WO2016166908A1 - 拡径用ドリルビット - Google Patents

拡径用ドリルビット Download PDF

Info

Publication number
WO2016166908A1
WO2016166908A1 PCT/JP2015/078687 JP2015078687W WO2016166908A1 WO 2016166908 A1 WO2016166908 A1 WO 2016166908A1 JP 2015078687 W JP2015078687 W JP 2015078687W WO 2016166908 A1 WO2016166908 A1 WO 2016166908A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting blade
diameter
drill bit
individual cutting
individual
Prior art date
Application number
PCT/JP2015/078687
Other languages
English (en)
French (fr)
Inventor
藤田 正吾
Original Assignee
Fsテクニカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fsテクニカル株式会社 filed Critical Fsテクニカル株式会社
Priority to JP2016522073A priority Critical patent/JP6081666B1/ja
Priority to SG11201608694SA priority patent/SG11201608694SA/en
Priority to RU2016141064A priority patent/RU2635703C1/ru
Priority to US15/304,277 priority patent/US10239231B2/en
Priority to EP15877376.2A priority patent/EP3103586A4/en
Priority to CN201580011714.5A priority patent/CN106255573B/zh
Priority to KR1020167017312A priority patent/KR101837526B1/ko
Publication of WO2016166908A1 publication Critical patent/WO2016166908A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • B28D1/146Tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/06Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/0018Drills for enlarging a hole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/0018Drills for enlarging a hole
    • B23B51/0045Drills for enlarging a hole by expanding or tilting the toolhead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B33/00Honing machines or devices; Accessories therefor
    • B24B33/02Honing machines or devices; Accessories therefor designed for working internal surfaces of revolution, e.g. of cylindrical or conical shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/40Single-purpose machines or devices for grinding tubes internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/32Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/75Stone, rock or concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/04Use of centrifugal force

