WO2016165400A1 - 一种泡沫金属 - 碳纳米管复合材料及其制备方法与应用 - Google Patents

一种泡沫金属 - 碳纳米管复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2016165400A1
WO2016165400A1 PCT/CN2015/099638 CN2015099638W WO2016165400A1 WO 2016165400 A1 WO2016165400 A1 WO 2016165400A1 CN 2015099638 W CN2015099638 W CN 2015099638W WO 2016165400 A1 WO2016165400 A1 WO 2016165400A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
carbon nanotube
nanotube composite
electroless plating
metal
Prior art date
Application number
PCT/CN2015/099638
Other languages
English (en)
French (fr)
Inventor
曾建皇
李目武
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/560,900 priority Critical patent/US20180123137A1/en
Publication of WO2016165400A1 publication Critical patent/WO2016165400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the invention belongs to the technical field of nano materials, and particularly relates to a foam metal-carbon nanotube composite material and a preparation method and application thereof.
  • Carbon black is the most commonly used carrier for fuel cell electrocatalysts and is composed of spherical particles having a particle diameter of 50 to 100 nm. Due to its small particle size and zero-dimensional structure, it is easy to agglomerate and corrode under fuel cell operating conditions, resulting in a decrease in catalyst activity.
  • One-dimensional carbon nanofibers or carbon nanotubes have a large aspect ratio and can be controlled to obtain a large specific surface area and a high degree of graphitization. Therefore, they are particularly suitable as fuel cell electrocatalyst carriers for anti-agglomeration and corrosion resistance. .
  • carbon nanofibers or carbon nanotubes themselves can be used as an oxygen reduction catalyst.
  • the preparation of carbon nanofibers or carbon nanotubes using transition metal catalysts and chemical vapor deposition is one of the most common preparation methods.
  • Such catalysts are usually prepared by impregnation and have a large particle size and are easily agglomerated.
  • the polyurethane sponge base material has a three-dimensional ordered structure and a high porosity (85% to 95%).
  • a foam metal-carbon nanotube composite material and a preparation method thereof are disclosed in the patent CN103434207A, but the method is obtained by electrodeposition of existing carbon nanotubes, which has the disadvantage of uneven distribution of carbon nanotubes, and there is no relevant Report on the in situ generation of carbon nanomaterials on metal foam.
  • a primary object of the present invention is to provide a method for preparing a metal foam-carbon nanotube composite material.
  • Another object of the present invention is to provide a metal foam-carbon nanotube composite material prepared by the above method.
  • Still another object of the present invention is to provide the use of the above foam metal-carbon nanotube composite material in a fuel cell electrocatalyst or a fuel cell electrocatalyst carrier.
  • a method for preparing a foam metal-carbon nanotube composite material comprising the following preparation steps:
  • Preparation of a foamed metal catalyst for a polyurethane sponge substrate pretreating a polyurethane sponge substrate, and then placing the pretreated polyurethane sponge substrate in an electroless plating solution containing a metal element for electroless plating reaction, and drying to obtain a polyurethane a foamed metal catalyst of a sponge substrate;
  • the foam metal catalyst of the polyurethane sponge substrate of step (1) is placed in a tube furnace, and the temperature of the tube furnace is raised to 500-550 ° C by nitrogen protection.
  • the hydrogen gas is introduced and maintained for 0.5 to 2 hours; then the temperature of the tube furnace is raised to 600-800 ° C, and a mixture of nitrogen and acetylene is used as a carbon source to grow carbon nanomaterials on the surface of the metal foam catalyst by chemical vapor deposition. It is 2 to 4 h; then a mixed gas of nitrogen and acetylene is converted into nitrogen gas, and naturally cooled to room temperature to obtain a foamed metal-carbon nanotube composite material.
  • the area of the urethane sponge substrate described in the step (1) is preferably 5 ⁇ 5 cm 2 .
  • the pretreatment refers to sequential chemical degreasing, deionized water washing, potassium permanganate roughening, deionized water washing, oxalic acid reduction, deionized water washing, sensitization and colloidal palladium activation treatment.
  • the chemical degreasing refers to treatment with a solution containing NaOH 15g / L, Na 3 PO 4 15g / L and Na 2 CO 3 10g / L at 30 ⁇ 35 ° C for 3 ⁇ 5min; the potassium permanganate roughening means containing KMnO 4 5 ⁇ 8g / L, H 2 SO 4 10 ⁇ 15mL / L was treated at room temperature for 2 ⁇ 3min; refers to a reduction of the oxalate containing C 2 H 2 O 4 15 ⁇ 20g / L of the solution is treated at room temperature for 2 ⁇ 3min; the sensitization refers to the treatment with a solution containing SnCl 2 20 ⁇ 30g / L, HCl 30 ⁇ 50mL / L at room temperature for 2 ⁇ 3min; the colloid Palladium activation refers to treatment with a solution containing 0.4 to 0.6 g/L of PdCl 2 and 30 to 50 mL/L of HCl at room temperature
  • the metal plating-containing electroless plating solution refers to an electroless plating solution containing nickel, an electroless plating solution containing copper or an electroless plating solution containing cobalt.
  • the nickel-containing electroless plating solution refers to an electroless plating solution containing NiSO 4 30 g/L, NaH 2 PO 2 10 g/L, Na 3 Cyt (sodium citrate) 35 g/L, and Na 3 PO 4 50 g/L;
  • the copper-containing electroless plating solution refers to CuSO 4 10g/L, Na 3 Cyt 24g/L, NiSO 4 3g/L, H 3 BO 3 30g/L, NaOH 10g/L and NaH 2 PO 2 30g/L.
  • the electroless plating solution refers to an electroless plating solution containing CoSO 4 28 g/L, NaH 2 PO 2 25 g/L, Na 3 Cyt 60 g/L, and H 3 BO 3 30 g/L.
  • the electroless plating reaction means a reaction at 45 to 80 ° C for 0.5 to 2 hours.
  • the mass of the metal foam catalyst in the metal foam catalyst of the polyurethane sponge substrate is 40% to 200% of the mass of the polyurethane sponge substrate.
  • the rate of temperature increase in the step (2) is 10 to 15 ° C / min; the rate of the mixture of nitrogen and acetylene is 50 to 100 mL / min.
  • the mixed gas of nitrogen and acetylene is preferably a mixture of nitrogen and acetylene in a volume ratio of 1:9.
  • a metal foam-carbon nanotube composite material prepared by the above method prepared by the above method.
  • the above foam metal-carbon nanotube composite material is used in a fuel cell electrocatalyst or a fuel cell electrocatalyst carrier.
  • the preparation principle of the invention is as follows: starting from the polyurethane sponge matrix, the foam metal catalyst of the polyurethane sponge substrate is first obtained by electroless plating reaction; then the foam metal-carbon nanotube composite material is formed in situ on the surface of the metal foam catalyst by chemical vapor deposition. At the same time, the polyurethane sponge substrate is charred and remains in the composite.
  • the present invention firstly prepares a metal foam catalyst for a polyurethane sponge substrate, and the composition, structure and loading of the catalyst can be freely regulated, thereby facilitating the regulation of the morphology of subsequently produced carbon nanofibers or carbon nanotubes;
  • the carbon nanofibers or carbon nanotubes prepared by the invention are formed in situ on the surface of the transition metal catalyst, and the metal/carbon interface is closely combined, and the prepared carbon nanofiber or carbon is prepared.
  • the nanotubes have good dispersibility and the tube diameter is controllable and uniform;
  • Example 1 is a scanning electron micrograph of the composite material obtained in Example 1;
  • Example 2 is an XRD diffraction pattern of the composite material obtained in Example 1;
  • Example 3 is a transmission electron micrograph of the composite material obtained in Example 2.
  • Example 4 is a scanning electron micrograph of the composite material obtained in Example 3.
  • Figure 5 is a transmission electron micrograph of the composite material obtained in Example 3.
  • a polyurethane sponge (weight: 110 mg) having an area of 5 ⁇ 5 cm 2 was pretreated. That is, chemical degreasing (NaOH: 15g / L, Na 3 PO 4 : 15g / L, Na 2 CO 3 : 10g / L, 35 ° C, 4min), deionized water washing, potassium permanganate coarsening (KMnO 4 : 6g / L, H 2 SO 4 : 12mL / L, room temperature, 3min), deionized water washing, oxalic acid reduction (C 2 H 2 O 4 : 15g / L, room temperature, 2min), deionized water washing, sensitization (SnCl 2 : 25 g/L, HCl: 40 mL/L, room temperature, 3 min) and colloidal palladium activation (PdCl 2 : 0.5 g/L, HCl: 40 mL/L, room temperature, 4 min).
  • chemical degreasing NaOH: 15g
  • the polyurethane sponge was electrolessly plated with nickel (NiSO 4 : 30 g / L, NaH 2 PO 2 : 10 g / L, Na 3 Cyt: 35 g / L, Na 3 PO 4 : 50 g / L, 45 ° C, 1.5 h)
  • the surface of the polyurethane sponge substrate is coated with foamed nickel to obtain a foamed nickel catalyst of a polyurethane sponge substrate. After drying, the total mass is 185 mg, wherein the foamed nickel is 75 mg, which accounts for 68% of the mass of the polyurethane sponge substrate.
