CN105448528B - 一种金属-石墨烯复合多孔电极材料的制备方法 - Google Patents

一种金属-石墨烯复合多孔电极材料的制备方法 Download PDF

Info

Publication number
CN105448528B
CN105448528B CN201510706762.8A CN201510706762A CN105448528B CN 105448528 B CN105448528 B CN 105448528B CN 201510706762 A CN201510706762 A CN 201510706762A CN 105448528 B CN105448528 B CN 105448528B
Authority
CN
China
Prior art keywords
layer
vacuum
transition metal
graphene
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510706762.8A
Other languages
English (en)
Other versions
CN105448528A (zh
Inventor
穆俊江
韦雁途
吴天和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUZHOU SANHE NEW MATERIAL TECHNOLOGY Co Ltd
Original Assignee
WUZHOU SANHE NEW MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUZHOU SANHE NEW MATERIAL TECHNOLOGY Co Ltd filed Critical WUZHOU SANHE NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201510706762.8A priority Critical patent/CN105448528B/zh
Publication of CN105448528A publication Critical patent/CN105448528A/zh
Application granted granted Critical
Publication of CN105448528B publication Critical patent/CN105448528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种金属‑石墨烯复合多孔电极材料的制备方法。通过在多孔金属基体上沉积一层过渡金属层,以上述过渡金属层为催化剂,在过渡金属层上生长石墨烯,上述过渡金属层和石墨烯层可以在多孔金属基体上相互叠加至少一次。该方法制备的电极材料具有质量轻、高比表面积、高导电率、导热能力强、化学稳定性高的特点,并且适用于大批量规模生产用途,在电极应用方面具有很高的应用价值。

Description

一种金属-石墨烯复合多孔电极材料的制备方法
技术领域
本发明涉及多孔电极材料的制备方法,特别涉及一种金属-石墨烯复合多孔电极材料的制备方法。
背景技术
随着全球可再生能源的普及应用、电动汽车产业的迅速发展以及智能电网的建设,储能技术成为制约能源发展的关键环节。目前的可再生能源技术主要有风能、太阳能、水力发电, 但由于它们都存在较大的不可预测和多变特性,对电网的可靠性造成很大冲击,因此尚未得到大规模的应用。而储能技术的发展可有效地解决此问题,储能的本质是实现对电能的储存,在需要的时候释放出来,从而使得可再生能源技术能以一种稳定的形式储存并应用。另外,作为未来电网的发展方向,智能电网通过储能装置进行电网调峰,以增加输配电系统的容量及优化效率,在整个电力行业的发电、输送、配电以及使用等各个环节,储能技术都能够得到广泛的应用。自1859年勒克朗谢发明铅酸蓄电池以来,电化学储能已经深入到各种不同形式的储能体系当中,成为储能领域中最重要的组成部分。
目前,世界各国都在加强对电化学储能技术的的研究。电化学储能器件的总体性能的主要决定因素是电极材料的电化学性能,所以新型电极材料的研究成为了此领域内研究的热点。
石墨烯是由单层sp2杂化碳原子构成的二维蜂窝状晶格结构材料,它可以展现出极高的电子迁移率、极好的热力学稳定性和良好的柔韧性等, 单层石墨烯在室温下具有高热导率,室温下表现出量子霍尔效应,高电子迁移率等。同时石墨烯由于其独特的二维结构,具有超大的比表面积,单层石墨烯理论比表面积达到2630 m2/g。自 2004 年石墨烯被发现以来,其独特的结构与物理化学性质受到国内外学术界的广泛关注。基于其优良的导电性能及二维平面结构,石墨烯作为电极材料在储能器件中表现出非常好的电化学性能,吸引了越来越多的科研工作者对它和它的复合材料进行研究和开发。