Definitions

  • the present invention mainly relates to a drill bit for expanding a diameter for expanding a part of a pilot hole drilled in a concrete body or the like.
  • an undercut drill device which is inserted into a straight-shaped prepared hole drilled in a concrete body or the like and expands the innermost part of the prepared hole.
  • This undercut drill device includes a hollow cylindrical cylindrical body that is inserted into a pilot hole, a contact member that sits on the opening edge of the pilot hole and rotatably supports the cylindrical body via a bearing, A shaft that slidably engages with the cylindrical body and rotates integrally with the cylindrical body, a truncated cone-shaped cone portion provided on the distal end side of the cylindrical body and having four guide grooves on the outer peripheral surface, and a distal end portion of the shaft Four arms that are attached and engage with each guide groove, and two cutting blades and two guide portions that are alternately provided on the outer surface of the front end of the four arms are provided.
  • the cutting blade and the guide part are located inside the cylindrical body with the shaft pulled up.
  • the cylindrical body and the shaft inserted into the prepared hole are integrally rotated and the shaft is moved downward, the four arms are opened outward while being moved downward by the guide groove of the cone portion.
  • a cutting blade grinds the internal peripheral surface of a pilot hole, and an enlarged diameter part is formed in the bottom part (deepest part) of a pilot hole.
  • Such a conventional undercut drill device has a structure in which the arm having the cutting edge is guided by the outer peripheral surface of the cone portion, so the cone portion must be supported by the cylindrical body, and the structure is extremely complicated. There was a problem. In addition, it is configured to grind the inner peripheral surface of the pilot hole by opening the arm provided with the cutting edge outward by the guide groove while moving downward, so the shape of the enlarged diameter portion formed is naturally constrained Was to occur.
  • An object of the present invention is to provide a drill bit for expanding the diameter, which has a simple structure and can give a degree of freedom to the shape of the expanded diameter portion to be formed.
  • the diameter expansion drill bit of the present invention is used by being inserted into a pilot hole drilled in a housing, and is a diameter expansion drill bit for expanding a part of the pilot hole by grinding, and a part of the pilot hole
  • a cutting blade portion having a plurality of individual cutting blade portions for grinding, a cutting blade holding portion that holds the plurality of individual cutting blade portions so as to be slidable in the radial direction, and a shank that supports the cutting blade holding portion
  • the plurality of individual cutting blade portions are arranged in a plurality in the circumferential direction and in a plurality of steps in the axial direction, and the plurality of individual cutting blade portions in each step are cut by a centrifugal force accompanying rotation. It slides so that it may each expand radially outward with respect to a blade holding part, It is characterized by the above-mentioned.
  • each of the plurality of individual cutting blade portions held by the cutting blade holding portion receives the centrifugal force and radially outwards.
  • Move the slide That is, the plurality of individual cutting blade portions that rotate together with the cutting blade holding portion slide and move so as to expand radially outward by centrifugal force, and the prepared holes are ground to expand the diameter.
  • each individual cutting blade portion is configured to move by centrifugal force, the structure can be simplified.
  • the plurality of individual cutting edge portions of each step are expanded by centrifugal force, a diameter-enlarged portion having an arbitrary shape can be formed in the axial direction by setting the moving stroke differently for each step. . That is, the shape of the enlarged diameter portion to be formed can have a degree of freedom.
  • the plurality of individual cutting blade portions of each step have different radial movement strokes for each step.
  • the moving stroke for each step becomes longer toward the tip.
  • a diameter-enlarged portion having a substantially truncated cone shape that expands toward the tip can be formed in the prepared hole.
  • the plurality of individual cutting blade portions in each step have the same radial movement stroke for each step.
  • a substantially cylindrical enlarged diameter portion can be formed in the prepared hole.
  • the cutting blade holding part is formed in a shape that expands toward the tip.
  • a diameter-enlarged portion having a substantially truncated cone shape that expands toward the tip can be formed in the prepared hole.
  • each individual cutting edge part has a guide part which guides extraction from the enlarged diameter part formed in the pilot hole on the base end side outer peripheral surface.
  • the cutting edge holding portion has a spire portion that is coaxially located at the tip portion and protrudes, and the spire portion is preferably made of a super steel material.
  • the diameter-enlarged portion can be formed at a predetermined depth position with the spire portion pressed against the hole bottom of the pilot hole and rotated, with the hole bottom of the pilot hole used as a reference.
  • the spire portion makes point contact with the center of the hole bottom, friction with the hole bottom can be minimized as much as possible during rotation, and rotational blurring of the cutting edge portion can be suppressed as much as possible.
  • the spire portion is made of a super steel material, wear of the spire portion can be suppressed as much as possible. Thereby, an enlarged diameter part can always be formed in the predetermined position from the hole bottom of a pilot hole.
  • the cutting blade holding portion has a plurality of cutting blade openings for slidably holding a plurality of individual cutting blade portions at each stage, and each individual cutting blade portion includes a grinding portion having an arcuate cross section.
  • the individual cutting blade portion that moves radially outward by the centrifugal force slides with the rib portion guided by the cutting blade opening of the cutting blade holding portion.
  • the cutting blade main body including the grinding part moves parallel to the radial outside.
  • a pilot hole (part) can be ground efficiently.
  • the retaining portion can easily regulate the moving end position of the cutting blade main body that moves radially outward, that is, the moving stroke of the individual cutting blade portion.
  • the plurality of individual cutting blade portions in each stage are constituted by two individual cutting blade portions disposed at 180 ° point symmetrical positions.
  • the cutting edge portion can be simply and compactly configured without impairing the cutting performance.
  • the shank portion communicates with the shank main body having a flow path in the shank for supplying a coolant to the cutting edge portion via the cutting edge holding portion, and from the tip end portion of the shank main body. It is preferable to have a coolant pipe extending to a position corresponding to a plurality of individual cutting blade portions at the most advanced stage in the cutting blade holding portion.
  • the coolant when the coolant is discharged from the coolant pipe, the coolant is supplied from the front end side of the cutting blade portion (a plurality of individual cutting blade portions at the most advanced stage) via the cutting blade holding portion. Can be cooled. Since the coolant supplied from the front end side of the cutting edge portion flows toward the opening of the pilot hole while cooling the individual cutting edge portions of each stage, the cutting edge portion can be efficiently cooled. Further, when the coolant is a liquid, the coolant that has received centrifugal force presses each individual cutting edge portion so as to scatter in a radial manner, and promotes its expansion.
  • FIG. 4 is a structural diagram (a) of a bit portion in the drill bit for diameter expansion according to the first embodiment, a structural diagram (b) in an exploded state thereof, and a structural diagram (c) in an exploded state rotated by 90 °. It is a disassembled perspective view of the cutting blade part in a bit part. It is explanatory drawing showing the expansion state of the individual cutting blade part of each step
  • This diameter-expanding drill bit mainly expands the diameter of a pilot hole formed in a concrete or other structure to drive the post-construction anchor, and increases the pull-out strength of the post-installation anchor. To get. That is, in order to make the post-installed anchor driven into the prepared hole exhibit a theoretical wedge effect, this diameter-expanding drill bit forms an expanded portion in a part of the prepared hole.
  • FIG. 1 is an external view of a diameter expansion device that forms a diameter expansion portion in a pilot hole.
  • the diameter expansion device 1 has a hand-held electric drill 2, a coolant attachment 3 attached to the electric drill 2, and a diameter expansion drill bit 10 attached to the coolant attachment 3. ing. That is, the diameter-expanding drill bit 10 is used by being detachably mounted on the rotating shaft 3a of the coolant attachment 3 connected to the electric drill 2 constituting the power source.
  • a coolant flow path is formed on the rotating shaft 3a, and a coolant supply device (not shown) is connected to the coolant attachment 3, and the coolant is supplied from the coolant supply device to the coolant attachment. 3 is supplied to the distal end portion of the diameter-expanding drill bit 10.
  • the coolant attachment 3 incorporates a valve for opening and closing the coolant flow path (not shown), and the valve is configured by abutting the diameter-expanding drill bit 10 against the hole bottom Ha of the pilot hole H. “Open” and “closed” when separated from the hole bottom Ha.
  • the pilot hole H is drilled by a vibration drill, a hammer drill, a core bit, or the like.
  • the drill bit for diameter expansion 10 is detachably mounted on the rotating shaft 3a (coolant attachment 3) of the diameter expansion device 1 on the base end side and the bit portion 11 that forms the diameter expansion portion Hb in the pilot hole H, And a shank portion 12 that coaxially supports the bit portion 11 on the side.
  • the bit part 11 is unitized and is detachably attached to the tip part of the shank part 12 by screw joining.
  • the shank part 12 is integrally formed by the shank main body 15 which supports the bit part 11, and the large diameter shaft part 16 with which the rotating shaft 3a is mounted
  • the shaft portion 16 has a fastening portion 16a formed with a female screw at its fore end, and the fastening portion 16a is screwed to the rotating shaft 3a of the coolant attachment 3 formed with a male screw.
  • tip external thread part 15a in which the bit part 11 screws together is formed in the front-end
  • an in-shank flow path 17 for coolant is formed in the axial center of the shank body 15 and the shaft portion 16.
  • the cooling liquid supplied from the cooling liquid attachment 3 is supplied to the bit unit 11 through the in-shank channel 17.
  • the above-described diameter expanding device 1 is a wet type using a cooling liquid, and a dry type using no cooling liquid is also prepared.
  • the shank portion 12 does not have the in-shank channel 17, and the diameter expanding drill bit 10 is directly connected to the electric drill 2.
  • compressed air or cooling gas is introduced instead of the cooling liquid.
  • the unitized bit portion 11 is used as a common part in these wet and dry diameter expanding drill bits 10.
  • the bit part 11 includes a cutting edge part 21 having a plurality of (six in the embodiment) individual cutting edge parts 22 for grinding the pilot hole H, and a plurality of individual cutting edge parts. And a cutting blade holding portion 23 for holding the blades 22 so as to be movable in the radial direction. Further, the plurality (six) of individual cutting blade portions 22 are arranged in a plurality (two) in the circumferential direction and in a plurality of stages (three) in the axial direction.
  • the diameter-expanding drill bit 10 is rotated in a state where the bit portion 11 is inserted into the pilot hole H, and the individual cutting edge portions are divided into two and three stages in total by centrifugal force. 22 expands radially outward and grinds the enlarged diameter portion Hb.
  • the cutting blade portion 21 includes a first pair of first individual cutting blade portions 22A (see FIG. 4A) located on the shank portion 12 side and a second pair of second individual cutting blades. It has a portion 22B (see (b) in FIG. 4) and a pair of third individual cutting blade portions 22C (see (c) in FIG. 4) located on the tip side.
  • the cutting blade holding portion 23 has a holding portion main body 25 that holds the cutting blade portion 21 and a holding portion receiver 26 on the shank portion 12 side to which the holding portion main body 25 is screwed.
  • the holding portion receiver 26 includes a first female screw portion 31 having a small diameter formed on the proximal end side, and a second female screw portion 32 having a large diameter formed on the distal end side.
  • the first female screw portion 31 is screwed with the distal end portion (tip male screw portion 15a) of the shank portion 12 (shank main body 15), and the second female screw portion 32 is screwed with the proximal end portion of the holding portion main body 25.
  • the base end side half of the holding portion receiver 26 is formed in a tapered shape so as to be largely chamfered.
  • the holding portion receiver 26 may be formed integrally with the shank portion 12.
  • the holding part main body 25 includes a flange-shaped tip flange part 41, a cylindrical cylindrical holding part 42 that is connected to the tip flange part 41 and holds the cutting edge part 21, a cylindrical screw part 43 that is connected to the cylindrical holding part 42, have.
  • the holding part body 25 includes a spire part 45 provided at the tip of the center part of the tip flange part 41, and a plurality of (two) slit parts 46 (cutting blades) formed in the cylindrical holding part 42 and the cylindrical screw part 43. Opening).
  • the six individual cutting blade portions 22 constituting the cutting blade portion 21 are held along the outer peripheral surface of the holding portion main body 25.
  • the front end flange portion 41 has a front end half portion formed in a tapered shape, and a spire portion 45 is attached to an axial center portion of this portion.
  • the spire portion 45 is made of, for example, a super steel alloy (super steel material), and is integrally formed of a tip conical portion 45a and a columnar portion 45b continuous therewith. Further, the cone angle of the tapered portion of the tip flange portion 41 and the cone angle of the tip cone portion 45a are formed at the same angle, and the tip cone portion 45a is positioned on the extension of the tapered portion of the tip flange portion 41. It has become.
  • the tip flange portion 41 is formed to have the largest diameter in the bit portion 11, and the diameter is slightly smaller than the pilot hole H (about 0.5 mm).
  • the diameter-expanding drill bit 10 rotates the spire portion 45 in a state of abutting against the hole bottom Ha of the pilot hole H, and forms a diameter-expanded portion Hb in the deep part of the pilot hole H. That is, when forming the enlarged diameter portion Hb, the enlarged diameter drill bit 10 is rotated in a state where the tip cone portion 45a is abutted against the center of the hole bottom Ha.
  • the tip conical portion 45a (spire portion 45) makes point contact with the center of the hole bottom Ha, and the friction with the hole bottom Ha can be minimized when rotating.
  • the spire portion 45 is made of a super steel alloy, wear of the spire portion 45 can be suppressed as much as possible.
  • rotation blur of the bit part 11 (cutting edge part 21) can be suppressed as much as possible by the spire part 45 and the large-diameter tip flange part 41. Therefore, the enlarged diameter portion Hb can always be formed at a predetermined position from the hole bottom Ha of the prepared hole H.
  • the spire part 45 is attached to the front-end
  • the cylindrical screw portion 43 is formed with a male screw on the outer peripheral surface and has the same diameter as the cylindrical holding portion 42.
  • the two slit portions 46 are formed so as to cut from the proximal end of the cylindrical screw portion 43 toward the cylindrical holding portion 42.
  • the two slit portions 46 are formed at 180 ° point symmetrical positions in the circumferential direction of the cylindrical holding portion 42 and the cylindrical screw portion 43. Therefore, the individual cutting blade portions 22 of each step held by the slit portion 46 are also arranged at 180 ° point symmetrical positions in the circumferential direction. Further, the individual cutting blade portions 22 of each step are mounted on the cylindrical holding portion 42 so as to slide from the proximal end of the cylindrical screw portion 43, that is, from the small edge.
  • the cylindrical screw portion 43 is screwed into the second female screw portion 32 of the holding portion receiver 26 in a state where the three-stage and each pair of individual cutting blade portions 22 are attached to the cylindrical holding portion 42.
  • the three individual cutting edge portions 22 held by the cylindrical holding portion 42 are sandwiched between the tip flange portion 41 and the holding portion receiver 26 with a minute gap therebetween in the axial direction. It becomes a state.
  • a spacer 34 is incorporated in the inner peripheral portion of the cylindrical screw portion 43 on the holding portion receiver 26 side.
  • the spacer 34 is formed in a cylindrical shape, and comes into contact with the proximal end of the first individual cutting blade portion 22 ⁇ / b> A at the cylindrical screw portion 43. That is, the spacer 34 is in contact with the rib portion 52 and the retaining portion 53 (described later) of the first individual cutting blade portion 22 ⁇ / b> A, and the cutting blade body 51 (described later) is not in contact with the cylindrical screw portion 43.
  • a minute clearance is configured. Thereby, the movement to the radial direction of the individual cutting blade part 22 by a centrifugal force is performed smoothly.
  • the individual cutting blade portion 22 includes a cutting blade body 51 provided along the outer peripheral surface of the cutting blade holding portion 23, and a rib portion protruding from the inside of the cutting blade body 51. 52 and a widened retaining portion 53 (stopper) provided at the tip of the rib portion 52.
  • the cutting blade body 51 has a substantially 1 ⁇ 4 arc cross-sectional shape, and a grinding portion 55 is formed on the outer periphery thereof.
  • the rib portion 52 is engaged with the slit portion 46 so as to be slidable in the radial direction. That is, the cutting blade main body 51 is located outside the holding portion main body 25 (cylindrical holding portion 42), and the retaining portion 53 is located inside. In this state, the rib portion 52 is slidable with respect to the slit portion 46. Is engaged. And the length of the rib part 52 becomes a moving stroke of the individual cutting blade part 22.
  • the pair of individual cutting blade portions 22 held by the holding portion main body 25 is configured to be able to expand by a moving stroke radially outward by a centrifugal force generated by rotation. That is, in the initial state of expansion, the inner surface of the cutting blade body 51 is in contact with the outer peripheral surface of the cylindrical holding portion 42, and in the expanded state, the outer surface of the retaining portion 53 is the inner periphery of the cylindrical holding portion 42. Contact the surface (see FIG. 4). However, it is preferable that the actual grinding of the enlarged diameter portion Hb is managed by time (about 10 seconds).
  • the cutting blade portion 21 includes the first pair of first individual cutting blade portions 22A, the second pair of second individual cutting blade portions 22B, and the third step. And a pair of third individual cutting blade portions 22C.
  • the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C are formed such that the rib portion 52 becomes longer in this order. That is, the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C are formed in this order so that the moving stroke in the radial direction becomes longer (see FIG. 4).
  • a diameter-expanded portion Hb having a shape that expands stepwise (substantially truncated cone shape) toward the hole bottom Ha is formed (see FIG. 5).
  • first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C are formed with a tapered guide portion 56 on the outer peripheral surface of the base end side.
  • the guide portion 56 of the first individual cutting blade portion 22A is formed large, and the guide portions 56 of the second individual cutting blade portion 22B and the third individual cutting blade portion 22C are formed small and in the same shape.
  • the enlarged diameter drill bit 10 is pulled out from the pilot hole H.
  • the individual cutting edge portion 22 is returned to the original position by the guide portion 56, and the enlarged diameter drill bit 10 is It can be pulled out smoothly.
  • the cutting blade body 51 is composed of a diamond cutting blade having an arc cross section. That is, the cutting blade body 51 includes the guide portion 56 described above, and has a diamond grinding portion 55 on the outer peripheral portion thereof. Thereby, the inner peripheral surface of the pilot hole H is ground toward the outer side, and the enlarged diameter part Hb of a predetermined dimension is formed. Note that a weight or the like may be provided on the inner surface of the cutting blade body 51 so that a strong centrifugal force acts on the individual cutting blade portion 22.
  • the cutting blade main body 51 Since the cutting blade main body 51 has an arc shape, the actual grinding portion shifts from the entire arc-shaped peripheral surface to the intermediate portion as the spread proceeds (see FIG. 4). That is, as the grinding progresses, the frictional resistance of the cutting blade body 51 decreases, so that the grinding can proceed smoothly. But you may comprise the circular arc-shaped outer peripheral part of the cutting-blade main body 51 by the circular arc with a larger curvature than the circular arc with respect to the rotation center of the cutting-blade holding
  • the diameter expansion operation of the pilot hole H by the diameter expansion drill bit 10 will be described.
  • a pilot hole H is formed in advance in a target concrete frame A or the like.
  • the concrete frame A in this case includes a foundation, a beam, and the like in addition to a concrete outer wall, an inner wall, and a slab.
  • the diameter expansion drill bit 10 attached to the diameter expansion device 1 is inserted into the pilot hole H, and the spire portion 45 of the bit part 11 is abutted against the hole bottom Ha of the pilot hole H.
  • the electric drill 2 is driven to rotate the diameter expanding drill bit 10.
  • the diameter-expanding drill bit 10 rotates, centrifugal force acts on the 6 individual cutting edge portions 22, and the individual cutting edge portions 22 expand outward (see FIG. 5).
  • the grinding part 55 of the rotating cutting blade main body 51 grinds the inner surface of the pilot hole H, and forms the enlarged diameter part Hb in the inner part of the pilot hole H.
  • the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C are formed in this order so that the moving stroke in the radial direction becomes longer, it is expanded stepwise.
  • An enlarged diameter portion Hb having an opening shape (substantially truncated cone shape) is formed.
  • the cooling liquid is supplied. The cooling liquid cools the cutting edge part 21 and also cleans the pilot hole H and leaks out from the slit part 46 to individually cut. The expansion of the blade 22 is promoted.
  • the coolant that has received the centrifugal force presses the individual cutting blade portion 22 so as to radiate radially, and the coolant that adheres to the slit portion 46 functions as a lubricant, and the individual cutting blade portion 22 expands. Promote opening.
  • the radial movement stroke in the order of the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C. Is formed so as to be long, the diameter-enlarged portion Hb having a substantially truncated cone shape can be easily formed.
  • the individual cutting edge part 22 is the structure expanded by centrifugal force, an apparatus structure can be simplified.
  • cylindrical holding portion 42 and the holding portion receiver 26 may be integrally formed, and the tip flange portion 41 may be screwed into the cylindrical holding portion 42.
  • the number of individual cutting blade portions 22 in each step may be three or more, and the number of steps of the individual cutting blade portions 22 may be four or more.
  • the two individual cutting edge portions 22 of each step are formed in a tapered shape that follows the tapered shape of the formed expanded diameter portion Hb.
  • the cutting blade body 51 of the first individual cutting blade portion 22A has a shape that follows the tapered shape of the upper stage portion of the enlarged diameter portion Hb
  • the cutting blade body 51 of the second individual cutting blade portion 22B has the enlarged diameter portion Hb.
  • the cutting blade body 51 of the third individual cutting blade portion 22C is formed in a shape following the tapered shape of the lower portion of the enlarged diameter portion Hb.
  • the moving stroke of radial direction may become long in order of 22 A of 1st individual cutting blade parts, 22B of 2nd individual cutting blade parts, and 22 C of 3rd individual cutting blade parts. Yes. That is, the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C are formed such that the rib portion 52 becomes longer in this order.
  • the entire grinding by each of the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C can be formed.
  • the guide portion 56 can be omitted.
  • the diameter-expansion drill bit 10 which concerns on 3rd Embodiment, a different part from 1st Embodiment is mainly demonstrated.
  • this diameter-expanding drill bit 10 in the bit portion 11, the two individual cutting blade portions 22 of each step are configured to have the same radial movement stroke for each step. That is, in the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C, the rib portions 52 are formed to have the same length.
  • the entire grinding is performed by each of the first individual cutting edge 22A, the second individual cutting edge 22B, and the third individual cutting edge 22C.
  • a substantially cylindrical enlarged diameter portion Hb can be formed.
  • the cutting edge holding part 23 (cylindrical holding part 42) is formed in a shape that expands stepwise toward the tip.
  • the rib portions 52 are formed to have the same length in the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C.
  • the entire grinding is performed by grinding each of the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C.
  • the substantially frustoconical diameter-enlarged portion Hb can be formed.
  • the cutting edge holding part 23 (cylindrical holding part 42) is formed in a tapered shape that expands toward the tip.
  • Each individual cutting edge portion 22 has a grinding portion 55 having a taper angle following the taper angle of the cutting edge holding portion 23. That is, as in the second embodiment, the two individual cutting edge portions 22 of each step are formed in a tapered shape following the tapered shape of the formed enlarged diameter portion Hb.
  • the rib portion 52 is formed to have the same length in the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C.
  • the first individual cutting blade portion 22A, the second individual cutting blade portion 22B, and the third individual cutting blade portion 22C are ground by the grinding.
  • the diameter-enlarged portion Hb having a truncated cone shape as a whole can be formed.
  • a coolant pipe 18 (coolant pipe) is provided at the tip of the shank portion 12 and is connected to the in-shank flow path 17. That is, the shank portion 12 of the sixth embodiment communicates with the shank main body 15 having the in-shank flow path 17 and the in-shank flow path 17, and from the distal end portion of the shank main body 15 to the third individual blade at the cutting blade holding portion 23. And a coolant pipe 18 extending to a position corresponding to the cutting edge portion 22C.
  • An in-shank channel 17 is formed at the shaft center of the shank body 15, and the tip of the in-shank channel 17 is somewhat narrowed to a small diameter.
  • the coolant pipe 18 is attached to the front-end
  • the coolant pipe 18 is formed of stainless steel or the like, and the base end portion thereof is attached to the shank body 15 (the shank internal channel 17) by press fitting or the like.
  • a coolant pipe 18 having an inner diameter that is the same as the diameter of the tip of the flow passage 17 in the shank is prepared, and the tip of the flow passage 17 in the shank is expanded in accordance with the outer diameter of the coolant pipe 18. It is more preferable to press-fit the coolant pipe 18 into the part.
  • the rib portion 52 is formed shorter than the radius of the coolant pipe 18.
  • the coolant is discharged from the tip of the coolant pipe 18 into the cutting blade holder 23.
  • the coolant discharged from the coolant pipe 18 is directed to the opening through the slit 46 in the order of the third individual cutting edge 22C, the second individual cutting edge 22B, and the first individual cutting edge 22A.
  • Flow in the pilot hole H thereby, since the coolant flows smoothly in the pilot hole H, each individual cutting edge portion 22 can be efficiently cooled.
  • shank body 15 and the coolant pipe 18 may be integrally formed. Further, a small hole may be appropriately formed in the peripheral wall surface of the coolant pipe 18. For example, a small hole is formed corresponding to the second individual cutting blade portion 22B and the first individual cutting blade portion 22A, and the expansion of each individual cutting blade portion 22 is promoted by the coolant that receives centrifugal force. Also good.
  • 1 drilling device 2 electric drill, 3 coolant attachment, 10 diameter drill bit, 11 bit section, 12 shank section, 15 shank body, 17 shank passage, 18 coolant pipe, 21 cutting edge section, 22 individual Cutting edge part, 22A 1st individual cutting edge part, 22B 2nd individual cutting edge part, 22C 3rd individual cutting edge part, 23 cutting edge holding part, 25 holding part body, 26 holding part receiving, 41 tip flange part, 42 Cylindrical holding part, 43 cylindrical screw part, 45 spire part, 46 slit part, 51 cutting blade body, 52 rib part, 53 retaining part, 55 grinding part, 56 guide part, A concrete frame, H pilot hole, Ha hole bottom , Hb expanded part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

【課題】単純な構造で、形成される拡径部の形状に自由度を持たせることができる拡径用ドリルビットを提供する。 【解決手段】躯体Aに穿孔した下穴Hの一部を研削により拡径するための拡径用ドリルビット(10)であって、複数の個別切刃部(22)を有する切刃部(21)と、複数の個別切刃部(22)を、それぞれ径方向にスライド移動可能に保持する切刃保持部(23)と、切刃保持部(23)を支持するシャンク部(12)と、を備え、複数の個別切刃部(22)は、周方向に複数且つ軸方向に複数段に亘って配設され、各段の複数の個別切刃部(22)は、回転に伴う遠心力により、切刃保持部(23)に対し径方向外側にそれぞれ拡開するようにスライド移動する。

Description

拡径用ドリルビット
 本発明は、主として、コンクリート等の躯体に穿孔した下穴の一部を拡径するための拡径用ドリルビットに関するものである。
 従来、この種の拡径用ドリルビットとして、コンクリート等の躯体に穿孔したストレート形状の下穴に挿入して用いられ、下穴の最奥部を拡径するアンダーカットドリル装置が知られている(特許文献1参照)。
 このアンダーカットドリル装置は、下穴に挿入される中空円筒状の筒体と、下穴の開口縁部に着座し、ベアリングを介して筒体を回転自在に支持する当て部材と、同軸上において筒体にスライド自在に係合し、筒体と一体回転するシャフトと、筒体の先端側に設けられ、外周面に4つのガイド溝を有する円錐台形状のコーン部と、シャフトの先端部に取り付けられ、各ガイド溝に係合する4つのアームと、4つアームの先端部外面に交互に設けた2つの切刃および2つのガイド部と、を備えている。
 切刃およびガイド部は、シャフトを引き上げた状態で筒体の内側に位置している。下穴に挿入した筒体およびシャフトを一体回転させ、シャフトを下動させてゆくと、コーン部のガイド溝により4つのアームが下動しながら外側に開いてゆく。これにより、切刃が下穴の内周面を研削し、下穴の底部(最奥部)に拡径部が形成される。
特開2005-280243号公報
 このような従来のアンダーカットドリル装置では、切刃を有するアームをコーン部の外周面でガイドする構造となっているため、コーン部を筒体で支持せざるを得ず、構造が極めて複雑になる問題があった。
 また、切刃を設けたアームを、下動させながらガイド溝により外側に開くようにして、下穴の内周面を研削する構成であるため、形成される拡径部の形状に、自ずと制約が生ずるものとなっていた。
 本発明は、単純な構造で、形成される拡径部の形状に自由度を持たせることができる拡径用ドリルビットを提供することをその課題としている。
 本発明の拡径用ドリルビットは、躯体に穿孔した下穴に挿入して用いられ、下穴の一部を研削により拡径するための拡径用ドリルビットであって、下穴の一部を研削するための複数の個別切刃部を有する切刃部と、複数の個別切刃部を、それぞれ径方向にスライド移動可能に保持する切刃保持部と、切刃保持部を支持するシャンク部と、を備え、複数の個別切刃部は、周方向に複数且つ軸方向に複数段に亘って配設され、各段の複数の個別切刃部は、回転に伴う遠心力により、切刃保持部に対し径方向外側にそれぞれ拡開するようにスライド移動することを特徴とする。
 この構成によれば、下穴に挿入した状態でシャンク部を回転させると、切刃保持部に保持された各段の複数の個別切刃部は、それぞれ遠心力を受けて径方向外方にスライド移動する。すなわち、切刃保持部と共に回転する複数の個別切刃部は、遠心力により径方向外側に拡開するようにスライド移動し、下穴を研削して拡径させる。この場合、各個別切刃部が、それぞれ遠心力により移動する構成であるため、構造を単純化することができる。また、各段の複数の個別切刃部は、それぞれ遠心力により拡開するため、段毎に移動ストロークを異同設定することにより、軸方向において任意の形状の拡径部を形成することができる。すなわち、形成される拡径部の形状に、自由度を持たせることができる。
 この場合、各段の複数の個別切刃部は、段毎の径方向の移動ストロークが異なることが好ましい。
 この構成によれば、段毎の移動ストロークを適宜設定することで、下穴に、略円錐台形状、略逆円錐台形状、略変形くびれ形状等の拡径部分を、自在に形成することができる。
 この場合、段毎の移動ストロークは、先端に向かって順次長くなることが好ましい。
 この構成によれば、下穴に、先端に向かって拡開するような略円錐台形状の拡径部分を形成することができる。
 また、各段の複数の個別切刃部は、段毎の径方向の移動ストロークが同一であることが好ましい。
 この構成によれば、下穴に、略円筒状の拡径部を形成することができる。
 この場合、切刃保持部は、先端に向かって拡開する形状に形成されていることが好ましい。
 この構成によれば、下穴に、先端に向かって拡開するような略円錐台形状の拡径部分を形成することができる。
 また、各個別切刃部は、基端側外周面に、下穴に形成した拡径部分からの引き抜きを案内するガイド部を有していることが好ましい。
 拡径部分を形成した後、切刃部(拡径用ドリルビット)を下穴から引き抜くときに、拡径部分の形状によっては、遠心力で広がった個別切刃部が拡径部分につかえるおそれがある。
 この構成によれば、個別切刃部が、基端側外周面にガイド部を有しているため、切刃部を引き抜くときに、このガイド部を介して個別切刃部を元の位置に移動させることができる。したがって、形成した拡径部分の形状に拘わらず、拡径用ドリルビットを円滑に引き抜くことができる。
 また、切刃保持部は、先端部に同軸上に位置して突設した尖塔部を有し、尖塔部は、超鋼材料で構成されていることが好ましい。
 この構成によれば、尖塔部を下穴の穴底に押し当てて回転させることで、下穴の穴底を基準として、所定の深さ位置に拡径部分を形成することができる。また、尖塔部が穴底の中心に点接触するため、回転に際し、穴底との摩擦を極力小さくすることができると共に、切刃部の回転ブレを極力抑制することができる。さらに、尖塔部を超鋼材料で構成しているため、尖塔部の摩耗を極力抑えることができる。これにより、常に、下穴の穴底から所定の位置に拡径部分を形成することができる。
 一方、切刃保持部は、各段の複数の個別切刃部をスライド移動可能に保持する複数の切刃開口部を有し、各個別切刃部は、断面円弧状の研削部を含む切刃本体と、切刃本体を支持すると共に、切刃開口部に対し径方向にスライド自在に係合するリブ部と、リブ部に設けられ、切刃開口部に対し抜け止めとなる抜止め部と、を有していることが好ましい。
 この構成によれば、遠心力により径方向外側に移動する個別切刃部は、そのリブ部が切刃保持部の切刃開口部に案内されてスライド移動する。この場合、各リブ部が、切刃開口部に対し径方向にスライド自在に係合しているため、研削部を含む切刃本体は、径方向外側に平行移動する。これにより、下穴(の一部)を効率良く研削することができる。また、抜止め部により、径方向外側に移動する切刃本体の移動端位置、すなわち個別切刃部の移動ストロークを簡単に規制することができる。
 また、各段の複数の個別切刃部は、180°点対称位置に配設した2つの個別切刃部で構成されていることが好ましい。
 この構成によれば、切削性能を損なうことなく、切刃部廻りを単純且つコンパクトに構成することができる。
 さらに、シャンク部は、切刃保持部を介して切刃部に冷却剤を供給するための、シャンク内流路を有するシャンク本体と、シャンク内流路に連通すると共に、シャンク本体の先端部から切刃保持部における最先端段の複数の個別切刃部に対応する位置まで延びる冷却剤パイプと、を有していることが好ましい。
 この構成によれば、冷却剤パイプからの冷却剤の放出により、切刃保持部を介して冷却剤を切刃部の先端側(最先端段の複数の個別切刃部)から供給しこれを冷却することができる。切刃部の先端側から供給された冷却剤は、各段の個別切刃部を冷却しながら下穴の開口部に向かって流れるため、切刃部を効率良く冷却することができる。また、冷却剤が液体である場合、遠心力を受けた冷却剤は、放射状に飛び散るようにして各個別切刃部を押圧し、その拡開を促進する。
実施形態に係る拡径用ドリルビットを含む拡径装置の外観図である。 第1実施形態に係る拡径用ドリルビットにおけるビット部の構造図(a)、その分解状態の構造図(b)およびその90°回転させた分解状態の構造図(c)である。 ビット部における切刃部の分解斜視図である。 ビット部における各段の個別切刃部の拡開状態を表した説明図である。 第1実施形態におけるビット部とこれにより形成される拡径部を表した断面模式図である。 第2実施形態におけるビット部とこれにより形成される拡径部を表した断面模式図である。 第3実施形態におけるビット部とこれにより形成される拡径部を表した断面模式図である。 第4実施形態におけるビット部とこれにより形成される拡径部を表した断面模式図である。 第5実施形態におけるビット部とこれにより形成される拡径部を表した断面模式図である。 第6実施形態に係る拡径用ドリルビットのシャンク部およびビット部の構造図(a)、およびシャンク部とビット部とを分離した状態の構造図(b)である。
 以下、添付の図面を参照して、本発明の一実施形態に係る拡径用ドリルビットについて説明する。この拡径用ドリルビットは、主として、後施工アンカーを打ち込むためにコンクリート等の躯体に形成した下穴に対し、その一部を拡径するものであり、打ち込んだ後施工アンカーの引抜き強度を高め得るものである。すなわち、下穴に打ち込んだ後施工アンカーに理論上のクサビ効果を発揮させるために、この拡径用ドリルビットは、下穴の一部に拡径部を形成するものである。
 図1は、下穴に拡径部を形成する拡径装置の外観図である。同図に示すように、拡径装置1は、手持ちの電動ドリル2と、電動ドリル2に装着した冷却液アタッチメント3と、冷却液アタッチメント3に装着した拡径用ドリルビット10と、を有している。すなわち、拡径用ドリルビット10は、動力源を構成する電動ドリル2に接続された冷却液アタッチメント3の回転軸3aに、着脱自在に装着して用いられる。
 この回転軸3aには、冷却液の流路が形成される一方、冷却液アタッチメント3は、図外の冷却液供給装置が接続されており、冷却液は、この冷却液供給装置から冷却液アタッチメント3を介して拡径用ドリルビット10の先端部に供給される。なお、冷却液アタッチメント3には、冷却液の流路を開閉するバルブが組み込まれており(図示省略)、バルブは、拡径用ドリルビット10を下穴Hの穴底Haに突き当てることにより「開」、穴底Haから離すことにより「閉」となる。また、下穴Hは、振動ドリル、ハンマードリル、コアビット等により穿孔される。
 拡径用ドリルビット10は、下穴Hに拡径部Hbを形成するビット部11と、基端側で拡径装置1の回転軸3a(冷却液アタッチメント3)に着脱自在に装着され、先端側でビット部11を同軸上に支持するシャンク部12と、を備えている。この場合、ビット部11は、ユニット化されており、シャンク部12の先端部にねじ接合により着脱可能に取り付けられている。また、シャンク部12は、ビット部11を支持するシャンク本体15と、回転軸3aに装着される太径のシャフト部16と、で一体に形成されている。
 シャフト部16は、その小口に雌ねじで形成された締結部16aを有し、この締結部16aが、雄ねじで形成された冷却液アタッチメント3の回転軸3aに螺合している。また、シャンク部12(シャンク本体15)の先端部には、ビット部11が螺合する先端雄ねじ部15aが形成されている。さらに、シャンク本体15およびシャフト部16の軸心部には、冷却液用のシャンク内流路17が形成されている。冷却液アタッチメント3から供給される冷却液は、シャンク内流路17を介してビット部11に供給される。
 なお、上記の拡径装置1は、冷却液を用いる湿式のものであり、冷却液を用いない乾式のものも用意されている。特に図示しないが、乾式の拡径装置1は、シャンク部12にシャンク内流路17が無く、拡径用ドリルビット10は、電動ドリル2に直接接続される。また、他の乾式の拡径装置1は、冷却液に代え圧縮エアーや冷却ガスが導入される。そして、ユニット化されたビット部11は、これら湿式および乾式の拡径用ドリルビット10において、共通部品として用いられる。
 次に、図2(a)および(b)の拡大図を参照して、ビット部11について詳細に説明する。同図に示すように、ビット部11は、下穴Hを研削するための複数(実施形態のものは6つ)の個別切刃部22を有する切刃部21と、複数の個別切刃部22を、それぞれ径方向に移動自在に保持する切刃保持部23と、を備えている。また、複数(6つ)の個別切刃部22は、周方向に複数(2つ)且つ軸方向に複数段(3段)に亘って配設されている。この拡径用ドリルビット10では、ビット部11を下穴Hに挿入した状態で拡径用ドリルビット10を回転させ、遠心力により、各段2つ且つ3段、計6つの個別切刃部22が径方向外側に拡開させ、拡径部Hbを研削する。
 切刃部21は、シャンク部12側に位置する第1段目の一対の第1個別切刃部22A(図4では(a)参照)と、第2段目の一対の第2個別切刃部22B(図4では(b)参照)と、先端側に位置する第3段目の一対の第3個別切刃部22C(図4では(c)参照)と、を有している。一方、切刃保持部23は、切刃部21を保持する保持部本体25と、保持部本体25が螺合するシャンク部12側の保持部受け26とを有している。
 保持部受け26は、基端側に形成された小径の第1雌ねじ部31と、先端側に形成した大径の第2雌ねじ部32と、を有している。第1雌ねじ部31には、シャンク部12(シャンク本体15)の先端部(先端雄ねじ部15a)が螺合し、第2雌ねじ部32には、保持部本体25の基端部が螺合している。また、保持部受け26の基端側半部は、大きく面取りするようにテーパー形状に形成されている。なお、保持部受け26は、シャンク部12と一体に形成されていてもよい。
 保持部本体25は、フランジ状の先端フランジ部41と、先端フランジ部41に連なり、切刃部21を保持する円筒状の円筒保持部42と、円筒保持部42に連なる円筒ねじ部43と、を有している。また、保持部本体25は、先端フランジ部41の中心部先端に設けた尖塔部45と、円筒保持部42および円筒ねじ部43の部分に形成した複数(2つ)のスリット部46(切刃開口部)と、を有している。そして、切刃部21を構成する6つの個別切刃部22は、保持部本体25の外周面に沿うように保持されている。
 先端フランジ部41は、先端側半部がテーパー形状に形成されており、この部分の軸心部に、尖塔部45が取り付けられている。尖塔部45は、例えば超鋼合金(超鋼材料)で構成されており、先端円錐部45aとこれに連なる円柱部45bとで一体に形成されている。また、先端フランジ部41のテーパー部分の錐角と、先端円錐部45aの錐角とは同一の角度に形成され、先端フランジ部41におけるテーパー部分の延長上に、先端円錐部45aが位置するようになっている。
 先端フランジ部41は、ビット部11において最も大径に形成されており、その径は、下穴Hより僅かに小径(0.5mm程度)に形成されている。実施形態の拡径用ドリルビット10は、尖塔部45を下穴Hの穴底Haに突き当てた状態で回転させ、下穴Hの奥部に拡径部Hbを形成する。すなわち、拡径部Hbの形成に際し、先端円錐部45aを穴底Haの中心に突き当てた状態で、拡径用ドリルビット10を回転させるようになっている。
 これにより、先端円錐部45a(尖塔部45)が穴底Haの中心に点接触し、回転に際し、穴底Haとの摩擦を極力小さくすることができる。また、尖塔部45は超鋼合金で構成されているため、尖塔部45の摩耗を極力抑えることができる。さらに、尖塔部45と大径の先端フランジ部41とにより、ビット部11(切刃部21)の回転ブレを極力抑制することができる。したがって、常に、下穴Hの穴底Haから所定の位置に拡径部Hbを形成することができる。なお、尖塔部45は、先端フランジ部41に溶着や焼嵌め等で取り付けられているが、回転自在に取り付けられていてもよい。
 円筒ねじ部43は、外周面に雄ねじが形成され、且つ円筒保持部42と同径に形成されている。また、2つのスリット部46は、円筒ねじ部43の基端から円筒保持部42に向かって切り込むようにして形成されている。この2つのスリット部46は、円筒保持部42および円筒ねじ部43の周方向において、180°点対称位置に形成されている。したがって、スリット部46に保持される各段の個別切刃部22も、周方向において、180°点対称位置に配設されている。また、各段の個別切刃部22は、円筒ねじ部43の基端、すなわち小口からスライドさせるようにして、円筒保持部42に装着される。
 そして、3段且つ各段一対の個別切刃部22が、円筒保持部42に装着された状態で、円筒ねじ部43が、保持部受け26の第2雌ねじ部32に螺合される。この状態では、円筒保持部42に保持された3段の個別切刃部22は、軸方向において、相互に微小な間隙を存して先端フランジ部41と保持部受け26との間に挟み込まれた状態となる。
 この場合、上段に位置する第1個別切刃部22Aは、径方向に移動する際に、第2雌ねじ部32を有する保持部受け26につかえる可能性がある。そこで、円筒ねじ部43の内周部には、保持部受け26側にスペーサー34が内蔵されている。スペーサー34は、円筒状に形成され、円筒ねじ部43において第1個別切刃部22Aの基端に接触する。すなわち、スペーサー34は、第1個別切刃部22Aのリブ部52および抜止め部53(後述する)に接触し、切刃本体51(後述する)を円筒ねじ部43に非接触となるように微小なクリアランスを構成している。これにより、遠心力による個別切刃部22の径方向への移動が、円滑に行われる。
 図3および図4に示すように、個別切刃部22は、切刃保持部23の外周面に沿うように設けた切刃本体51と、切刃本体51の内側に突設されたリブ部52と、リブ部52の先端に設けた拡幅形状の抜止め部53(ストッパー)と、を有している。切刃本体51は、略1/4円弧の断面形状を有しており、その外周部には、研削部55が形成されている。また、リブ部52は、上記のスリット部46に対し径方向にスライド自在に係合している。すなわち、保持部本体25(円筒保持部42)の外側に切刃本体51が位置すると共に、内側に抜止め部53が位置し、この状態で、リブ部52がスリット部46に対しスライド自在に係合している。そして、リブ部52の長さが、個別切刃部22の移動ストロークとなる。
 したがって、保持部本体25に保持された各段の一対の個別切刃部22は、回転により生ずる遠心力により径方向外側に移動ストローク分、拡開可能に構成されている。すなわち、拡開の初期状態において、切刃本体51の内面が上記の円筒保持部42の外周面に接触し、拡開の完了状態において、抜止め部53の外面が円筒保持部42の内周面に接触する(図4参照)。もっとも、実際の拡径部Hbの研削は、時間で管理(10秒程度)することが好ましい。
 上述のように、実施形態の切刃部21は、第1段目の一対の第1個別切刃部22Aと、第2段目の一対の第2個別切刃部22Bと、第3段目の一対の第3個別切刃部22Cと、で構成されている。この場合、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cは、この順でリブ部52が長くなるように形成されている。すなわち、第1個別切刃部22A、第2個別切刃部22B、第3個別切刃部22Cの順で、径方向の移動ストロークが長くなるように形成されている(図4参照)。これにより、穴底Haに向かって、段階的に拡開する形状(略円錐台形状)の拡径部Hbが形成される(図5参照)。
 また、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cには、その基端側外周面にテーパー形状のガイド部56が形成されている。第1個別切刃部22Aのガイド部56は、大きく形成され、第2個別切刃部22Bおよび第3個別切刃部22Cのガイド部56は、小さく且つ同一の形状に形成されている。拡径部Hbを形成した後、拡径用ドリルビット10を下穴Hから引き抜くが、その際、ガイド部56により、個別切刃部22は元の位置に戻り、拡径用ドリルビット10が円滑に引き抜き得るようになっている。
 切刃本体51は、断面円弧状のダイヤモンドの切刃で構成されている。すなわち、切刃本体51は、上記のガイド部56を含んで、その外周部にダイヤモンドの研削部55を有している。これにより、下穴Hの内周面が外側に向かって研削され、所定の寸法の拡径部Hbが形成される。なお、個別切刃部22に強い遠心力が作用させるべく、切刃本体51の内面には、錘等を設けるようにしてもよい。
 切刃本体51は円弧状を為すため、拡開が進むに従って、その実研削部位が円弧状の周面全体から中間部分に移行する(図4参照)。すなわち、研削が進むに従って切刃本体51の摩擦抵抗が小さくなるため、研削を円滑に進めることができる。もっとも、切刃本体51の円弧状の外周部を、切刃保持部23の回転中心に対する円弧より曲率の大きい円弧で構成しておいてもよい。また、研削初期における研削抵抗を小さくすべく、切刃本体51の周方向の先端側(回転方向の先端側)は、面取り形状とすることも好ましい。
 次に、図1および図5を参照して、拡径用ドリルビット10による下穴Hの拡径作業について説明する。この拡径作業では、予め対象となるコンクリート躯体A等に下穴Hが形成されているものとする。なお、この場合のコンクリート躯体Aには、コンクリート製の外壁、内壁、スラブの他、基礎や梁等が含まれる。
 拡径作業では、先ず拡径装置1に装着した拡径用ドリルビット10を下穴Hに挿入し、そのビット部11の尖塔部45を下穴Hの穴底Haに突き当てるようにする。続いて、電動ドリル2を駆動して拡径用ドリルビット10を回転させる。拡径用ドリルビット10が回転すると、6の個別切刃部22に遠心力が作用し、個別切刃部22は、外方に拡開してゆく(図5参照)。これにより、回転する切刃本体51の研削部55が、下穴Hの内面を研削し、下穴Hの奥部に拡径部Hbを形成する。
 この場合、第1個別切刃部22A、第2個別切刃部22B、第3個別切刃部22Cの順で、径方向の移動ストロークが長くなるように形成されているため、段階的に拡開する形状(略円錐台形状)の拡径部Hbが形成される。なお、拡径部Hbを形成している間、冷却液が供給されるが、冷却液は、切刃部21を冷却する他、下穴Hを洗浄すると共にスリット部46から漏れ出て個別切刃部22の拡開を促進する。すなわち、遠心力を受けた冷却液は、放射状に飛び散るようにして個別切刃部22を押圧し、且つスリット部46に付着した冷却液は、潤滑剤として機能し、個別切刃部22の拡開を促進する。
 このように、第1実施形態によれば、切刃部21において、第1個別切刃部22A、第2個別切刃部22B、第3個別切刃部22Cの順で、径方向の移動ストロークが長くなるように形成されているため、略円錐台形状の拡径部Hbを簡単に形成することができる。また、個別切刃部22を、遠心力により拡開される構成であるため、装置構成を単純化することができる。
 なお、円筒保持部42と保持部受け26とを一体に形成し、円筒保持部42に先端フランジ部41が螺合する構成であってもよい。また、各段の個別切刃部22は、3つ以上であってもよいし、個別切刃部22の段数は、4段以上であってもよい。
 次に、図6を参照して、第2実施形態に係る拡径用ドリルビット10につき、主に第1実施形態と異なる部分について説明する。
 同図に示すように、この拡径用ドリルビット10では、ビット部11において、各段の2つの個別切刃部22が、形成される拡径部Hbのテーパー形状に倣ったテーパー形状に形成されている。すなわち、第1個別切刃部22Aの切刃本体51は、拡径部Hbの上段部分のテーパー形状に倣った形状に、第2個別切刃部22Bの切刃本体51は、拡径部Hbの中断部分のテーパー形状に倣った形状に、第3個別切刃部22Cの切刃本体51は、拡径部Hbの下段部分のテーパー形状に倣った形状に、それぞれ形成されている。
 そして、第1実施形態と同様に、第1個別切刃部22A、第2個別切刃部22B、第3個別切刃部22Cの順で、径方向の移動ストロークが長くなるように形成されている。すなわち、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cは、この順でリブ部52が長くなるように形成されている。
 このような、第2実施形態に係る拡径用ドリルビット10によれば、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cのそれぞれの研削により、全体として、円錐台形状の拡径部Hbを形成することができる。また、個別切刃部22がテーパー形状を為すため、上記のガイド部56を省略することができる。
 次に、図7を参照して、第3実施形態に係る拡径用ドリルビット10につき、主に第1実施形態と異なる部分について説明する。
 同図に示すように、この拡径用ドリルビット10では、ビット部11において、各段の2つの個別切刃部22は、段毎の径方向の移動ストロークが同一に構成されている。すなわち、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cにおいて、リブ部52が、同一の長さに形成されている。
 このような、第3実施形態に係る拡径用ドリルビット10によれば、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cのそれぞれの研削により、全体として、略円筒形状の拡径部Hbを形成することができる。
 次に、図8を参照して、第4実施形態に係る拡径用ドリルビット10につき、主に第1実施形態と異なる部分について説明する。
 同図に示すように、この拡径用ドリルビット10では、ビット部11において、切刃保持部23(円筒保持部42)は、先端に向かって段階的な拡開する形状に形成されている。一方、第3実施形態と同様に、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cにおいて、リブ部52が、同一の長さに形成されている。
 このような、第4実施形態に係る拡径用ドリルビット10によれば、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cのそれぞれの研削により、全体として、略円錐台形状の拡径部Hbを形成することができる。
 次に、図9を参照して、第5実施形態に係る拡径用ドリルビット10につき、主に第1実施形態と異なる部分について説明する。
 同図に示すように、この拡径用ドリルビット10では、ビット部11において、切刃保持部23(円筒保持部42)は、先端に向かって拡開するテーパー形状に形成されている。また、各個別切刃部22は、切刃保持部23のテーパー角に倣うテーパー角の研削部55を有している。すなわち、第2実施形態のように、各段の2つの個別切刃部22が、形成される拡径部Hbのテーパー形状に倣ったテーパー形状に形成されている。そして、この場合も、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cにおいて、リブ部52が、同一の長さに形成されている。
 このような、第5実施形態に係る拡径用ドリルビット10によれば、第1個別切刃部22A、第2個別切刃部22Bおよび第3個別切刃部22Cのそれぞれの研削により、第2実施形態と同様に、全体として円錐台形状の拡径部Hbを形成することができる。
 次に、図10を参照して、第6実施形態に係る拡径用ドリルビット10につき、主に第1実施形態と異なる部分について説明する。
 同図に示すように、この拡径用ドリルビット10では、シャンク部12の先端にシャンク内流路17に連なる冷却液パイプ18(冷却剤パイプ)が設けられている。すなわち、第6実施形態のシャンク部12は、シャンク内流路17を有するシャンク本体15と、シャンク内流路17に連通すると共に、シャンク本体15の先端部から切刃保持部23における第3個別切刃部22Cに対応する位置まで延びる冷却液パイプ18と、を有している。
 シャンク本体15の軸心には、シャンク内流路17が形成され、シャンク内流路17の先端部は、幾分小径に絞り込まれている。そして、このシャンク内流路17(シャンク本体15)先端部に冷却液パイプ18が取り付けられている。この場合、冷却液パイプ18は、ステンレス等で形成されており、その基端部をシャンク本体15(シャンク内流路17)に対し圧入等により取り付けられている。なお、内径がシャンク内流路17の先端部の径と同径の冷却液パイプ18を用意し、シャンク内流路17の先端部を冷却液パイプ18の外径に合わせて拡径し、この部分に冷却液パイプ18を圧入等することが、より好ましい。なお、言うまでもないが、第6実施形態の個別切刃部22は、リブ部52が冷却液パイプ18の半径分短く形成されている。
 このような構成では、冷却液は、冷却液パイプ18の先端から切刃保持部23内に放出される。冷却液パイプ18から放出された冷却液は、スリット部46を介して、第3個別切刃部22C、第2個別切刃部22Bおよび第1個別切刃部22Aの順で、開口部に向かって下穴H内を流れる。これにより、冷却液は下穴H内を円滑に流れるため、各個別切刃部22を効率良く冷却することができる。
 なお、シャンク本体15と冷却液パイプ18とは、一体に形成されていてもよい。また、冷却液パイプ18の周壁面に適宜小穴を形成してもよい。例えば、第2個別切刃部22Bおよび第1個別切刃部22Aに対応して小穴を形成し、遠心力を受けた冷却液により、各個別切刃部22の拡開を促進するようにしてもよい。
 1 穿孔装置、2 電動ドリル、3 冷却液アタッチメント、10 拡径用ドリルビット、11 ビット部、12 シャンク部、15 シャンク本体、17 シャンク内流路、18 冷却液パイプ、21 切刃部、22 個別切刃部、22A 第1個別切刃部、22B 第2個別切刃部、22C 第3個別切刃部、23 切刃保持部、25 保持部本体、26 保持部受け、41 先端フランジ部、42 円筒保持部、43 円筒ねじ部、45 尖塔部、46 スリット部、51 切刃本体、52 リブ部、53 抜止め部、55 研削部、56 ガイド部、A コンクリート躯体、H 下穴、Ha 穴底、Hb 拡径部

Claims (10)

  1.  躯体に穿孔した下穴に挿入して用いられ、前記下穴の一部を研削により拡径するための拡径用ドリルビットであって、
     前記下穴の一部を研削するための複数の個別切刃部を有する切刃部と、
     前記複数の個別切刃部を、それぞれ径方向にスライド移動可能に保持する切刃保持部と、
     前記切刃保持部を支持するシャンク部と、を備え、
     前記複数の個別切刃部は、周方向に複数且つ軸方向に複数段に亘って配設され、
     前記各段の複数の個別切刃部は、回転に伴う遠心力により、前記切刃保持部に対し径方向外側にそれぞれ拡開するようにスライド移動することを特徴とする拡径用ドリルビット。
  2.  前記各段の複数の個別切刃部は、段毎の径方向の移動ストロークが異なることを特徴とする請求項1に記載の拡径用ドリルビット。
  3.  前記段毎の移動ストロークは、先端に向かって順次長くなることを特徴とする請求項2に記載の拡径用ドリルビット。
  4.  前記各段の複数の個別切刃部は、段毎の径方向の移動ストロークが同一であることを特徴とする請求項1に記載の拡径用ドリルビット。
  5.  前記切刃保持部は、先端に向かって拡開する形状に形成されていることを特徴とする請求項4に記載の拡径用ドリルビット。
  6.  前記各個別切刃部は、基端側外周面に、前記下穴に形成した拡径部分からの引き抜きを案内するガイド部を有していることを特徴とする請求項1ないし5のいずれか一項に記載の拡径用ドリルビット。
  7.  前記切刃保持部は、先端部に同軸上に位置して突設した尖塔部を有し、
     前記尖塔部は、超鋼材料で構成されていることを特徴とする請求項1ないし6のいずれか一項に記載の拡径用ドリルビット。
  8.  前記切刃保持部は、前記各段の複数の個別切刃部をスライド移動可能に保持する複数の切刃開口部を有し、
     前記各個別切刃部は、
     断面円弧状の研削部を含む切刃本体と、
     前記切刃本体を支持すると共に、前記切刃開口部に対し径方向にスライド自在に係合するリブ部と、
     前記リブ部に設けられ、前記切刃開口部に対し抜け止めとなる抜止め部と、を有していることを特徴とする請求項1ないし7のいずれか一項に記載の拡径用ドリルビット。
  9.  前記各段の複数の個別切刃部は、180°点対称位置に配設した2つの前記個別切刃部で構成されていることを特徴とする請求項1ないし8のいずれか一項に記載の拡径用ドリルビット。
  10.  前記シャンク部は、
     前記切刃保持部を介して前記切刃部に冷却剤を供給するための、シャンク内流路を有するシャンク本体と、
     前記シャンク内流路に連通すると共に、前記シャンク本体の先端部から前記切刃保持部における最先端段の前記複数の個別切刃部に対応する位置まで延びる冷却剤パイプと、を有していることを特徴とする請求項1ないし9のいずれか一項に記載の拡径用ドリルビット。
PCT/JP2015/078687 2015-04-13 2015-10-08 拡径用ドリルビット WO2016166908A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016522073A JP6081666B1 (ja) 2015-04-13 2015-10-08 拡径用ドリルビット
SG11201608694SA SG11201608694SA (en) 2015-04-13 2015-10-08 Diameter expansion drill bit
RU2016141064A RU2635703C1 (ru) 2015-04-13 2015-10-08 Буровое долото для расширения диаметра
US15/304,277 US10239231B2 (en) 2015-04-13 2015-10-08 Diameter expansion drill bit
EP15877376.2A EP3103586A4 (en) 2015-04-13 2015-10-08 Diameter expansion drill bit
CN201580011714.5A CN106255573B (zh) 2015-04-13 2015-10-08 扩径用钻头
KR1020167017312A KR101837526B1 (ko) 2015-04-13 2015-10-08 확경용 드릴 비트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081557 2015-04-13
JP2015-081557 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016166908A1 true WO2016166908A1 (ja) 2016-10-20

Family

ID=57125804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078687 WO2016166908A1 (ja) 2015-04-13 2015-10-08 拡径用ドリルビット

Country Status (8)

Country Link
US (1) US10239231B2 (ja)
EP (1) EP3103586A4 (ja)
JP (1) JP6081666B1 (ja)
KR (1) KR101837526B1 (ja)
CN (1) CN106255573B (ja)
RU (1) RU2635703C1 (ja)
SG (1) SG11201608694SA (ja)
WO (1) WO2016166908A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114434662A (zh) * 2021-12-22 2022-05-06 中铁四局集团第二工程有限公司 离心摆臂式铁路箱梁锚穴凿毛器
CN117943915A (zh) * 2024-03-26 2024-04-30 山西富兴通重型环锻件有限公司 一种用于法兰盘内孔面的研磨装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085507B1 (en) * 2014-11-20 2023-08-09 FS Technical Corporation Anchor hole formation method
WO2016166908A1 (ja) * 2015-04-13 2016-10-20 Fsテクニカル株式会社 拡径用ドリルビット
KR20180067242A (ko) * 2016-12-12 2018-06-20 인천대학교 산학협력단 드릴 비트
US10675729B2 (en) * 2017-05-31 2020-06-09 Baker Hughes, A Ge Company, Llc Electromechanical rotary pipe mill or hone and method
CN109513965B (zh) * 2018-11-29 2020-12-11 海宁科巍轴承科技有限公司 一种利用离心力改变汽车滑动轴承的套油孔打孔装置
TWI718955B (zh) 2020-05-28 2021-02-11 鴻安國際興業有限公司 倒角旋轉刀
CN111843593A (zh) * 2020-07-25 2020-10-30 广州优易机械科技有限公司 一种改良式数控车床
CN112606109A (zh) * 2020-12-15 2021-04-06 梁绍丽 一种在制造家具板材上钻取t形孔的方法
CN114352206B (zh) * 2021-11-25 2024-01-12 湖北兴龙工具有限公司 扩径用钻头
CN115815661B (zh) * 2023-02-20 2023-04-28 太原理工大学 一种动平衡可调节的可转位浅孔钻及其动平衡调节组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138055U (ja) * 1979-03-26 1980-10-01
JP2001129821A (ja) * 1999-11-04 2001-05-15 Shinobu Ito あと施工アンカーの取付孔を形成する方法および下穴拡径具
JP2005280243A (ja) 2004-03-30 2005-10-13 Sanko Techno Co Ltd アンダーカットドリル装置
US20120070244A1 (en) * 2009-02-19 2012-03-22 Izhak Stern Y.D.E. Engineers Ltd. Nibbling Mechanism for Construction Material
JP2012148462A (ja) * 2011-01-19 2012-08-09 Tokyo Electric Power Co Inc:The 切削装置及びそれを用いた工法
WO2014129119A1 (ja) * 2013-02-19 2014-08-28 Fsテクニカル株式会社 拡径用ドリルビット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU438773A1 (ru) * 1973-07-02 1974-08-05 Специализированный Трест По Производству Работ По Бурению Скважин На Воде Расширитель скважин
CH662776A5 (fr) * 1984-08-16 1987-10-30 Sarkis Sa Outil de percage de trous a chambre et son utilisation.
US4976323A (en) * 1989-06-30 1990-12-11 Kitchens Richard A Counterboring device for wells
US5233791A (en) * 1992-03-02 1993-08-10 Mcqueen Jr Joe C Apparatus for grinding the internal surface of pipe
US5528830A (en) * 1994-02-18 1996-06-25 Hansen; Fredrick M. Rotary cutting tool for tubing, conduit and the like
EP1777365B1 (en) * 2005-10-18 2009-08-05 Services Petroliers Schlumberger SA An expandable drill bit
US7686103B2 (en) * 2007-06-06 2010-03-30 San Juan Coal Company Drill bit with radially expandable cutter, and method of using same
US8308530B2 (en) * 2009-08-31 2012-11-13 Ati Properties, Inc. Abrasive cutting tool
WO2011137494A1 (en) * 2010-05-07 2011-11-10 Obelix Holdings Pty Ltd Undercutting tool
WO2012015976A1 (en) * 2010-07-27 2012-02-02 Ginn Richard S System for sacro-iliac stabilization
CN202964929U (zh) * 2012-11-28 2013-06-05 雷建 可变径电钻钻头
JP6086750B2 (ja) * 2013-02-19 2017-03-01 Fsテクニカル株式会社 拡径用ドリルビット
JP6126410B2 (ja) * 2013-02-19 2017-05-10 Fsテクニカル株式会社 拡径用ドリルビット
WO2016166908A1 (ja) * 2015-04-13 2016-10-20 Fsテクニカル株式会社 拡径用ドリルビット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138055U (ja) * 1979-03-26 1980-10-01
JP2001129821A (ja) * 1999-11-04 2001-05-15 Shinobu Ito あと施工アンカーの取付孔を形成する方法および下穴拡径具
JP2005280243A (ja) 2004-03-30 2005-10-13 Sanko Techno Co Ltd アンダーカットドリル装置
US20120070244A1 (en) * 2009-02-19 2012-03-22 Izhak Stern Y.D.E. Engineers Ltd. Nibbling Mechanism for Construction Material
JP2012148462A (ja) * 2011-01-19 2012-08-09 Tokyo Electric Power Co Inc:The 切削装置及びそれを用いた工法
WO2014129119A1 (ja) * 2013-02-19 2014-08-28 Fsテクニカル株式会社 拡径用ドリルビット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3103586A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114434662A (zh) * 2021-12-22 2022-05-06 中铁四局集团第二工程有限公司 离心摆臂式铁路箱梁锚穴凿毛器
CN117943915A (zh) * 2024-03-26 2024-04-30 山西富兴通重型环锻件有限公司 一种用于法兰盘内孔面的研磨装置
CN117943915B (zh) * 2024-03-26 2024-05-31 山西富兴通重型环锻件有限公司 一种用于法兰盘内孔面的研磨装置

Also Published As

Publication number Publication date
KR101837526B1 (ko) 2018-03-13
JPWO2016166908A1 (ja) 2017-06-22
EP3103586A1 (en) 2016-12-14
US20170136654A1 (en) 2017-05-18
RU2635703C1 (ru) 2017-11-15
SG11201608694SA (en) 2017-11-29
CN106255573A (zh) 2016-12-21
JP6081666B1 (ja) 2017-02-15
KR20160135699A (ko) 2016-11-28
EP3103586A4 (en) 2018-03-28
CN106255573B (zh) 2018-11-23
US10239231B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6081666B1 (ja) 拡径用ドリルビット
JP6022670B2 (ja) 拡径用ドリルビット
JP6059073B2 (ja) 拡径用ドリルビット
RU2658523C2 (ru) Способ образования отверстия под анкер и устройство для расширения диаметра
JP6126409B2 (ja) 拡径用ドリルビット
JP2017105199A (ja) 拡径用ドリルビット
JP6126410B2 (ja) 拡径用ドリルビット
JP6086800B2 (ja) 拡径用ドリルビット
JP6086750B2 (ja) 拡径用ドリルビット
JP6533905B2 (ja) コアビット
JP6697647B2 (ja) 拡径用ドリルビット
JP6126407B2 (ja) 拡径用ドリルビット
JP6126408B2 (ja) 拡径用ドリルビット
JP2017087351A (ja) 拡径用ドリルビット
JP2017193024A (ja) 拡径用ドリルビット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016522073

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167017312

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015877376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15304277

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016141064

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201608694S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE