2 PO 4 , 0.5 g NaCl, 1.0 g NH 4 Cl, 1 mM MgSO 4 , 0.1 mM CaCl 2 , 10 mg thiamine It is a medium consisting of the components of.
  • glutamic acid was supplied as a carbon source to supply GABA in the microorganism.
  • the culture was performed in a shaking incubator (jSR, Korea) operating at 37 ° C. and 200 rpm for 48 hours. After the incubation, the culture solution was centrifuged at 13,200 rpm for 10 minutes, and only the supernatant was collected and subjected to HPLC-MS analysis to confirm 2-pyrrolidone production.
  • the recombinant microorganism prepared in Example 3-5 (XQ56 / pKE112-davAB / pTac15k-act) was inoculated in 10 mL LB medium, preculture was performed at 37 ° C. for 8 hours, and 1.5 mL of the precultured culture was placed in a 350 mL flask. 50 mL of modified MR-3 medium was inoculated and cultured.
  • the composition of the modified MR-3 medium (pH 7.0) was 10 g glucose, 9 g (NH 4 ) 2 SO 4 , 6.67 g KH 2 PO 4 , 4.0 g (NH 4 ) 2 HPO 4 , 0.8 g citric acid, 0.8 per liter of distilled water.
  • the recombinant microorganism (ATCC 13032 / pEKEx1_act_gadB) prepared in Example 3-5 was inoculated in 5mL RG medium (brain heart infusion 40g / L, glucose 10g / L, beef extract 10g / L, sorbitol 30g / L) at 30 ° C.
  • the preculture was carried out for 12 hours, and 1.5 mL of the preculture was cultured by inoculating 50 mL of GP1 medium in a 350 mL flask.
  • the composition of GP1 medium (pH 7.0) is 50g glucose per liter of distilled water, 50g (NH 4 ) 2 SO 4 , 1.0g K 2 HPO 4 , 3.0g urea, 0.4g MgSO 4 ⁇ 7H 2 O, 50g peptone, 0.01g FeSO 4 , 0.01g MnSO 4 ⁇ 5H 2 O, 200 ⁇ g thiamine, 0.1mM pyridoxal 5-phosphate hydrate, 50 ⁇ g biotin components.
  • Glucose was supplied as a carbon source in the composition.
  • the culture was carried out in a shaking incubator (jSR, Korea) operating at 30 °C and 200rpm for 96 hours. After the incubation, the culture solution was centrifuged at 13,200 rpm for 10 minutes, and only the supernatant was collected and subjected to HPLC-MS analysis to confirm the production of valerolactam.
  • the recombinant microorganism of the present invention can prepare various lactam compounds such as propiolactam, 2-pyrrolidone, valerolactam, caprolactam and heptanolactam from omega-amino acids, which is useful for industrial production of lactam.
  • lactam compounds such as propiolactam, 2-pyrrolidone, valerolactam, caprolactam and heptanolactam from omega-amino acids, which is useful for industrial production of lactam.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 아미노산으로부터 오메가 아미노산 생합성 대사경로를 가지고 있는 미생물에 beta-alanine coenzyme A transferase를 코딩하는 유전자가 도입되어 있는, 오메가-아미노산으로부터 락탐 생성능을 가지는 재조합 미생물 및 이를 이용한 다양한 락탐 및 오메가-아미노아실-CoA의 제조방법에 관한 것이다. 본 발명에 따른 재조합 미생물 및 락탐의 제조방법은 다양한 오메가-아미노산으로부터 프로피오락탐, 2-피롤리돈, 발러로락탐, 카프로락탐 및 헵타노락탐 등 다양한 락탐을 제조하는 데 유용하다.