在制备电极材料时,选用石墨烯和具有独特连通孔结构的多孔金属复合,可以大大增加电极的比表面积和导电率,具有平板电极所没有的内部空间,可以增加电化学储能器件的容量,在多孔金属上直接生长石墨烯,可以避免石墨烯转移的过程,提高电极的稳定性,同时也便于实现连续化生产。
在现有的技术中,实现石墨烯与多孔金属复合的类型大致可分为两种:一种方法是将分散于液相中的氧化石墨烯或者石墨烯涂覆于多孔金属表面上,制备石墨烯与多孔金属复合的材料,如申请号为201410075654.0(一种基于泡沫镍原位制备石墨烯超级电容器电极的方法),申请号为201310566939.X(一种不含粘合剂超级电容器电极的制备方法),申请号为201310146410.2(一种基于泡沫镍的超级电容器电极的制备方法及其产品),申请号为201310503198.0(一种基于三维石墨烯的超级电容器电极材料制备方法)所提供的技术方案。目前用于生产这种氧化石墨烯或者石墨烯的方法主要通过硫酸、硝酸、高锰酸钾等强氧化剂对石墨粉进行氧化,从而使石墨片层之间被含氧官能团撑开达到片层分离的目的,然后通过化学还原的方法得到石墨烯。这类方法通常发生在水溶液中,在将石墨烯分离时往往会由于石墨烯片层之间强的范德华作用力而发生石墨烯片层的重聚,并且石墨片层上的含氧集团也难以百分之百被还原,从而大大降低了其比表面积及其电化学性能。
另一种方法是使用化学气相沉积法直接在多孔金属表面上原位生长石墨烯,如申请号为201410029979.5(一种连续相海绵状石墨烯材料及其制备方法),申请号为201410029989.9(连续相海绵状石墨烯制作锂电池的正负极材料及制备方法),申请号为201410285437.4(用于制作电极的多孔金属复合材料及其制备方法)提供的技术方案。但由于泡沫金属的骨架表面非常粗糙,存在很多晶界、凸起、凹坑、褶皱,甚至还存在裂纹和表面氧化现象,金属粗糙的表面结构会对在其上生长的石墨烯的质量产生一些不良的影响,金属表面的台阶状结构可能会使石墨烯的晶向发生偏转,从而形成晶界等缺陷,石墨烯倾向于在缺陷和微观结构粗糙处成核,增大成核密度,导致在泡沫镍骨架表面生长的石墨烯晶粒尺寸较小、层数不均且难以控制,晶界处往往存在较厚的石墨烯,少层石墨烯成无序堆叠,这些缺陷大大降低了石墨烯的导电能力。该方法对于多孔金属的组成具有选择性,基体只能采用对石墨烯具有催化生长作用的金属。
发明内容
为了克服现有制备方法存在的缺点和不足,本发明提供了一种金属-石墨烯复合多孔电极材料的制备方法。在使用该技术方案制备的电极材料中,生长在多孔金属基体上的石墨烯缺陷少、面积大、层数可控、导电性好;多孔金属基体可以选用各种不同组分的纯金属或合金,而不必局限于几种对石墨烯具有催化作用的金属,且制造过程稳定高效,便于实现连续化生产。
本发明的技术方案为:
一种金属-石墨烯复合多孔电极材料的制备方法,包括以下步骤:
(1)以多孔金属为基体,多孔金属具有开孔的三维立体结构、平均孔直径为100μm~3000μm、厚度为0.3 mm~70 mm;
(2)在(1)所述的基体上用真空镀工艺沉积过渡金属层,其中真空镀工艺是指真空磁控溅射技术、真空蒸镀技术、真空离子镀技术,真空镀工艺优选真空磁控溅射技术,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,过渡金属层的平均厚度为5 nm~2000 nm;
(3)在(2)所述的过渡金属层上用化学气相沉积法制备石墨烯层:把经过步骤(2)处理的多孔金属置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至650 ℃~1000 ℃,同时通入氢气和氩气的混合气体,保温10分钟~45分钟,继续升温至800 ℃~1100 ℃,再通入碳源气体进行反应,反应时间0.5分钟~30分钟,反应结束后停止通入碳源气体,在氩气或者氢气、氩气两者的混合气体中冷却至室温,制备得到的石墨烯层的厚度为0.34 nm~100 nm;
(4)所述基体上至少有两层过渡金属层和两层石墨烯层,并且过渡金属层与石墨烯层相互叠加。
所述的多孔金属是由Ni、Cu、Fe、Al、Co、Ag、Pd、Cr中的任意一类金属形成的单金属材料,或是上述金属种类中任意两类或两类以上形成的多层金属或者合金。
所述的过渡金属层是由Ni、Cu、Co、Pt、Pd中的任意一类金属形成的单金属层,或是上述金属种类中任意两类或两类以上的金属形成的多层金属或者合金层。
所述的碳源气体为甲烷、乙烷、乙烯、乙炔、苯、甲苯、二甲苯中的一种或两种以上混合物。
本发明通过在多孔金属基体上沉积一层过渡金属层,以过渡金属层为催化剂,在过渡金属层上生长石墨烯,上述过渡金属层和石墨烯层可以在多孔金属基体上相互叠加。这个方案的优点在于:
(1)多孔金属具有比表面积高、导电性好、质量轻、易加工的特点,与石墨烯复合时可以充分利用石墨烯本身具备的优异的导电能力和高比表面积的特点,制备出电化学性能优异的电极。
(2)在多孔金属基体表面上沉积一层对石墨烯具有催化作用的金属层,相比直接在多孔金属基体表面原位生长石墨烯来说,可以消除石墨烯对多孔金属组分的选择性,能够实现在任何多孔基体上生长石墨烯,可以填补和覆盖多孔金属骨架表面的晶界和缺陷,在其上生长的石墨烯具有晶粒大、连续性好、缺陷少的特点。这层具有催化作用的金属层,可以是纯金属,也可以是合金,通过不同的组分搭配和技术路线的选用,可以控制石墨烯的层数,对提高石墨烯的质量起重要作用。
(3)可以根据需要在多孔金属基体表面上多次叠加过渡金属层和石墨烯层,提高石墨烯的覆盖率,增大电极表面积,提高导电率。
附图说明
图1是本发明的工艺流程框图。
具体实施方式
下面结合具体实施例来进一步说明本发明所述的一种金属-石墨烯复合多孔电极材料的制备方法。
实施例1:
以泡沫镍为基体,所选泡沫镍的平均孔直径为100μm,厚度为0.3㎜,使用真空磁控溅射技术在基体表面沉积Cu作为过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,过渡金属层的平均厚度为5 nm;将经过表面沉积Cu的泡沫镍置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至900 ℃,同时通入氢气和氩气的混合气体,保温15分钟,继续升温至1040 ℃,然后通入甲烷气体进行反应,反应时间0.5分钟,反应结束后停止通入甲烷气体,在氢气和氩气的混合气氛中冷却至室温,从而制备得到一种金属-石墨烯复合多孔电极材料。最后把产品取出保存。
实施例2:
以泡沫铝为基体,所选泡沫铝的平均孔直径为500μm,厚度为1.5㎜;使用真空磁控溅射技术在基体表面沉积Cu-Ni合金作为过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,过渡金属层的平均厚度为300 nm;将经过表面沉积Cu-Ni合金的泡沫铝置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至800 ℃,同时通入氢气和氩气的混合气体,保温20分钟,继续升温至1000 ℃,然后通入甲苯气体进行反应,反应时间5分钟,反应结束后停止通入甲苯气体,在氩气保护气氛中冷却至室温,从而制备得到一种金属-石墨烯复合多孔电极材料。最后把产品取出保存。
实施例3:
以泡沫镍铁为基体,所选泡沫镍铁的平均孔直径为400μm,厚度为1.8㎜;使用真空磁控溅射技术在基体表面沉积Co-Ni合金作为过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,过渡金属层的平均厚度为400 nm;将经过表面沉积Co-Ni合金的泡沫镍铁置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至750 ℃,同时通入氢气和氩气的混合气体,保温30分钟,继续升温至975 ℃,然后通入乙烷气体进行反应,反应时间10分钟,反应结束后停止通入乙烷气体,在氩气保护气氛中冷却至室温,制备得到一种金属-石墨烯复合多孔电极材料。最后把产品取出保存。
实施例4:
以泡沫钴为基体,所选泡沫钴的平均孔直径为600μm,厚度为3.5㎜;使用真空磁控溅射技术在基体表面沉积Cu作为第一层过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,第一层过渡金属层的平均厚度为200 nm;将经过表面沉积Cu的泡沫钴置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至850 ℃,同时通入氢气和氩气的混合气体,保温25分钟,继续升温至1040 ℃,然后通入乙烯气体进行反应,反应时间10分钟,反应结束后停止通入乙烯气体,在氢气和氩气的混合气氛中冷却至室温,制备得到第一层石墨烯层。然后把半成品取出。
使用真空磁控溅射技术在第一层石墨烯层上沉积Ni作为第二层过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,第二层过渡金属层的平均厚度为500 nm;将以上经过表面沉积Ni的样品置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至800℃,同时通入氢气和氩气的混合气体,保温25分钟,继续升温至1000 ℃,然后通入乙烯气体进行反应,反应时间20分钟,反应结束后停止通入乙烯气体,在氢气和氩气的混合气氛中冷却至室温,得到第二层石墨烯层,从而制备得到一种金属-石墨烯复合多孔电极材料。最后把产品取出保存。
实施例5:
以泡沫铜镍为基体,所选泡沫铜镍的平均孔直径为3000μm,厚度为70㎜;使用真空磁控溅射技术在基体表面沉积Ni作为第一层过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,第一层过渡金属层的平均厚度为2000 nm;将经过表面沉积Ni的泡沫铜镍置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至900 ℃,同时通入氢气和氩气的混合气体,保温45分钟,继续升温至1000 ℃,然后通入甲烷气体进行反应,反应时间30分钟,反应结束后停止通入甲烷气体,在氢气和氩气的混合气氛中冷却至室温,制备得到第一层石墨烯层。然后把半成品取出。
使用真空磁控溅射技术在第一层石墨烯层上沉积Ni作为第二层过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,第二层过渡金属层的平均厚度为300 nm,将经过表面沉积第二层过渡金属层Ni的样品置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至900 ℃,同时通入氢气和氩气的混合气体,保温13分钟,继续升温至1000 ℃,然后通入甲烷气体进行反应,反应时间20分钟,反应结束后停止通入甲烷气体,在氢气和氩气的混合气氛中冷却至室温,得到第二层石墨烯层,从而制备得到一种金属-石墨烯复合多孔电极材料。然后把半成品取出。
使用真空磁控溅射技术在第二层石墨烯层上沉积Ni作为第三层过渡金属层,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,第三层过渡金属层的平均厚度为800 nm;将经过表面沉积第三层过渡金属层Ni的样品置于真空炉腔内,抽真空至炉腔内部本底真空≤2 Pa,再升温至900 ℃,同时通入氢气和氩气的混合气体,保温13分钟,继续升温至1000 ℃,然后通入甲烷气体进行反应,反应时间12分钟,反应结束后停止通入甲烷气体,在氢气和氩气的混合气氛中冷却至室温,制备得到第三层石墨烯层。最后把产品取出保存。

Claims (1)

1.一种金属-石墨烯复合多孔电极材料的制备方法,其特征在于包括以下步骤:
(1)以多孔金属为基体,多孔金属具有开孔的三维立体结构、平均孔直径为100μm~3000μm、厚度为0.3mm~70mm;
(2)在(1)所述基体上用真空镀工艺沉积过渡金属层,其中真空镀工艺是指真空磁控溅射技术,其工作参数为:真空腔本底真空≤5×10-2Pa,溅射镀膜时真空腔室内压力≤1Pa,每分米靶宽幅施加的靶功率密度为0.1千瓦~1千瓦,过渡金属层的平均厚度为5nm~2000nm;
(3)在(2)所述的过渡金属层上用化学气相沉积法制备石墨烯层:把经过步骤(2)处理的多孔金属置于真空炉腔内,抽真空至炉腔内部本底真空≤2Pa,再升温至650℃~1000℃,同时通入氢气和氩气的混合气体,保温10分钟~45分钟,继续升温至800℃~1100℃,然后通入碳源气体进行反应,反应时间0.5分钟~30分钟,反应结束后停止通入碳源气体,在氩气或者氢气、氩气两者的混合气体中冷却至室温,制备得到的石墨烯层的厚度为0.34nm~100nm;
(4)所述基体上至少有两层过渡金属层和两层石墨烯层,并且过渡金属层与石墨烯层互相叠加。
CN201510706762.8A 2015-10-27 2015-10-27 一种金属-石墨烯复合多孔电极材料的制备方法 Active CN105448528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510706762.8A CN105448528B (zh) 2015-10-27 2015-10-27 一种金属-石墨烯复合多孔电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510706762.8A CN105448528B (zh) 2015-10-27 2015-10-27 一种金属-石墨烯复合多孔电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN105448528A CN105448528A (zh) 2016-03-30
CN105448528B true CN105448528B (zh) 2019-05-28

Family

ID=55558610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510706762.8A Active CN105448528B (zh) 2015-10-27 2015-10-27 一种金属-石墨烯复合多孔电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN105448528B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083535A (zh) * 2017-04-18 2017-08-22 大连理工大学 石墨烯改性图形化金属衬底上的氮化镓基薄膜及制备方法
CN107240695B (zh) * 2017-07-11 2020-04-03 嘉兴学院 一种富边缘石墨烯-金属复合电极材料的制备方法及复合电极材料
CN107578926A (zh) * 2017-07-20 2018-01-12 西北工业大学 碳纤维‑过渡金属‑碳纳米管柔性纳米复合电极材料的制备方法
CN107748192A (zh) * 2017-10-12 2018-03-02 黄晓敏 一种多层石墨烯气体传感器
CN107649165A (zh) * 2017-10-20 2018-02-02 秦永泽 一种泡沫金属‑石墨烯复合衬底上的光催化薄膜及制备方法
CN107895800B (zh) * 2017-10-24 2020-08-25 天津大学 一步法制备电沉积钴活性炭阳极的方法
CN108130516A (zh) * 2018-01-03 2018-06-08 梧州三和新材料科技有限公司 一种使用泡沫金属增强冷却的真空镀阴极靶
CN108231428A (zh) * 2018-01-29 2018-06-29 广东明路电力电子有限公司 一种微孔导电片式电极及其加工工艺
CN108428687B (zh) * 2018-03-12 2020-05-12 深圳天元羲王材料科技有限公司 一种石墨烯金属焊盘及其制备方法
CN109301251A (zh) * 2018-09-17 2019-02-01 曾文飞 一种石墨烯锂电池材料及其制备方法
CN109817828A (zh) * 2019-01-25 2019-05-28 重庆石墨烯研究院有限公司 一种石墨烯透明电极及其功函数调控方法
CN112666306B (zh) * 2019-10-16 2023-06-27 中国科学院大连化学物理研究所 一种多孔电极离聚物覆盖度标定方法
WO2021133159A1 (en) * 2019-12-24 2021-07-01 Mimos Berhad A method of forming graphene nanomesh
CN113828312B (zh) * 2021-10-28 2023-11-03 梧州学院 一种泡沫金属/石墨烯/单原子复合催化材料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114396A (ja) * 2010-11-25 2012-06-14 Samsung Electro-Mechanics Co Ltd 多層構造の電極及び前記電極を含むスーパーキャパシタ
CN102709569A (zh) * 2012-06-15 2012-10-03 常德力元新材料有限责任公司 多孔金属复合材料
CN103956275A (zh) * 2014-05-19 2014-07-30 常州立方能源技术有限公司 三维石墨烯网络增强活性炭超级电容器极片的制备方法
CN104022274A (zh) * 2014-06-24 2014-09-03 常德力元新材料有限责任公司 用于制作电极的多孔金属复合材料及其制备方法
CN104868134A (zh) * 2015-04-17 2015-08-26 华南理工大学 一种泡沫金属-碳纳米管复合材料及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640334B2 (en) * 2010-01-25 2017-05-02 Nanotek Instruments, Inc. Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material
KR102227276B1 (ko) * 2013-11-05 2021-03-11 더 리전트 오브 더 유니버시티 오브 캘리포니아 금속 산화물이 고정된 그래핀과 탄소 나노튜브 하이브리드 발포체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114396A (ja) * 2010-11-25 2012-06-14 Samsung Electro-Mechanics Co Ltd 多層構造の電極及び前記電極を含むスーパーキャパシタ
CN102709569A (zh) * 2012-06-15 2012-10-03 常德力元新材料有限责任公司 多孔金属复合材料
CN103956275A (zh) * 2014-05-19 2014-07-30 常州立方能源技术有限公司 三维石墨烯网络增强活性炭超级电容器极片的制备方法
CN104022274A (zh) * 2014-06-24 2014-09-03 常德力元新材料有限责任公司 用于制作电极的多孔金属复合材料及其制备方法
CN104868134A (zh) * 2015-04-17 2015-08-26 华南理工大学 一种泡沫金属-碳纳米管复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN105448528A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN105448528B (zh) 一种金属-石墨烯复合多孔电极材料的制备方法
Yang et al. Deciphering the lithium storage chemistry in flexible carbon fiber‐based self‐supportive electrodes
Lu et al. Single-atom catalytic materials for lean-electrolyte ultrastable lithium–sulfur batteries
Zeng et al. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium–sulfur batteries
Zhang et al. Single Fe atom on hierarchically porous S, N‐codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn‐air batteries
Hong et al. Cerium based metal–organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries
Wu et al. Multishelled NixCo3–xO4 hollow microspheres derived from bimetal–organic frameworks as anode materials for high‐performance lithium‐ion batteries
CN105256312A (zh) 一种石墨烯和碳纳米管复合多孔电极材料的制备方法
Park et al. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems
Li et al. In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries
Li et al. Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors
Fang et al. Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors
Huang et al. A hierarchical Tin/Carbon composite as an anode for lithium‐ion batteries with a long cycle life
Guang et al. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries
Xu et al. MoO2@ MoS2 Nanoarchitectures for High‐Loading Advanced Lithium‐Ion Battery Anodes
Wen et al. In-situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery
Kou et al. Controlled fabrication of core–shell γ-Fe2O3@ C–Reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption
Fan et al. 3D nanowire arrayed Cu current collector toward homogeneous alloying anode deposition for enhanced sodium storage
Dong et al. Large-scale synthesis of NiS@ N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery
CN105206433B (zh) 一种金属-碳纳米管复合多孔电极材料的制备方法
Song et al. Deciphering the defect micro‐environment of graphene for highly efficient Li–S redox reactions
CN102623669A (zh) 一种碳锡纳米复合粉体的制备方法与应用
Liang et al. Co0. 8Zn0. 2MoO4/C nanosheet composite: rational construction via a one-stone-three-birds strategy and superior lithium storage performances for lithium-ion batteries
Qin et al. Multidimensional Germanium‐Based Materials as Anodes for Lithium‐Ion Batteries
Xiang et al. Design and synthesis of Cr2O3@ C@ G composites with yolk-shell structure for Li+ storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant