WO2016166959A1 - 熱伝導シートおよびその製造方法 - Google Patents

熱伝導シートおよびその製造方法 Download PDF

Info

Publication number
WO2016166959A1
WO2016166959A1 PCT/JP2016/001964 JP2016001964W WO2016166959A1 WO 2016166959 A1 WO2016166959 A1 WO 2016166959A1 JP 2016001964 W JP2016001964 W JP 2016001964W WO 2016166959 A1 WO2016166959 A1 WO 2016166959A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheets
resin
conductive sheet
heat conductive
laminate
Prior art date
Application number
PCT/JP2016/001964
Other languages
English (en)
French (fr)
Inventor
中山 雅文
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016166959A1 publication Critical patent/WO2016166959A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a heat conductive sheet that efficiently transfers heat generated from a heating element in a thickness direction, and a manufacturing method thereof.
  • Patent Document 1 discloses a heat conductive sheet that transfers heat generated from a heat generating component to a heat sink or the like.
  • the heat conductive sheet has both end surfaces including both end portions and both main surfaces, and includes a plurality of first sheets including graphite, both end surfaces and both main surfaces, each including a resin and a plurality of first sheets. And a plurality of second sheets stacked alternately.
  • One main surface of each main surface of each of the plurality of first sheets is provided with a laminate in which one main surface of each main surface of each of the plurality of second sheets is joined.
  • the laminated body has an upper surface composed of one end face of each of the both end faces of the plurality of first sheets and one end face of each of the both end faces of the plurality of second sheets.
  • the upper surface of the laminate forms an angle of 10 ° or more and 65 ° or less with each of the principal surfaces of the plurality of first sheets and each of the principal surfaces of the plurality of second sheets.
  • the heat conductive sheet of the present disclosure can suppress the occurrence of peeling between the plurality of first sheets and the plurality of second sheets.
  • FIG. 1A is a cross-sectional view of a heat conductive sheet in Embodiment 1.
  • FIG. 1B is an enlarged cross-sectional view of a part of the heat conductive sheet of FIG. 1A.
  • FIG. 2A is a cross-sectional view of the heat conductive sheet in the second exemplary embodiment.
  • FIG. 2B is an enlarged cross-sectional view of a part of the heat conductive sheet of FIG. 2A.
  • FIG. 3A is a cross-sectional view of the heat conductive sheet in the third exemplary embodiment.
  • FIG. 3B is an enlarged cross-sectional view of a part of the heat conductive sheet of FIG. 3A.
  • FIG. 4A is a diagram for explaining a manufacturing method in the heat conductive sheet of FIG. 2A.
  • FIG. 4B is a diagram for explaining a manufacturing method in the heat conductive sheet of FIG. 2A.
  • FIG. 4C is a diagram illustrating a manufacturing method in the heat conductive sheet of FIG. 2
  • the heat conductive sheet of Patent Document 1 is provided between a heat generator and a heat radiator, and has a graphite sheet made of graphite and a resin sheet made of a resin material. Both end portions of the graphite sheet are bent to cover both end surfaces of the elastic body. With this configuration, the heat conductive sheet of Patent Document 1 transfers heat generated by the heating element to the heat radiating body.
  • the heat conductive sheet in the embodiment suppresses the occurrence of peeling between the graphite sheet and the resin sheet by increasing the area where the graphite sheet and the resin sheet are joined as compared with the conventional heat conductive sheet. Can do.
  • FIG. 1A is a cross-sectional view of heat conductive sheet 50 in the first exemplary embodiment.
  • FIG. 1B is an enlarged cross-sectional view of a region A1 of the heat conductive sheet in FIG. 1A.
  • the heat conductive sheet 50 includes a laminate 51 made of graphite sheets 11 to 20 made of graphite and resin sheets 31 to 41 containing resin and laminated alternately with the graphite sheets 11 to 20.
  • the heat conductive sheet 50 has an upper surface 50a and a lower surface 50b.
  • Each of the graphite sheets 11 to 20 has a main surface and an end surface.
  • the main surfaces of the graphite sheets 11 to 20 will be described by taking the main surfaces 14a to 16a and the main surfaces 14b to 16b of the graphite sheets 14 to 16 as an example.
  • the end faces of the graphite sheets 11 to 20 will be described by taking the end faces 14c to 16c and the end faces 14d to 16d of the graphite sheets 14 to 16 as an example.
  • Each of the resin sheets 31 to 41 has a main surface and an end surface.
  • the main surfaces of the resin sheets 31 to 41 will be described by taking the main surfaces 35a and 36a and the main surfaces 35b and 36b of the resin sheets 31 to 41 as an example.
  • the end surfaces of the resin sheets 31 to 41 will be described by taking the end surfaces 35c and 36c and the end surfaces 35d and 36d as an example.
  • the laminate 51 has a lower surface 51b composed of end surfaces 14c to 16c of the graphite sheets 14 to 16 and end surfaces 35c and 36c of the resin sheets 35 and 36.
  • the laminated body 51 has an upper surface 51a including end surfaces 14d to 16d of the graphite sheets 14 to 16 and end surfaces 35d and 36d of the resin sheets 35 and 36.
  • Main surfaces 15a and 16a of graphite sheets 15 and 16 are joined to main surfaces 35b and 36b of resin sheets 35 and 36, respectively, and main surfaces 14b and 15b of graphite sheets 14 and 15 are main surfaces of resin sheets 35 and 36, respectively. 35a and 36a are joined.
  • each of the upper surface 51a and the lower surface 51b of the laminate 51, the main surfaces 14a to 16a and 14b to 16b of the graphite sheets 14 to 16, and the main surfaces 35a, 36a, 35b and 36b of the resin sheets 35 and 36 form an angle R1.
  • the angle R1 is 45 °.
  • the main surfaces 14b to 16b of the graphite sheets 14 to 16 and the main surfaces 35b and 36b of the resin sheets 35 and 36 are inclined by an angle R1 with respect to the upper surface 51a of the laminate 51.
  • the main surfaces 14a to 16a of the graphite sheets 14 to 16 and the main surfaces 35a and 36a of the resin sheets 35 and 36 are inclined by an angle R1 with respect to the lower surface 51b of the laminate 51.
  • the main surfaces 14a to 16a and main surfaces 14b to 16b of the graphite sheets 14 to 16 and the main surfaces 35a, 36a, 35b, and 36b of the resin sheets 35 and 36 are substantially parallel to each other.
  • Each of the graphite sheets 14 to 16 and the resin sheets 35 and 36 has a substantially straight shape.
  • a protective layer 42 made of double-sided tape is provided on each of the lower surface 51b and the upper surface 51a of the laminate 51.
  • the protective layer 42 may be formed of a polyethylene terephthalate sheet.
  • the protective layer 42 protects the graphite sheets 11 to 20 or the resin sheets 31 to 41 from external stress. Since graphite is brittle compared to the resin material, the protective layer 42 can suppress breakage of the graphite sheets 11 to 20 due to external stress.
  • an adhesive layer for adhering the graphite sheets 11 to 20 and the resin sheets 31 to 41 may be provided between the graphite sheets 11 to 20 and the resin sheets 31 to 41.
  • a heat generator 80 is disposed on the upper surface 50a of the heat conductive sheet 50 provided with the protective layer 42, and a heat radiator 81 is disposed on the lower surface 50b.
  • the heat conductive sheet 50 can suppress the temperature rise of the heat generating body 80 by transferring the heat generated from the heat generating body 80 to the heat radiating body 81.
  • each of the graphite sheets 11 to 20 and the resin sheets 31 to 41 is compared with the conventional heat conductive sheet described in Patent Document 1 by setting the angle R1 to 10 ° to 65 °. Since the area to be joined can be increased, the occurrence of peeling between the graphite sheets 11 to 20 and the resin sheets 31 to 41 can be suppressed.
  • the graphite sheets 11 to 20 are made of graphite produced by thermally decomposing a polymer.
  • This polymer is, for example, a polyimide resin.
  • the graphite sheets 11 to 20 produced by pyrolysis have anisotropy in heat conduction due to this crystal structure.
  • the thermal conductivity in the direction parallel to the main surfaces 14a to 16a and the main surfaces 14b to 16b of the graphite sheets 14 to 16 is the main surfaces 14a to 16a and the main surfaces. It is larger than the thermal conductivity in the direction perpendicular to 14b to 16b. That is, the heat generated from the heating element 80 can be efficiently transferred to the heat radiating body 81 by using the graphite sheets 11 to 20 generated by thermally decomposing the polymer.
  • the resin sheets 31 to 41 include, for example, any of acrylic resin, silicon resin, epoxy resin, styrene resin, and polyester resin.
  • the resin sheets 31 to 41 may be formed of, for example, a thermosetting resin that is cured by heat or a thermoplastic resin that is softened by heat.
  • FIG. 2A is a cross-sectional view of the heat conductive sheet in the second exemplary embodiment.
  • 2B is an enlarged cross-sectional view of a region A2 of the heat conductive sheet 60 of FIG. 2A.
  • the graphite sheets 11 to 20 have end portions.
  • the main surfaces of the graphite sheets 11 to 20 will be described by taking the main surfaces 14a to 16a and the main surfaces 14b to 16b of the graphite sheets 14 to 16 as an example.
  • the end faces of the graphite sheets 11 to 20 will be described by taking the end faces 14c to 16c and the end faces 14d to 16d of the graphite sheets 14 to 16 as an example.
  • Each of the resin sheets 31 to 41 has a main surface and an end surface.
  • the main surfaces of the resin sheets 31 to 41 will be described by taking the main surfaces 35a and 36a and the main surfaces 35b and 36b of the resin sheets 31 to 41 as an example.
  • the end surfaces of the resin sheets 31 to 41 will be described by taking the end surfaces 35c to 37c and the end surfaces 35d to 37d as examples.
  • the end portions of the graphite sheets 11 to 20 will be described by taking the end portions 14e to 16e and the end portions 14f to 16f of the graphite sheets 14 to 16 as an example.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 respectively constitute part of the end faces 14c to 16c of the graphite sheets 14 to 16.
  • the end portions 14f to 16f of the graphite sheets 14 to 16 respectively constitute part of the end surfaces 14d to 16d of the graphite sheet.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 include end surfaces 14c to 16c of the graphite sheets 14 to 16, respectively, and the end portions 14f to 16f of the graphite sheets 14 to 16 include end surfaces 14d to 16d of the graphite sheets, respectively.
  • the heat conductive sheet 60 has an upper surface 60a and a lower surface 60b.
  • the laminate 61 has a lower surface 61b composed of end portions 14e to 16e of the graphite sheets 14 to 16 and end surfaces 35c to 37c of the resin sheets 35 to 37.
  • the laminated body 51 has an upper surface 61a composed of end portions 14f to 16f of the graphite sheets 14 to 16 and end surfaces 35c to 37c of the resin sheets 35 to 37.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 cover the end surfaces 35c to 37c of the resin sheets 35 to 37, respectively.
  • the end portions 14f to 16f of the graphite sheets 14 to 16 cover the end surfaces 34d to 36d of the resin sheets 34 to 36, respectively.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are exposed on the lower surface 61b of the laminate 61, and the end portions 14f to 16f of the graphite sheets 14 to 16 are exposed to the upper surface 61a of the laminate 61.
  • the heating element 80, the graphite sheets 14 to 16 and the opposing area through the protective layer 42 is increased, and the heat generated from the heating element 80 can be efficiently transferred to the radiator 81.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 may cover the entire surfaces of the end surfaces 35c to 37c of the resin sheets 35 to 37, respectively. Further, the end portions 14f to 16f of the graphite sheets 14 to 16 may cover the entire surfaces of the end surfaces 34d to 36d of the resin sheets 34 to 36, respectively.
  • the end portions 14e to 16e and the end portions 14f to 16f of the graphite sheets 14 to 16 cover the entire end surfaces 35c to 37c and end surfaces 34d to 36d of the resin sheets 34 to 37, respectively, so that the heat generated from the heating element 80 is further increased. It can be efficiently transmitted to the radiator 81.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are bent in a direction D2 parallel to the lower surface 61b of the laminated body 61 and cover the end surfaces 35c to 37c of the resin sheets 35 to 37, respectively. Further, the end portions 14f to 16f of the graphite sheets 14 to 16 are bent in a direction D1 opposite to the direction D2, and cover the end surfaces 34d to 36d of the resin sheets 34 to 36, respectively.
  • both ends of the graphite sheet are bent in the same direction. That is, the heat conductive sheet 60 in the second embodiment is further separated from the graphite sheets 11 to 20 and the resin sheets 31 to 41 than the heat conductive sheet disclosed in Patent Document 1 by the above configuration.
  • the end surfaces 14c to 16e of the graphite sheets 14 to 16 or the end surfaces 14c to 16f of the graphite sheets 14 to 16 and the end surfaces 35c to 37c of the resin sheets 35 to 37 and the end surfaces 34d of the resin sheets 34 to 36 are prevented. It is preferable to cover the entire surface of each of ⁇ 36d.
  • An angle R1 is formed.
  • the angle R1 is 45 °.
  • the upper surface 61a of the laminate 61 is inclined by an angle R1 with respect to the main surfaces 14b to 16b of the graphite sheets 14 to 16 and the main surfaces 35b to 37b of the resin sheets 35 to 37
  • the lower surface 61b of the laminate 61 Are inclined by an angle R1 with respect to the main surfaces 14a to 16a of the graphite sheets 14 to 16 and the main surfaces 35a and 36a of the resin sheets 35 and 36.
  • the ends 14e to 16e of the graphite sheets 14 to 16 form an angle R2 with the main surfaces 14b to 16b of the graphite sheets 14 to 16.
  • the end portions 14f to 16f of the graphite sheets 14 to 16 form an angle R2 with the main surfaces 14a to 16a of the graphite sheets 14 to 16.
  • the angle R2 is an obtuse angle. In the second embodiment, the angle R2 is 135 °.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are inclined by an angle R2 with respect to the main surfaces 14b to 16b of the graphite sheets 14 to 16, and the end portions 14f to 16f of the graphite sheets 14 to 16 are The graphite sheets 14 to 16 are inclined by an angle R2 with respect to the main surfaces 14a to 16a.
  • FIG. 3A is a cross-sectional view of the heat conductive sheet in the third exemplary embodiment.
  • FIG. 3B is an enlarged cross-sectional view of a region A3 of the heat conductive sheet in FIG. 3A.
  • the graphite sheets 11 to 20 have end portions.
  • the main surfaces of the graphite sheets 11 to 20 will be described by taking the main surfaces 14a to 16a and the main surfaces 14b to 16b of the graphite sheets 14 to 16 as an example.
  • the end faces of the graphite sheets 11 to 20 will be described by taking the end faces 14c to 16c and the end faces 14d to 16d of the graphite sheets 14 to 16 as an example.
  • Each of the resin sheets 31 to 41 has a main surface and an end surface.
  • the main surfaces of the resin sheets 31 to 41 will be described by taking the main surfaces 35a and 36a and the main surfaces 34b to 36b of the resin sheets 31 to 41 as an example.
  • the end surfaces of the resin sheets 31 to 41 will be described by taking the end surfaces 34c to 36c and the end surfaces 34d to 36d as examples.
  • the end portions of the graphite sheets 11 to 20 will be described by taking the end portions 14e to 16e and the end portions 14f to 16f of the graphite sheets 14 to 16 as an example.
  • the graphite sheets 11 to 20 have end portions.
  • the end portions of the graphite sheets 11 to 20 will be described by taking the end portions 14e to 16e and the end portions 14f to 16f of the graphite sheets 14 to 16 as an example.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 constitute part of the end faces 14c to 16c of the graphite sheets 14 to 16, respectively.
  • the end portions 14f to 16f of the graphite sheets 14 to 16 respectively constitute part of the end surfaces 14d to 16d of the graphite sheet.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 include end surfaces 14c to 16c of the graphite sheets 14 to 16, respectively, and the end portions 14f to 16f of the graphite sheets 14 to 16 include end surfaces 14d to 16d of the graphite sheets, respectively.
  • the heat conductive sheet 70 has an upper surface 70a and a lower surface 70b.
  • the laminate 71 has a lower surface 71b composed of end portions 14e to 16e of the graphite sheets 14 to 16 and end surfaces 34c to 36c of the resin sheets 34 to 36.
  • the laminate 71 has an upper surface 71a composed of end portions 14f to 16f of the graphite sheets 14 to 16 and end surfaces 34d to 36d of the resin sheets 34 to 36.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are bent in a direction D1 parallel to the lower surface 71b of the laminate 71 and cover the end surfaces 34c to 36c of the resin sheets 34 to 36, respectively. Further, the end portions 14f to 16f of the graphite sheets 14 to 16 are bent in a direction D2 opposite to the direction D1, and cover the end surfaces 35d to 37d of the resin sheets 35 to 37, respectively. In the heat conductive sheet disclosed in Patent Document 1, both ends of the graphite sheet are bent in the same direction.
  • each of the upper surface 71a and the lower surface 71b of the laminate 71, the main surfaces 14a to 16a, 14b to 16b of the graphite sheets 14 to 16, and the main surfaces 35a, 36a, 34b, 35b, 36b of the resin sheets 34 to 36 are at an angle R1.
  • the angle R1 is 45 °. That is, the lower surface 71b of the laminate 71 is inclined by an angle R1 with respect to the main surfaces 14a to 16a of the graphite sheets 14 to 16 and the main surfaces 35a and 36a of the resin sheets 35 and 36.
  • the upper surface 71a of the laminate 71 is inclined by an angle R1 with respect to the main surfaces 14b to 16b of the graphite sheets 14 to 16 and the main surfaces 34b to 36b of the resin sheets 34 to 36.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 form an angle R3 with the main surfaces 14b to 16b of the graphite sheets 14 to 16.
  • the end portions 14f to 16f of the graphite sheets 14 to 16 form an angle R3 with the main surfaces 14a to 16a of the graphite sheets 14 to 16.
  • the angle R3 is an acute angle, which is 45 ° in the third embodiment, which is the same as the angle R1.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are inclined by an angle R3 with respect to the main surfaces 14b to 16b of the graphite sheets 14 to 16, and the end portions 14f to 16f of the graphite sheets 14 to 16 are The main surfaces 14a to 16a of 14 to 16 are inclined by an angle R3.
  • the main surfaces of the graphite sheets 11 to 20 will be described by taking the main surfaces 14a to 16a and the main surfaces 14b to 16b of the graphite sheets 14 to 16 as an example.
  • the end faces of the graphite sheets 11 to 20 will be described by taking the end faces 14c to 16c and the end faces 14d to 16d of the graphite sheets 14 to 16 as an example.
  • the end portions of the graphite sheets 11 to 20 will be described using the end portions 14e to 16e and the end surfaces 14f to 16f of the graphite sheets 14 to 16 as an example.
  • the main surfaces of the resin sheets 31 to 41 will be described by taking the main surfaces 35a and 36a and the main surfaces 35b and 36b of the resin sheets 31 to 41 as an example.
  • the end surfaces of the resin sheets 31 to 41 will be described by taking the end surfaces 35c and 36c and the end surfaces 35d and 36d as an example.
  • the thickness of the graphite sheets 11 to 20 is 0.05 mm.
  • the graphite sheets 11 to 20 are obtained by thermally decomposing polyimide.
  • the thermal conductivity in the direction parallel to the main surfaces 14a to 16a and the main surfaces 14b to 16b of the graphite sheets 14 to 16 is 1300 w / m ⁇ K.
  • the resin sheets 31 to 41 are made of thermosetting silicone resin, and the sheet thickness is 0.1 mm.
  • acrylic resin, epoxy resin, styrene resin and polyester resin can be used in addition to the silicon resin.
  • the resin sheets 31 to 41 may use a resin having thermoplastic properties, and can be appropriately selected according to a manufacturing process described later.
  • the resin sheets 31 to 41 may be mixed with a filler made of, for example, an inorganic material in addition to the resin described above.
  • the thermal conductivity of the thermal conductive sheet 50 is increased by mixing a filler having a higher thermal conductivity than the resin.
  • the angle R1 is not less than 10 ° and not more than 65 °.
  • the angle R1 is 10 ° or more, it exhibits a sufficient heat transport effect as a heat conductive sheet, and when it is 65 ° or less, the area where the graphite sheets 11 to 20 and the resin sheets 31 to 41 abut can be increased. The occurrence of peeling between 11 to 20 and the resin sheets 31 to 41 can be suppressed.
  • the thickness of the graphite sheets 11 to 20 and the thickness of the resin sheets 31 to 41 will be described below using the heat conductive sheet 50 as an example.
  • the ratio T1 / T2 of the thickness T1 of the graphite sheets 11 to 20 to the thickness T2 of the resin sheets 31 to 41 is 0.002 or more and 0.5 or less.
  • the ratio T1 / T2 is 0.002 or more, a sufficiently high heat transport effect can be exhibited as the heat conductive sheet 50.
  • the resin contained in the resin sheets 31 to 41 can be easily deformed during pressurization in manufacturing the heat conductive sheet 50.
  • the thickness T1 of the graphite sheets 11 to 20 is preferably 0.01 mm or more and 0.05 mm or less.
  • the thickness T1 of the graphite sheets 11 to 20 By setting the thickness T1 of the graphite sheets 11 to 20 to 0.01 mm or more, a sufficiently high heat transport effect can be exhibited as the heat conductive sheet 50.
  • the resin contained in the resin sheets 31 to 41 can be easily deformed at the time of pressurization in manufacturing the heat conductive sheet 50.
  • the thickness T2 of the resin sheets 31 to 41 is preferably 0.1 mm or greater and 5.0 mm or less.
  • the thickness T2 of the resin sheets 31 to 41 By setting the thickness T2 of the resin sheets 31 to 41 to 0.1 mm or more, the resin contained in the resin sheets 31 to 41 can be easily deformed at the time of pressurization in manufacturing the heat conductive sheet 50. Further, by setting the thickness T2 of the resin sheets 31 to 41 to 5.0 mm or less, a sufficient heat transport effect as the heat conductive sheet 50 can be exhibited.
  • FIG. 4A to 4C are diagrams illustrating a manufacturing method for the heat conductive sheet 60.
  • FIG. 4A to 4C are diagrams illustrating a manufacturing method for the heat conductive sheet 60.
  • graphite sheets 11 to 20 cut to a predetermined size and resin sheets 31 to 41 made of a sheet-like thermosetting acrylic resin are prepared.
  • graphite sheets 11 to 20 and resin sheets 31 to 41 are alternately laminated.
  • a laminated body 61 is obtained in which the end portions 14e to 16e and the end portions 14f to 16f of the graphite sheets 14 to 16 protrude.
  • the end portions 14e to 16e and the end portions 14f to 16f of the graphite sheets 14 to 16 are bent to cover the end surfaces 35c to 37c and the end surfaces 34d to 36d of the resin sheets 35 to 37, respectively. .
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are exposed on the upper surface 61a of the laminate 61, and the end portions 14f to 16f of the graphite sheets 14 to 16 are exposed to the lower surface 61b of the laminate 61.
  • the end portions 14e to 16e of the graphite sheets 14 to 16 are bent in the direction D1, and the end portions 14f to 16f of the graphite sheets 14 to 16 are bent in the direction D2 opposite to the direction D1.
  • the mold 91 has an inner wall having at least a bottom surface 91a and a side surface 91b connected to the bottom surface 91a.
  • An angle R4 formed by the bottom surface 91a and the side surface 91b is an obtuse angle, and is 45 ° in the embodiment.
  • the heat conductive sheet 60 having a desired shape can be obtained by making the angle R4 an obtuse angle. In the embodiment, the angle R4 is 135 °.
  • angle R3 is 10 degrees or more and 65 degrees or less the same as angle R1.
  • the process of pressurizing the stacked body 61 is simplified by setting the angle R3 to the same level as the angle R1.
  • thermosetting resin contained in the resin sheets 31 to 41 when the laminate 61 is pressed is preferably B-stage or uncured.
  • the resin sheets 31 to 41 can be easily plastically deformed by pressurizing the laminate 61 in a state where the thermosetting resin is B stage or uncured.
  • the B stage of the thermosetting resin refers to a semi-cured state that is not completely cured and capable of plastic deformation by external stress.
  • the laminated body 61 after pressurizing the laminated body 61 is heated at a predetermined temperature to cure the B stage or the uncured thermosetting resin, thereby obtaining the heat conductive sheet 60 having a desired shape.
  • the heating temperature is not particularly limited and can be appropriately selected according to the characteristics of the thermosetting resin.
  • the shapes of the graphite sheets 11 to 20 are held by the resin sheets 31 to 41 that are deformed and plastically deformed simultaneously with the resin sheets 31 to 41.
  • the resin material contained in the resin sheets 31 to 41 is a thermoplastic resin
  • the following steps are provided. It is preferable to soften the thermoplastic resin contained in the resin sheets 31 to 41 when the laminate 61 is pressurized.
  • the heating temperature of the thermoplastic resin is not particularly limited and can be appropriately selected according to the characteristics of the thermoplastic resin.
  • the hardness of the resin sheets 31 to 41 in a state where the thermoplastic resin is softened is preferably 65 or less in a type E durometer hardness test based on ISO7619.
  • the hardness of the resin sheets 31 to 41 can also be adjusted by mixing fillers in the resin sheets 31 to 41.
  • the resin sheets 31 to 41 can be easily plastically deformed.
  • the thermoplastic resin is hardened by cooling the laminated body 61 after pressurization, and the heat conductive sheet 60 having a desired shape can be obtained.
  • the heat conductive sheet 60 produced by the above manufacturing method is excellent in heat conductivity, and can suppress delamination that occurs between the graphite sheets 11 to 20 and the resin sheets 31 to 41.
  • terms indicating directions such as “upper surface” and “lower surface” indicate a relative position determined only by a relative positional relationship of components of a heat transfer sheet such as a graphite sheet or a resin sheet, and are in a vertical direction. It does not indicate the absolute direction.

Abstract

熱伝導シートは両端部を含む両端面と両主面とをそれぞれ有し、グラファイトを含む複数の第1シートと、両端面と両主面をそれぞれ有し、樹脂を含みかつ複数の第1シートと交互に積層された複数の第2シートとを有する。さらに複数の第1シートのそれぞれの両主面の一方の主面と、複数の第2シートのそれぞれの両主面の一方の主面とが接合している、積層体を備える。積層体は複数の第1シートのそれぞれの両端面のうちの一方の端面と、複数の第2シートのそれぞれの両端面のうちの一方の端面とからなる上面を有する。積層体の上面は、複数の第1シートのそれぞれの両主面と複数の第2シートのそれぞれの両主面のそれぞれと10°以上かつ65°以下の角をなす。

Description

熱伝導シートおよびその製造方法
 本開示は、発熱体から発生した熱を厚み方向に効率よく熱を伝達する熱伝導シートおよびその製造方法に関する。
 近年、各種電子機器に搭載される発熱部品の発熱量は大きくなっている。発熱部品から発生した熱は、発熱部品自体もしくは他の電子部品の作動に支障をきたす可能性が高まっている。発熱部品から発生した熱をヒートシンク等に伝達する熱伝導シートは例えば特許文献1に開示されている。
国際公開第2007/142273号
 熱伝導シートは両端部を含む両端面と両主面とをそれぞれ有し、グラファイトを含む複数の第1シートと、両端面と両主面をそれぞれ有し、樹脂を含みかつ複数の第1シートと交互に積層された複数の第2シートとを有する。複数の第1シートのそれぞれの両主面の一方の主面と、複数の第2シートのそれぞれの両主面の一方の主面とが接合している、積層体を備える。積層体は複数の第1シートのそれぞれの両端面のうちの一方の端面と、複数の第2シートのそれぞれの両端面のうちの一方の端面とからなる上面を有する。積層体の上面は、複数の第1シートのそれぞれの両主面と複数の第2シートのそれぞれの両主面のそれぞれと10°以上かつ65°以下の角をなす。
 本開示の熱伝導シートは、複数の第1シートと複数の第2シートとの間における剥離の発生を抑制することができる。
図1Aは、実施の形態1における熱伝導シートの断面図である。 図1Bは、図1Aの熱伝導シートの一部分を拡大した断面図である。 図2Aは、実施の形態2における熱伝導シートの断面図である。 図2Bは、図2Aの熱伝導シートの一部分を拡大した断面図である。 図3Aは、実施の形態3における熱伝導シートの断面図である。 図3Bは、図3Aの熱伝導シートの一部分を拡大した断面図である。 図4Aは、図2Aの熱伝導シートにおける製造方法を説明する図である。 図4Bは、図2Aの熱伝導シートにおける製造方法を説明する図である。 図4Cは、図2Aの熱伝導シートにおける製造方法を説明する図である。
 実施の形態における熱伝導シートの説明に先立ち、従来の熱伝導シートの問題点を説明する。
 特許文献1の熱伝導シートは、発熱体と放熱体の間に設けられ、グラファイトからなるグラファイトシートと樹脂材料からなる樹脂シートを有する。グラファイトシートの両端部は屈曲して弾性体の両端面を覆う。この構成により特許文献1の熱伝導シートは発熱体で生じた熱を放熱体に伝熱させる。
 しかしながら、特許文献1の熱伝導シートの構成ではグラファイトシートと弾性体との間で剥離が発生してしまう可能性がある。
 実施の形態における熱伝導シートは、従来の熱伝導シートと比較してグラファイトシートと樹脂シートとが接合する面積を大きくすることで、グラファイトシートと樹脂シートとの間の剥離の発生を抑制することができる。
 なお、以下で説明する実施の形態は、いずれも一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。以下の説明では、全ての図を通じて同一または相当する要素には同じ符号を付して、その重複する説明を省略する。
 [熱伝導シートの説明]
 (実施の形態1)
 図1Aは、実施の形態1における熱伝導シート50の断面図である。図1Bは、図1Aの熱伝導シートの領域A1を拡大した断面図である。
 熱伝導シート50は、グラファイトからなるグラファイトシート11~20と、樹脂を含みかつグラファイトシート11~20と交互に積層された樹脂シート31~41からなる積層体51を備える。熱伝導シート50は上面50aと下面50bとを有する。
 グラファイトシート11~20のそれぞれは、主面および端面を有する。
 実施の形態1においてグラファイトシート11~20の主面は、グラファイトシート14~16の主面14a~16aと主面14b~16bを例に説明する。グラファイトシート11~20の端面は、グラファイトシート14~16の端面14c~16cと端面14d~16dを例に説明する。樹脂シート31~41のそれぞれは、主面と端面を有する。樹脂シート31~41の主面は、樹脂シート31~41の主面35a、36aと主面35b、36bを例に説明する。樹脂シート31~41の端面は、端面35c、36cと端面35d、36dを例に説明する。
 積層体51は、グラファイトシート14~16の端面14c~16cと、樹脂シート35、36の端面35c、36cとからなる下面51bを有する。
 積層体51は、グラファイトシート14~16の端面14d~16dと、樹脂シート35、36の端面35d、36dとからなる上面51aを有する。
 グラファイトシート15、16の主面15a、16aは、樹脂シート35、36の主面35b、36bとそれぞれ接合し、グラファイトシート14、15の主面14b、15bは、樹脂シート35、36の主面35a、36aとそれぞれ接合している。
 積層体51の上面51aと下面51bのそれぞれと、グラファイトシート14~16の主面14a~16a、14b~16bと、樹脂シート35、36の主面35a、36a、35b、36bとは角R1をなす。実施の形態1では角R1は45°である。
 すなわち、グラファイトシート14~16の主面14b~16bと樹脂シート35、36の主面35b、36bとは、積層体51の上面51aに対して角R1だけ傾斜している。グラファイトシート14~16の主面14a~16aと樹脂シート35、36の主面35a、36aとは、積層体51の下面51bに対して角R1だけ傾斜している。
 図1Aに示すように、グラファイトシート14~16の主面14a~16aおよび主面14b~16bと、樹脂シート35、36の主面35a、36a、35b、36bは、互いに略平行である。グラファイトシート14~16および樹脂シート35、36はいずれも略直伸した形状を有する。
 積層体51の下面51bと上面51aのそれぞれには両面テープからなる保護層42が設けられる。なお、保護層42はポリエチレンテレフタレートのシートにより形成されていてもよい。保護層42は、グラファイトシート11~20もしくは樹脂シート31~41を外部応力から保護する。グラファイトは樹脂材料と比較して脆いので、保護層42により外部応力に起因するグラファイトシート11~20の破壊を抑制することができる。
 なお、グラファイトシート11~20と樹脂シート31~41との間にグラファイトシート11~20と樹脂シート31~41とを接着するための接着層が設けられてもよい。
 保護層42が設けられた熱伝導シート50の上面50aには発熱体80が配置され、下面50bには放熱体81が配置されている。熱伝導シート50は、発熱体80から発生した熱を放熱体81に伝熱することで、発熱体80の温度上昇を抑制することができる。
 熱伝導シート50は、角R1を10°以上65°以下にすることにより、特許文献1に記載の従来の熱伝導シートと比較してグラファイトシート11~20と樹脂シート31~41のそれぞれとが接合する面積を大きくすることができるので、グラファイトシート11~20と樹脂シート31~41との間の剥離の発生を抑制することができる。
 グラファイトシート11~20は、高分子を熱分解して生成されるグラファイトからなる。この高分子は、例えばポリイミド樹脂である。熱分解して生成されるグラファイトシート11~20は、この結晶構造に起因して熱伝導に異方性を有する。熱分解して生成される例えばグラファイトシート14~16において、グラファイトシート14~16の主面14a~16aと主面14b~16bと平行な方向の熱伝導率は、主面14a~16aと主面14b~16bと直角な方向の熱伝導率よりも大きい。すなわち、高分子を熱分解して生成されたグラファイトシート11~20を用いることで発熱体80から発生した熱を、効率よく放熱体81に伝熱することができる。
 樹脂シート31~41は、例えばアクリル樹脂、シリコン樹脂、エポキシ樹脂、スチレン樹脂およびポリエステル樹脂のいずれかを含む。また、樹脂シート31~41は、例えば熱により硬化する熱硬化性樹脂または熱により軟化する熱可塑性樹脂より形成されていてもよい。
 (実施の形態2)
 図2Aは、実施の形態2における熱伝導シートの断面図である。図2Bは、図2Aの熱伝導シート60の領域A2を拡大した断面図である。
 グラファイトシート11~20は端部を有する。
 実施の形態2において、グラファイトシート11~20の主面は、グラファイトシート14~16の主面14a~16aと主面14b~16bを例に説明する。グラファイトシート11~20の端面は、グラファイトシート14~16の端面14c~16cと端面14d~16dを例に説明する。樹脂シート31~41のそれぞれは、主面と端面を有する。樹脂シート31~41の主面は、樹脂シート31~41の主面35a、36aと主面35b、36bを例に説明する。樹脂シート31~41の端面は、端面35c~37cと端面35d~37dを例に説明する。グラファイトシート11~20の端部は、グラファイトシート14~16の端部14e~16eと端部14f~16fを例に説明する。
 熱伝導シート60において、グラファイトシート14~16の端部14e~16eは、グラファイトシート14~16の端面14c~16cの一部をそれぞれ構成する。グラファイトシート14~16の端部14f~16fは、グラファイトシートの端面14d~16dの一部をそれぞれ構成している。
 グラファイトシート14~16の端部14e~16eはグラファイトシート14~16の端面14c~16cをそれぞれ含み、グラファイトシート14~16の端部14f~16fはグラファイトシートの端面14d~16dをそれぞれ含む。熱伝導シート60は上面60aと下面60bとを有する。
 積層体61は、グラファイトシート14~16の端部14e~16eと、樹脂シート35~37の端面35c~37cとからなる下面61bを有する。積層体51は、グラファイトシート14~16の端部14f~16fと、樹脂シート35~37の端面35c~37cとからなる上面61aを有する。
 グラファイトシート14~16の端部14e~16eは、樹脂シート35~37の端面35c~37cをそれぞれ覆っている。グラファイトシート14~16の端部14f~16fは、樹脂シート34~36の端面34d~36dをそれぞれ覆っている。グラファイトシート14~16の端部14e~16eは積層体61の下面61bに露出し、グラファイトシート14~16の端部14f~16fは積層体61の上面61aに露出している。
 熱伝導シート60では、積層体61の上面61aおよび下面61bにグラファイトシート14~16の端部14e~16eおよび端部14f~16fが露出しているので、発熱体80とグラファイトシート14~16とが保護層42を介して対向する面積が大きくなり、発熱体80から発生した熱を効率よく放熱体81に伝熱することができる。
 なお、グラファイトシート14~16の端部14e~16eのそれぞれは、樹脂シート35~37の端面35c~37cのそれぞれの全面を覆っていてもよい。またグラファイトシート14~16の端部14f~16fは、樹脂シート34~36の端面34d~36dのそれぞれの全面を覆っていてもよい。
 グラファイトシート14~16の端部14e~16eおよび端部14f~16fが樹脂シート34~37の端面35c~37cおよび端面34d~36dの全面をそれぞれ覆うことで、発熱体80から発生した熱をさらに効率よく放熱体81に伝達させることができる。
 グラファイトシート14~16の端部14e~16eは、積層体61の下面61bに平行な方向D2に屈曲し、樹脂シート35~37の端面35c~37cのそれぞれを覆う。また、グラファイトシート14~16の端部14f~16fは、方向D2と反対方向の方向D1に屈曲し、樹脂シート34~36の端面34d~36dのそれぞれを覆う。特許文献1に開示の熱伝導シートは、グラファイトシートの両端部が、いずれも同一の方向に屈曲している。すなわち、実施の形態2における熱伝導シート60は、以上の構成により、特許文献1に開示の熱伝導シートよりも、グラファイトシート11~20と樹脂シート31~41との間で発生する剥離をさらに抑制することができる。また、グラファイトシート14~16の表面には粘着性がないので、グラファイトシート14~16の端部14e~16eが重なった場合に、グラファイトシート14~16の端部14e~16eが重った部分が浮いてしまい剥離の要因になる可能性がある。また、同様にグラファイトシート14~16の端部14f~16fが重なった場合に、グラファイトシート14~16の端部14f~16fが重った部分が浮いてしまい剥離の要因になる可能性がある。
 よって、グラファイトシート14~16の端部14e~16eまたはグラファイトシート14~16の端部14f~16fは互いに重ならないように樹脂シート35~37の端面35c~37cおよび樹脂シート34~36の端面34d~36dのそれぞれの全面を覆うことが好ましい。
 積層体61の上面61aと下面61bのそれぞれと、グラファイトシート14~16の主面14a~16aおよび主面14b~16bと樹脂シート35~37の主面35a~37aおよび主面35b、36bとは角R1をなす。実施の形態2では角R1は45°である。すなわち、積層体61の上面61aは、グラファイトシート14~16の主面14b~16bと樹脂シート35~37の主面35b~37bに対して角R1だけ傾斜しており、積層体61の下面61bは、グラファイトシート14~16の主面14a~16aと樹脂シート35、36の主面35a、36aとに対して角R1だけ傾斜している。
 グラファイトシート14~16の端部14e~16eは、グラファイトシート14~16の主面14b~16bと角R2をなす。グラファイトシート14~16の端部14f~16fは、グラファイトシート14~16の主面14a~16aと角R2をなす。角R2は鈍角であり、実施の形態2では角R2は135°である。すなわち、グラファイトシート14~16の端部14e~16eは、グラファイトシート14~16の主面14b~16bに対して角R2だけ傾斜しており、グラファイトシート14~16の端部14f~16fは、グラファイトシート14~16の主面14a~16aに対して角R2だけ傾斜している。
 (実施の形態3)
 図3Aは、実施の形態3における熱伝導シートの断面図である。図3Bは、図3Aの熱伝導シートの領域A3を拡大した断面図である。
 グラファイトシート11~20は端部を有する。
 実施の形態3において、グラファイトシート11~20の主面は、グラファイトシート14~16の主面14a~16aと主面14b~16bを例に説明する。グラファイトシート11~20の端面は、グラファイトシート14~16の端面14c~16cと端面14d~16dを例に説明する。樹脂シート31~41のそれぞれは、主面と端面を有する。樹脂シート31~41の主面は、樹脂シート31~41の主面35a、36aと主面34b~36bを例に説明する。樹脂シート31~41の端面は、端面34c~36cと端面34d~36dを例に説明する。グラファイトシート11~20の端部は、グラファイトシート14~16の端部14e~16eと端部14f~16fを例に説明する。
 グラファイトシート11~20は端部を有する。グラファイトシート11~20の端部は、グラファイトシート14~16の端部14e~16eと端部14f~16fを例に説明する。
 熱伝導シート70において、グラファイトシート14~16の端部14e~16eは、グラファイトシート14~16の端面14c~16cの一部をそれぞれ構成する。グラファイトシート14~16の端部14f~16fは、グラファイトシートの端面14d~16dの一部をそれぞれ構成している。
 グラファイトシート14~16の端部14e~16eはグラファイトシート14~16の端面14c~16cをそれぞれ含み、グラファイトシート14~16の端部14f~16fはグラファイトシートの端面14d~16dをそれぞれ含む。熱伝導シート70は上面70aと下面70bとを有する。
 積層体71は、グラファイトシート14~16の端部14e~16eと、樹脂シート34~36の端面34c~36cとからなる下面71bを有する。積層体71は、グラファイトシート14~16の端部14f~16fと、樹脂シート34~36の端面34d~36dとからなる上面71aを有する。
 グラファイトシート14~16の端部14e~16eは、積層体71の下面71bに平行な方向D1に屈曲し、樹脂シート34~36の端面34c~36cのそれぞれを覆う。また、グラファイトシート14~16の端部14f~16fは、方向D1と反対方向の方向D2に屈曲し、樹脂シート35~37の端面35d~37dのそれぞれを覆う。特許文献1に開示の熱伝導シートは、グラファイトシートの両端部が、いずれも同一の方向に屈曲している。
 積層体71の上面71aと下面71bのそれぞれと、グラファイトシート14~16の主面14a~16a、14b~16bと樹脂シート34~36の主面35a、36a、34b、35b、36bとは角R1をなす。実施の形態3では角R1は45°である。すなわち、積層体71の下面71bは、グラファイトシート14~16の主面14a~16aと樹脂シート35、36の主面35a、36aとに対して角R1だけ傾斜している。積層体71の上面71aは、グラファイトシート14~16の主面14b~16bと樹脂シート34~36の主面34b~36bとに対して角R1だけ傾斜している。
 また、グラファイトシート14~16の端部14e~16eはグラファイトシート14~16の主面14b~16bと角R3をなす。グラファイトシート14~16の端部14f~16fは、グラファイトシート14~16の主面14a~16aと角R3をなす。角R3は鋭角であり、実施の形態3では45°であり角R1と同じである。すなわち、グラファイトシート14~16の端部14e~16eはグラファイトシート14~16の主面14b~16bに対して角R3だけ傾斜しており、グラファイトシート14~16の端部14f~16fはグラファイトシート14~16の主面14a~16aに対して角R3だけ傾斜している。
 [実施の形態1~3における熱伝導シートの説明]
 以下、実施の形態1~3のそれぞれの熱伝導シートの各構成要素について詳細に説明する。
 なお、実施の形態1~3のそれぞれの熱伝導シートの説明においてグラファイトシート11~20の主面は、グラファイトシート14~16の主面14a~16aと主面14b~16bを例に説明する。グラファイトシート11~20の端面は、グラファイトシート14~16の端面14c~16cと端面14d~16dを例に説明する。グラファイトシート11~20の端部は、グラファイトシート14~16の端部14e~16eと端面14f~16fを例に説明する。
 また、樹脂シート31~41の主面は、樹脂シート31~41の主面35a、36aと主面35b、36bを例に説明する。樹脂シート31~41の端面は、端面35c、36cと端面35d、36dを例に説明する。
 グラファイトシート11~20の厚みは、0.05mmである。このグラファイトシート11~20はポリイミドを熱分解してなる。グラファイトシート14~16の主面14a~16aおよび主面14b~16bと平行な方向の熱伝導率は1300w/m・Kである。
 樹脂シート31~41は、熱硬化性シリコン樹脂で構成され、そのシート厚みは0.1mmである。樹脂シート31~41は、シリコン樹脂以外に例えばアクリル樹脂、エポキシ樹脂、スチレン樹脂およびポリエステル樹脂を用いることもできる。
 また、樹脂シート31~41は熱可塑特性を有する樹脂を用いてもよく、後述する製造プロセスによって適宜選択することができる。樹脂シート31~41は上述した樹脂以外に例えば無機材料からなるフィラーを混合させてもよい。樹脂よりも熱伝導率が高いフィラーを混合させることで熱伝導シート50の熱伝導率が高くなる。
 実施の形態1~3の熱伝導シートにおいて角R1は10°以上かつ65°以下である。角R1が10°以上で熱伝導シートとして十分な熱輸送効果を発揮するとともに、65°以下でグラファイトシート11~20と樹脂シート31~41とが当接する面積を大きくすることができ、グラファイトシート11~20と樹脂シート31~41との剥離の発生を抑制することができる。
 実施の形態1~3の熱伝導シートにおいてグラファイトシート11~20の厚みと樹脂シート31~41の厚みについて以下、熱伝導シート50を例に説明する。
 図1Bに示すようにグラファイトシート11~20の厚みT1の、樹脂シート31~41の厚みT2に対する比T1/T2は0.002以上0.5以下である。比T1/T2を0.002以上にすることで熱伝導シート50として十分に高い熱輸送効果を発揮できる。また、比T1/T2を0.5以下にすることで熱伝導シート50の製造における加圧時に樹脂シート31~41に含まれる樹脂を容易に変形させることができる。また、グラファイトシート11~20の厚みT1は0.01mm以上0.05mm以下が好ましい。グラファイトシート11~20の厚みT1を0.01mm以上にすることで熱伝導シート50として十分に高い熱輸送効果を発揮できる。グラファイトシート11~20の厚みT1を0.05mm以下にすることで、熱伝導シート50の製造における加圧時に樹脂シート31~41に含まれる樹脂を容易に変形させることができる。さらに樹脂シート31~41の厚みT2は0.1mm以上5.0mm以下が好ましい。樹脂シート31~41の厚みT2を0.1mm以上にすることで、熱伝導シート50の製造における加圧時に樹脂シート31~41に含まれる樹脂を容易に変形させることができる。さらに、樹脂シート31~41の厚みT2を5.0mm以下とすることで熱伝導シート50として十分な熱輸送効果を発揮することができる。
 [熱伝導シートにおける製造方法の説明]
 次に実施の形態2における熱伝導シート60の製造方法について説明する。
 図4A~4Cは、熱伝導シート60における製造方法を説明する図である。
 まず、所定の寸法に切断されたグラファイトシート11~20と、シート状の熱硬化性アクリル樹脂からなる樹脂シート31~41を用意する。
 次に図4Aに示すようにグラファイトシート11~20と樹脂シート31~41とを交互に積層する。グラファイトシート14~16の端部14e~16eおよび端部14f~16fが突出した積層体61を得る。
 次に、図4Bに示すようにグラファイトシート14~16の端部14e~16eおよび端部14f~16fを屈曲させることで樹脂シート35~37の端面35c~37cおよび端面34d~36dのそれぞれを覆う。積層体61の上面61aにはグラファイトシート14~16の端部14e~16eが露出し、積層体61の下面61bにはグラファイトシート14~16の端部14f~16fが露出する。グラファイトシート14~16の端部14e~16eは、方向D1に屈曲し、グラファイトシート14~16の端部14f~16fは方向D1と反対方向の方向D2に屈曲する。
 次に、積層体61を図4Bに示す金型91に配置し、積層体61の上面61aに当板92をあてて当板92に対して角R3で加圧する。金型91は、底面91aと、底面91aに繋がる側面91bを少なくとも有する内壁を有する。底面91aと側面91bとのなす角R4は鈍角であり、実施の形態では45°である。角R4を鈍角にすることで所望の形状の熱伝導シート60を得ることができる。実施の形態では角R4は135°である。
 以上の構成により当板92を加圧することで樹脂シート31~41を塑性変形させると同時にグラファイトシート11~20も変形させることができる。角R3の大きさは特に限定されるものではないが、好ましい角R3は角R1と同じ10°以上65°以下である。角R3を角R1と同程度にすることで積層体61を加圧する工程が簡便になる。
 また、樹脂シート31~41に含まれる樹脂材料が熱硬化性樹脂である場合は、以下の工程を備える。積層体61の加圧時において樹脂シート31~41に含まれる熱硬化性樹脂は、Bステージもしくは未硬化とすることが好ましい。熱硬化性樹脂がBステージもしくは未硬化の状態で積層体61を加圧することで樹脂シート31~41を容易に塑性変形させることができる。なお、熱硬化性樹脂のBステージとは完全に硬化していない半硬化の状態であり外部応力により塑性変形が可能な状態を指す。
 次に、積層体61を加圧した後の積層体61を所定の温度で加熱し、Bステージもしくは未硬化の熱硬化性樹脂を硬化させ、所望の形状の熱伝導シート60を得る。この加熱温度は特に限定されるものではなく熱硬化性樹脂の特性に合わせて適宜選択することができる。グラファイトシート11~20は、樹脂シート31~41と同時に変形し塑性変形した樹脂シート31~41に形状を保持される。
 なお、積層体61の加圧は、角R3を異ならせてなる複数の工程で行ってもよい。また角R3の角度を変えながら積層体61を加圧してもよい。
 また、樹脂シート31~41に含まれる樹脂材料が熱可塑性樹脂である場合は、以下の工程を備える。積層体61の加圧時において樹脂シート31~41に含まれる熱可塑性樹脂を加熱することで軟化させておくことが好ましい。なお、熱可塑性樹脂の加熱の温度は特に限定されるものではなく熱可塑性樹脂の特性に合わせて適宜選択することができる。
 熱可塑性樹脂が軟化している状態の樹脂シート31~41の硬度はISO7619に準拠したタイプEデュロメータ硬さ試験において65以下であることが好ましい。なお、樹脂シート31~41にフィラーを混合させることで樹脂シート31~41の硬度を調整することもできる。熱可塑性樹脂を含む樹脂シート31~41を上述した状態で加圧することで樹脂シート31~41を簡便に塑性変形することができる。さらに、加圧後の積層体61を冷却することで熱可塑性樹脂を硬化し、所望の形状の熱伝導シート60を得ることができる。
 以上の製造方法で作製された熱伝導シート60は、熱伝導性に優れ、グラファイトシート11~20と樹脂シート31~41との間で発生する剥離を抑制することができる。
 実施の形態において、「上面」「下面」等の方向を示す用語は、グラファイトシートや樹脂シート等の熱伝道シートの構成部材の相対的な位置関係でのみ決まる相対的な位置を示し、鉛直方向等の絶対的な方向を示すものではない。
11~20  グラファイトシート(第1シート)
14a~16a  主面
14b~16b  主面
14c~16c  端面
14d~16d  端面
14e~16e  端部
14f~16f  端部
31~41  樹脂シート(第2シート)
35a~37a  主面
34b~36b  主面
34c~37c  端面
34d~37d  端面
42  保護層
50  熱伝導シート
50a  上面
50b  下面
51  積層体
51a  上面
51b  下面
60  熱伝導シート
60a  上面
60b  下面
61  積層体
61a  上面
61b  下面
70  熱伝導シート
70a  上面
70b  下面
71  積層体
71a  上面
71b  下面
80  発熱体
81  放熱体
91  金型
91a  底面(第1面)
91b  側面(第2面)
92  当板

Claims (16)

  1.    両端面と両主面をそれぞれ有し、グラファイトを含む複数の第1シートと、
       両端面と両主面をそれぞれ有し、樹脂を含みかつ前記複数の第1シートと交互に積層された複数の第2シートと、
    を有し、前記複数の第1シートのそれぞれの前記両主面の一方の主面と、前記複数の第2シートのそれぞれの前記両主面の一方の主面とが接合している、積層体を備え、
    前記複数の第1シートのそれぞれは、前記両端面を含む両端部を有し、
    前記積層体は、
       前記複数の第1シートのそれぞれの前記両端部のうちの一方の端部と、
       前記複数の第2シートのそれぞれの前記両端面のうちの一方の端面と、
    からなる上面を有し、
    前記積層体の前記上面は、前記複数の第1シートのそれぞれの前記両主面と、前記複数の第2シートのそれぞれの前記両主面のそれぞれと10°以上かつ65°以下の角をなす、熱伝導シート。
  2. 前記積層体は、
       前記複数の第1シートのそれぞれの前記両端部のうちの他方の端部と、
       前記複数の第2シートのそれぞれの前記両端面のうちの他方の端面と、
    からなる下面を有し、
    前記積層体の前記下面は、前記複数の第1シートのそれぞれの前記両主面と、前記複数の第2シートのそれぞれの前記両主面と10°以上かつ65°以下の角をなす、
    請求項1に記載の熱伝導シート。
  3. 前記複数の第1シートのそれぞれの前記両端部のうちの一方の端部は、前記複数の第2シートのそれぞれの前記一方の端面を覆っている、
    請求項1に記載の熱伝導シート。
  4. 前記複数の第1シートのそれぞれの前記両端部のうちの他方の端部は、前記複数の第2シートの前記他方の端面を覆っている、
    請求項3に記載の熱伝導シート。
  5. 前記複数の第1シートのそれぞれの前記一方の端部は、前記上面に平行な一方向に屈曲して前記複数の第2シートのそれぞれの前記一方の端面を覆い、
    前記複数の第1シートのそれぞれの前記他方の前記端部は、前記上面に平行な前記一方向とは反対側の方向に屈曲して前記複数の第2シートのそれぞれの前記他方の端面を覆う、
    請求項4に記載の熱伝導シート。
  6. 前記複数の第1シートのそれぞれの前記両主面と平行な方向の熱伝導率は、前記複数の第1シートのそれぞれの前記両主面と直角の厚み方向の熱伝導率よりも大きく、
    前記複数の第2シートの前記樹脂は、アクリル樹脂、シリコン樹脂、エポキシ樹脂、スチレン樹脂およびポリエステル樹脂のいずれかを含む、
    請求項1に記載の熱伝導シート。
  7. 前記積層体の前記上面に設けられた保護層をさらに備えた、
    請求項1に記載の熱伝導シート。
  8. 前記保護層は、両面テープである、
    請求項7に記載の熱伝導シート。
  9. 前記複数の第1シートのそれぞれと前記複数の第2シートのそれぞれとの間に設けられた接着層をさらに備えた、
    請求項1に記載の熱伝導シート。
  10. 前記複数の第1シートのそれぞれの厚みT1の、前記複数の第2シートのそれぞれの厚みT2に対する比T1/T2は0.002以上、0.5以下である、
    請求項1に記載の熱伝導シート。
  11.    両端面と両主面をそれぞれ有し、グラファイトを含む複数の第1シートと、
       両端面と両主面をそれぞれ有し、樹脂を含みかつ前記複数の第1シートと交互に前記両主面のそれぞれの主面同士で積層された複数の第2シートと、
    を含み、前記複数の第1シートのそれぞれの前記両端面のうちの一方の端面と、前記複数の第2シートのそれぞれの前記両端面のうちの一方の端面とからなる上面を有する積層体を準備するステップと、
    前記積層体の前記上面と、前記複数の第1シートのそれぞれの前記両主面および前記複数の第2シートのそれぞれの前記両主面のそれぞれとがなる角が10°以上かつ65°以下となるように、前記積層体の前記上面を前記上面に平行な面方向に対して斜めの方向に加圧するステップと、
    を含む、
    熱伝導シートの製造方法。
  12. 第1面と、前記第1面と鈍角をなす第2面とを有する内壁を有する金型を準備するステップをさらに含み、
    前記積層体の前記上面を加圧する前記ステップは、前記積層体の下面を前記金型の前記内壁の前記第1面に配置した状態で前記積層体の前記上面を前記面方向に対して斜めの前記方向に加圧するステップを含む、
    請求項11に記載の熱伝導シートの製造方法。
  13. 前記積層体の前記上面を加圧する前記ステップは、
       前記複数の第1シートを変形させると同時に前記複数の第2シートを塑性変形させて前記塑性変形した複数の第2シートの形状を保持させるステップと、
       前記塑性変形した複数の第2シートに前記変形した複数の第1シートの形状を保持させるステップと、
    を含む、
    請求項11に記載の熱伝導シートの製造方法。
  14. 前記積層体の前記上面を加圧する前記ステップは、タイプEの硬度計で測定した前記複数の第2シートの硬度が65以下の状態で前記積層体の前記上面を前記面方向に対して斜めの前記方向に加圧するステップを含む、
    請求項13に記載の熱伝導シートの製造方法。
  15. 前記複数の第2シートに含まれる前記樹脂は、熱硬化性樹脂であり、
    前記積層体の前記上面を加圧する前記ステップは、前記熱硬化性樹脂がBステージもしくは未硬化の状態で前記積層体の前記上面を前記面方向に対して斜めの前記方向に加圧するステップを含む、
    請求項13に記載の熱伝導シートの製造方法。
  16. 前記複数の第2シートに含まれる前記樹脂は、熱硬化性樹脂であり、
    前記積層体の前記上面を加圧する前記ステップの前に、前記複数の第2シートの前記硬度が65以下になるように前記積層体を加熱するステップをさらに含む、
    請求項14に記載の熱伝導シートの製造方法。
PCT/JP2016/001964 2015-04-13 2016-04-11 熱伝導シートおよびその製造方法 WO2016166959A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081390 2015-04-13
JP2015-081390 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016166959A1 true WO2016166959A1 (ja) 2016-10-20

Family

ID=57126173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001964 WO2016166959A1 (ja) 2015-04-13 2016-04-11 熱伝導シートおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2016166959A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092384A (ja) * 2001-09-19 2003-03-28 Matsushita Electric Ind Co Ltd グラファイトシート
JP2007053145A (ja) * 2005-08-16 2007-03-01 Nippon Pillar Packing Co Ltd 伝熱シート
WO2007142273A1 (ja) * 2006-06-08 2007-12-13 International Business Machines Corporation 高熱伝導で柔軟なシート
JP2008272976A (ja) * 2007-04-26 2008-11-13 Kaneka Corp グラファイト複合フィルム
JP2008305917A (ja) * 2007-06-06 2008-12-18 Bando Chem Ind Ltd 放熱シートの製造方法
JP2010003981A (ja) * 2008-06-23 2010-01-07 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
JP2012248568A (ja) * 2011-05-25 2012-12-13 Sanken Electric Co Ltd 放熱基板及びその製造方法、半導体モジュール
JP2015201534A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 熱伝導シートおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092384A (ja) * 2001-09-19 2003-03-28 Matsushita Electric Ind Co Ltd グラファイトシート
JP2007053145A (ja) * 2005-08-16 2007-03-01 Nippon Pillar Packing Co Ltd 伝熱シート
WO2007142273A1 (ja) * 2006-06-08 2007-12-13 International Business Machines Corporation 高熱伝導で柔軟なシート
JP2008272976A (ja) * 2007-04-26 2008-11-13 Kaneka Corp グラファイト複合フィルム
JP2008305917A (ja) * 2007-06-06 2008-12-18 Bando Chem Ind Ltd 放熱シートの製造方法
JP2010003981A (ja) * 2008-06-23 2010-01-07 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
JP2012248568A (ja) * 2011-05-25 2012-12-13 Sanken Electric Co Ltd 放熱基板及びその製造方法、半導体モジュール
JP2015201534A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 熱伝導シートおよびその製造方法

Similar Documents

Publication Publication Date Title
JP5096010B2 (ja) 熱拡散シート及び熱拡散シートの位置決め方法
JP2007012911A (ja) 放熱部品及びその製造方法
JP2005116771A (ja) 電子装置及びゴム製品及びそれらの製造方法
JP6236631B2 (ja) 熱伝導シートの製造方法
US20160159037A1 (en) Heat dissipating sheet and heat dissipating structural body using same
KR102029431B1 (ko) 복합 열전 부재
WO2018142879A1 (ja) 熱伝導シートおよび多重熱伝導シート
JP6612723B2 (ja) 基板装置
JP2009205337A (ja) Icカード及びその製造方法
WO2016208192A1 (ja) 熱伝導シートおよびこれを用いた電子機器
KR20180038402A (ko) 복합 열전 부재
JP6497326B2 (ja) 熱接続構造体、排熱構造
JP2006261505A (ja) 絶縁伝熱シート
WO2016166959A1 (ja) 熱伝導シートおよびその製造方法
JP6543803B2 (ja) 熱伝導シート
JP4977715B2 (ja) 凹凸パターン形成方法
JP2015002623A (ja) 熱伝導シート、回路構成体及び電気接続箱
JP2011258869A (ja) 放熱板ユニット及び電子回路装置
KR101906264B1 (ko) 탄소복합소재와 열전도성 금속 박막을 이용한 방열판 및 그의 제조방법
JP5367287B2 (ja) 伝熱部品および電子機器
JP2008258527A (ja) 放熱装置
JP6423604B2 (ja) ヒートシンク及び電子部品
WO2022054691A1 (ja) 放熱構造体
US11317538B2 (en) Reinforced graphite heat-spreader for a housing surface of an electronic device
JP6623474B2 (ja) 熱伝導部材、熱伝導部材の製造方法、及び熱伝導構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP