CN111468187B - 基于表面聚合反应的高分散性单原子催化剂的制备方法 - Google Patents

基于表面聚合反应的高分散性单原子催化剂的制备方法 Download PDF

Info

Publication number
CN111468187B
CN111468187B CN201910068374.XA CN201910068374A CN111468187B CN 111468187 B CN111468187 B CN 111468187B CN 201910068374 A CN201910068374 A CN 201910068374A CN 111468187 B CN111468187 B CN 111468187B
Authority
CN
China
Prior art keywords
melamine
deposition
annealing
substrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910068374.XA
Other languages
English (en)
Other versions
CN111468187A (zh
Inventor
司楠
周德春
牛志强
牛天超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910068374.XA priority Critical patent/CN111468187B/zh
Publication of CN111468187A publication Critical patent/CN111468187A/zh
Application granted granted Critical
Publication of CN111468187B publication Critical patent/CN111468187B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于表面聚合反应的高分散性单原子催化剂的制备方法。所述方法首先将单层三聚氰胺有机分子沉积在Au衬底表面,然后在单层三聚氰胺上沉积铁原子,最终退火获得含Fe‑N‑C的大规模二维共价配位有机框架单原子催化剂。本发明制得的Fe‑N‑C单原子催化剂密度高、分散性好、分布均匀,活性位点多,在ORR中催化性能优异。

Description

基于表面聚合反应的高分散性单原子催化剂的制备方法
技术领域
本发明涉及单原子催化剂(single-atom catalysts, SACs)的可控制备技术领域,涉及一种基于表面聚合反应的高分散性单原子催化剂的制备方法。
背景技术
负载型金属催化剂广泛应用于能源转化、环境催化以及精细化工领域。为提高金属催化剂的原子利用率,一般将金属活性组分高分散于载体上。金属活性组分分散的极限是单原子分散,即所有的金属活性组分都以单原子的形式分散于载体表面,该类催化剂称为“单原子催化剂”。
单原子催化剂兼具均相催化剂的“孤立活性位点”和多相催化剂易于循环使用的特点。传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难。三元M-N-C基单原子催化剂具有与氮原子键合的原子分散金属中心,在各种催化反应,如氧还原反应(oxygen reduction reaction, ORR)、析氧反应、析氢反应、二氧化碳还原反应等中,因其高原子利用率和高稳定性而具有优异活性和选择性,并可作为贵金属基材料的替代物,在催化反应领域具有良好的应用前景。最近发展的一系列合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等,均可以成功制备单原子催化剂,但均具有一定的局限性,如较低的负载量、非均匀的活性位点、高原子聚集度等。目前,单原子催化剂的载体一般为传统的金属氧化物,近期发展的金属有机框架材料和二维材料等由于其优异的结构可控性和高比表面积而被用于单原子催化剂的制备。文献1采用原子层沉积法制备出了Pt-N-C单原子催化剂,在100次沉积循环后得到的纳米粒子依然相对较大,有团簇状存在,且通过STEM图可以看出其在样品表面上分布并不均匀(N. Cheng, etal. Platinum single-atom and cluster catalysis of thehydrogen evolutionreactionCommun., 2016, 7, 13638.)。文献2采用热解法制备出了Co-N-C单原子催化剂,由其STEM图可知该方法制得的单原子催化剂虽尺寸较小,分散性较好,但在样品表面分布较少,密度不高,在5×5nm范围内只能看到约7-8个单原子,均匀性较差(Fei H,et al.Atomic cobalt onnitrogen-doped graphene for hydrogen generation[J].Nat.Commun.,2015,6: 8668.)。文献3采用湿化学法制备出了Fe-N-C单原子催化剂,由其STEM图可知该方法制得的单原子催化剂虽尺寸较小,达到了原子级别,但单原子在载体上的分布仍不均匀(HanguangZhang, et al. Single Atomic Iron Catalysts for OxygenReduction in Acidic Media:Particle Size Control and Thermal Activation.Journal of the American Chemical Society. 2017,139,14143-14149.)。
发明内容
针对以铁氮碳(Fe-N-C)为基础的单原子催化剂存在的热稳定性差,高温下更倾向于形成金属-金属键而非金属-氮键的缺点,以及在合成以金属有机框架和共价有机框架为模板的SACs时,产生的高密度缺陷以及无法合成大面积SACs的缺陷,本发明提供了一种基于表面聚合反应的高分散性单原子催化剂的制备方法。该方法将Fe和三聚氰胺的混合物通过表面聚合反应,合成含有Fe-N-C活性基团的、具有高负载度、高分散性和高均匀性的二维结构共价配位有机框架(covalent coordination organic frameworks, CCOFs)单原子催化剂。
本发明的技术方案如下:
基于表面聚合反应的高分散性单原子催化剂的制备方法,具体步骤如下:
步骤1,对Au衬底进行氩离子刻蚀以及退火处理,去除表面的杂质,得到洁净的Au衬底;
步骤2,在洁净的Au衬底分子束外延沉积三聚氰胺,并进行退火处理,沉积温度为85±1˚C,沉积时间为5±1min,沉积得到单层三聚氰胺/Au;
步骤3,在单层三聚氰胺/Au表面分子束外延沉积Fe,沉积通量为30±1nA,沉积时间为5~50s,沉积得到Fe/三聚氰胺/Au;
步骤4,Fe/三聚氰胺/Au进行逐步升温退火,得到含有Fe-N-C单元的二维共价配位有机框架催化剂。
优选地,步骤1中,氩离子刻蚀过程中,氩气气压保持在1.2×10-5mbar,所加能量为1.0keV,维持15min。
优选地,步骤1中,退火过程为缓慢加热至600~700℃,并维持10~11min,至表面洁净。
优选地,步骤2中,退火过程为缓慢加热至110~120℃,并维持20~25min。
优选地,步骤4中,退火过程为缓慢加热至200~300℃,并维持20~25min。
与现有技术相比,本发明具有以下优点:
(1)本发明制得的Fe-N-C单原子催化剂密度高、分散性好、分布均匀,具有更多的活性位点,在ORR中催化性能优异。
(2)本方法可实现功能性二维共价配位有机框架的大规模制备,制得的含Fe-N-C共价配位有机框架ORR中的催化剂,具有巨大应用前景。
(3)本发明制备过程简单,无有害物质产生,易于制备,生产效率高,适合大规模制备。
附图说明
图1为本发明的制备流程示意图。
图2为Au(111)上单层三聚氰胺的STM图。
图3为在单层三聚氰胺/Au(111)表面上沉积较少量Fe并在200℃进行退火处理后的STM图。
图4为在单层三聚氰胺/Au(111)表面上沉积较多量Fe并在300℃进行退火处理后的STM图。
图5为氧气吸附实验中在氧气压力为10mbar的条件下CCOFs的STM图。
图6为在单层三聚氰胺/Au(111)表面上沉积不同量Fe并在合适温度下进行退火处理后的STM图。
具体实施方式
以下结合附图和具体实施例对本发明进一步作详细说明。
(1)制备:金属衬底为Au(111)单晶,购买自Princeton Scientific公司,纯度为99.999%,尺寸为直径10毫米,厚2毫米,制备Fe-N-C团簇的前驱体为铁和三聚氰胺,三聚氰胺购自于Sigma-Aldrich公司,铁棒购自顾特服(Goodfellow)公司。
(2)表征:低温扫描隧道显微镜(STM)型号为SPECS JT-STM,表征过程中,保持着6×10-11mbar的超高真空环境以及77K的低温环境,采用恒电流模式,探针针尖为经过电化学腐蚀的钨针尖。
图1为本发明的制备流程示意图。其中,1为氩离子刻蚀枪,2为Au(111)单晶衬底,3为电子束样品加热台,4为低温电子束蒸发源,5为三聚氰胺固体粉末,6为高温电子束蒸发源,7为铁棒。
实施例1
(1)对初次使用的Au(111)衬底进行多次氩离子刻蚀以及退火处理,去除Au(111)表面的杂质,包括水,吸附气体,有机物等,并获得较大的台阶以便于样品制备以及观测。氩离子刻蚀操作:氩气气压保持在1.2×10-5mbar,所加能量为1.0keV,维持15min;退火操作:缓慢加热至600℃,并维持10min,然后送入STM中进行观察,确保去除了杂质,表面干净,并获得了较大的平台。
(2)使用氮化硼坩埚,使用前对其进行除气处理,确保在正式实验时没有杂质进入,通过自制的蒸发源,使用三聚氰胺,沉积温度为85˚C,在沉积过程中,Au(111)衬底维持在室温。生长结束后,在低温STM中进行表面观察。
(3)在单层三聚氰胺/Au(111)表面沉积Fe,铁的蒸发使用电子束蒸发源(SPECSGmbH),蒸发通量为30nA,蒸发时间为10秒。
(4)对沉积后的Fe/三聚氰胺在200℃下进行退火,在低温STM中观察其形貌。
图2为Au(111)上单层三聚氰胺的STM图。其中A为大尺寸的基本形貌,B、D图中均出现了三种不同的三聚氰胺表面结合方式——具有暗中心和亮中心的六边形网络结构以及密集四方相结构。C图为具有亮中心的六边形网络结构,六边形中心的亮点是单个直立的三聚氰胺,其氨基与Au结合。每个小三角形代表采用平面构型的三聚氰胺分子,这些三角形交替连接成六边形图案。六边形内三聚氰胺呈周期性排列,每个三聚氰胺通过六个分子间氢键来稳定。具有密集四方相的结构通常与六边形结构共存。
图3为在单层三聚氰胺/Au(111)表面上沉积较少量Fe并在200℃进行退火处理后的STM图。当沉积的Fe量较少时,CCOFs的表面形貌,框架连接在了一起,表面为短程有序的多孔结构,这说明CCOFs中有多种Fe-N结合方式。虽然框架结构连续但是并未覆盖整个表面。
实施例2
(1)对使用过的Au(111)衬底进行氩离子刻蚀以及退火处理,去除上次试验中Au(111)表面的物质,并获得较大的台阶以便于样品制备以及观测。氩离子刻蚀操作:氩气气压保持在1.2×10-5mbar,所加能量为1.0keV,维持15min;退火操作:缓慢加热至600℃,并维持10min,然后送入STM中进行观察,确保去除了杂质,表面干净,并获得了较大的平台。
(2)同实施例1,使用相同的条件,在85˚C下进行三聚氰胺的沉积,沉积过程中,Au(111)衬底维持在室温下。
(3)在单层三聚氰胺/Au(111)表面沉积Fe,铁的蒸发通量为30nA,蒸发时间为30秒。相比于实施例1,提高了Fe的沉积量。
(4)提高Fe/三聚氰胺的退火温度,从200℃提高至300℃,并在低温STM中观察其形貌。图4为在单层三聚氰胺/Au(111)表面上沉积较多量Fe并在300℃进行退火处理后的STM图。增加Fe的量后,加热聚合形成了大面积的CCOFs,其表现为具有孔洞的、连续的薄膜结构。
(5)将制备得到的CCOFs暴露在氧气中,氧气压力为10mbar,通氧时间为2min,并在低温STM中观察其形貌。图5为氧气吸附实验中在氧气压力为10mbar的条件下CCOFs的STM图。如图5所示,STM图中的亮点是表面吸附的氧,说明合成的催化剂能用有效吸附O2
对比例1
(1)对使用过的Au(111)衬底进行氩离子刻蚀以及退火处理,去除上次试验中Au(111)表面的物质,并获得较大的台阶以便于样品制备以及观测。氩离子刻蚀操作:氩气气压保持在1.2×10-5mbar,所加能量为1.0keV,维持15min;退火操作:缓慢加热至600℃,并维持10min,然后送入STM中进行观察,确保去除了杂质,表面干净,并获得了较大的平台。
(2)同实施例1,使用相同的条件,在85˚C下进行三聚氰胺的沉积,沉积过程中,Au(111)衬底维持在室温下。
(3)在单层三聚氰胺/Au(111)表面沉积Fe,并进行退火处理,铁的蒸发通量为30nA,蒸发时间为5秒。相比于实施例,减少了Fe的沉积量。
(4)对沉积后的Fe/三聚氰胺在200℃下进行退火,在低温STM中观察其形貌。如图6的A所示。图6的A中Fe的沉积时间为5s,较暗的地方为空白的衬底,可明显看到生成的CCOFs量非常少。
对比例2
(1)对使用过的Au(111)衬底进行氩离子刻蚀以及退火处理,去除上次试验中Au(111)表面的物质,并获得较大的台阶以便于样品制备以及观测。氩离子刻蚀操作:氩气气压保持在1.2×10-5mbar,所加能量为1.0keV,维持15min;退火操作:缓慢加热至600℃,并维持10min,然后送入STM中进行观察,确保去除了杂质,表面干净,并获得了较大的平台。
(2)同实施例1,使用相同的条件,在85˚C下进行三聚氰胺的沉积,沉积过程中,Au(111)衬底维持在室温下。
(3)在单层三聚氰胺/Au(111)表面沉积Fe,并进行退火处理,铁的蒸发通量为30nA,蒸发时间为50秒。相比于实施例,提高了Fe的沉积量。
(4)对沉积后的Fe/三聚氰胺在200℃下进行退火,在低温STM中观察其形貌。如图6的B所示。图6的B中Fe的沉积时间为50s,形成了多于1层的CCOFs。

Claims (1)

1.基于表面聚合反应的高分散性单原子催化剂的制备方法,其特征在于,具体步骤如下:
步骤1,对Au衬底进行氩离子刻蚀以及退火处理,去除表面的杂质,得到洁净的Au衬底,氩离子刻蚀过程中,氩气气压保持在1.2×10-5mbar,施加能量为1.0keV,维持15min,退火过程为缓慢加热至600~700℃,并维持10~11min,至表面洁净;
步骤2,在洁净的Au衬底分子束外延沉积三聚氰胺,并进行退火处理,沉积温度为85±1˚C,沉积时间为5±1min,沉积得到单层三聚氰胺/Au,退火过程为缓慢加热至110~120℃,并维持20~25min;
步骤3,在单层三聚氰胺/Au表面分子束外延沉积Fe,沉积通量为30±1nA,沉积时间为5~50s,沉积得到Fe/三聚氰胺/Au;
步骤4,Fe/三聚氰胺/Au进行逐步升温退火,得到含有Fe-N-C单元的二维共价配位有机框架催化剂,退火过程为缓慢加热至200~300℃,并维持20~25min。
CN201910068374.XA 2019-01-24 2019-01-24 基于表面聚合反应的高分散性单原子催化剂的制备方法 Expired - Fee Related CN111468187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910068374.XA CN111468187B (zh) 2019-01-24 2019-01-24 基于表面聚合反应的高分散性单原子催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910068374.XA CN111468187B (zh) 2019-01-24 2019-01-24 基于表面聚合反应的高分散性单原子催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN111468187A CN111468187A (zh) 2020-07-31
CN111468187B true CN111468187B (zh) 2022-08-16

Family

ID=71743584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910068374.XA Expired - Fee Related CN111468187B (zh) 2019-01-24 2019-01-24 基于表面聚合反应的高分散性单原子催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111468187B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736386B (zh) * 2022-04-02 2023-07-14 北京无线电计量测试研究所 一种金属有机配位纳米材料,制备、使用方法和传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914278A (zh) * 2017-04-02 2017-07-04 天津大学 一种提高催化燃烧VOCs的单原子催化剂稳定性的方法
CN106955691A (zh) * 2017-04-20 2017-07-18 南京师范大学 一种碳‑氮基单原子铁催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914278A (zh) * 2017-04-02 2017-07-04 天津大学 一种提高催化燃烧VOCs的单原子催化剂稳定性的方法
CN106955691A (zh) * 2017-04-20 2017-07-18 南京师范大学 一种碳‑氮基单原子铁催化剂及其制备方法

Also Published As

Publication number Publication date
CN111468187A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
KR102188585B1 (ko) 금속 단일 원자 촉매 및 이의 제조방법
US7563425B2 (en) Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
Sharma et al. Site-specific fabrication of Fe particles for carbon nanotube growth
KR101801789B1 (ko) 다공성 탄소 재료 및 이의 제조 방법
CN101838808B (zh) 一种在空气气氛下制备石墨碳包裹金属纳米颗粒的方法
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
JP2004182581A (ja) 炭素ナノチューブの製造方法
JP2002338221A (ja) 配向性カーボンナノチューブ膜の製造方法
CN110143616B (zh) 一种垂直生长的二硫化铼纳米片的制备方法
CN111013579B (zh) 负载钯单原子或钯纳米颗粒的限域碳材料及其制备方法
US11326251B2 (en) Method for preparing surface-active onion-like carbon nanospheres based on vapor deposition
CN112938936A (zh) 一种金属原子负载的纳米复合材料及其制备方法
CN111468187B (zh) 基于表面聚合反应的高分散性单原子催化剂的制备方法
Kremlev et al. Synthesis of hybrid materials based on multiwalled carbon nanotubes decorated with WC 1–x nanocoatings of various morphologies
CN111484002B (zh) 一种多孔石墨烯膜的制备方法和应用
CN113634289A (zh) 一种单原子催化剂的制备方法和装置
CN110102773B (zh) 一种粒径可控的有序介孔Ni纳米颗粒的制备方法
Tyczkowski et al. Cold plasma in the nanotechnology of catalysts
CN113186508B (zh) 一种简单制备镍原子簇析氧催化剂的方法
Anderson et al. Tunable CuO nanostructured thin films derived from metal–organic frameworks for dehydrogenation of alcohols
EP4338836A1 (en) Catalyst for manufacturing carbon nanotubes
EP4338837A1 (en) Method for preparing catalyst for production of carbon nanotubes
JP6709913B2 (ja) カーボンナノチューブ製造用触媒担持体の製造方法、およびカーボンナノチューブの製造方法
CN117380198A (zh) 一种氨分解整体型镍基催化剂及制备方法、整体型镍基催化剂前驱体、氨分解制氢反应
Zhang et al. Slowly Removing Surface Ligand by Aging Enhances the Stability of Pd Nanosheets toward Electron Beam Irradiation and Electrocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220816