Description

락탐의 제조방법
본 발명은 효소를 이용하여 락탐의 제조방법에 관한 것으로서, 더욱 상세하게는 오메가-아미노산을 오메가-아미노아실-CoA로 전환하는 효소 또는 상기 효소를 코딩하는 유전자가 도입되어 있는 재조합 미생물을 이용한 락탐의 제조방법에 관한 것이다.
최근 석유 고갈문제와 환경 문제로 인해 미생물을 이용한 지속가능한 다양한 부가가치 화학제품 생산에 큰 이목이 집중되고 있다. 다양한 부가가치 화합물 중에서도 나일론의 전구체인 다양한 락탐들의 생산을 위해 많은 연구가 진행 되고 있으나, 현재까지 재조합 미생물을 이용한 다양한 락탐들의 생산 성공 사례는 없다.
하지만 기존 대사공학적 방법을 이용하여 락탐들의 전구체인 오메가-아미노산들을 생산하는 재조합 미생물은 보고된 바가 많다. 대표적인 예로 락탐들인 2-피롤리돈, 발러로락탐, 카프로락탐의 전구체인 오메가-아미노산들인 gamma-aminobutyric acid (GABA), 5-aminovaleric acid (5AVA), 6-aminocaproic acid (6ACA)를 생산한 사례들이 공지되었다. 첫 번째로 GABA의 경우 크게 코리네박테리움(Corynebacterium) (Shi et al., Biotechol. Lett. 33:2469-2474 2011; Shi et al., J. Ind. Microbiol. Biotechnol. 40:1285-1296, 2013; Takahashi et al., Enzyme Microb. Tech. 51:171-176, 2012) 과 젖산 박테리아 (Lactic acid bacteria) (Li et al., Microb. Cell. Fact. 9:85, 2010) 기반의 재조합 미생물을 이용하여 생산 연구가 진행되고 있다. 그리고 5AVA의 경우 대장균 (Escherichia coli)를 이용하여 생산된 바가 있다 (Park et al., Metab. Eng. 16:42-47, 2013; Adkins et al., Biotechnol. Bioeng. 110:1726-1734, 2013). 마지막으로 6ACA의 경우 메테인세균 (methanogens)의 대사회로를 기반으로 하여 5-formylvaleric acid (US 2012/0028320 A1)를 통하여 6ACA 생산 (US 2014/0134681)을 성공하여 특허를 출원한 바 있다.
재조합 미생물을 이용한 직접적인 락탐 생산은 보고된바 없으나 가장 많은 수요를 가지고 있는 락탐 중 하나인 카프로락탐을 미생물에서 생산할 수 있는 대사 회로를 디자인한 특허가 있다 (US 2013/0303723 A1). 하지만 이 특허에서는 이러한 대사회로를 실제로 일어나게 할 수 있는 효소 및 실제 카프로락탐이 생산된 데이터는 전혀 없다.
이에, 본 발명자들은 미생물을 이용하여 다양한 락탐을 효율적으로 생산하는 방법을 개발하고자 노력한 결과, 오메가-아미노산(omega-amino acid)을 기질(substrate)로 받아들여 오메가-아미노아실-CoA로 전환하는 효소를 새롭게 찾았고. 상기 효소 자체 또는 그 유전자가 도입된 재조합 미생물을 이용하여 락탐을 제조할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 오메가-아미노산을 오메가-아미노아실-CoA로 변환하는 효소를 코딩하는 유전자가 도입되어 있는 재조합 미생물을 제공하는데 있다.
본 발명의 다른 목적은 상기 재조합 미생물을 이용하여 오메가-아미노산으로부터 다양한 락탐의 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적은 오메가-아미노산을 오메가-아미노아실-CoA로 변환하는 효소를 이용하여 오메가-아미노산으로부터 다양한 락탐을 제조하는 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 오메가-아미노산을 오메가-아미노아실-CoA로 변환하는 효소를 코딩하는 유전자가 도입되어 있는 재조합 미생물을 이용한 오메가-아미노산으로부터 다양한 오메가-아미노아실-CoA를 제조하는 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 오메가-아미노산을 오메가-아미노아실-CoA로 변환하는 효소를 이용하여 오메가-아미노산으로부터 다양한 오메가-아미노아실-CoA를 제조하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 오메가 아미노산 생합성 대사경로를 가지고 있는 미생물에 beta-alanine coenzyme A transferase를 코딩하는 유전자가 도입되어 있는, 오메가-아미노산으로부터 락탐 생성능을 가지는 재조합 미생물을 제공한다.
본 발명은 또한, (a) 상기 재조합 미생물을 배양하여 락탐을 생성하는 단계 및; (b) 상기 생성된 락탐을 회수하는 단계를 포함하는 beta-alanine coenzyme A transferase 유전자가 도입된 재조합 미생물을 이용한 오메가-아미노산으로부터 락탐의 제조방법을 제공한다.
본 발명은 또한, (a) 오메가-아미노산을 포함하는 반응용액에 beta-alanine coenzyme A transferase를 혼합한 다음 반응시켜, 오메가-아미노아실-CoA를 제조하는 단계 및; (b) 상기 제조된 오메가-아미노아실-CoA의 고리 구조 형성을 통해 락탐을 제조하는 단계를 포함하는 beta-alanine coenzyme A transferase를 이용한 오메가-아미노산으로부터 락탐의 제조방법을 제공한다.
본 발명은 또한, (a) 상기 재조합 미생물을 배양하여 오메가-아미노아실-CoA을 생성하는 단계 및; (b) 상기 생성된 오메가-아미노아실-CoA을 회수하는 단계를 포함하는 beta-alanine coenzyme A transferase 유전자가 도입된 재조합 미생물을 이용한 오메가-아미노산으로부터 오메가-아미노아실-CoA의 제조방법을 제공한다.
본 발명은 또한, 오메가-아미노산을 포함하는 반응용액에 beta-alanine coenzyme A transferase를 혼합한 다음, 반응시켜, 오메가-아미노아실-CoA를 제조하는 단계를 포함하는 beta-alanine coenzyme A transferase를 이용한 오메가-아미노산으로부터 오메가-아미노아실-CoA의 제조방법을 제공한다.
도 1은 오메가-아미노산으로부터 omega-amino acyl coenzyme A를 걸쳐 다양한 락탐을 생산하는 경로를 나타낸 것이다.
도 2은 beta-alanine coenzyme A transferase를 정제하기 위해 his-tagging 된 act 유전자가 삽입된 pET30α his-act 과발현 플라스미드를 나타낸 것이다.
도 3은 정제된 beta-alanine coenzyme A의 SDS-PAGE 사진이다.
도 4은 beta-alanine coenzyme A transferase의 효소를 이용하여 in vitro 조건에서 제조한 GABA-CoA의 분석결과이다.
도 5는 beta-alanine coenzyme A transferase의 효소를 이용하여 in vitro 조건에서 제조한 6ACA-CoA의 분석결과이다.
도 6은 beta-alanine coenzyme A transferase의 효소를 이용하여 in vitro 조건에서 제조한 2-피롤리돈의 분석결과이다.
도 7은 beta-alanine coenzyme A transferase의 효소를 이용하여 in vitro 조건에서 제조한 카프로락탐의 분석결과이다.
도 8은 beta-alanine coenzyme A transferase를 미생물 내에서 발현하기 위해 제작한 act 유전자가 삽입된 pTac15k_act 플라스미드를 나타낸 것이다.
도 9는 상기 벡터가 도입된 재조합 미생물을 배양하여 제조한 2-피롤리돈의 분석결과이다.
도 10은 beta-alanine coenzyme A transferase의 효소를 이용하여 in vitro 조건에서 제조한 7AHA-CoA의 분석결과이다.
도 11은 beta-alanine coenzyme A transferase의 효소를 이용하여 in vitro 조건에서 제조한 발러로락탐의 분석결과이다.
도 12는 본 발명의 일실시예에서 수행한 라이신으로부터 발러로락탐을 생산하는 대사경로를 나타낸 것이다.
도 13은 beta-alanine coenzyme A transferase를 미생물 내에서 발현하기 위해 제작한 act 유전자가 삽입된 pEKEx1_act 플라스미드를 나타낸 것이다.
도 14는 글루탐산 디카르복실레이즈를 미생물 내에서 발현하기 위해 제작한 gadB 유전자가 삽입된 pEKEx1_gadB 플라스미드를 나타낸 것이다.
도 15는 beta-alanine coenzyme A transferase와 글루탐산 디카르복실레이즈를 미생물 내에서 발현하기 위해 제작한 act와 gadB 유전자가 삽입된 pEKEx1_act_gadB 플라스미드를 나타낸 것이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 효소 beta-alanine coenzyme A transferase가 자연적인 오메가-아미노산 기질인 beta-alanine 이외에도 다양한 오메가-아미노산을 기질로 받아들여 해당되는 omega-amino acyl coenzyme A를 만든다는 것을 확인하고, 이러한 omega-amino acyl coenzyme A가 효소의 도움 없이 해당 락탐으로 전환되는 것을 확인하여, 이를 통해 효소를 이용해 오메가-아미노산으로부터 다양한 락탐을 생산할 수 있는 시스템의 확립이 가능함을 확인하고자 하였다(도 1).
본 발명에서는 오메가-아미노산을 오메가-아미노아실-CoA로 변환하는 효소 중의 하나인 beta-alanine coenzyme A transferase를 코딩하는 유전자를 도입한 미생물을 이용하여 락탐의 제조 가능성을 알아보는 실험을 수행하였다. 그 결과, 상기 효소를 코딩하는 유전자가 도입된 미생물을 이용할 경우, 락탐이 생산됨을 확인하였다.
즉, 본 발명의 일 실시예에서는 미생물 내에서 대표적인 오메가-아미노산인 GABA가 GABA coenzyme A를 거쳐 2-피롤리돈이 생성되는지 확인해보기 위해, beta-alanine coenzyme A transferase를 코딩하는 유전자 act가 클로닝 된 pTac15k_act 백터를 제작한 후(도 8), 이를 야생의 대장균에 도입하였다. 또한 미생물 내에 GABA를 공급해 주기 위해 GABA의 전구체인 글루탐산을 포도당과 함께 탄소원으로 제공해 주었다. 상기 재조합 미생물을 위와 같은 배양조건에서 배양한 결과, 미생물 배양액에서 락탐의 일종인 2-피롤리돈이 생성되는 것을 확인 할 수 있었다(도 9).
따라서, 본 발명은 일 관점에서, 오메가 아미노산 생합성 대사경로가 내재되어 있거나, 오메가 아미노산 생합성 경로가 도입되어 있는 미생물에 beta-alanine coenzyme A transferase를 코딩하는 유전자가 도입되어 있는, 오메가-아미노산으로부터 락탐 생성능을 가지는 재조합 미생물에 관한 것이다.
본 발명에서 용어 “내재”는 미생물에 유전자 재조합으로 추가하지 않고, 미생물이 자체적으로 보유하고 있는 대사경로를 의미한다. 예를 들어, 본 발명의 일 실시예에서 수행한 글루탐산으로부터 GABA를 생산하는 대장균의 대사경로는 포도당으로부터 해당과정을 거쳐 글루탐산을 생합성한 다음, 내재된 글루탐산 디카르복실레이즈(GadA 혹은 GadB)에 의해 GABA를 생산하는 경로이다.
본 발명에 있어서, 상기 오메가-아미노산 생합성 경로가 도입되는 것은 해당하는 유전자를 도입하는 것일 수 있다. 예를 들어, 대장균에서 라이신으로부터 5-아미노발레익산(5AVA)를 생합성 하는 대사경로를 도입하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 라이신으로부터 5-아미노발레익산 생합성 대사경로는 delta-aminovaleramidase를 코딩하는 유전자 및 lysine 2-monooxygenase를 코딩하는 유전자를 도입하는 것을 특징으로 할 수 있고, 상기 delta-aminovaleramidase를 코딩하는 유전자는 수도모나스 퓨티다(Pseudomonas putida) 유래의 davA 유전자이고, 상기 lysine 2-monooxygenase를 코딩하는 유전자는 수도모나스 퓨티다(Pseudomonas putida) 유래의 davB 유전자인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 beta-alanine coenzyme A transferase를 코딩하는 유전자는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 인 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 유전자는 서열번호 1로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 beta-alanine coenzyme A transferase는 서열번호 2로 표시되는 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.
본 발명에서 있어서, 상기 효소는 상동성(homology) 즉, 아미노산 서열 유사성(sequence similarity)이 50 % 이상인 것을 특징으로 할 수 있고, 바람직하게는 60 % 이상인 것을 특징으로 할 수 있으며, 더욱 바람직하게는 70 % 이상인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 락탐은 이종원자 환영 고리 구조이며 고리 내 아마이드 결합 (amide bond)을 가지고 있는 것을 특징으로 하는 화학물질이면 모두 해당하나, 바람직하게는 프로피오락탐(propiolactam), 2-피롤리돈(2-pyrrolidone), 발러로락탐(valerolactam), 카프로락탐(caprolactam), 헵타노락탐(heptanolactam), 옥타노락탐(octanolactam), 노네노락탐(nonanolactam), 데카노락탐(decanolactam), 언데카노락탐(undecanolactam) 및 도데카노락탐(dodecanolactam)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 오메가-아미노산은 아민과 카르복시산 작용기를 동시에 가지고 있는 것을 특징으로 하는 화학물질이면 모두 해당하나, 바람직하게는 베타 알라닌(beta-alanine), 감마-아미노뷰티릭 산(gamma-aminobutyric acid, GABA), 5-아미노발레익 산(5-aminovaleric acid, 5AVA), 6-아미노카프로익 산(6-aminocaproic acid, 6ACA), 7-아미노헵타노익 산(7-aminoheptanoic acid, 7AHA), 8-아미노옥타노익 산(8-aminooctanoic acid), 9-아미노노네노익 산(9-aminononanoic acid), 10-아미노데카노익 산(10-aminodecanoic acid), 11-아미노언데카토익 산(11-aminoundecanoic acid) 및 12-아미노도데카토익 산(12-aminododecanoic acid)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에서, 상기 베타 알라닌은 아스파트산으로부터 L-aspartate-α-decarboxylase에 의해 생합성 되는 경로를 가지는 것을 특징으로 할 수 있고, 상기 GABA는 글루탐산으로부터 글루탐산 카르복실레이즈(GadA 혹은 GadB)에 의해 생합성 되는 경로를 가지는 것을 특징으로 할 수 있으며, 상기 5AVA는 라이신으로부터 델타-아미노발러라미데이즈(DavA) 및 라이신-2-모노옥시지네이즈(DavB)에 의해 생합성 되는 경로를 가지는 것을 특징으로 할 수 있고, 상기 6ACA 및 7AHA는 알파-케토글루탐산으로부터 homocitrate synthase, 3-isopropylmalate dehydratase, isopropylmalate/isohomocitrate dehydrogenase, branched-chain α-ketoacid decarboxylase 및 pyruvate transaminase에 의해 생합성되는 경로를 가지는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 오메가-아미노산은 글루코오스, 수크로오스, 갈락토오스, 말토오스, 자일로오스, 글리세롤, 프럭토오스 및 슈가케인(sugar cane)을 포함하는 단당류, 이당류, 다당류로 구성되는 군에서 선택되는 탄소원으로부터 생합성 되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 재조합 미생물은 전구체인 오메가-아미노산을 자체적으로 생산 혹은 탄소원으로 사용할 수 있는 미생물이면 모두 해당하나, 바람직하게는 박테리아, 효모 및 곰팡이로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 박테리아는 코리네박테리움 (Corynebacterium) 속 및 대장균으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 다른 관점에서, (a) 상기 재조합 미생물을 배양하여 락탐을 생성하는 단계 및; (b) 상기 생성된 락탐을 회수하는 단계를 포함하는 오메가-아미노산으로부터 락탐의 제조방법에 관한 것이다.
본 발명에 있어서, 재조합 미생물의 배양과정은 통상적으로 알려진 배양방법을 사용하여 수행될 수 있고, 본 발명의 실시예에서 사용된 특정 배지 및 특정 배양방법 이외에도 유청(whey), CSL(corn steep liquor) 등의 당화액과 다른 배지를 사용할 수 있고, 유가배양(fed-batch culture), 연속배양 등 다양한 방법을 사용할 수 있다(Lee et al., Bioprocess Biosyst . Eng., 26: 63, 2003; Lee et al., Appl . Microbiol. Biotechnol., 58: 663, 2002; Lee et al., Biotechnol . Lett ., 25: 111, 2003; Lee et al., Appl . Microbiol . Biotechnol ., 54: 23, 2000; Lee et al., Biotechnol. Bioeng., 72: 41, 2001).
한편, in vitro 조건에서 상기 효소를 이용할 경우, 오메가-아미노산으로부터 다양한 락탐을 제조할 수 있을 것으로 예측하였다.
본 발명의 다른 실시예에서는, beta-alanine coenzyme A transferase 가 자연적 기질인 beta-alanine 이 외에 오메가-아미노산인 GABA, 6ACA, 7AHA에도 작용한다는 것을 확인하기 위하여 enzyme assay를 진행하였다. 먼저 정제된 효소를 얻기 위해, his tag이 달린 beta-alanine coenzyme A transferase를 암호화 하는 his-act 유전자를 클로닝하여 pET30a_his_act 백터를 제작하고(도 2), his tag이 있는 beta-alanine coenzyme A transferase를 정제하였다(도 3). 정제된 단백질과 acetyl coenzyme A와 GABA, 6ACA 혹은 7AHA를 넣어 enzyme assay를 진행하였다. 추후 각 오메가-아미노산의 omega-amino acyl coenzyme A 형태인 GABA coenzyme A, 6ACA coenzyme A와 7AHA coenzyme A가 생성된 것을 HPLC-MS/MS 혹은 HPLC-MS를 이용하여 확인하였다(도 4, 도 5, 도 10).
본 발명의 또 다른 실시예에서는, 대표적인 오메가-아미노아실-CoA 중 하나인 GABA coenzyme A, 5AVA coenzyme A 와 6ACA coenzyme A가 효소의 도움 없이 해당되는 락탐으로 전환되는 것을 확인하기 위해 실험을 진행하였다. Enzyme assay에 의해서 GABA coenzyme A, 5AVA coenzyme A와 6ACA coenzyme A를 만들어 아무 효소의 첨가 없이 둔 결과 각각 2-피롤리돈, 발러로락탐과 카프로락탐이 생성되는 것을 확인하였다(도 6, 도 7, 도 11)
따라서, 본 발명은 또 다른 관점에서 (a) 오메가-아미노산을 포함하는 반응용액에 beta-alanine coenzyme A transferase를 혼합한 다음, 반응시켜 오메가-아미노아실-CoA를 제조하는 단계 및; (b) 상기 제조된 오메가-아미노아실-CoA의 고리 구조 형성을 통해 락탐을 제조하는 단계를 포함하는 오메가-아미노산으로부터 락탐의 제조방법에 관한 것이다.
본 발명에 있어서, 상기 beta-alanine coenzyme A transferase를 코딩하는 유전자는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명 있어서, 상기 락탐은 이종원자 환영 고리 구조이며 고리 내 아마이드 결합 (amide bond)을 가지고 있는 것을 특징으로 하는 화학물질이면 모두 해당하나, 바람직하게는 프로피오락탐, 2-피롤리돈, 발러로락탐, 카프로락탐, 헵타노락탐, 옥타노락탐, 노네노락탐, 데카노락탐, 언데카노락탐 및 도데카노락탐으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, (a) 상기 재조합 미생물을 배양하여 오메가-아미노아실-CoA을 생성하는 단계 및; (b) 상기 생성된 오메가-아미노아실-CoA을 회수하는 단계를 포함하는 beta-alanine coenzyme A transferase 유전자가 도입된 재조합 미생물을 이용한 오메가-아미노산으로부터 오메가-아미노아실-CoA의 제조방법에 관한 것이다.
본 발명에서 상기 생성된 오메가-아미노아실-CoA를 회수하는 단계는 세포를 파쇄하여 오메가-아미노아실-CoA를 포함하는 혼합물을 수득하는 단계; 및 정제과정을 통해 오메가-아미노아실-CoA를 회수하는 단계로 구성되는 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.
본 발명의 세포 파쇄는 당업자에게 알려진 다양한 방법으로 수행될 수 있고, 바람직하게는 음파처리방법으로 수행하는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며, 상기 정제과정은 크로마토그램을 이용하는 방법이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에서 상기 생성된 오메가-아미노아실-CoA를 회수하는 단계는 세포를 파쇄하기 전, 세포를 고정시키는 단계 또는 화합물을 처리하여 오메가-아미노아실-CoA의 고리형성을 방지하는 단계를 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, 오메가-아미노산을 포함하는 반응용액에 beta-alanine coenzyme A transferase를 혼합한 다음, 반응시켜, 오메가-아미노아실-CoA를 제조하는 단계를 포함하는 오메가-아미노산으로부터 오메가-아미노아실-CoA의 제조방법에 관한 것이다.
본 발명에 있어서, 상기 beta-alanine coenzyme A transferase를 코딩하는 유전자는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명 있어서, 상기 락탐은 이종원자 환영 고리 구조이며 고리 내 아마이드 결합 (amide bond)을 가지고 있는 것을 특징으로 하는 화학물질이면 모두 해당하나, 바람직하게는 프로피오락탐, 2-피롤리돈, 발러로락탐, 카프로락탐, 헵타노락탐, 옥타노락탐, 노네노락탐, 데카노락탐, 언데카노락탐 및 도데카노락탐으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에서, 용어 "벡터 (vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환 되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드 (plasmid)" 및 "벡터 (vector)"는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다. 포유동물 세포 배양물 발현을 위한 전형적인 발현 벡터는 예를 들면 pRK5 (EP 307,247호), pSV16B (WO 91/08291호) 및 pVL1392 (Pharmingen)을 기초로 한다.
"발현 조절 서열 (expression control sequence)"이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 고 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스 (cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다.
본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열 중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다. T7 RNA 폴리메라아제 프로모터 Φ10은 이. 콜라이에서 단백질 NSP를 발현시키는데 유용하게 사용될 수 있다.
핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결 (operably linked)"된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열 (pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다.
본원 명세서에 사용된 용어 "발현 벡터"는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.
당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능 하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.
상술한 발현 벡터에 의해 형질전환 또는 형질 감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 "형질감염"은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다.
발명의 숙주 세포는 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 이. 콜라이, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO 및 생쥐 세포같은 동물 세포, COS 1, COS 7, BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 및 조직배양된 인간 세포는 사용될 수 있는 숙주 세포의 예이다. 본 발명의 NSP 단백질을 코딩하는 cDNA를 클로닝할 때에는 동물세포를 숙주로 하는 것이 바람직하다. COS 세포를 이용하는 경우에는 COS 세포에서 SV40 라지 T안티겐(large T antigen)이 발현하고 있으므로 SV40의 복제개시점을 갖는 플라스미드는 세포중에서 다수 카피(copy)의 에피솜(episome)으로 존재하도록 되고 통상보다 고 발현이 기대될 수 있다. 도입된 DNA 서열은 숙주 세포와 동일한 종으로부터 얻을 수 있거나, 숙주 세포와 다른 종의 것일 수 있거나, 또는 그것은 어떠한 이종 또는 상동성 DNA를 포함하는 하이브리드 DNA 서열일 수 있다.
물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위 내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 NSP 단백질의 cDNA를 클로닝 하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 페닝법(panning법), 필름에멀션법(film emulsion 법)등이 적용될 수 있다.
본 발명의 정의상 "실질적으로 순수한"이란 본 발명에 따른 폴리펩타이드 및 폴리펩타이드를 코딩하는 DNA 서열이 박테리아로부터 유래된 다른 단백질을 실질적으로 포함하지 않는 것을 의미한다.
재조합 단백질을 발현하기 위한 숙주세포는 짧은 시간 내 고농도 균체 배양이 가능하고 유전자 조작이 용이하고 유전학적, 생리적 특징이 잘 밝혀져 있는 대장균 (Escherichia coli), 고초균 (Bacillus subtillis) 등과 같은 원핵세포가 널리 이용되어 왔다. 그러나, 단백질의 번역 후 수식 (post-translational modification), 분비과정 및 활성형의 3차원 구조, 단백질의 활성상태의 문제점들을 해결하기 위해 최근 단세포 진핵세포인 효모 계열 (Pichia pastoris , Saccharomyces cerevisiae , Hansenula polymorpha 등), 사상성 진균류 (filamentous fungi), 곤충세포 (insect cells), 식물세포, 포유동물세포 (mammalian cells) 등 고등생물에 이르기까지 재조합 단백질 생산의 숙주세포로 활용하고 있으므로, 실시예에서 예시된 대장균 뿐만 아니라 다른 숙주세포를 이용하는 것은 당업계의 통상의 지식을 가진 자에게 있어서 용이하게 적용 가능하다.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. Beta-alanine coenzyme A transferase의 in vitro 활성 확인
1-1: pET30a_his_act 백터의 제작
클로스트리듐 프로피오니쿰(Clostridium propionicum) 균주 유래 beta-alanine coenzyme A transferase의 아미노산 서열 및 이를 코딩하는 act 유전자의 염기 서열은 각각 서열번호 2 및 1와 같다.
클로스트리듐 프로피오니쿰(Clostridium propionicum) 균주의 염색체 DNA를 주형으로 하고, 서열번호 3과 4의 프라이머로 PCR을 수행하여, N 말단(N terminus)에 his-tag이 달린 beta-alanine coenzyme A를 코딩하는 his_act 유전자 절편을 제작하였다.
[서열번호 3] ckphisact(NdeI, F):
5'-AGACAGCATATGCACCATCATCATCATCATAAAAGACCCTTGGAAGGTATTCG-3'
[서열번호 4] ckpact(SalI, R):
5'-AGACAGGTCGACTTAGATGACATTTTTCTCTTCCAGTGA-3'
다음으로, 상기 his_act 절편과 pET30a 플라스미드에 제한효소(NdeI 및 SalI)를 처리한 후, T4 DNA 라이게이즈를 처리하여, 제한효소로 절단된 his_act절편 및 pET30a 플라스미드를 접합시킴으로써, 재조합 플라스미드인 pET30a_his_act를 제작하였다 (도 2).
1-2: Beta-alanine coenzyme A transferase의 정제
Beta-alanine coenzyme A transferase의 정제를 위해서 실시예 1-1에서 수득한 플라스미드 pETa_his_act를 대장균 BL21(DE3)(F- ompT hsdSB(rB- mB-) gal dcm (DE3) a prophage carrying the T7 RNA polymerase gene) (New England Biolabs, 미국)에 도입하였다.
상기 형질전환 균주들을 25mg/L 카나마이신 (kanamycin)이 포함된 10mL LB 액체 배지 (트립톤 10g/L, yeast extract 5g/L, NaCl 10g/L)에 접종하여 37℃에서 200rpm으로 지속적으로 흔들어주며 초기 배양한 후, 상기와 같은 배지 200mL에 1% 접종하여 37℃에서 200rpm으로 지속적으로 흔들어주며 배양한 다음, 분광광도계로 600nm 파장에서 측정한 광학밀도 (O.D.)가 0.4 일 때, 1mM IPTG를 첨가하여 his_act 발현을 유도하였다.
발현 유도 후 4시간 후에 배양액을 원심분리기(Hanil Science Industrial, 한국)에서 3000rpm, 4℃에서 10분간 처리하여 미생물을 분리하였고, 상등액은 제거하고, 분리된 미생물을 equilibrium buffer (50mM Na3PO4, 300mM NaCl, pH 7.0) 40mL에 다시 풀은 뒤, cell sonicator(Sonics & Materials, Inc., 미국)를 이용하여 30%의 강도로 5초간 펄스를 주고 5초간 쉬는 방식으로 2시간 동안 미생물을 용해시킨 다음, 13200rpm, 4℃에서 10분간 원심분리를 하여 세포 잔해를 제거한 후 세포 용해액을 얻었다.
이러한 세포 용해액을 0.45 μm 필터로 정제하고, Talon resin(Clontech Laboratories, Inc., 미국)을 이용하여 his-tag 이 달린 beta-alanine coenzyme A transferase를 분리하였다. Talon resin에 붙은 beta-alanine coenzyme A transferase의 분리는 각각 7.5, 15, 30, 45, 60, 90, 120, 150mM의 imidazole이 섞인 equilibrium buffer를 이용하여 하였다. 그 후, 전체 세포 용해액, talon resins를 통과한 단백질 용액, 각 농도의 imidazole로 얻은 단백질 용액을 모두 5x Laemmli 샘플 완충용액(LPS Solution, 한국)과 섞은 샘플들을 12% SDS-PAGE를 이용하여 분리하였고, Coomassie brilliant blue R250 (Bio-Rad, 미국) 용액으로 염색하였다(도 3). 그 결과, 가장 순도가 높은 120mM로 정제한 beta-alanine coenzyme A transferase를 이용하였다.
1-3: Beta-alanine coenzyme A transferase의 enzyme assay
Enzyme assay는 50mM potassium phosphate buffer (pH 7.5)에서 진행하였다. Enzyme assay에 필요한 기질 및 효소는 아래와 같이 양으로 넣어주었다. 10mM의 GABA, 6ACA 혹은 7AHA, 1mM의 acetyl-CoA 그리고 2.5μg의 정제된 beta-alanine coenzyme A transferase를 첨가하여 2시간동안 30℃에서 반응을 진행하고, enzyme assay 혼합물에서 coenzyme A 유도체들만 분리하기 위하여 OASIS HLB SPE 카트리지(Waters, 미국)를 이용해 아래와 같은 프로토콜을 사용하였다.
처음 카트리지에 1mL의 메탄올을 흘린 뒤, 2mL의 0.15 % TCA 용액을 흘려주었다. 그 뒤 enzyme assay 한 mixture를 흘려준 다음 다시 1mL의 0.15% TCA 용액을 흘려주었다. 마지막으로 메탄올과 NH4OH가 99:1 부피비로 섞인 용액을 1mL 흘려서 정제된 coenzyme A 유도체들을 수득하고, 진공 원심분리기를 이용하여 용매를 날렸고 -24℃에 샘플을 보관하였다.
이 샘플을 HPLC-MS(Mass spectrometers: LC/MSD VL, Agilent, 미국, HPLC: Agilent, 미국) 또는 HPLC-MS/MS로 분석(Mass spectrometers: API3200QTRAP, SCIEX, 미국, HPLC: Shimadzu, 일본)하기 직전에 증류수에 녹여 coenzyme A 유도체 분석을 하였다. GABA와 6ACA를 기질로 이용하여 진행한 enzyme assay mixture의 경우 HPLC-MS/MS를 이용하여 positive mode로 분석하였고, 7AHA를 기질로 이용한 essay mixture의 경우 HPLC-MS를 이용하여 negative mode로 분석하였다.
그 결과, GABA를 기질로 이용하여 진행한 enzyme assay mixture의 1차 MS 분석 결과, GABA coenzyme A의 예상되는 m/z 값인 853과 비슷한 값인 852.2에서 피크가 나왔고, 이 피크를 2차 MS로 단편화 (fragmentation) 하여 분석한 결과, 예상되는 피크인 m/z =244, 346, 428과 비슷한 값인 243.1, 345.5, 428.1에서 피크를 확인하였다(도 4). 또한, 6ACA를 기질로 이용하여 진행한 enzyme assay mixture의 1차 MS 분석 결과, 6ACA coenzyme A의 예상되는 m/z 값인 881과 비슷한 값인 881.3에서 피크가 나왔고, 이 피크를 2차 MS로 단편화하여 분석한 결과 예상되는 피크인 m/z = 272, 374, 428과 비슷한 272.2, 374.3 428.2에서 피크를 확인하였다(도 5). 또한, 7AHA를 기질로 이용하여 진행한 enzyme assay mixture의 경우, t = 9.844 분에 새로운 CoA 유도체 피크가 보이는 것을 확인하였고 7AHA coenzyme A의 예상되는 m/z 값인 893.2 과 같은 값을 지고 있었다(도 10).
이 결과로부터, 본 발명에 따라 beta-alanine coenzyme A transferase가 성공적으로 GABA, 6ACA와 7AHA를 각각 GABA coenzyme A, 6ACA coenzyme A 그리고 7AHA coenzyme A로 전환시키는 것을 확인하였다.
실시예 2. in vitro에서 2-피롤리돈, 발러로락탐 및 카프로락탐 생산 확인
실시예 1-3 기술된 방법으로 enzyme assay를 진행하여 GABA coenzyme A, 5AVA coenzyme A 및 6ACA coenzyme A를 제조하였다. 제조한 GABA coenzyme A, 5AVA coenzyme A 및 6ACA coenzyme A를 37℃에서 48시간동안 아무런 처리 없이 놔둔 후, 2-피롤리돈, 발러로락탐 및 카프로락탐이 생성되는지 HPLC-MS로 분석 하였다.
그 결과, 먼저 표준 2-피롤리돈 시약(Sigma-Aldrich, 미국)을 HPLC-MS로 분석한 결과, 2-피롤리돈의 피크를 6.352분에 검출하였고 이 피크를 MS 분석한 결과, m/z = 86.1, 108.1에서 피크가 나타나는 것을 확인하였다. 대조군으로 beta-alanine coenzyme A transferase를 넣지 않은, 즉 GABA coenzyme A가 만들어지지 않은 assay mixture를 분석한 결과, 6분대 아무런 피크나 나타나지 않는 것을 확인하였다.
beta-alanine coenzyme A transferase를 넣어 GABA coenzyme A가 만들어진 assay mixture 샘플에서는 표준 2-피롤리돈 시약과 비슷한 6.348 분에서 피크를 검출하였고 이 피크를 MS 분석한 결과, 역시 표준 2-피롤리돈 시약과 비슷한 m/z = 86.0, 108.0에서 피크를 검출하였다(도 6). 또한 표준 발러로락탐 시약 (Sigma-Aldrich, 미국)을 HPLC-MS로 분석한 결과, 발러로락탐의 피크를 8.098분에 검출하였고 이 피크를 MS 분석한 결과, m/z = 100.1 에서 피크가 나타나는 것을 확인하였다.
beta-alanine coenzyme A transferase를 넣어 5AVA coenzyme A가 만들어진 assay mixture 샘플에서는 표준 발러로락탐 시약과 비슷한 8.092 분에서 피크를 검출하였고 이 피크를 MS 분석한 결과, 역시 표준 발러로락탐 시약과 비슷한 m/z = 100.1 에서 피크를 검출하였다(도 11). 표준 카프로락탐 시약(Sigma-Aldrich, 미국)을 HPLC-MS로 분석한 결과, 카프로락탐의 피크를 9.395분에 검출하였고 이 피크를 MS 분석한 결과, m/z = 114.1, 136.0에서 피크가 나타나는 것을 확인 하였다.
위와 같은 논리로 beta-alanine coenzyme A transferase가 들어가지 않아 6ACA coenzyme A가 만들어지지 않은 assay mixture의 경우, 9분대에서 피크가 검출되지 않았고, beta-alanine coenzyme A transferase를 넣어 6ACA coenzyme A가 만들어진 assay mixture 샘플에서는 표준 카프로락탐 시약과 비슷한 9.469 분에서 피크가 검출되었고 이 피크를 MS 분석한 결과, 표준 카프로락탐 시약과 비슷한 m/z = 114.1, 136.0에서 피크가 검출되는 것을 확인 하였다(도 7).
이 결과로부터, 본 발명에 따라 beta-alanine coenzyme A transferase를 이용해 만든 GABA coenzyme A, 5AVA coenzyme A 및 6ACA coenzyme A가 효소의 도움 없이 각각 2-피롤리돈, 발러로락탐 및 카프로락탐으로 전환되는 것을 확인하였다.
실시예 3.재조합 미생물을 이용한 오메가-아미노산으로부터 락탐 생산
3-1: pTac15k_act 백터의 제작
클로스트리듐 프로피오니쿰(Clostridium propionicum) 균주의 염색체 DNA를 주형으로 하고, 서열번호 5와 6의 프라이머로 PCR을 수행하여, beta-alanine coenzyme A를 코딩하는 act 유전자 절편을 제작하였다.
[서열번호 5] ckpact(EcoRI, F):
5'-AGACAGGAATTCATGAAAAGACCCTTGGAAGGTATT-3'
[서열번호 6] ckpact(SacI, R):
5'-AGACAGGTCGACTTAGATGACATTTTTCTCTTCCAGTG-3'
다음으로, 상기 act 절편과 tac 프로모터의 강한 유전자 발현을 진행하는 pTac15k(Hiszczyn´ ska-Sawicka and Kur, 1997) 플라스미드에 제한효소(EcoRI 및 SacI)를 처리한 후, T4 DNA 라이게이즈를 처리하여, 제한효소로 절단된 act절편 및 pTac15k 플라스미드를 접합시킴으로써, 재조합 플라스미드인 pTac15k_act를 제작하였다 (도 8).
3-2: pEKEx1_act 백터의 제작
실시예 3-1에서 제작한 act 절편과 tac 프로모터의 강한 유전자 발현을 진행하는 pEKEx1(Eikmanns et al., Gene. 102, 93-98,1991) 플라스미드에 제한효소(EcoRI 및 BamHI)를 처리한 후, T4 DNA 라이게이즈를 처리하여, 제한효소로 절단된 act절편 및 pEKEx1 플라스미드를 접합시킴으로써, 재조합 플라스미드인 pEKEx_act를 제작하였다 (도 13).
3-3: pEKEx1_gadB 백터의 제작
대장균(Escherichia coli) 균주의 염색체 DNA를 주형으로 하고, 서열번호 8와 9의 프라이머로 PCR을 수행하여, 글루탐산 디카르복실레이즈를 코딩하는 gadB 유전자 절편을 제작하였다.
[서열번호 7] ecjgadB(BamHI, RBS, F):
5'-AGACAGGGATCCTTTCACACAGGAAACAATGGATAAGAAGCAAGTAACGGATT-3'
[서열번호 8] ecjgadB(SalI, R):
5'-AGACAGGTCGACTCAGGTATGTTTAAAGCTGTTCTGTT-3'
다음으로, 상기 gadB 절편과 tac 프로모터의 강한 유전자 발현을 진행하는 pEKEx1(Eikmanns et al., Gene. 102, 93-98,1991) 플라스미드에 제한효소(BamHI 및 SalI)를 처리한 후, T4 DNA 라이게이즈를 처리하여, 제한효소로 절단된 gadB절편 및 pEKEx1 플라스미드를 접합시킴으로써, 재조합 플라스미드인 pEKEx_gadB를 제작하였다 (도 14).
3-4: pEKEx1_act_gadB 백터의 제작
실시예 3-2에서 제작한 pEKEx1-act 플라스미드 및 실시예 3-2에서 제작한 gadB 절편에 제한효소(BamHI 및 SalI)를 처리한 후, T4 DNA 라이게이즈를 처리하여, 제한효소로 절단된 gadB절편 및 pEKEx1_act 플라스미드를 접합시킴으로써, 재조합 플라스미드인 pEKEx_act_gadB를 제작하였다 (도 15).
3-5: 재조합 미생물 제작
미생물 내에서 beta-alanine coenzyme A 유전자를 코딩하는 act 유전자가 발현이 되도록 실시예 3-1에서 제작한 pTac15k_act 플라스미드를 대장균 WL3110 (Lee et al., Mol . Syst. Biol. 3:149 2007) 에 도입하여 재조합 미생물을 제조하였으며(WL3110/pTac15k-act), 공백터인 pTac15k가 도입된 대장균 (WL3110/pTac15k)을 대조군 균주로 사용하였다.
또한, 다양한 탄소원에서의 생산 가능성을 검출하기 위해, 미생물 내에서 beta-alanine coenzyme A 유전자를 코딩하는 act 유전자가 발현이 되도록 실시예 3-1에서 제작된 pTac15k_act 플라스미드를 대장균 XQ56/pKE112-davAB (Park et al., Metab. Eng. 16:42-47 2013) 에 도입하여 재조합 미생물을 제조하였으며(XQ56/pKE112-davAB/pTac15k-act), 공백터인 pTac15k가 도입된 대장균 (XQ56/pKE112-davAB/pTac15k)를 대조군 균주로 사용하였다.
또한, 다양한 탄소원에서 생산 가능성을 검출하기 위해, 미생물 내에서 GABA를 생합성하기 위한 글루탐산 디카르복실레이즈 유전자를 코딩하는 gadB 유전자와 beta-alanine coenzyme A 유전자를 코딩하는 act 유전자가 발현이 되도록 실시예 3-4에서 제작된 pEKEx1_act_gadB 플라스미드를 야생형 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum ATCC 13032) 에 도입하여 재조합 미생물을 제조하였으며 (ATCC 13032/pEKEx1_act_gadB), gadB 유전자만을 발현하는 실시예 3-3에서 제작된 pEKEx1_gadB 플라스미드가 도입된 코리네박테리움 글루타미쿰 (ATCC 13032/pEKEx1_gadB)을 대조군 균주로 사용하였다.
3-6: 재조합 미생물을 이용한 GABA로부터의 2-피롤리돈 생산 확인
실시예 3-5에서 제조한 재조합 미생물(WL3110/pTac15k-act)을 10mL LB 배지에 접종하여 37℃에서 8시간 동안 전배양을 수행하고, 전배양한 배양액 1.5mL을 350mL 플라스크에 50mL의 변형 MR-1배지에 접종하여 배양하였다.
변형 MR-1배지 (pH 7.0)의 조성은 증류수 1리터당 10g 포도당, 5g GABA, 9g (NH4)2SO4, 6.67g KH2PO4, 4.0g (NH4)2HPO4, 0.8g citric acid, 0.8g MgSO4·7H2O, 0.01g CaCl2·2H20, 5mL trace metal solution (증류수 1리터 당 10 g FeSO4·7H2O, 2.2g ZnSO4·4H2O, 0.58g MnSO4·4H2O, 1g CuSO4·5H2O, 0.1g (NH4)6Mo7O24·4H2O, 0.02g Na2B4O7·10H2O)의 성분으로 구성된 배지이다. 상기 조성에서 GABA를 탄소원으로 공급하였다. 배양은 48시간동안 37℃와 200rpm으로 작동하는 shaking incubator(jSR, 한국)에서 진행하였다. 배양이 끝난, 배양액은 13,200 rpm에서 10분간 원심분리하여, 상등액만을 채취하여 HPLC-MS분석을 수행함으로써, 2-피롤리돈의 생산을 확인하였다.
그 결과, 표 1에 개시된 바와 같이, 공백터가 형질전환된 재조합 미생물에서는 전혀 2-피롤리돈이 생산이 되지 않은 반면, 본 발명에 따른 재조합 미생물은 193.78 mg/L의 2-피롤리돈이 생산되는 것을 확인하였다.
이 결과로부터, 본 발명에 따른 재조합 미생물이 GABA를 탄소원으로 이용하여 2-피롤리돈을 성공적으로 생성함을 확인하였다.
Figure PCTKR2016003758-appb-T000001
3-7: 재조합 미생물을 이용한 5AVA로부터 발러로락탐 생산 확인
실시예 3-5에서 제조한 재조합 미생물(WL3110/pTac15k-act)을 10mL LB 배지에 접종하여 37℃에서 8시간 동안 전배양을 수행하고, 전배양한 배양액 1.5mL을 350mL 플라스크에 50mL의 변형 MR-2배지에 접종하여 배양하였다.
변형 MR-2배지 (pH 7.0)의 조성은 증류수 1리터당 10g 포도당, 5g 5AVA, 9g (NH4)2SO4, 6.67g KH2PO4, 4.0g (NH4)2HPO4, 0.8g citric acid, 0.8g MgSO4·7H2O, 0.01g CaCl2·2H20, 5mL trace metal solution (증류수 1리터 당 10 g FeSO4·7H2O, 2.2g ZnSO4·4H2O, 0.58g MnSO4·4H2O, 1g CuSO4·5H2O, 0.1g (NH4)6Mo7O24·4H2O, 0.02g Na2B4O7·10H2O)의 성분으로 구성된 배지이다. 상기 조성에서 5AVA를 탄소원으로 공급하였다. 배양은 48시간동안 37℃와 200rpm으로 작동하는 shaking incubator(jSR, 한국)에서 진행하였다. 배양이 끝난, 배양액은 13,200 rpm에서 10분간 원심분리하여, 상등액만을 채취하여 HPLC-MS분석을 수행함으로써, 발로러락탐의 생산을 확인하였다.
그 결과, 표 2에 개시된 바와 같이, 본 발명에 따른 재조합 미생물은 592.68 mg/L의 발로러락탐이 생산되는 것을 확인하였다.
이 결과로부터, 본 발명에 따른 재조합 미생물이 5AVA를 탄소원으로 이용하여 발러로락탐을 성공적으로 생성함을 확인하였다.
Figure PCTKR2016003758-appb-T000002
실시예 4.재조합 미생물을 이용한 다른 탄소원으로부터 락탐 생산
4-1: 재조합 미생물을 이용한 글루탐산으로부터의 2-피롤리돈 생성 확인
실시예 3-5에서 제조한 재조합 미생물(WL3110/pTac15k-act)을 10mL LB 배지에 접종하여 37℃에서 8시간 동안 전배양을 수행하고, 전배양한 배양액 1.5mL을 350mL 플라스크에 50mL의 변형 M9배지에 접종하여 배양하였다.
변형 M9배지의 조성은 증류수 1리터당 10g 포도당, 5g 글루탐산, 6.78g Na2HPO4, 3.0g KH2PO4, 0.5g NaCl, 1.0g NH4Cl, 1mM MgSO4, 0.1mM CaCl2, 10mg thiamine의 성분으로 구성된 배지이다. 상기 조성에서 글루탐산은 미생물 내에서 GABA를 공급해주기 위해 탄소원으로 공급하였다. 배양은 48시간동안 37℃와 200rpm으로 작동하는 shaking incubator(jSR, 한국)에서 진행하였다. 배양이 끝난, 배양액은 13,200 rpm에서 10분간 원심분리하여, 상등액만을 채취하여 HPLC-MS분석을 수행함으로써, 2-피롤리돈의 생산을 확인하였다.
그 결과, 도 9에 개시된 바와 같이, 공백터가 형질전환된 재조합 미생물에서는 전혀 2-피롤리돈이 생산이 되지 않은 반면, 본 발명에 따른 재조합 미생물은 2-피롤리돈 표준 물질과 비슷한 6.445 분에 피크를 보였으며 이 피크를 분석한 결과 표준 2-피롤리돈과 같은 m/z = 86.1, 108.0에서 피크를 갖는 것을 확인하였다,
이 결과로부터, 본 발명에 따른 재조합 미생물이 글루탐산을 탄소원으로 이용하여 2-피롤리돈을 성공적으로 생성함을 확인할 수 있었다.
4-2: 재조합 미생물을 이용한 포도당으로부터 발러로락탐 생성 확인
실시예 3-5에서 제조한 재조합 미생물(XQ56/pKE112-davAB/pTac15k-act)을 10mL LB 배지에 접종하여 37℃에서 8시간 동안 전배양을 수행하고, 전배양한 배양액 1.5mL을 350mL 플라스크에 50mL의 변형 MR-3배지에 접종하여 배양하였다.
변형 MR-3배지 (pH 7.0)의 조성은 증류수 1리터당 10g 포도당, 9g (NH4)2SO4, 6.67g KH2PO4, 4.0g (NH4)2HPO4, 0.8g citric acid, 0.8g MgSO4·7H2O, 0.01g CaCl2·2H20, 5mL trace metal solution (증류수 1리터 당 10 g FeSO4·7H2O, 2.2g ZnSO4·4H2O, 0.58g MnSO4·4H2O, 1g CuSO4·5H2O, 0.1g (NH4)6Mo7O24·4H2O, 0.02g Na2B4O7·10H2O)의 성분으로 구성된 배지이다. 상기 조성에서 포도당를 탄소원으로 공급하였다. 배양은 36시간동안 37℃와 200rpm으로 작동하는 shaking incubator(jSR, 한국)에서 진행하였다. 배양이 끝난, 배양액은 13,200 rpm에서 10분간 원심분리하여, 상등액만을 채취하여 HPLC-MS분석을 수행함으로써, 발로러락탐의 생산을 확인하였다.
그 결과, 표 3에 개시된 바와 같이, 공백터가 형질전환된 재조합 미생물에서는 전혀 발러로락탐이 생산이 되지 않은 반면, 본 발명에 따른 재조합 미생물은 28.36 mg/L의 발로러락탐이 생산되는 것을 확인하였다.
이 결과로부터, 본 발명에 따른 재조합 미생물이 포도당을 탄소원으로 이용하여 발러로락탐을 성공적으로 생성함을 확인하였다.
Figure PCTKR2016003758-appb-T000003
4-3: 재조합 미생물을 이용한 포도당으로부터 2-피롤리돈 생성 확인
실시예 3-5에서 제조한 재조합 미생물(ATCC 13032/pEKEx1_act_gadB)을 5mL RG 배지(brain heart infusion 40g/L, 포도당 10g/L, beef extract 10g/L, sorbitol 30g/L)에 접종하여 30℃에서 12시간 동안 전배양을 수행하고, 전배양한 배양액 1.5mL을 350mL 플라스크에 50mL의 GP1배지에 접종하여 배양하였다.
GP1배지 (pH 7.0)의 조성은 증류수 1리터당 50g 포도당, 50g (NH4)2SO4, 1.0g K2HPO4, 3.0g urea, 0.4g MgSO4·7H2O, 50g peptone, 0.01g FeSO4, 0.01g MnSO4·5H2O, 200μg thiamine, 0.1mM pyridoxal 5-phosphate hydrate, 50μg biotin의 성분으로 구성된 배지이다. 상기 조성에서 포도당를 탄소원으로 공급하였다. 배양은 96시간동안 30℃와 200rpm으로 작동하는 shaking incubator(jSR, 한국)에서 진행하였다. 배양이 끝난, 배양액은 13,200 rpm에서 10분간 원심분리하여, 상등액만을 채취하여 HPLC-MS분석을 수행함으로써, 발로러락탐의 생산을 확인하였다.
Figure PCTKR2016003758-appb-T000004
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 재조합 미생물은 오메가-아미노산으로부터 프로피오락탐, 2-피롤리돈, 발러로락탐, 카프로락탐 및 헵타노락탐 등의 다양한 락탐 화합물들을 제조할 수 있어, 락탐의 산업적 생산에 유용하다.
전자파일 첨부하였음.

Claims (19)

  1. 오메가 아미노산 생합성 대사경로가 내재되어 있거나, 오메가 아미노산 생합성 경로가 도입되어 있는 미생물에 beta-alanine coenzyme A transferase를 코딩하는 유전자가 도입되어 있는, 오메가-아미노산으로부터 락탐 생성능을 가지는 재조합 미생물.
  2. 제1항에 있어서, 상기 beta-alanine coenzyme A transferase를 코딩하는 유전자는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 유전자인 것을 특징으로 하는 재조합 미생물.
  3. 제1항에 있어서, 상기 락탐은 프로피오락탐(propiolactam), 2-피롤리돈(2-pyrrolidone), 발러로락탐(valerolactam), 카프로락탐(caprolactam), 헵타노락탐(heptanolactam), 옥타노락탐(octanolactam), 노네노락탐(nonanolactam), 데카노락탐(decanolactam), 언데카노락탐(undecanolactam) 및 도데카노락탐(dodecanolactam)으로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 미생물.
  4. 제1항에 있어서, 상기 오메가-아미노산은 베타 알라닌(beta-alanine), 감마-아미노뷰티릭 산(gamma-aminobutyric acid, GABA), 5-아미노발레익 산(5-aminovaleric acid, 5AVA), 6-아미노카프로익 산(6-aminocaproic acid, 6ACA), 7-아미노헵타노익 산(7-aminoheptanoic acid, 7AHA), 8-아미노옥타노익 산(8-aminooctanoic acid), 9-아미노노네노익 산(9-aminononanoic acid), 10-아미노데카노익 산(10-aminodecanoic acid), 11-아미노언데카토익 산(11-aminoundecanoic acid) 및 12-아미노도데카토익 산(12-aminododecanoic acid)으로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 미생물.
  5. 제1항에 있어서, 상기 오메가-아미노산 생합성 대사경로는 감마-아미노뷰티릭 산 생합성 대사경로인 것을 특징으로 하는 재조합 미생물.
  6. 제1항에 있어서, 상기 오메가-아미노산 생합성 대사경로는 5-아미노발레익산 생합성 대사경로인 것을 특징으로 하는 재조합 미생물.
  7. 제6항에 있어서, 상기 5-아미노발레익산 생합성 대사경로는 delta-aminovaleramidase를 코딩하는 유전자 및 lysine 2-monooxygenase를 코딩하는 유전자를 도입하는 것을 특징으로 하는 재조합 미생물.
  8. 제7항에 있어서, 상기 delta-aminovaleramidase를 코딩하는 유전자는 수도모나스 퓨티다(Pseudomonas putida) 유래의 davA 유전자이고, 상기 lysine 2-monooxygenase를 코딩하는 유전자는 수도모나스 퓨티다(Pseudomonas putida) 유래의 davB 유전자인 것을 특징으로 하는 재조합 미생물.
  9. 제1항에 있어서, 상기 오메가-아미노산은 글루코오스, 수크로오스, 갈락토오스, 말토오스, 자일로오스, 글리세롤, 프럭토오스 및 슈가케인(sugar cane)을 포함하는 단당류, 이당류, 다당류로 구성되는 군에서 선택되는 탄소원으로부터 생합성 되는 것을 특징으로하는 재조합 미생물.
  10. 제1항에 있어서, 상기 재조합 미생물은 박테리아, 효모 및 곰팡이로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 미생물.
  11. 다음의 단계를 포함하는 오메가-아미노산으로부터 락탐의 제조방법:
    (a) 제1항의 재조합 미생물을 오메가-아미노산의 존재 하에 배양하여 락탐을 생성하는 단계 및;
    (b) 상기 생성된 락탐을 회수하는 단계.
  12. 다음의 단계를 포함하는 beta-alanine coenzyme A transferase를 이용한 오메가-아미노산으로부터 락탐의 제조방법:
    (a) 오메가-아미노산을 포함하는 반응용액에 beta-alanine coenzyme A transferase를 혼합한 다음 반응시켜, 오메가-아미노아실-CoA를 제조하는 단계; 및
    (b) 상기 제조된 오메가-아미노아실-CoA의 고리 구조 형성을 통해 락탐을 제조하는 단계.
  13. 제12항에 있어서, beta-alanine coenzyme A transferase는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 유전자에 의해 코딩되는 효소인 것을 특징으로 하는 락탐의 제조방법.
  14. 제12항에 있어서, 상기 락탐은 프로피오락탐(propiolactam), 2-피롤리돈(2-pyrrolidone), 발러로락탐(valerolactam), 카프로락탐(caprolactam), 헵타노락탐(heptanolactam), 옥타노락탐(octanolactam), 노네노락탐(nonanolactam), 데카노락탐(decanolactam), 언데카노락탐(undecanolactam) 및 도데카노락탐(dodecanolactam)으로 구성된 군에서 선택되는 것을 특징으로 하는 락탐의 제조방법.
  15. 제12항에 있어서, 상기 오메가-아미노산은 베타 알라닌(beta-alanine), 감마-아미노뷰티릭 산(gamma-aminobutyric acid, GABA), 5-아미노발레익 산(5-aminovaleric acid, 5AVA), 6-아미노카프로익 산(6-aminocaproic acid, 6ACA), 7-아미노헵타노익 산(7-aminoheptanoic acid, 7AHA), 8-아미노옥타노익 산(8-aminooctanoic acid), 9-아미노노네노익 산(9-aminononanoic acid), 10-아미노데카노익 산(10-aminodecanoic acid), 11-아미노언데카토익 산(11-aminoundecanoic acid) 및 12-아미노도데카토익 산(12-aminododecanoic acid)으로 구성된 군에서 선택되는 것을 특징으로 하는 락탐의 제조방법.
  16. 다음의 단계를 포함하는 오메가-아미노산으로부터 오메가-아미노아실-CoA의 제조방법:
    (a) 제1항의 재조합 미생물을 오메가-아미노산의 존재 하에 배양하여 오메가-아미노아실-CoA을 생성하는 단계; 및
    (b) 상기 생성된 오메가-아미노아실-CoA을 회수하는 단계.
  17. 오메가-아미노산을 포함하는 반응용액에 beta-alanine coenzyme A transferase를 혼합한 다음 반응시켜, 오메가-아미노아실-CoA를 제조하는 단계를 포함하는 beta-alanine coenzyme A transferase를 이용한 오메가-아미노산으로부터 오메가-아미노아실-CoA의 제조방법.
  18. 제17항에 있어서, beta-alanine coenzyme A transferase는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 act 유전자에 의해 코딩되는 효소인 것을 특징으로 하는 오메가-아미노아실-CoA의 제조방법.
  19. 제17항에 있어서, 상기 오메가-아미노산은 베타 알라닌(beta-alanine), 감마-아미노뷰티릭 산(gamma-aminobutyric acid, GABA), 5-아미노발레익 산(5-aminovaleric acid, 5AVA), 6-아미노카프로익 산(6-aminocaproic acid, 6ACA), 7-아미노헵타노익 산(7-aminoheptanoic acid, 7AHA), 8-아미노옥타노익 산(8-aminooctanoic acid), 9-아미노노네노익 산(9-aminononanoic acid), 10-아미노데카노익 산(10-aminodecanoic acid), 11-아미노언데카토익 산(11-aminoundecanoic acid) 및 12-아미노도데카토익 산(12-aminododecanoic acid)으로 구성된 군에서 선택되는 것을 특징으로 하는 오메가-아미노아실-CoA의 제조방법.
PCT/KR2016/003758 2015-04-13 2016-04-11 락탐의 제조방법 WO2016167519A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016001706.5T DE112016001706B4 (de) 2015-04-13 2016-04-11 Verfahren zur Herstellung von verschiedenen Lactamen
CN201680019390.4A CN107438667B (zh) 2015-04-13 2016-04-11 内酰胺的制备方法
JP2017538309A JP6602872B2 (ja) 2015-04-13 2016-04-11 ラクタムの製造方法
US15/545,311 US10683512B2 (en) 2015-04-13 2016-04-11 Method for preparing various lactam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150051994 2015-04-13
KR10-2015-0051994 2015-04-13
KR10-2016-0043539 2016-04-08
KR1020160043539A KR101839595B1 (ko) 2015-04-13 2016-04-08 락탐의 제조방법

Publications (1)

Publication Number Publication Date
WO2016167519A1 true WO2016167519A1 (ko) 2016-10-20

Family

ID=57127093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003758 WO2016167519A1 (ko) 2015-04-13 2016-04-11 락탐의 제조방법

Country Status (1)

Country Link
WO (1) WO2016167519A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100324257A1 (en) * 2007-12-17 2010-12-23 Evonik Degussa Gmbh Omega-amino carboxylic acids, omega-amino carboxylic acid esters, or recombinant cells which produce lactams thereof
KR20120034640A (ko) * 2009-05-07 2012-04-12 게노마티카 인코포레이티드 아디페이트, 헥사메틸렌디아민 및 6-아미노카프로산의 생합성을 위한 미생물 및 방법
US8592189B2 (en) * 2008-03-27 2013-11-26 Genomatica, Inc. Microorganisms for the production of adipic acid and other compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100324257A1 (en) * 2007-12-17 2010-12-23 Evonik Degussa Gmbh Omega-amino carboxylic acids, omega-amino carboxylic acid esters, or recombinant cells which produce lactams thereof
US8592189B2 (en) * 2008-03-27 2013-11-26 Genomatica, Inc. Microorganisms for the production of adipic acid and other compounds
KR20120034640A (ko) * 2009-05-07 2012-04-12 게노마티카 인코포레이티드 아디페이트, 헥사메틸렌디아민 및 6-아미노카프로산의 생합성을 위한 미생물 및 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERRMANN, GLORIA ET AL.: "Two Beta-alanyl-CoA: Ammonia Lyases in Clostridium Propionicum", THE FEBS JOURNAL, vol. 272, no. 3, 2005, pages 813 - 821, XP055324319 *
KOETSIER, MARTIJN J. ET AL.: "Aminoacyl-coenzyme A Synthesis Catalyzed by a CoA Ligase from Penicillium Chrysogenum", FEBS LETTERS, vol. 585, no. 6, 18 February 2011 (2011-02-18), pages 893 - 898, XP028198632 *

Similar Documents

Publication Publication Date Title
WO2018043856A1 (ko) 신규 프로모터 및 이의 용도
WO2012018226A2 (ko) 카다베린 고생성능을 가지는 변이 미생물 및 이를 이용한 카다베린의 제조방법
WO2009125924A2 (ko) 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2019004778A2 (ko) 신규한 아스파토키나제 변이체 및 이를 이용한 l-아미노산의 제조방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2018182354A1 (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
WO2014208970A1 (ko) 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2020022547A1 (ko) 신규 5'-이노신산 디하이드로게나아제 및 이를 이용한 5'-이노신산 제조방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2012046924A1 (ko) 아라비노스 대사경로가 도입된 자일리톨 생산균주 및 이를 이용한 자일리톨 생산방법
KR101839595B1 (ko) 락탐의 제조방법
WO2023068472A1 (ko) 신규한 당전이효소 및 이의 용도
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2016167519A1 (ko) 락탐의 제조방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538309

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545311

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001706

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780242

Country of ref document: EP

Kind code of ref document: A1