  • acetylene mixture was converted into nitrogen gas and naturally cooled to room temperature in the furnace to obtain a large amount of foamed nickel-carbon nanotube composite material, which was weighed. Its total mass is 320 mg. Accurate thermogravimetric analysis showed a metal nickel ratio of 30%. Scanning electron micrograph of the obtained composite As shown in Fig. 1, it can be seen from Fig. 1 that the diameter of the carbon nanotubes in the composite material is 50 to 150 nm. The XRD diffraction pattern of the obtained composite material is shown in Fig. 2. From Fig. 2, a graphite diffraction peak of 25° and a diffraction peak of a nickel-phosphorus alloy of 45° are apparent.
  • the pretreatment step of the polyurethane sponge of this example was identical to that of Example 1.
  • the polyurethane sponge was electrolessly plated with copper (CuSO 4 : 10 g / L, Na 3 Cyt: 24 g / L, NiSO 4 : 3 g / L, H 3 BO 3 : 30 g / L, NaOH: 10 g / L, NaH 2 PO 2 : 30 g / L, 60 ° C, 1 h)
  • the surface of the polyurethane sponge substrate was coated with copper foam to obtain a foamed copper catalyst of a polyurethane sponge substrate, and after drying, the total mass was 160 mg, wherein 50 mg of copper foam was used, which was a polyurethane sponge substrate. 45% of the quality.
  • the acetylene mixture was converted into nitrogen gas and naturally cooled to room temperature in the furnace to obtain a foamed copper-carbon nanotube composite.
  • the transmission electron micrograph of the obtained composite material is shown in Fig. 3.
  • the carbon nanotubes in the composite material have a uniform diameter of about 30 nm and have a distinct stacked cup shape.
  • the pretreatment step of the polyurethane sponge of this example was identical to that of Example 1.
  • the polyurethane sponge was electrolessly plated with cobalt (CoSO 4 : 28 g / L, NaH 2 PO 2 : 25 g / L, Na 3 Cyt: 60 g / L, H 3 BO 3 : 30 g / L, 80 ° C, 0.5 h)
  • the surface of the polyurethane sponge substrate is coated with foamed cobalt to obtain a foamed cobalt catalyst of a polyurethane sponge substrate.
  • the acetylene mixture was converted into nitrogen gas and naturally cooled to room temperature in the furnace to obtain a foamed cobalt-carbon nanofiber composite.
  • Scanning electron microscopy of the obtained composite material The figure and the transmission electron micrograph are respectively shown in FIG. 4 and FIG. 5.
  • the diameter of the carbon nanofibers in the composite material obtained in the present embodiment is uniform, about 120 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemically Coating (AREA)
  • Catalysts (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于纳米材料技术领域,公开了一种泡沫金属-碳纳米管复合材料及其制备方法与应用。所述制备方法为:将聚氨酯海绵基底进行前处理,然后将前处理后的聚氨酯海绵基底放入含金属元素的化学镀液中进行化学镀反应,烘干后得到聚氨酯海绵基底的泡沫金属催化剂;然后置于管式炉中,升温至500~550℃,通入氢气并保持0.5~2h;然后升温至600~800℃,通入乙炔混合气作为碳源,在泡沫金属催化剂表面化学气相沉积生长碳纳米材料得到。本发明制备的碳纳米纤维或碳纳米管在过渡金属催化剂表面原位生成,金属/碳界面结合密切,所制备的碳纳米纤维或碳纳米管分散性好,管径可控且均匀。

Description

一种泡沫金属-碳纳米管复合材料及其制备方法与应用 技术领域
本发明属于纳米材料技术领域,具体涉及一种泡沫金属-碳纳米管复合材料及其制备方法与应用。
背景技术
炭黑为燃料电池电催化剂最常使用的载体,由粒径为50~100nm的球形粒子组成。由于粒径小、且为零维结构,因此在燃料电池工况条件下容易团聚、腐蚀,造成催化剂活性下降。一维碳纳米纤维或碳纳米管具有很大的长径比,经过调控,可以获得较大的比表面积和较高的石墨化程度,因此特别适合作为抗团聚、耐腐蚀的燃料电池电催化剂载体。况且,碳纳米纤维或碳纳米管本身就可以作为氧还原催化剂。
使用过渡金属催化剂、化学气相沉积制备碳纳米纤维或碳纳米管是最普遍的制备方法之一。这类催化剂通常由浸渍法制备,粒径较大且容易团聚。聚氨酯海绵基底材料具有三维有序结构和高孔隙率(85%~95%)。通过化学镀沉积过渡金属,则可以有效利用其三维有序结构,获得粒径较小且均匀的催化剂,是商业上制备泡沫金属(如泡沫镍、泡沫铜等)的成熟途径。专利CN103434207A中公开了一种泡沫金属-碳纳米管复合材料及其制备方法,但该法是通过已有碳纳米管电沉积得到,其存在碳纳米管分布不均的缺点,目前还未有关于在泡沫金属上原位生成碳纳米材料的报道。
技术问题
为了解决以上现有技术的缺点和不足之处,本发明的首要目的在于提供一种泡沫金属-碳纳米管复合材料的制备方法。
本发明的另一目的在于提供一种由上述方法制备得到的泡沫金属-碳纳米管复合材料。
本发明的再一目的在于提供上述泡沫金属-碳纳米管复合材料在燃料电池电催化剂或燃料电池电催化剂载体中的应用。
问题的解决方案
技术解决方案
本发明目的通过以下技术方案实现:
一种泡沫金属-碳纳米管复合材料的制备方法,包括以下制备步骤:
(1)聚氨酯海绵基底的泡沫金属催化剂的制备:将聚氨酯海绵基底进行前处理,然后将前处理后的聚氨酯海绵基底放入含金属元素的化学镀液中进行化学镀反应,烘干后得到聚氨酯海绵基底的泡沫金属催化剂;
(2)泡沫金属-碳纳米管复合材料的制备:将步骤(1)的聚氨酯海绵基底的泡沫金属催化剂置于管式炉中,通氮气保护,将管式炉温度升温至500~550℃,通入氢气并保持0.5~2h;然后将管式炉温度升温至600~800℃,并通入氮气与乙炔的混合气作为碳源,在泡沫金属催化剂表面化学气相沉积生长碳纳米材料,沉积时间为2~4h;然后将氮气与乙炔的混合气转换为氮气,自然冷却至室温,得到泡沫金属-碳纳米管复合材料。
步骤(1)中所述的聚氨酯海绵基底的面积优选为5×5cm2
所述的前处理是指依次经过化学除油、去离子水洗、高锰酸钾粗化、去离子水洗、草酸还原、去离子水洗、敏化和胶体钯活化处理。
所述的化学除油是指用含NaOH 15g/L,Na3PO4 15g/L和Na2CO3 10g/L的溶液在30~35℃下处理3~5min;所述的高锰酸钾粗化是指用含KMnO4 5~8g/L,H2SO4 10~15mL/L的溶液在室温下处理2~3min;所述的草酸还原是指用含C2H2O4 15~20g/L的溶液在室温下处理2~3min;所述的敏化是指用含SnCl2 20~30g/L,HCl 30~50mL/L的溶液在室温下处理2~3min;所述的胶体钯活化是指用含PdCl2 0.4~0.6g/L,HCl 30~50mL/L的溶液在室温下处理4~5min。
所述含金属元素的化学镀液是指含镍的化学镀液、含铜的化学镀液或含钴的化学镀液。
所述含镍的化学镀液是指含NiSO4 30g/L,NaH2PO2 10g/L,Na3Cyt(柠檬酸钠)35g/L,Na3PO4 50g/L的化学镀液;所述含铜的化学镀液是指含CuSO4 10g/L,Na3Cyt 24g/L,NiSO4 3g/L,H3BO3 30g/L,NaOH 10g/L和NaH2PO2  30g/L的化学镀液;所述含钴的化学镀液是指含CoSO4 28g/L,NaH2PO2 25g/L,Na3Cyt 60g/L和H3BO3 30g/L的化学镀液。
所述的化学镀反应是指在45~80℃下反应0.5~2h。
所述的聚氨酯海绵基底的泡沫金属催化剂中泡沫金属催化剂的质量为聚氨酯海绵基底质量的40%~200%。
步骤(2)中所述升温的速率为10~15℃/min;通入氮气与乙炔的混合气的速率为50~100mL/min。
所述的氮气与乙炔的混合气优选体积比为1∶9的氮气与乙炔的混合气。
一种泡沫金属-碳纳米管复合材料,通过上述方法制备得到。
上述泡沫金属-碳纳米管复合材料在燃料电池电催化剂或燃料电池电催化剂载体中的应用。
本发明的制备原理为:从聚氨酯海绵基体出发,首先通过化学镀反应得到聚氨酯海绵基底的泡沫金属催化剂;然后通过化学气相沉积的方式在泡沫金属催化剂表面原位生成泡沫金属-碳纳米管复合材料,同时聚氨酯海绵基底被炭化而留在复合材料中。
发明的有益效果
有益效果
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明首先制备聚氨酯海绵基底的泡沫金属催化剂,该催化剂成分、结构和载量可自由调控,进而可以方便调控后续生成的碳纳米纤维或碳纳米管的形貌;
(2)与浸渍法制备催化剂、然后化学气相沉积不同,本发明制备的碳纳米纤维或碳纳米管在过渡金属催化剂表面原位生成,金属/碳界面结合密切,所制备的碳纳米纤维或碳纳米管分散性好,管径可控且均匀;
(3)本发明在化学镀沉积金属催化剂时,引入的磷和硼等原子,以及在后续步骤中聚氨酯海绵本身炭化引入的氮原子,使得本发明的泡沫金属-碳纳米管复合材料在燃料电池电催化剂中应用时,能起到助催化剂的作用。
对附图的简要说明
附图说明
图1为实施例1所得复合材料的扫描电镜图;
图2为实施例1所得复合材料的XRD衍射图;
图3为实施例2所得复合材料的透射电镜图;
图4为实施例3所得复合材料的扫描电镜图;
图5为实施例3所得复合材料的透射电镜图。
实施该发明的最佳实施例
本发明的最佳实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
将面积为5×5cm2的聚氨酯海绵(重量为110mg)进行前处理。即依次经过化学除油(NaOH:15g/L,Na3PO4:15g/L,Na2CO3:10g/L,35℃,4min)、去离子水洗、高锰酸钾粗化(KMnO4:6g/L,H2SO4:12mL/L,室温,3min)、去离子水洗、草酸还原(C2H2O4:15g/L,室温,2min)、去离子水洗、敏化(SnCl2:25g/L,HCl:40mL/L,室温,3min)和胶体钯活化(PdCl2:0.5g/L,HCl:40mL/L,室温,4min)。前处理后,将聚氨酯海绵化学镀镍(NiSO4:30g/L,NaH2PO2:10g/L,Na3Cyt:35g/L,Na3PO4:50g/L,45℃,1.5h),使聚氨酯海绵基底表面包覆泡沫镍得到聚氨酯海绵基底的泡沫镍催化剂,干燥后称量得到总质量为185mg,其中泡沫镍75mg,占聚氨酯海绵基底质量的68%。
将上述聚氨酯海绵基底的泡沫镍催化剂置于管式炉中,通氮气保护,然后以10℃/min的升温速率将管式炉温度从室温升高到500℃,通入氢气并保持1小时;以15℃/min的升温速率将温度升高到700℃,并以100mL/min的速率通入10%的乙炔混合气(氮气∶乙炔=1∶9,体积比)作为碳源,在泡沫镍催化剂表面化学气相沉积生长碳纳米管,沉积时间为4h;最后将乙炔混合气转换为氮气,并在炉内自然冷却到室温,得到大量生长的泡沫镍-碳纳米管复合材料,称量得到其总质量为320mg。精确热重分析表明金属镍占比为30%。所得复合材料的扫描电镜图 如图1所示,由图1可以看出,复合材料中碳纳米管管径为50~150nm。所得复合材料的XRD衍射图如图2所示,由图2可以明显看出25°的石墨衍射峰和45°的镍磷合金衍射峰。
实施例2
本实施例的聚氨酯海绵的前处理步骤与实施例1完全相同。前处理后,将聚氨酯海绵化学镀铜(CuSO4:10g/L,Na3Cyt:24g/L,NiSO4:3g/L,H3BO3:30g/L,NaOH:10g/L,NaH2PO2:30g/L,60℃,1h),使聚氨酯海绵基底表面包覆泡沫铜得到聚氨酯海绵基底的泡沫铜催化剂,干燥后称量得到总质量为160mg,其中泡沫铜50mg,占聚氨酯海绵基底质量的45%。
将上述聚氨酯海绵基底的泡沫铜催化剂置于管式炉中,通氮气保护,然后以15℃/min的升温速率将管式炉温度从室温升高到550℃,通入氢气并保持1小时;以15℃/min的升温速率将温度升高到800℃,并以70mL/min的速率通入10%的乙炔混合气(氮气∶乙炔=1∶9,体积比)作为碳源,在泡沫铜催化剂表面化学气相沉积生长碳纳米管,沉积时间为4h;最后将乙炔混合气转换为氮气,并在炉内自然冷却到室温,得到泡沫铜-碳纳米管复合材料。所得复合材料的透射电镜图如图3所示,由图3可以看出,复合材料中碳纳米管管径均匀,为30nm左右,且具有明显的叠杯状形态。
实施例3
本实施例的聚氨酯海绵的前处理步骤与实施例1完全相同。前处理后,将聚氨酯海绵化学镀钴(CoSO4:28g/L,NaH2PO2:25g/L,Na3Cyt:60g/L,H3BO3:30g/L,80℃,0.5h),使聚氨酯海绵基底表面包覆泡沫钴得到聚氨酯海绵基底的泡沫钴催化剂。
将上述聚氨酯海绵基底的泡沫钴催化剂置于管式炉中,通氮气保护,然后以12℃/min的升温速率将管式炉温度从室温升高到500℃,通入氢气并保持1小时;以10℃/min的升温速率将温度升高到600℃,并以50mL/min的速率通入10%的乙炔混合气(氮气∶乙炔=1∶9,体积比)作为碳源,在泡沫钴催化剂表面化学气相沉积生长碳纳米纤维,沉积时间为2h;最后将乙炔混合气转换为氮气,并在炉内自然冷却到室温,得到泡沫钴-碳纳米纤维复合材料。所得复合材料的扫描电镜 图和透射电镜图分别如图4和图5所示,由图4和图5可以看出,本实施例所得复合材料中碳纳米纤维管径大小均一,为120nm左右。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:包括以下制备步骤:
    (1)聚氨酯海绵基底的泡沫金属催化剂的制备:将聚氨酯海绵基底进行前处理,然后将前处理后的聚氨酯海绵基底放入含金属元素的化学镀液中进行化学镀反应,烘干后得到聚氨酯海绵基底的泡沫金属催化剂;
    (2)泡沫金属-碳纳米管复合材料的制备:将步骤(1)的聚氨酯海绵基底的泡沫金属催化剂置于管式炉中,通氮气保护,将管式炉温度升温至500~550℃,通入氢气并保持0.5~2h;然后将管式炉温度升温至600~800℃,并通入氮气与乙炔的混合气作为碳源,在泡沫金属催化剂表面化学气相沉积生长碳纳米材料,沉积时间为2~4h;然后将氮气与乙炔的混合气转换为氮气,自然冷却至室温,得到泡沫金属-碳纳米管复合材料。
  2. 根据权利要求1所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:步骤(1)中所述聚氨酯海绵基底的面积为5×5cm2;所述的前处理是指依次经过化学除油、去离子水洗、高锰酸钾粗化、去离子水洗、草酸还原、去离子水洗、敏化和胶体钯活化处理。
  3. 根据权利要求2所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:所述的化学除油是指用含NaOH 15g/L,Na3PO415g/L和Na2CO310g/L的溶液在30~35℃下处理3~5min;所述的高锰酸钾粗化是指用含KMnO45~8g/L,H2SO410~15mL/L的溶液在室温下处理2~3min;所述的草酸还原是指用含C2H2O415~20g/L的溶液在室温下处理2~3min;所述的敏化是指用含SnCl220~30g/L,HCl 30~50mL/L的溶液在室温下处理2~3min;所述的胶体钯活化是指用含PdCl20.4~0.6g/L,HCl 30~50mL/L的溶液在室温下处理4~5min。
  4. 根据权利要求1所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:所述含金属元素的化学镀液是指含镍的化学镀液、含铜的化学镀液或含钴的化学镀液。
  5. 根据权利要求4所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:所述含镍的化学镀液是指含NiSO430g/L、NaH2PO210g/L、Na3Cyt 35g/L和Na3PO450g/L的化学镀液;所述含铜的化学镀液是指含CuSO410g/L、Na3Cyt 24g/L、NiSO43g/L、H3BO330g/L、NaOH 10g/L和NaH2PO230g/L的化学镀液;所述含钴的化学镀液是指含CoSO428g/L、NaH2PO225g/L、Na3Cyt 60g/L和H3BO330g/L的化学镀液。
  6. 根据权利要求1所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:所述的化学镀反应是指在45~80℃下反应0.5~2h;化学镀反应生成的泡沫金属催化剂的质量为聚氨酯海绵基底质量的40%~200%。
  7. 根据权利要求1所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:步骤(2)中所述升温的速率为10~15℃/min;所述通入氮气与乙炔的混合气的速率为50~100mL/min。
  8. 根据权利要求1所述的一种泡沫金属-碳纳米管复合材料的制备方法,其特征在于:所述的氮气与乙炔的混合气是指体积比为1∶9的氮气与乙炔的混合气。
  9. 一种泡沫金属-碳纳米管复合材料,其特征在于:通过权利要求1~8任一项所述的方法制备得到。
  10. 权利要求9所述的泡沫金属-碳纳米管复合材料在燃料电池电催化剂或燃料电池电催化剂载体中的应用。
PCT/CN2015/099638 2015-04-17 2015-12-29 一种泡沫金属 - 碳纳米管复合材料及其制备方法与应用 WO2016165400A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/560,900 US20180123137A1 (en) 2015-04-17 2015-12-29 A composite material of metal foam-carbon nanotube, the preparation method thereof and the use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510184553.1 2015-04-17
CN201510184553.1A CN104868134B (zh) 2015-04-17 2015-04-17 一种泡沫金属‑碳纳米管复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2016165400A1 true WO2016165400A1 (zh) 2016-10-20

Family

ID=53913810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099638 WO2016165400A1 (zh) 2015-04-17 2015-12-29 一种泡沫金属 - 碳纳米管复合材料及其制备方法与应用

Country Status (3)

Country Link
US (1) US20180123137A1 (zh)
CN (1) CN104868134B (zh)
WO (1) WO2016165400A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110820322A (zh) * 2019-11-29 2020-02-21 山东大学 一种使用木质素与双金属催化剂共同作用在碳纤维上生长碳纳米管的方法
CN111628145A (zh) * 2020-04-23 2020-09-04 湖南中科星城石墨有限公司 一种易于制浆的微晶石墨负极材料的制备方法
CN111697194A (zh) * 2019-03-15 2020-09-22 深圳格林德能源集团有限公司 一种硅碳负极浆料的制备方法及其锂离子电池
CN113831130A (zh) * 2021-09-28 2021-12-24 安徽弘昌新材料有限公司 一种轻质高强度保温毡及其制备方法与应用

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868134B (zh) * 2015-04-17 2017-04-19 华南理工大学 一种泡沫金属‑碳纳米管复合材料及其制备方法与应用
CN105088111A (zh) * 2015-09-21 2015-11-25 国家电网公司 一种碳纳米管增强铝基复合材料的制备方法
CN105448528B (zh) * 2015-10-27 2019-05-28 梧州三和新材料科技有限公司 一种金属-石墨烯复合多孔电极材料的制备方法
CN105206433B (zh) * 2015-10-28 2019-09-06 梧州三和新材料科技有限公司 一种金属-碳纳米管复合多孔电极材料的制备方法
CN105217603B (zh) * 2015-11-12 2017-05-31 中国科学院新疆理化技术研究所 一种碳纳米管泡沫材料的制备方法
CN105375041A (zh) * 2015-11-18 2016-03-02 华南理工大学 一种碳纳米管-过渡金属-碳纤维复合材料及其制备方法与应用
US10190211B2 (en) * 2015-11-20 2019-01-29 Fourté International, Sdn. Bhd High conductivity graphane-metal and graphene-metal composite and methods of manufacture
CN106115659B (zh) * 2016-06-24 2018-08-21 广西师范大学 一种化学气相沉积合成碳纳米管花的方法
CN106119816A (zh) * 2016-08-19 2016-11-16 华东理工大学 一种制备金属钴/石墨烯复合泡沫材料的方法
CN106346100B (zh) * 2016-11-30 2019-02-19 哈尔滨工业大学 一种碳纳米管增强三维结构中间层辅助钎焊的方法
CN109019563B (zh) * 2017-06-09 2021-02-26 清华大学 多孔金属复合结构
CN107190249B (zh) * 2017-06-13 2019-08-06 沈阳建筑大学 一种多孔金属泡沫铜的制备方法
CN109898107B (zh) * 2019-02-28 2021-02-19 昆明理工大学 泡沫金属铜掺杂碳纳米管电磁屏蔽材料及制备方法
CN110177449B (zh) * 2019-05-17 2020-12-29 同济大学 一种碳纳米管基电磁复合吸波材料及其制备方法和用途
CN110265680A (zh) * 2019-06-28 2019-09-20 一汽解放汽车有限公司 一种高性能含过渡金属的催化剂、制备方法及其应用
CN111768980B (zh) * 2020-07-08 2022-02-18 中南林业科技大学 金属离子掺杂聚氨酯泡沫基多孔碳复合cnt电极材料及其制备方法和应用
CN112323091B (zh) * 2020-11-01 2022-02-22 南开大学 一种竹节状碳纳米管贯通的蛋黄-蛋壳结构碳包覆过渡金属催化剂的制备方法
CN113307251A (zh) * 2021-05-24 2021-08-27 南昌大学 一种掺氮三维碳纳米管/碳纳米纤维复合材料及其制备方法
CN113645821B (zh) * 2021-07-20 2024-01-16 西安理工大学 夹层结构FA/MXene/CNF复合材料的制备方法
CN114477144B (zh) * 2022-01-21 2023-05-30 西安电子科技大学 一种碳纳米管阵列的制备方法
CN115532258B (zh) * 2022-02-09 2023-07-21 青岛大学 一种木炭基仿生催化材料的制备方法及应用
CN114940621B (zh) * 2022-05-31 2023-01-10 烟台大学 一种含碳纳米纤维的海绵衍生碳/镍锌复合碳化物材料及制备方法
CN115020704A (zh) * 2022-06-15 2022-09-06 李致朋 自支撑负极材料及其制备方法和钠离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661840A (zh) * 2009-07-23 2010-03-03 武汉大学 一种超级电容器的制备方法
CN103253648A (zh) * 2012-11-13 2013-08-21 山东省科学院新材料研究所 一种在泡沫镍上生长碳纳米管的方法
CN103434207A (zh) * 2013-08-19 2013-12-11 南京航空航天大学 泡沫金属-碳纳米管复合材料及其制备方法
CN104087778A (zh) * 2013-12-19 2014-10-08 浙江工商大学 一种检测蔗糖浓度用泡沫铜的制备方法
CN104868134A (zh) * 2015-04-17 2015-08-26 华南理工大学 一种泡沫金属-碳纳米管复合材料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116706C (zh) * 1999-08-27 2003-07-30 钟发平 表面粗糙化的泡沫镍的生产工艺
US7785498B2 (en) * 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
CN102161481B (zh) * 2011-05-18 2012-11-28 浙江大学 一种用于低成本大量合成碳纳米管的制备方法
CN102931437A (zh) * 2012-11-09 2013-02-13 浙江大学 基于泡沫镍生长的石墨烯为负极的锂离子电池制作方法
CN103000906B (zh) * 2012-12-13 2014-10-15 天津大学 泡沫铜/碳纳米相复合锂离子电池负极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661840A (zh) * 2009-07-23 2010-03-03 武汉大学 一种超级电容器的制备方法
CN103253648A (zh) * 2012-11-13 2013-08-21 山东省科学院新材料研究所 一种在泡沫镍上生长碳纳米管的方法
CN103434207A (zh) * 2013-08-19 2013-12-11 南京航空航天大学 泡沫金属-碳纳米管复合材料及其制备方法
CN104087778A (zh) * 2013-12-19 2014-10-08 浙江工商大学 一种检测蔗糖浓度用泡沫铜的制备方法
CN104868134A (zh) * 2015-04-17 2015-08-26 华南理工大学 一种泡沫金属-碳纳米管复合材料及其制备方法与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697194A (zh) * 2019-03-15 2020-09-22 深圳格林德能源集团有限公司 一种硅碳负极浆料的制备方法及其锂离子电池
CN110820322A (zh) * 2019-11-29 2020-02-21 山东大学 一种使用木质素与双金属催化剂共同作用在碳纤维上生长碳纳米管的方法
CN111628145A (zh) * 2020-04-23 2020-09-04 湖南中科星城石墨有限公司 一种易于制浆的微晶石墨负极材料的制备方法
CN111628145B (zh) * 2020-04-23 2022-02-01 湖南中科星城石墨有限公司 一种易于制浆的微晶石墨负极材料的制备方法
CN113831130A (zh) * 2021-09-28 2021-12-24 安徽弘昌新材料有限公司 一种轻质高强度保温毡及其制备方法与应用

Also Published As

Publication number Publication date
CN104868134A (zh) 2015-08-26
CN104868134B (zh) 2017-04-19
US20180123137A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
WO2016165400A1 (zh) 一种泡沫金属 - 碳纳米管复合材料及其制备方法与应用
CN113831131B (zh) 碳泡沫原位生长碳纳米管复合电磁屏蔽材料及其制备方法
CN110512231B (zh) 一种镍基复合纳米颗粒及其制备方法和应用
CN105375041A (zh) 一种碳纳米管-过渡金属-碳纤维复合材料及其制备方法与应用
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
CN112705235B (zh) 碳包覆碳化镍的纳米复合材料及其制备方法和应用
WO2021147531A1 (zh) 一种制备碳纳米管和氢气的方法和装置
KR101591454B1 (ko) 금속 및 산화물로 하이브리드 코팅된 나노카본의 제조방법
Zhang et al. Electroless nickel plating on alumina ceramic activated by metallic nickel as electrocatalyst for oxygen evolution reaction
CN109742415B (zh) 一种高载量负载金属单原子石墨烯材料及其制备方法
CN110743566A (zh) 单原子催化剂的制备方法
CN110624552A (zh) 一种石墨烯纳米金属复合材料的制备方法
Zhou et al. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking
CN105642917A (zh) 金属包覆碳纳米管的制备方法
Zhan et al. In-situ growth of CoP wrapped by carbon nanoarray-like architecture onto nitrogen-doped Ti3C2 Pt-based catalyst for efficient methanol oxidation
EP4345942A1 (en) Graphitized porous silicon-carbon anode material, preparation method thereof and lithium ion battery
Liu et al. In situ engineering of hollow porous Mo 2 C@ C nanoballs derived from giant Mo-polydopamine clusters as highly efficient electrocatalysts for hydrogen evolution
CN109225256B (zh) 硼氢化钠醇解制氢催化剂
CN110373689B (zh) 一种电化学法制备Ni-Fe-P-MnFeO3电催化剂的方法
Zhang et al. Smoothing effect of H3BO3 on hydrogen evolution catalyst and the promotion of hydrogen evolution
CN109317163B (zh) 硼氢化钠醇解制氢催化剂的制备方法
XUE et al. Mechanism and microstructure of electroless Ni-Fe-P plating on CNTs
CN110102773B (zh) 一种粒径可控的有序介孔Ni纳米颗粒的制备方法
CN113403628A (zh) 基于结构纳米化结合协同改性的非贵金属析氢电催化剂及其制备方法与应用
CN108722414B (zh) 一种薄壁石墨化碳包裹金属核壳结构材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15889096

Country of ref document: EP

Kind code of ref document: A1