CN113828312B - 一种泡沫金属/石墨烯/单原子复合催化材料制备方法 - Google Patents

一种泡沫金属/石墨烯/单原子复合催化材料制备方法 Download PDF

Info

Publication number
CN113828312B
CN113828312B CN202111265729.8A CN202111265729A CN113828312B CN 113828312 B CN113828312 B CN 113828312B CN 202111265729 A CN202111265729 A CN 202111265729A CN 113828312 B CN113828312 B CN 113828312B
Authority
CN
China
Prior art keywords
graphene
metal
foam
transition metal
catalytic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111265729.8A
Other languages
English (en)
Other versions
CN113828312A (zh
Inventor
曹宇
吴海龙
胡梦晗
刘莹
王艳玲
王哲英
曾勇谋
莫瀚宁
钟山
程汉池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuzhou University
Original Assignee
Wuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuzhou University filed Critical Wuzhou University
Priority to CN202111265729.8A priority Critical patent/CN113828312B/zh
Publication of CN113828312A publication Critical patent/CN113828312A/zh
Application granted granted Critical
Publication of CN113828312B publication Critical patent/CN113828312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种泡沫金属/石墨烯/单原子复合催化材料制备方法:(1)用金属制备纯泡沫金属材料;(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯;(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层;(4)将泡沫过渡金属/石墨烯/过渡金属在稀酸中侵蚀,清洗和烘干,即得一种泡沫金属/石墨烯/单原子复合催化材料。本发明方法制备小片缺陷石墨烯,提高石墨烯与基体结合力,通过大量小片缺陷石墨烯捕获单原子催化剂,单原子负载量大,结构稳定,催化效果良好,实现制备过渡金属/石墨烯/单原子催化材料,制备所得复合材料可以满足催化材料和电极材料的使用条件。

Description

一种泡沫金属/石墨烯/单原子复合催化材料制备方法
技术领域
本发明涉及一种催化材料的制备方法,特别涉及一种泡沫金属/石墨烯/单原子复合催化材料制备方法。
背景技术
随着能源需求的不断增长,新能源行业得到了快速发展,过渡金属催化剂因其来源丰富、价格低廉、催化效率高等原因被广泛应用于新能源领域。其中,镍基催化剂已经投入工业生产,并且改善其催化活性、内表面利用率、耐候性、使用寿命等已经成为当今的研究热点。石墨烯是一种由碳原子组成的二维蜂窝状晶格结构的碳纳米材料,具有高的比表面积、高的导电性和优异的物理化学特性,在能源环保、电子器件、生物医药、功能材料等领域具有广阔的应用前景,但是石墨烯产业化还属于初级阶段。单原子催化剂是一种单原子分散存在的负载型金属催化剂,具有良好的催化剂的活性、选择性和稳定性。自概念提出以来,单原子催化迅速成为催化领域的研究前沿,尤其是非贵金属单原子催化剂,但是单原子催化剂制备和催化机理仍然需要进一步研究。利用三种新材料的优势特性,互相弥补每种材料的不足,研究一种新型泡沫金属/石墨烯/非贵金属单原子复合催化剂具有重要的意义。
现有技术中,制备石墨烯催化剂的相关专利申请有:一种单原子层石墨烯薄膜的制备方法(申请号CN201010546594.8);一种氮掺杂石墨烯负载铁钴双金属单原子催化剂的制备方法(申请号CN202110460456.6);缺陷石墨烯锚定双过渡金属单原子合成氨催化剂的制备方法(申请号CN202110368051.X);一种基于针状焦的单原子金属石墨烯催化剂及其制备方法(申请号CN201911311976.X)等。现有石墨烯/单原子催化剂的制备流程为:1、原子层沉积法(ALD)的工艺流程:(1)将载体置于反应器中,通入气态化金属前驱物(N2为载气),高温下金属前驱物锚定于石墨烯表面;(2)N2吹扫,清除多余金属前驱物;(3)通入气态氧化剂去除前驱物有机配体,完成单原子锚定;(4)N2吹扫后得到金属单原子催化剂;2、浸渍煅烧法的工艺流程:第一步,将氧化石墨烯(GO)浸泡在金属前驱物的水溶液中,接触一定时间之后,金属离子吸附在GO表面,对混合溶液冻干处理;第二步,将冻干后的粉末在750~900℃NH3的氛围下还原,同步完成石墨烯的还原、氮掺杂和金属单原子的锚定;3、缺陷捕获法的工艺流程:将金属前驱物水溶液与石墨烯充分混合浸润,干燥后热处理,此时石墨烯表面的缺陷位点将负载大量体相金属,使用盐酸处理,清洗掉大部分体相金属(至TEM观测不到),完成石墨烯基金属单原子催化剂的制备;4、配位锚定法的工艺流程:第一,将金属前驱物、媒介物与GO在溶液中充分混合均匀,干燥;第二,对干燥后产品热处理,增强单原子锚定。
上述现有石墨烯/单原子催化材料制备工艺比较复杂,使用的稳定性比较差,长时间使用会出现物质脱落,降低催化效果,污染催化腔体,经济损失严重,所以现在大部分企业仍然使用传统多孔金属催化剂。
发明内容
本发明针对上述技术问题,利用高纯过渡金属制备粗糙多孔金属基体,通过调节化学气相沉积法(CVD)工艺制备小片缺陷石墨烯,提高石墨烯与基体结合力。通过大量小片缺陷石墨烯捕获单原子催化剂,单原子负载量大,结构稳定,实现制备过渡金属/石墨烯/单原子催化材料,以上方法制备的复合材料可以满足催化材料和电极材料的使用条件。
为实现上述目的,本发明提供的技术方案如下:
一种泡沫金属/石墨烯/单原子复合催化材料制备方法,包含以下操作步骤:
(1)用金属制备厚度为10~100mm、平均孔直径为0.1~10mm的纯泡沫金属材料;
(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯:将步骤(1)制备所得纯泡沫金属材料置于真空炉腔内,然后抽真空≤2Pa,然后升温至500℃~1000℃,同时通入氢气和氩气,氢气通入量为20~50sccm,氩气通入量为100~150sccm,保温10~40min;按照通入量为10~40sccm通入碳源气体进行反应,时间10~40min;然后控制氢气通入量为20~50sccm、氩气通入量为100~150sccm快速冷却,冷却至室温,关闭真空泵直至与室内压强相等,该工艺可以在泡沫金属表面制备具有缺陷的小片石墨烯层,即得泡沫过渡金属/石墨烯复合材料;
(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层,工艺参数为:真空腔本底真空≤5×10-3Pa,溅射镀膜时真空腔室内压力≤2Pa,每分米靶宽幅施加的靶功率密度为0.1~1kw,过渡金属层(Cr、Mn、Fe、Co、Ni、Cu或Zn中的一种)的平均厚度为≤5nm;
(4)将泡沫过渡金属/石墨烯/过渡金属在稀酸中侵蚀,时间为5~60min,具体时间根据石墨烯表面沉积过渡金属层厚度和酸浓度确定,可以适当增加,石墨烯与过渡金属结合比较强,清洗和烘干,即得一种泡沫金属/石墨烯/单原子复合催化材料。
作为优选,步骤(1)中所述的金属为铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)或锌(Zn)中的一种。
作为优选,步骤(2)中所述的升温速率为≤30℃/min;所述冷却的速率为≥20℃/min。
作为优选,步骤(2)中所述的碳源气体是甲烷、乙烷、乙烯、乙炔、甲醇、乙醇、苯、甲苯或二甲苯中的一种。
作为优选,步骤(4)中所述的稀酸为HCl、HBr、HF、H3PO4或其它非氧化性弱酸中的一种。
与现有技术相比,本发明具有如下有益效果:
本发明方法制备小片缺陷石墨烯,提高石墨烯与基体结合力,通过大量小片缺陷石墨烯捕获单原子催化剂,单原子负载量大,结构稳定,催化效果良好,实现制备过渡金属/石墨烯/单原子催化材料,制备所得复合材料可以满足催化材料和电极材料的使用条件。
附图说明
图1是本发明制备所得泡沫金属/石墨烯/单原子复合催化材料原子结构示意图。
具体实施方式
下面结合附图具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。实施例中采用的原料、试剂若无特殊说明,皆为市售所得。
实施例1
一种泡沫金属/石墨烯/单原子复合催化材料制备方法,具体操作步骤如下:
(1)用纯度为≥99.9%的金属镍(Ni)制备厚度为10~100mm、平均孔直径为0.1~10mm的纯泡沫金属材料;
(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯:将步骤(1)制备所得纯泡沫金属材料置于真空炉腔内,抽真空≤2Pa,然后保持升温速率10℃/min,升温至850℃,同时通入氢气和氩气,氢气通入量为20~50sccm,氩气通入量为100~150sccm,保温30min;按照通入量为10~40sccm通入碳源气体甲烷进行反应,时间20min;然后控制氢气通入量为20~50sccm、氩气通入量为100~150sccm进行快速冷却,冷却的速率35℃/min,冷却至室温,关闭真空泵直至与室内压强相等,该工艺可以在泡沫金属表面制备具有缺陷的小片石墨烯层,即得泡沫过渡金属/石墨烯复合材料;
(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层,工艺参数为:真空腔本底真空5×10-4Pa,溅射镀膜时真空腔室内压力1Pa,每分米靶宽幅施加的靶功率密度为0.2kw,过渡金属层(Ni)的平均厚度为4nm;
(4)将泡沫过渡金属/石墨烯/过渡金属在质量分数12%稀酸HBr中侵蚀,时间为15min,具体时间根据石墨烯表面沉积过渡金属层厚度和酸浓度确定,可以适当增加,石墨烯与过渡金属结合比较强,清洗和烘干,即得一种泡沫镍金属/石墨烯/单原子复合催化材料,结构示意图如图1所示,图1中过渡金属指金属和/或单原子。
实施例2
一种泡沫金属/石墨烯/单原子复合催化材料制备方法,具体操作步骤如下:
(1)用纯度为≥99.9%的金属镍(Ni)制备厚度为50mm、平均孔直径为0.4~0.5mm的纯泡沫金属材料;
(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯:将步骤(1)制备所得纯泡沫金属材料置于真空炉腔内,抽真空≤2Pa,然后保持升温速率10℃/min,升温至600℃,同时通入氢气和氩气,氢气通入量为20~50sccm,氩气通入量为100~150sccm,保温30min;按照通入量为10~40sccm通入碳源气体乙烯进行反应,时间20min;然后控制氢气通入量为20~50sccm、氩气通入量为100~150sccm进行快速冷却,冷却的速率35℃/min,冷却至室温,关闭真空泵直至与室内压强相等,该工艺可以在泡沫金属表面制备具有缺陷的小片石墨烯层,即得泡沫过渡金属/石墨烯复合材料;
(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层,工艺参数为:真空腔本底真空5×10-4Pa,溅射镀膜时真空腔室内压力1Pa,每分米靶宽幅施加的靶功率密度为0.2kw,过渡金属层Ni的平均厚度为4nm;
(4)将泡沫过渡金属/石墨烯/过渡金属在质量分数12%稀酸HBr中侵蚀,时间为15min,具体时间根据石墨烯表面沉积过渡金属层厚度和酸浓度确定,可以适当增加,石墨烯与过渡金属结合比较强,清洗和烘干,即得一种泡沫镍金属/石墨烯/单原子复合催化材料。
实施例3
一种泡沫金属/石墨烯/单原子复合催化材料制备方法,具体操作步骤如下:
(1)用纯度为≥99.9%的金属铜(Cu)制备厚度为20mm、平均孔直径为0.8~1mm的纯泡沫金属材料;
(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯:将步骤(1)制备所得纯泡沫金属材料置于真空炉腔内,抽真空≤2Pa,然后保持升温速率10℃/min,升温至700℃,同时通入氢气和氩气,氢气通入量为20~50sccm,氩气通入量为100~150sccm,保温30min;按照通入量为10~40sccm通入碳源气体乙醇进行反应,时间20min;然后控制氢气通入量为20~50sccm、氩气通入量为100~150sccm进行快速冷却,冷却的速率35℃/min,冷却至室温,关闭真空泵直至与室内压强相等,该工艺可以在泡沫金属表面制备具有缺陷的小片石墨烯层,即得泡沫过渡金属/石墨烯复合材料;
(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层,工艺参数为:真空腔本底真空5×10-4Pa,溅射镀膜时真空腔室内压力1Pa,每分米靶宽幅施加的靶功率密度为0.15kw,过渡金属层Cu的平均厚度为3nm;
(4)将泡沫过渡金属/石墨烯/过渡金属在质量分数12%稀酸HCl中侵蚀,时间为20min,具体时间根据石墨烯表面沉积过渡金属层厚度和酸浓度确定,可以适当增加,石墨烯与过渡金属结合比较强,清洗和烘干,即得一种泡沫铜金属/石墨烯/单原子复合催化材料。
实施例4
一种泡沫金属/石墨烯/单原子复合催化材料制备方法,具体操作步骤如下:
(1)用纯度为≥99.9%的金属镍(Ni)制备厚度为50mm、平均孔直径为0.4~0.5mm的纯泡沫金属材料;
(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯:将步骤(1)制备所得纯泡沫金属材料置于真空炉腔内,抽真空≤2Pa,然后保持升温速率10℃/min,升温至600℃,同时通入氢气和氩气,氢气通入量为20~50sccm,氩气通入量为100~150sccm,保温30min;按照通入量为10~40sccm通入碳源气体甲烷进行反应,时间20min;然后控制氢气通入量为20~50sccm、氩气通入量为100~150sccm进行快速冷却,冷却的速率35℃/min,冷却至室温,关闭真空泵直至与室内压强相等,该工艺可以在泡沫金属表面制备具有缺陷的小片石墨烯层,即得泡沫过渡金属/石墨烯复合材料;
(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层,工艺参数为:真空腔本底真空5×10-3Pa,溅射镀膜时真空腔室内压力2Pa,每分米靶宽幅施加的靶功率密度为0.1~1kw,过渡金属层(Ni)的平均厚度为3nm;
(4)将泡沫过渡金属/石墨烯/过渡金属在质量分数12%稀酸HCl中侵蚀,时间为15min,具体时间根据石墨烯表面沉积过渡金属层厚度和酸浓度确定,可以适当增加,石墨烯与过渡金属结合比较强,清洗和烘干,即得一种泡沫镍金属/石墨烯/单原子复合催化材料。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (5)

1.一种泡沫金属/石墨烯/单原子复合催化材料制备方法,其特征在于,包含以下操作步骤:
(1)用金属制备厚度为10~100mm、平均孔直径为0.1~10mm的纯泡沫金属材料;
(2)通过化学气相沉积法在纯泡沫金属材料表面制备石墨烯:将步骤(1)制备所得纯泡沫金属材料抽真空≤2Pa,然后升温至600℃~850℃,同时通入氢气和氩气,氢气通入量为20~50sccm,氩气通入量为100~150sccm,保温10~40min;按照通入量为10~40sccm通入碳源气体进行反应,时间10~40min;然后控制氢气通入量为20~50sccm、氩气通入量为100~150sccm冷却,即得泡沫过渡金属/石墨烯复合材料;
(3)在泡沫过渡金属/石墨烯复合材料的基础上,利用真空磁控溅射技术在石墨烯表面沉积过渡金属层,工艺参数为:真空腔本底真空≤5×10-3Pa,溅射镀膜时真空腔室内压力≤2Pa,每分米靶宽幅施加的靶功率密度为0.1~1kw,过渡金属层的平均厚度为≤5nm;
(4)将泡沫过渡金属/石墨烯/过渡金属在稀酸中侵蚀,时间为5~60min,清洗和烘干,即得一种泡沫金属/石墨烯/单原子复合催化材料。
2.根据权利要求1所述泡沫金属/石墨烯/单原子复合催化材料制备方法,其特征在于:步骤(1)中所述的金属为铬、锰、铁、钴、镍、铜或锌中的一种。
3.根据权利要求1所述泡沫金属/石墨烯/单原子复合催化材料制备方法,其特征在于:步骤(2)中所述的升温速率为≤30℃/min;所述冷却的速率为≥20℃/min。
4.根据权利要求1所述泡沫金属/石墨烯/单原子复合催化材料制备方法,其特征在于:步骤(2)中所述的碳源气体是甲烷、乙烷、乙烯、乙炔、甲醇、乙醇、苯、甲苯或二甲苯中的一种。
5.根据权利要求1所述泡沫金属/石墨烯/单原子复合催化材料制备方法,其特征在于:步骤(4)中所述的稀酸为HCl、HBr、HF、H3PO4或其它非氧化性弱酸中的一种。
CN202111265729.8A 2021-10-28 2021-10-28 一种泡沫金属/石墨烯/单原子复合催化材料制备方法 Active CN113828312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111265729.8A CN113828312B (zh) 2021-10-28 2021-10-28 一种泡沫金属/石墨烯/单原子复合催化材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111265729.8A CN113828312B (zh) 2021-10-28 2021-10-28 一种泡沫金属/石墨烯/单原子复合催化材料制备方法

Publications (2)

Publication Number Publication Date
CN113828312A CN113828312A (zh) 2021-12-24
CN113828312B true CN113828312B (zh) 2023-11-03

Family

ID=78966369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111265729.8A Active CN113828312B (zh) 2021-10-28 2021-10-28 一种泡沫金属/石墨烯/单原子复合催化材料制备方法

Country Status (1)

Country Link
CN (1) CN113828312B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448528A (zh) * 2015-10-27 2016-03-30 梧州三和新材料科技有限公司 一种金属-石墨烯复合多孔电极材料的制备方法
CN106944057A (zh) * 2017-03-31 2017-07-14 深圳市国创新能源研究院 一种用于电催化反应的单原子金属‑碳复合催化剂的制备方法
CN106994347A (zh) * 2017-03-27 2017-08-01 东南大学 一种制备方形铜纳米粒子‑石墨烯‑泡沫镍材料的方法
WO2017135136A1 (ja) * 2016-02-01 2017-08-10 国立大学法人北海道大学 支持体上に単原子が分散した構造体、支持体上に単原子が分散した構造体を製造する方法およびスパッタ装置
CN107904570A (zh) * 2017-11-07 2018-04-13 东南大学 一种制备镍纳米粒子‑石墨烯‑泡沫镍材料的方法
CN113046720A (zh) * 2021-03-10 2021-06-29 江西理工大学 一种Nd-石墨烯复合材料及其制备方法和应用
CN113104840A (zh) * 2021-04-01 2021-07-13 河北工业大学 一种单原子分散的原位生长掺杂氮原子碳纳米球的石墨烯泡沫、制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448528A (zh) * 2015-10-27 2016-03-30 梧州三和新材料科技有限公司 一种金属-石墨烯复合多孔电极材料的制备方法
WO2017135136A1 (ja) * 2016-02-01 2017-08-10 国立大学法人北海道大学 支持体上に単原子が分散した構造体、支持体上に単原子が分散した構造体を製造する方法およびスパッタ装置
CN106994347A (zh) * 2017-03-27 2017-08-01 东南大学 一种制备方形铜纳米粒子‑石墨烯‑泡沫镍材料的方法
CN106944057A (zh) * 2017-03-31 2017-07-14 深圳市国创新能源研究院 一种用于电催化反应的单原子金属‑碳复合催化剂的制备方法
CN107904570A (zh) * 2017-11-07 2018-04-13 东南大学 一种制备镍纳米粒子‑石墨烯‑泡沫镍材料的方法
CN113046720A (zh) * 2021-03-10 2021-06-29 江西理工大学 一种Nd-石墨烯复合材料及其制备方法和应用
CN113104840A (zh) * 2021-04-01 2021-07-13 河北工业大学 一种单原子分散的原位生长掺杂氮原子碳纳米球的石墨烯泡沫、制备方法及应用

Also Published As

Publication number Publication date
CN113828312A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN110890558B (zh) 一种负载型铂基核壳催化剂及其制备方法
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
KR20120057432A (ko) 전도성 고분자 보호코팅을 이용한 합금 촉매의 제조방법
WO2020248644A1 (zh) 一种金属材料及其表面原位溶出改性方法
CN111841589B (zh) 一种镍钴钨磷化物催化剂及其制备方法和应用
CN113171776A (zh) 用于硼氢化钠溶液水解制氢的负载型催化剂、制备方法及应用
KR100751557B1 (ko) 화학기상증착법에 의한 탄소나노튜브 담지 백금촉매의제조방법
CN113828312B (zh) 一种泡沫金属/石墨烯/单原子复合催化材料制备方法
CN113351204A (zh) 石墨烯复合材料氨氢转化催化剂及制备方法
CN117512676A (zh) 一种分级铁掺杂镍-碳结构纳米管及其制备方法和应用
CN114142049B (zh) 一种空心碳基氧还原电催化剂的制备方法及其应用
CN110961136B (zh) 一种三维可连续结构的Fe3N包覆的FeNCN复合物及其制备方法
CN112403470B (zh) 一种用于甲烷二氧化碳重整制合成气的催化剂及其应用
CN111468187B (zh) 基于表面聚合反应的高分散性单原子催化剂的制备方法
CN109574000B (zh) 一种具有卷曲状多层碳纳米壁结构的碳材料及其制备方法
CN113186508B (zh) 一种简单制备镍原子簇析氧催化剂的方法
CN114797941B (zh) 一种m-n-c单原子催化剂的制备方法及应用
CN113398967B (zh) 一种硫氮双掺杂氧改性碳布材料的制备方法
CN115010133B (zh) 一种二维超薄氮掺杂碳化钼纳米片的制备方法
CN112563513B (zh) 共价有机框架/过渡金属酸镧复合材料及其制法与应用
CN117352758A (zh) 纳米级高熵合金电催化剂的制备及其在氧还原中的应用
CN116747872A (zh) 一种钴系碳纳米管催化剂的制备及应用
CN116791101A (zh) 负载型双金属氧化物Fe3O4/NiO@CN电极材料及其制备方法和应用
CN116949498A (zh) 一种镍掺杂羟基氧化铁@Mo15S19复合催化剂及其制备方法和应用
CN118162129A (zh) 一种负载型金属催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant