WO2016159258A1 - ガソリンエンジン用潤滑油組成物、及びその製造方法 - Google Patents

ガソリンエンジン用潤滑油組成物、及びその製造方法 Download PDF

Info

Publication number
WO2016159258A1
WO2016159258A1 PCT/JP2016/060719 JP2016060719W WO2016159258A1 WO 2016159258 A1 WO2016159258 A1 WO 2016159258A1 JP 2016060719 W JP2016060719 W JP 2016060719W WO 2016159258 A1 WO2016159258 A1 WO 2016159258A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
lubricating oil
molybdenum
ppm
group
Prior art date
Application number
PCT/JP2016/060719
Other languages
English (en)
French (fr)
Inventor
竜也 楠本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57005922&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016159258(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP16773138.9A priority Critical patent/EP3279294B1/en
Priority to EP19156155.4A priority patent/EP3511398B1/en
Priority to CN201680001817.8A priority patent/CN106459816B/zh
Priority to JP2016547964A priority patent/JP6197123B2/ja
Priority to US15/320,540 priority patent/US10793803B2/en
Priority to KR1020177020761A priority patent/KR102603891B1/ko
Publication of WO2016159258A1 publication Critical patent/WO2016159258A1/ja
Priority to US16/267,495 priority patent/US20190169525A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/50Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/58Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the present invention relates to a lubricating oil composition for gasoline engines and a method for producing the same.
  • MoDTC molybdenum dithiocarbamate
  • MoDTC molybdenum dithiocarbamate
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lubricating oil composition that has excellent fuel efficiency and can exhibit fuel efficiency due to a friction reduction effect in a short time. .
  • this invention provides the lubricating oil composition which has the following structure, and its manufacturing method.
  • the molybdenum dithiocarbamate composition based on the total amount of molybdenum atoms is 1,200 ppm by mass or less
  • the boron-based succinimide composition based on the total amount of the nitrogen content is less than 1,200 mass ppm
  • a lubricating oil composition wherein the mass ratio [Mo / Mg] of the molybdenum atom (Mo) to the magnesium atom (Mg) of the magnesium-based detergent is 0.1 or more.
  • the lubricating oil composition of the present invention has excellent fuel efficiency and can exhibit fuel efficiency due to the friction reduction effect in a short time.
  • the lubricating oil composition of the present invention comprises a base oil, molybdenum dithiocarbamate, calcium detergent, magnesium detergent, and boron-free succinimide, and the molybdenum dithiocarbamate content in terms of molybdenum atoms is
  • the nitrogen-based content of the boron-free succinimide is less than 1,200 ppm by mass based on the total amount of the material, and the molybdenum atom (Mo)
  • the mass ratio [Mo / Mg] between the magnesium-based detergent and the magnesium atom (Mg) is 0.1 or more.
  • the base oil contained in the lubricating oil composition of the present invention may be mineral oil, synthetic oil, or a mixed oil of mineral oil and synthetic oil.
  • mineral oils include, for example, atmospheric residue obtained by atmospheric distillation of crude oils such as paraffinic, intermediate, and naphthenic oils; distillate obtained by vacuum distillation of the atmospheric residue;
  • distillate oil include mineral oils and waxes that have been subjected to one or more treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining.
  • Synthetic oils include, for example, polybutene and ⁇ -olefin homopolymers or copolymers (eg, ⁇ -olefin homopolymers or copolymers having 8 to 14 carbon atoms such as ethylene- ⁇ -olefin copolymers).
  • Poly ⁇ -olefins also referred to as PAOs
  • various esters such as polyol esters, dibasic acid esters, and phosphate esters
  • various ethers such as polyphenyl ethers
  • polyglycols alkylbenzenes; alkyl naphthalenes
  • Fischer-Tropsch method etc.
  • the synthetic oil etc. which are obtained by isomerizing the wax (GTL wax) manufactured are mentioned.
  • At least one selected from mineral oils and synthetic oils classified into groups 3 to 5 of the API (American Petroleum Institute) base oil category is preferable.
  • the present invention from the viewpoint of improving the performance (also referred to as immediate effect of fuel saving) that can express fuel saving due to cleanliness, fuel saving, and friction reduction effect in a short time (Group 3), It is preferred to combine the mineral oil to be classified with poly ⁇ -olefin (PAO).
  • PAO poly ⁇ -olefin
  • the viscosity of the base oil at 100 ° C. is preferably 2 to 30 mm 2 / s, more preferably 2 to 15 mm 2 / s. If the base oil has a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more, the evaporation loss is small. On the other hand, if it is 30 mm 2 / s or less, the power loss due to the viscous resistance is not so large. can get.
  • the viscosity index of the base oil is preferably 120 or more from the viewpoint of suppressing the viscosity change due to the temperature change and improving the fuel economy.
  • the kinematic viscosity and viscosity index of this mixed oil are the said range.
  • the content of the base oil is preferably 55% by mass or more, more preferably 60% by mass or more, still more preferably 65% by mass or more, particularly preferably 70% by mass or more, based on the total amount of the lubricating oil composition. Moreover, Preferably it is 99 mass% or less, More preferably, it is 95 mass% or less.
  • the content of poly ⁇ -olefin with respect to the total amount of the lubricating oil composition is preferably 1 to 50% by mass, more preferably 1 to 30% by mass. 2 to 20% by mass is more preferable.
  • Molybdenum dithiocarbamate The lubricating oil composition of the present invention contains molybdenum dithiocarbamate (also referred to as MoDTC). Molybdenum dithiocarbamate functions as a friction modifier that reduces the coefficient of friction between metals and provides excellent fuel efficiency.
  • MoDTC molybdenum dithiocarbamate
  • Preferred examples of molybdenum dithiocarbamate (MoDTC) include compounds represented by the following general formula (1).
  • R 1 to R 4 each independently represent a hydrocarbon group having 5 to 18 carbon atoms, and may be the same or different.
  • X 1 to X 4 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other.
  • the molar ratio [sulfur atom / oxygen atom] of sulfur atom and oxygen atom in X 1 to X 4 is preferably 1/3 to 3/1. 5 / 2.5 to 3/1 is more preferable.
  • Examples of the hydrocarbon group represented by R 1 to R 4 include a pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, An alkyl group having 5 to 18 carbon atoms such as heptadecyl group and octadecyl group; an alkenyl group having 5 to 18 carbon atoms such as octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and pentadecenyl group; A cycloalkyl group having 5 to 18 carbon atoms such as cyclohexyl group, dimethylcyclohexyl
  • the content of molybdenum dithiocarbamate (MoDTC) in terms of molybdenum atom is 1,200 mass ppm or less based on the total amount of the composition.
  • the content is 1,200 mass ppm or less, excellent wear resistance can be obtained, so that excellent fuel economy can be obtained, and a decrease in cleanliness can be suppressed.
  • the content is preferably 60 to 1,100 mass ppm, more preferably 100 to 1,100 mass ppm, more preferably more than 200 mass ppm and not more than 1,100 mass ppm, and more preferably 300 to 1,100 mass ppm.
  • ppm is still more preferable, and 300 to 800 ppm by mass is particularly preferable.
  • the lubricating oil composition of the present invention contains a calcium-based detergent.
  • calcium-based detergents include calcium salts of sulfonates, phenates, and salicylates, and these can be used alone or in combination. From the viewpoint of cleanliness and fuel economy, a salicylate calcium salt (calcium salicylate) is preferred.
  • These calcium-based detergents may be neutral, basic or overbased, but are preferably basic or overbased from the viewpoint of cleanliness, and their total base number is 10 to 10 500 mg KOH / g is preferred, 150 to 500 mg KOH / g is more preferred, 150 to 450 mg KOH / g is more preferred, more than 300 mg KOH and 450 mg KOH / g or less is even more preferred, and 310 to 400 mg KOH / g is particularly preferred.
  • the total base number is measured in accordance with the perchloric acid method defined in JIS K2501.
  • the content of calcium-based detergent in terms of calcium atoms is preferably 2,000 mass ppm or less based on the total amount of the composition.
  • the content of the calcium detergent is 2,000 mass ppm or less, not only the cleanliness but also excellent fuel economy and immediate effect of expressing fuel economy can be obtained.
  • the content of the calcium detergent is preferably 1,000 to 2,000 ppm by mass, more preferably 1,000 to 1,500 ppm by mass, and even more preferably 1,000 to 1,300 ppm by mass. It is preferably 1,000 ppm by mass or more and less than 1,300 ppm by mass.
  • the content in terms of calcium atom in the lubricating oil composition is a value measured according to JIS-5S-38-92. Further, the contents of magnesium atom, sodium atom, boron atom, molybdenum atom and phosphorus atom described later are also values measured in accordance with JIS-5S-38-92. Further, the content in terms of nitrogen atom means a value measured according to JIS K2609.
  • the lubricating oil composition of the present invention contains a magnesium-based detergent.
  • Magnesium-based detergents include sulfonates, phenates, and magnesium salts of salicylates, and these can be used alone or in combination. From the viewpoint of low friction, a sulfonate magnesium salt (magnesium sulfonate) is preferred.
  • the magnesium-based detergent is preferably basic or overbased from the viewpoint of cleanliness, and its total base number is preferably 150 to 650 mgKOH / g, more preferably 150 to 500 mgKOH / g, and 200 to 500 mgKOH / g. Is more preferable, more preferably more than 400 mgKOH / g and not more than 500 mgKOH / g, and particularly preferably 405 to 500 mgKOH / g.
  • the total base number is measured according to the perchloric acid method defined in JIS K2501.
  • the magnesium atom content of the magnesium-based detergent is preferably 50 ppm by mass or more based on the total amount of the composition.
  • the content of the magnesium-based detergent is 50 mass ppm or more, not only excellent cleanliness but also excellent fuel economy and immediate effect of expressing fuel efficiency can be obtained.
  • the content of the magnesium-based detergent is preferably 50 to 1,500 mass ppm, more preferably 100 to 1,100 mass ppm, further preferably 100 to 750 mass ppm, and 300 to 650 mass ppm. Particularly preferred.
  • the content of the magnesium-based detergent is related to the above molybdenum dithiocarbamate (MoDTC), and the mass ratio [Mo / Mg] of molybdenum atom (Mo) to magnesium atom (Mg) is 0.1 or more. It needs to be. When the mass ratio is less than 0.1, an immediate effect of expressing fuel saving cannot be obtained. From the viewpoint of obtaining fuel-saving properties and immediate effects of expressing fuel-saving properties, 0.2 or more is preferable, 0.3 or more is more preferable, 0.7 or more is more preferable, and even more preferably 1 is more preferable. .1 or more is particularly preferable. Moreover, although there is no restriction
  • detergents other than the above-mentioned calcium detergents and magnesium detergents for example, sodium detergents can be used as detergents, but it is preferable not to use sodium detergents. By not using a sodium-based detergent, it is possible to further improve the fuel efficiency and the immediate effect of expressing the fuel efficiency.
  • the lubricating oil composition of the present invention preferably contains a boron-free succinimide as a dispersant from the viewpoint of cleanliness.
  • a boron-free succinimide include alkenyl succinimide and alkyl succinimide having an alkenyl group or an alkyl group in the molecule.
  • a monotype represented by the following general formula (2), The screw type thing shown by General formula (3) is mentioned.
  • R 5 , R 7 and R 8 are each an alkenyl group or alkyl group having a number average molecular weight of 500 to 4,000, and R 7 and R 8 are the same or different. May be.
  • the number average molecular weight of R 5 , R 7 and R 8 is preferably 1,000 to 4,000. If the number average molecular weight of R 5 , R 7 and R 8 is 500 or more, the solubility in the base oil is good, and if it is 4,000 or less, good dispersibility is obtained and excellent cleanliness. Is obtained.
  • R 6 , R 9 and R 10 are each an alkylene group having 2 to 5 carbon atoms, and R 9 and R 10 may be the same or different.
  • m is an integer of 1 to 10, preferably an integer of 2 to 5, more preferably 3 or 4. When m is 1 or more, the dispersibility is good, and when it is 10 or less, the solubility in the base oil is also good, and excellent cleanliness is obtained.
  • n is an integer of 0 to 10, preferably an integer of 1 to 4, more preferably 2 or 3. When n is within the above range, it is preferable in terms of dispersibility and solubility in base oil, and excellent cleanliness can be obtained.
  • Examples of the alkenyl group that can be employed for R 5 , R 7, and R 8 include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer, and examples of the alkyl group include hydrogenated groups thereof.
  • the polybutenyl group a mixture of 1-butene and isobutene or a polymer obtained by polymerizing high-purity isobutene is preferably used.
  • the alkenyl group is preferably a polybutenyl group or isobutenyl group, and the alkyl group includes a hydrogenated polybutenyl group or isobutenyl group.
  • an alkenyl group is preferable from the viewpoint of cleanliness, that is, an alkenyl succinimide is preferable.
  • Examples of the alkylene group that can be employed for R 6 , R 9 and R 10 include a methylene group, an ethylene group, an ethylidene group, a trimethylene group, a propylene group, an isopropylene group, a tetramethylene group, a butylene group, an isobutylene group, and a pentylene group. , Hexamethylene group, hexylene group and the like.
  • Boron-free succinimide is usually produced by reacting an alkenyl succinic anhydride obtained by the reaction of polyolefin and maleic anhydride or an alkyl succinic anhydride obtained by hydrogenating it with a polyamine. can do.
  • the mono-type succinimide compound and the bis-type boron-free succinimide compound can be produced by changing the reaction ratio between the alkenyl succinic anhydride or the alkyl succinic anhydride and the polyamine.
  • olefin monomer forming the polyolefin one or two or more ⁇ -olefins having 2 to 8 carbon atoms can be used in combination, and a mixture of isobutene and 1-butene is preferable.
  • Polyamines include ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, and other single diamines; diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, and butylenetetramine And polyalkylene polyamines such as pentapentylenehexamine; piperazine derivatives such as aminoethylpiperazine, and the like.
  • the content in terms of nitrogen atom of the boron-free succinimide is less than 1,200 mass ppm from the viewpoint of cleanliness, fuel efficiency, and immediate effect of expression of fuel efficiency, based on the total amount of the composition. Cost. Further, from the same viewpoint, 100 to 1,000 ppm by mass is preferable, 300 to 900 ppm by mass is more preferable, 400 to 800 ppm by mass is still more preferable, 400 ppm to less than 700 ppm by mass is still more preferable, 690 mass ppm is particularly preferred.
  • boron-free succinimide a modification obtained by reacting the compound represented by the general formulas (2) and (3) with an alcohol, an aldehyde, a ketone, an alkylphenol, a cyclic carbonate, an epoxy compound, an organic acid, or the like. Succinimide can also be used.
  • the lubricating oil composition of the present invention preferably contains a boron-containing succinimide from the viewpoint of cleanliness, fuel economy, and immediate effect of expression of fuel economy.
  • Preferred examples of the boron-containing succinimide include boron-modified succinimides containing no boron. Specifically, for example, it can be produced by reacting an alkenyl succinic anhydride or an alkyl succinic anhydride obtained by the reaction of the above polyolefin with maleic anhydride with the above polyamine and boron compound.
  • the boron compound include boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, ammonium salt of boric acid, and the like.
  • the content in terms of boron atom of the boron-containing succinimide is preferably 50 ppm by mass or more, from the viewpoint of cleanliness, fuel-saving properties, and immediate effect of developing fuel-saving properties, based on the total amount of the composition, and 50 to 600 masses. More preferred is ppm, more preferred is 80 to 500 ppm by mass, still more preferred is 100 to 400 ppm by mass, particularly preferred is 120 to 400 ppm by mass, and particularly preferred is 220 to 400 ppm by mass.
  • the lubricating oil composition of the present invention preferably contains a boron-containing polybutenyl succinimide from the viewpoint of cleanliness and fuel economy, and particularly boron-free polybutenyl succinic acid bisimide and boron-containing polybutenyl. A combination with succinimide is preferred.
  • the lubricating oil composition of the present invention preferably further contains a poly (meth) acrylate viscosity index improver from the viewpoint of fuel saving.
  • a poly (meth) acrylate-based viscosity index improver By using a poly (meth) acrylate-based viscosity index improver, the viscosity characteristics of the lubricating oil composition can be improved and fuel economy can be improved.
  • the poly (meth) acrylate viscosity index improver may be either a dispersion type or non-dispersion type, and is preferably composed of an alkyl (meth) acrylate having an alkyl group in the molecule.
  • the alkyl group in the alkyl (meth) acrylate is preferably a linear alkyl group having 1 to 18 carbon atoms or a branched alkyl group having 3 to 18 carbon atoms.
  • Examples of such monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and heptyl (meth) acrylate. Octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, and the like. Two or more of these monomers may be used as a copolymer.
  • the alkyl group of these monomers may be linear or branched.
  • the poly (meth) acrylate viscosity index improver preferably has a weight average molecular weight (Mw) of 10,000 to 1,000,000, more preferably 30,000 to 600,000, More preferably, it is 320,000 to 600,000, particularly preferably 400,000 to 550,000.
  • the poly (meth) acrylate viscosity index improver preferably has a number average molecular weight (Mn) of 10,000 to 1,000,000, and more preferably 30,000 to 500,000.
  • the molecular weight distribution (Mw / Mn) is preferably 6 or less, more preferably 5 or less, and even more preferably 3.5 or less.
  • the weight average molecular weight and the number average molecular weight are measured by GPC, and are values obtained using polystyrene as a calibration curve, and are specifically measured under the following conditions.
  • the content of the composition based on the total amount of the poly (meth) acrylate viscosity index improver may be appropriately set according to the desired HTHS viscosity and the like, preferably 0.01 to 10.00% by mass, more preferably 0. 0.05 to 5.00% by mass, more preferably 0.05 to 2.00% by mass.
  • content of poly (meth) acrylate means content of only the resin part which consists of poly (meth) acrylate, for example, the mass of dilution oil etc. which are contained with this poly (meth) acrylate is not included
  • the content is based on solid content.
  • the lubricating oil composition of the present invention contains a polymer having a structure having a number of trident branch points with linear side chains in the main chain (hereinafter referred to as a comb polymer) as a viscosity index improver. It is preferable to do.
  • a comb polymer for example, a polymer having at least a structural unit derived from a macromonomer having a polymerizable functional group such as a (meth) acryloyl group, an ethenyl group, a vinyl ether group, and an allyl group is preferably exemplified.
  • the structural unit corresponds to a “linear side chain”.
  • various vinyl monomers such as alkyl (meth) acrylates, nitrogen atom-containing systems, halogen element-containing systems, hydroxyl group-containing systems, aliphatic hydrocarbon systems, alicyclic hydrocarbon systems, and aromatic hydrocarbon systems.
  • a copolymer having a side chain containing a structural unit derived from a macromonomer having the above polymerizable functional group with respect to a main chain containing a structural unit derived from a monomer.
  • the number average molecular weight (Mn) of the macromonomer is preferably 200 or more, more preferably 300 or more, still more preferably 400 or more, and preferably 100,000 or less, more preferably 50,000 or less, still more preferably 10, 000 or less.
  • the weight average molecular weight (Mw) of the comb polymer is preferably 1,000 to 1,000,000, more preferably 5,000 to 800,000, and 50,000 to 700 from the viewpoint of improving fuel economy. Is more preferred.
  • the molecular weight distribution (Mw / Mn) is preferably 6 or less, more preferably 5.6 or less, still more preferably 5 or less, and there is no particular limitation on the lower limit, but usually 1.01 or more, preferably 1.05 or more, more preferably 1.10 or more, still more preferably 1.5 or more.
  • the content of the comb polymer is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 8% by mass based on the total amount of the composition from the viewpoint of improving fuel economy.
  • the content of the comb polymer means the content of only the resin component composed of the comb polymer, and is, for example, a solid content content that does not include the mass of the diluent oil or the like contained with the comb polymer.
  • the lubricating oil composition of the present invention includes viscosity index improvers other than the above poly (meth) acrylates and comb polymers, such as olefin copolymers (for example, ethylene-propylene copolymers), dispersed olefins, and the like.
  • olefin copolymers for example, ethylene-propylene copolymers
  • dispersed olefins and the like.
  • a styrene copolymer or a styrene copolymer for example, a styrene-diene copolymer, a styrene-isoprene copolymer, etc. may be included.
  • the content of the poly (meth) acrylate and / or comb polymer preferably used in the viscosity index improver used in the present invention is from the viewpoint of improving the cleanliness of the lubricating oil composition. It is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass, based on the total amount of solid content (100% by mass).
  • the lubricating oil composition of the present invention preferably contains an antiwear agent and an extreme pressure agent from the viewpoint of improving fuel economy and wear resistance.
  • antiwear agents and extreme pressure agents include organic zinc compounds such as zinc phosphate, zinc dialkyldithiophosphate (ZnDTP), and zinc dithiocarbamate (ZnDTC); disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters Sulfur-containing compounds such as thiocarbonates, thiocarbamates, polysulfides; phosphorous esters, phosphate esters, phosphonate esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; Examples include acid esters, thiophosphate esters, thiophosphonate esters, and sulfur- and phosphorus-containing antiwear agents such as amine salts or metal salts thereof, which can be used alone or in combination of two or more. .
  • zinc dialkyldithiophosphate ZnDTP
  • ZnDTP zinc dialkyldithiophosphate
  • R 7 and R 8 are each independently an alkylaryl substituted with a primary or secondary alkyl group having 3 to 22 carbon atoms, or an alkyl group having 3 to 18 carbon atoms. Indicates a group.
  • the primary or secondary alkyl group having 3 to 22 carbon atoms primary or secondary propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group. Examples include decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group and the like.
  • alkylaryl group substituted with an alkyl group having 3 to 18 carbon atoms examples include a propylphenyl group, a pentylphenyl group, an octylphenyl group, a nonylphenyl group, and a dodecylphenyl group.
  • ZnDTP zinc dialkyldithiophosphate
  • primary dialkyldithiophosphate zinc having a primary alkyl group Primary alkyl ZnDTP
  • primary alkyl ZnDTP and secondary dialkyldithiophosphate zinc having secondary alkyl group secondary alkyl ZnDTP
  • the mass blending ratio of primary alkyl ZnDTP and secondary alkyl ZnDTP is 1: 3. ⁇ 1: 15 is preferred, 1: 4 to 1:10 is more preferred, and 1: 6 to 1:10 is even more preferred.
  • ZnDTP zinc dialkyldithiophosphate
  • the content of ZnDTP in terms of phosphorus atoms is preferably 100 to 2,000 mass ppm, more preferably 300 to 1,500 mass ppm, based on the total amount of the composition. 500 to 1,000 ppm by mass is more preferable, and 600 to 840 ppm by mass is particularly preferable.
  • the lubricating oil composition of the present invention preferably contains an antioxidant.
  • the antioxidant include amine-based antioxidants, phenol-based antioxidants, molybdenum-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
  • amine antioxidants include diphenylamine and diphenylamine antioxidants such as alkylated diphenylamine having an alkyl group having 3 to 20 carbon atoms; ⁇ -naphthylamine, alkyl substituted phenyl- ⁇ -naphthylamine having 3 to 20 carbon atoms, and the like. And naphthylamine antioxidants.
  • phenolic antioxidant examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and octadecyl-3- (3,5-diphenol).
  • Monophenol antioxidants such as -tert-butyl-4-hydroxyphenyl) propionate; 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6) -Tertiarybutylphenol) and the like; hindered phenolic antioxidants and the like.
  • Examples of the molybdenum-based antioxidant include molybdenum amine complex formed by reacting molybdenum trioxide and / or molybdic acid with an amine compound.
  • Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate.
  • Examples of phosphorus antioxidants include phosphites. These antioxidants may be used alone or in combination of a plurality of types, and it is usually preferable to use a combination of a plurality of types.
  • the content of the antioxidant is preferably 0.01 to 3% by mass, more preferably 0.1 to 2% by mass, based on the total amount of the composition.
  • the nitrogen atom content is preferably 50 to 1,500 ppm by mass, more preferably 100 to 1,000 ppm by mass based on the total amount of the composition. 150 to 800 ppm by mass is more preferable, and 200 to 600 ppm by mass is particularly preferable.
  • the lubricating oil composition of the present invention preferably contains a pour point depressant.
  • a pour point depressant in addition to the above polymethacrylate, for example, ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polyalkylstyrene, poly ( And (meth) acrylate.
  • the weight average molecular weight (Mw) of the pour point depressant is preferably 20,000 to 100,000, more preferably 30,000 to 80,000, and 40,000 to 60,000. Is more preferable.
  • the molecular weight distribution (Mw / Mn) is preferably 5 or less, more preferably 3 or less, and still more preferably 2 or less.
  • the content of the pour point depressant may be appropriately determined according to the desired MRV viscosity and the like, preferably 0.01 to 5% by mass, more preferably 0.02 to 2% by mass.
  • the lubricating oil composition of the present invention may contain a friction modifier other than the above-described molybdenum dithiocarbamate (MoDTC) from the viewpoint of improving fuel economy and wear resistance.
  • MoDTC molybdenum dithiocarbamate
  • Any friction modifier can be used without limitation as long as it is usually used as a friction modifier for lubricating oil compositions.
  • the alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly 6 to 30 carbon atoms can be used.
  • Ashless friction modifiers such as aliphatic amines, fatty acid esters, fatty acid amides, fatty acids, fatty alcohols, and aliphatic ethers having at least one linear alkyl group or linear alkenyl group in the molecule; molybdenum dithiophosphate ( MoDTP) and molybdenum-based friction modifiers such as amine salts of molybdic acid, and the like. These can be used alone or in combination of two or more.
  • the content based on the total amount of the composition is preferably 0.01 to 3% by mass, more preferably 0.1 to 2% by mass.
  • a molybdenum friction modifier other than molybdenum dithiocarbamate (MoDTC) is used, the content in terms of molybdenum atoms is preferably 60 to 1,000 ppm by mass, and 80 to 1,000 ppm by mass based on the total amount of the composition. More preferably, more than 100 ppm by mass and 900 ppm by mass or less is further preferable, and 110 to 800 ppm by mass is particularly preferable.
  • the content is within the above range, excellent fuel economy and wear resistance can be obtained, and deterioration of cleanliness can be suppressed.
  • molybdenum dithiocarbamate Molybdenum dithiocarbamate
  • MoDTC molybdenum dithiocarbamate
  • the ratio in terms of molybdenum atoms is preferably greater than 50% by mass, more preferably 60% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • limiting in particular about an upper limit Less than 100 mass% is preferable and 99 mass% or less is more preferable.
  • molybdenum dithiocarbamate (MoDTC) when molybdenum dithiocarbamate (MoDTC) is used in combination with other molybdenum friction modifiers is within the above range.
  • molybdenum dithiocarbamate (MoDTC) is It is preferable to use without using together with other molybdenum friction modifiers.
  • the lubricating oil composition of the present invention may contain a general-purpose additive as necessary as long as the effects of the present invention are not impaired.
  • a general-purpose additive include a rust inhibitor, a metal deactivator, an antifoaming agent, and an extreme pressure agent.
  • rust preventive examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
  • metal deactivator examples include benzotriazole compounds, tolyltriazole compounds, thiadiazole compounds, imidazole compounds, pyrimidine compounds, and the like.
  • antifoaming agent examples include silicone oil, fluorosilicone oil, and fluoroalkyl ether.
  • extreme pressure agents include sulfur-based extreme pressure agents such as sulfides, sulfoxides, sulfones, thiophosphinates, halogen-based extreme pressure agents such as chlorinated hydrocarbons, and organometallic extreme pressure agents. It is done.
  • Each content of these general-purpose additives can be appropriately adjusted within a range not impairing the effects of the present invention, and is usually 0.001 to 10% by mass, preferably 0.005 to 5% based on the total amount of the composition. 5% by mass.
  • the total content of these general-purpose additives is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and still more preferably 2% by mass or less, based on the total amount of the composition. It is.
  • the lubricating oil composition of the present invention can be used for lubrication of gasoline engines, diesel engines, and other industrial internal combustion engines, and is preferably used for gasoline engines, particularly gasoline engines equipped with a direct injection supercharging mechanism. It is done.
  • gasoline engines particularly gasoline engines equipped with a direct injection supercharging mechanism. It is done.
  • the method for producing the lubricating oil composition of the present invention comprises converting a molybdenum dithiocarbamate, a calcium-based detergent, a magnesium-based detergent, and a boron-free succinimide into a base oil in terms of molybdenum atoms of the molybdenum dithiocarbamate.
  • each said component may be mix
  • molybdenum dithiocarbamate, calcium-based detergent, magnesium-based detergent, and boron-free succinimide, and other additives may be mixed separately and then blended into the base oil. May be sequentially added to the base oil and mixed, and the addition order in this case is not limited.
  • Examples 1 to 8 Comparative Examples 1 to 3 Examples 1 to 8 were formulated with base oils and various additives of the types and blending amounts shown in Table 1, and Comparative Examples 1 to 3 were blended with base oils and various additives of the types and blending amounts shown in Table 2. Each lubricating oil composition was prepared.
  • ppmCa, ppmMg, ppmNa, ppmP, ppmN, and ppmB are calcium (Ca), magnesium (Mg), sodium (Na), phosphorus (P), nitrogen (N), and boron (B) atom equivalent contents, respectively.
  • Mass ppm is shown.
  • ZnDTP is zinc dialkyldithiophosphate contained in other additives. * 1, Mo / Mg indicates a mass ratio [Mo / Mg] of molybdenum atom (Mo) and magnesium atom (Mg).
  • Base oil A Mineral oil classified into group 3 of the API base oil category, kinematic viscosity at 100 ° C .: 4.07 mm 2 / s, viscosity index: 131,% C A : ⁇ 0.4,% C N : 12 .8,% C P : 87.6
  • Base oil B synthetic oil (poly- ⁇ -olefin (PAO), 100 ° C.
  • -Detergent A Overbased calcium salicylate, base number (perchloric acid method) 350 mgKOH / g, calcium content 12% by mass
  • Detergent B overbased magnesium sulfonate, base number (perchloric acid method) 410 mg KOH / g, magnesium content 9.4 mass%, sulfur content 2.0 mass%
  • Detergent C overbased sodium sulfonate, base number (perchloric acid method) 450 mg KOH / g, sodium content 20% by mass, sulfur content 1.2% by mass
  • MoDTC Molybdenum dithiocarbamate (molybdenum content: 10% by mass)
  • Dispersant A Boron-free succinimide (polybutenyl succinic acid bisimide), nitrogen content 1% by mass
  • Dispersant B Boron-containing succinimide (boron-containing polybutenyl succinic acid bisimide), nitrogen content 1.
  • the lubricating oil compositions of the examples have excellent fuel economy, and the time when the friction coefficient is less than 0.10 is 250 seconds or less, and the fuel efficiency is reduced by the friction reduction effect. It has been confirmed that it has an immediate effect of excellent fuel economy, which is expressed in a short time, and further has an immediate effect of excellent fuel efficiency of 200 seconds or less.
  • the lubricating oil composition of Comparative Example 1 using a sodium detergent instead of the molybdenum detergent the lubricating oil of Comparative Example 2 not including a molybdenum detergent and a sodium detergent
  • the oil composition and the lubricating oil composition of Comparative Example 3 containing no boron-free succinimide have a friction coefficient of less than 0.10 for more than 600 seconds, both of which have an immediate effect on fuel economy. It was confirmed that it was inferior in sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

 優れた省燃費性を有しつつ、摩擦低減効果による省燃費性を短時間で発現しうる潤滑油組成物、具体的には、基油、モリブデンジチオカーバメート、カルシウム系清浄剤、マグネシウム系清浄剤、及びホウ素非含有コハク酸イミドを含み、該モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が1,200質量ppm以下であり、該ホウ素非含有コハク酸イミドの組成物全量基準の窒素換算の含有量が1,200質量ppm未満であり、該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上である潤滑油組成物を提供する。

Description

ガソリンエンジン用潤滑油組成物、及びその製造方法
 本発明は、ガソリンエンジン用潤滑油組成物、及びその製造方法に関する。
 現在、地球規模での環境規制はますます厳しくなり、自動車を取り巻く状況も、燃費規制、排出ガス規制等の側面から厳しくなる一方である。この背景には地球温暖化等の環境問題と、石油資源の枯渇に対する懸念からの資源保護があり、自動車の省燃費化は急務である。自動車の省燃費化を向上させるため、エンジンの小型化技術の開発、市場展開が進められており、自動車の軽量化が可能となるため、燃費性能の向上への大きい寄与が期待されている。
 従来、ガソリンエンジン、ディーゼルエンジン等に用いられる潤滑油組成物としては、耐摩耗剤としてモリブデンジチオカーバメート(MoDTC)を採用し、金属間摩擦係数を低減し、省燃費性を向上させることが試みられてきた(例えば、特許文献1)。
特開2008-120908号公報
 しかし、モリブデンジチオカーバメート(MoDTC)は、金属間摩擦係数を低減し省燃費性を向上させる際に、優れた耐摩耗剤として機能するが、金属表面に低摩擦の反応被膜を形成し、摩擦係数を低減させる効果を得るまでに時間を要するという問題があった。そのため、特許文献1に開示される潤滑油組成物では、当該問題を解消し得ておらず、省燃費性を維持しつつ、短時間で摩擦係数の低減効果を発現する潤滑油組成物が望まれていた。
 本発明は、上記事情に鑑みてなされたもので、優れた省燃費性を有しつつ、摩擦低減効果による省燃費性を短時間で発現しうる潤滑油組成物を提供することを目的とする。
 本発明者は、鋭意研究を重ねた結果、下記の発明により上記課題を解決できることを見出した。すなわち、本発明は、下記の構成を有する潤滑油組成物、及びその製造方法を提供するものである。
[1]基油、モリブデンジチオカーバメート、カルシウム系清浄剤、マグネシウム系清浄剤、及びホウ素非含有コハク酸イミドを含み、
 該モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が1,200質量ppm以下であり、
 該ホウ素非含有コハク酸イミドの組成物全量基準の窒素換算の含有量が1,200質量ppm未満であり、
 該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上である潤滑油組成物。
[2]基油に、
 モリブデンジチオカーバメートと、
 カルシウム系清浄剤と、
 マグネシウム系清浄剤と、
 ホウ素非含有コハク酸イミドとを、
 該モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が1,200質量ppm以下であり、
 該ホウ素非含有コハク酸イミドの組成物全量基準の窒素換算の含有量が1,200質量ppm未満であり、
 該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上、
となるように配合する潤滑油組成物の製造方法。
 本発明の潤滑油組成物は、優れた省燃費性を有しつつ、摩擦低減効果による省燃費性を短時間で発現しうる。
 本発明の潤滑油組成物は、基油、モリブデンジチオカーバメート、カルシウム系清浄剤、マグネシウム系清浄剤、及びホウ素非含有コハク酸イミドを含み、該モリブデンジチオカーバメートのモリブデン原子換算の含有量が、組成物全量基準で、1,200質量ppm以下であり、該ホウ素非含有コハク酸イミドの窒素換算の含有量が、組成物全量基準で、1,200質量ppm未満であり、該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上であることを特徴とするものである。
(基油)
 本発明の潤滑油組成物に含まれる基油としては、鉱油であってもよく、合成油であってもよく、鉱油と合成油との混合油を用いてもよい。
 鉱油としては、例えば、パラフィン基系、中間基系、ナフテン基系等の原油を常圧蒸留して得られる常圧残油;該常圧残油を減圧蒸留して得られる留出油;該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等の精製処理の1つ以上の処理を施した鉱油及びワックス等を挙げることができる。
 合成油としては、例えば、ポリブテン、及びα-オレフィン単独重合体又は共重合体(例えば、エチレン-α-オレフィン共重合体等の炭素数8~14のα-オレフィン単独重合体又は共重合体)等のポリα-オレフィン(PAOとも称する);ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種エステル;ポリフェニルエーテル等の各種エーテル;ポリグリコール;アルキルベンゼン;アルキルナフタレン;フィッシャー・トロプシュ法等により製造されるワックス(GTLワックス)を異性化することで得られる合成油等が挙げられる。
 これらの中でも、潤滑油組成物の清浄性の観点から、API(米国石油協会)基油カテゴリーのグループ3~5に分類される鉱油及び合成油から選ばれる少なくとも一種であることが好ましい。
 また、本発明においては、清浄性、省燃費性、及び摩擦低減効果による省燃費性を短時間で発現しうる性能(省燃費性発現の即効性とも称する)の向上の観点から、グループ3に分類される鉱油と、ポリα-オレフィン(PAO)とを組み合わせることが好ましい。
 基油の100℃における粘度としては、好ましくは2~30mm/s、より好ましくは2~15mm/sである。基油の100℃における動粘度が2mm/s以上であると蒸発損失が少なく、一方、30mm/s以下であると粘性抵抗による動力損失があまり大きくないため、省燃費性の向上効果が得られる。
 また、基油の粘度指数としては、温度変化による粘度変化を抑えるとともに、省燃費性の向上の観点から、好ましくは120以上である。なお、基油として、2種以上の鉱油及び/又は合成油を組み合わせた混合油を用いる場合、該混合油の動粘度及び粘度指数は上記範囲であることが好ましい。
 基油の含有量は、潤滑油組成物の全量に対して、好ましくは55質量%以上、より好ましくは60質量%以上、更に好ましくは65質量%以上、特に好ましくは70質量%以上であり、また、好ましくは99質量%以下、より好ましくは95質量%以下である。
 また、鉱油とポリα-オレフィン(PAO)とを組み合わせて用いる場合、潤滑油組成物の全量に対するポリα-オレフィンの含有量は、1~50質量%が好ましく、1~30質量%がより好ましく、2~20質量%が更に好ましい。
(モリブデンジチオカーバメート)
 本発明の潤滑油組成物は、モリブデンジチオカーバメート(MoDTCとも称する)を含む。モリブデンジチオカーバメートは、金属間摩擦係数を低減する摩擦調整剤として機能し、優れた省燃費性が得られる。モリブデンジチオカーバメート(MoDTC)としては、下記一般式(1)で示される化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)中、R~Rは、各々独立に、炭素数5~18の炭化水素基を示し、互いに同一であってもよく、異なっていてもよい。
 X~Xは、各々独立に、酸素原子又は硫黄原子を示し、互いに同一であってもよく、異なっていてもよい。また、基油に対する溶解性を向上させる観点から、X~X中の硫黄原子と酸素原子とのモル比〔硫黄原子/酸素原子〕が、1/3~3/1が好ましく、1.5/2.5~3/1がより好ましい。
 R~Rの炭化水素基としては、例えば、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等の炭素数5~18のアルキル基;オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基等の炭素数5~18のアルケニル基;シクロヘキシル基、ジメチルシクロヘキシル基、エチルシクロヘキシル基、メチルシクロヘキシルメチル基、シクロヘキシルエチル基、プロピルシクロヘキシル基、ブチルシクロヘキシル基、ヘプチルシクロヘキシル基等の炭素数5~18のシクロアルキル基;フェニル基、ナフチル基、アントラセニル基、ビフェニル基、ターフェニル基等の炭素数6~18のアリール基;トリル基、ジメチルフェニル基、ブチルフェニル基、ノニルフェニル基、メチルベンジル基、ジメチルナフチル基等のアルキルアリール基;フェニルメチル基、フェニルエチル基、ジフェニルメチル基等の炭素数7~18のアリールアルキル基等が挙げられる。本発明においては、上記炭化水素基のなかでも、炭素数5~16のものが好ましく、炭素数5~12のものがより好ましい。
 モリブデンジチオカーバメート(MoDTC)のモリブデン原子換算の含有量は、組成物全量基準で、1,200質量ppm以下である。含有量が1,200質量ppm以下であると、優れた耐摩耗性が得られるので、優れた省燃費性が得られ、また清浄性の低下を抑えることができる。同様の観点から、含有量は、60~1,100質量ppmが好ましく、100~1,100質量ppmがより好ましく、200質量ppm超1,100質量ppm以下が更に好ましく、300~1,100質量ppmがより更に好ましく、300~800質量ppmが特に好ましい。
(カルシウム系清浄剤)
 本発明の潤滑油組成物は、カルシウム系清浄剤を含む。
 カルシウム系清浄剤としては、スルホネート、フェネート、及びサリシレートのカルシウム塩が挙げられ、これらを単独で、又は複数種を組み合わせて用いることができる。清浄性及び省燃費性の観点から、サリシレートのカルシウム塩(カルシウムサリシレート)が好ましい。
 これらのカルシウム系清浄剤は、中性、塩基性、過塩基性のいずれであってもよいが、清浄性の観点から、塩基性、過塩基性のものが好ましく、その全塩基価は10~500mgKOH/gが好ましく、150~500mgKOH/gがより好ましく、150~450mgKOH/gが更に好ましく、300mgKOH超450mgKOH/g以下がより更に好ましく、310~400mgKOH/gが特に好ましい。ここで、全塩基価は、JIS K2501に規定の過塩素酸法に準拠して測定したものである。
 カルシウム系清浄剤のカルシウム原子換算の含有量は、組成物全量基準で、2,000質量ppm以下であることが好ましい。カルシウム系清浄剤の含有量が2,000質量ppm以下であると、清浄性とともに、優れた省燃費性、及び省燃費性発現の即効性が得られる。同様の観点から、カルシウム系清浄剤の含有量は、1,000~2,000質量ppmが好ましく、1,000~1,500質量ppmがより好ましく、1,000~1,300質量ppmが更に好ましく、1,000質量ppm以上1,300質量ppm未満が特に好ましい。
 なお、潤滑油組成物中のカルシウム原子換算の含有量は、JIS-5S-38-92に準拠して測定された値である。また、後述するマグネシウム原子、ナトリウム原子、ホウ素原子、モリブデン原子、及びリン原子の含有量も、JIS-5S-38-92に準拠して測定された値である。また、窒素原子換算の含有量は、JIS K2609に準拠して測定された値を意味する。
(マグネシウム系清浄剤)
 本発明の潤滑油組成物は、マグネシウム系清浄剤を含む。
 マグネシウム系清浄剤としては、スルホネート、フェネート、サリシレートのマグネシウム塩が挙げられ、これらを単独で、又は複数種を組み合わせて用いることができる。低摩擦性の観点から、スルホネートのマグネシウム塩(マグネシウムスルホネート)が好ましい。
 マグネシウム系清浄剤は、清浄性の観点から、塩基性、過塩基性のものが好ましく、その全塩基価は150~650mgKOH/gが好ましく、150~500mgKOH/gがより好ましく、200~500mgKOH/gが更に好ましく、400mgKOH/g超500mgKOH/g以下がより更に好ましく、405~500mgKOH/gが特に好ましい。ここで、全塩基価は、JIS K2501に規定の過塩素酸法に従った測定したものである。
 マグネシウム系清浄剤のマグネシウム原子換算の含有量は、組成物全量基準で、50質量ppm以上であることが好ましい。マグネシウム系清浄剤の含有量が50質量ppm以上であれば、優れた清浄性とともに、優れた省燃費性、及び省燃費性発現の即効性が得られる。同様の観点から、マグネシウム系清浄剤の含有量は、50~1,500質量ppmが好ましく、100~1,100質量ppmがより好ましく、100~750質量ppmが更に好ましく、300~650質量ppmが特に好ましい。
 また、マグネシウム系清浄剤の含有量は、上記のモリブデンジチオカーバメート(MoDTC)との関係で、モリブデン原子(Mo)とマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上であることを要する。該質量比が0.1未満であると、省燃費性発現の即効性が得られない。省燃費性、及び省燃費性発現の即効性を得る観点から、0.2以上が好ましく、0.3以上がより好ましく、0.7以上が更に好ましく、1より大きいことがより更に好ましく、1.1以上が特に好ましい。また、該質量比の上限については特に制限はないが、4以下が好ましく、3以下がより好ましく、2.5以下が更に好ましい。
 また、本発明においては、清浄剤として上記のカルシウム系清浄剤、マグネシウム系清浄剤以外の清浄剤、例えばナトリウム系清浄剤を用いることもできるが、ナトリウム系清浄剤は使用しないことが好ましい。ナトリウム系清浄剤を使用しないことで、省燃費性、及び省燃費性発現の即効性をより向上させることができる。
(ホウ素非含有コハク酸イミド)
 本発明の潤滑油組成物は、清浄性の観点から、分散剤としてホウ素非含有コハク酸イミドを含むことが好ましい。ホウ素非含有コハク酸イミドとしては、その分子内にアルケニル基、あるいはアルキル基を有するアルケニルコハク酸イミド、アルキルコハク酸イミドが好ましく挙げられ、例えば、下記一般式(2)で示されるモノタイプ、下記一般式(3)で示されるビスタイプのものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)及び(3)において、R、R及びRは、各々数平均分子量が500~4,000のアルケニル基又はアルキル基で、R及びRは同一でも異なっていてもよい。R、R及びRの数平均分子量は、好ましくは1,000~4,000である。
 上記R、R及びRの数平均分子量が500以上であれば、基油への溶解性が良好であり、4,000以下であれば良好な分散性が得られ、優れた清浄性が得られる。
 R、R及びR10は、各々炭素数2~5のアルキレン基で、R及びR10は同一でも異なっていてもよい。
 mは1~10の整数であり、好ましくは2~5の整数、より好ましくは3又は4である。mが1以上であると分散性が良好であり、10以下であると基油に対する溶解性も良好であり、優れた清浄性が得られる。
 nは0~10の整数であり、好ましくは1~4の整数、より好ましくは2又は3である。nが上記範囲内であれば、分散性及び基油に対する溶解性の点で好ましく、優れた清浄性が得られる。
 R、R及びRで採用しうるアルケニル基としては、ポリブテニル基、ポリイソブテニル基、エチレン-プロピレン共重合体を挙げることができ、アルキル基としてはこれらを水添したものが挙げられる。ポリブテニル基は、1-ブテンとイソブテンの混合物あるいは高純度のイソブテンを重合させたものが好ましく用いられる。なかでも、アルケニル基としてはポリブテニル基、イソブテニル基が好ましく、アルキル基としてはポリブテニル基、イソブテニル基を水添したものが挙げられる。本発明においては、清浄性の観点から、アルケニル基が好ましい、すなわち、アルケニルコハク酸イミドが好ましい。
 また、R、R及びR10で採用しうるアルキレン基としては、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピレン基、イソプロピレン基、テトラメチレン基、ブチレン基、イソブチレン基、ペンチレン基、ヘキサメチレン基、ヘキシレン基等が挙げられる。
 ホウ素非含有コハク酸イミドは、通常、ポリオレフィンと無水マレイン酸との反応で得られるアルケニルコハク酸無水物、又はそれを水添して得られるアルキルコハク酸無水物を、ポリアミンと反応させることによって製造することができる。また、モノタイプのコハク酸イミド化合物及びビスタイプのホウ素非含有コハク酸イミド化合物は、アルケニルコハク酸無水物又はアルキルコハク酸無水物とポリアミンとの反応比率を変えることによって製造することができる。
 ポリオレフィンを形成するオレフィン単量体としては、炭素数2~8のα-オレフィンの一種又は二種以上を混合して用いることができ、イソブテンと1-ブテンとの混合物が好ましい。
 ポリアミンとしては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン等の単一ジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジ(メチルエチレン)トリアミン、ジブチレントリアミン、トリブチレンテトラミン、ペンタペンチレンヘキサミン等のポリアルキレンポリアミン;アミノエチルピペラジン等のピペラジン誘導体、等が挙げられる。
 ホウ素非含有コハク酸イミドの窒素原子換算の含有量は、組成物全量基準で、清浄性、省燃費性、及び省燃費性発現の即効性の観点から、1,200質量ppm未満であることを要する。また、同様の観点から、100~1,000質量ppmが好ましく、300~900質量ppmがより好ましく、400~800質量ppmが更に好ましく、400質量ppm以上700質量ppm未満がより更に好ましく、400~690質量ppmが特に好ましい。
 さらに、ホウ素非含有コハク酸イミドとしては、上記一般式(2)及び(3)で示される化合物と、アルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネート、エポキシ化合物、有機酸等とを反応させた変性コハク酸イミドを用いることもできる。
(ホウ素含有コハク酸イミド)
 本発明の潤滑油組成物は、清浄性、省燃費性、及び省燃費性発現の即効性の観点から、ホウ素含有コハク酸イミドを含むことが好ましい。ホウ素含有コハク酸イミドとしては、上記のホウ素非含有コハク酸イミドをホウ素変性したものが好ましく挙げられる。具体的には、例えば、上記のポリオレフィンと無水マレイン酸との反応で得られるアルケニルコハク酸無水物、アルキルコハク酸無水物を、上記のポリアミン及びホウ素化合物と反応させることで製造することができる。
 ホウ素化合物としては、例えば、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物、ホウ酸エステル、ホウ酸のアンモニウム塩等が挙げられる。
 ホウ素含有コハク酸イミドのホウ素原子換算の含有量は、組成物全量基準で、清浄性、省燃費性、及び省燃費性発現の即効性の観点から、50質量ppm以上が好ましく、50~600質量ppmがより好ましく、80~500質量ppmが更に好ましく、100~400質量ppmがより更に好ましく、120~400質量ppmが特に好ましく、220~400質量ppmがより特に好ましい。
 本発明の潤滑油組成物においては、清浄性及び省燃費性の観点から、ホウ素含有ポリブテニルコハク酸イミドを含むことが好ましく、特にホウ素非含有ポリブテニルコハク酸ビスイミドとホウ素含有ポリブテニルコハク酸イミドとの組み合わせが好ましい。
(ポリ(メタ)アクリレート系粘度指数向上剤)
 本発明の潤滑油組成物は、省燃費化の観点から、さらにポリ(メタ)アクリレート系粘度指数向上剤を含むことが好ましい。ポリ(メタ)アクリレート系粘度指数向上剤を用いることにより、潤滑油組成物の粘度特性を向上させて省燃費性を向上させることができる。
 ポリ(メタ)アクリレート系粘度指数向上剤としては分散型、非分散型のいずれでもよく、分子内にアルキル基を有するアルキル(メタ)アクリレートにより構成されるものが好ましい。アルキル(メタ)アクリレートにおけるアルキル基としては、炭素数1~18の直鎖アルキル基、又は炭素数3~18の分岐鎖アルキル基が好ましく挙げられる。
 このようなモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレートなどが挙げられ、これらモノマーを2種類以上使用してコポリマーとしてもよい。これらモノマーのアルキル基は直鎖状でもよいし、分岐鎖状のものでもよい。
 また、ポリ(メタ)アクリレート系粘度指数向上剤は、重量平均分子量(Mw)が10,000~1,000,000であることが好ましく、30,000~600,000であることがより好ましく、320,000~600,000であることが更に好ましく、400,000~550,000であることが特に好ましい。ポリ(メタ)アクリレート系粘度指数向上剤は、数平均分子量(Mn)10,000~1,000,000であることが好ましく、30,000~500,000であることがより好ましい。また、分子量分布(Mw/Mn)は、6以下が好ましく、5以下がより好ましく、3.5以下が更に好ましい。ポリ(メタ)アクリレート系粘度指数向上剤の分子量が上記範囲内であると、優れた省燃費性が得られる。ここで、重量平均分子量及び数平均分子量、GPCによって測定され、ポリスチレンを検量線として得られる値であり、詳細には以下の条件で測定されるものである。
  カラム :TSK gel GMH6 2本    
    測定温度:40℃
  試料溶液:0.5質量%のTHF溶液       
    検出装置:屈折率検出器
  標準  :ポリスチレン
 ポリ(メタ)アクリレート系粘度指数向上剤の組成物全量基準の含有量は、所望のHTHS粘度等に応じて適宜設定すればよく、好ましくは0.01~10.00質量%、より好ましくは0.05~5.00質量%、さらに好ましくは0.05~2.00質量%である。含有量が上記範囲内であると、省燃費性とともに優れた清浄性が得られる。
 ここで、ポリ(メタ)アクリレートの含有量は、ポリ(メタ)アクリレートからなる樹脂分のみの含有量を意味し、例えば、該ポリ(メタ)アクリレートとともに含有する希釈油等の質量は含まれない、固形分基準の含有量である。
 また、本発明の潤滑油組成物は、粘度指数向上剤として、線状の側鎖が出ている三叉分岐点を主鎖に数多くもつ構造を有するポリマー(以下、櫛形ポリマーと称する。)を含有することが好ましい。このような櫛形ポリマーとしては、例えば、(メタ)アクリロイル基、エテニル基、ビニルエーテル基、アリル基等の重合性官能基を有するマクロモノマーに由来する構成単位を少なくとも有する重合体が好ましく挙げられる。ここで、該構成単位が「線状の側鎖」に該当するものである。
 より具体的には、アルキル(メタ)アクリレートや、窒素原子含有系、ハロゲン元素含有系、水酸基含有系、脂肪族炭化水素系、脂環式炭化水素系、芳香族炭化水素系等の各種ビニル単量体に由来する構成単位を含む主鎖に対して、上記重合性官能基を有するマクロモノマーに由来する構成単位を含む側鎖を有する共重合体が好ましく挙げられる。
 マクロモノマーの数平均分子量(Mn)が好ましくは200以上、より好ましくは300以上、更に好ましくは400以上であり、また好ましくは100,000以下、より好ましくは50,000以下、更に好ましくは10,000以下である。
 櫛形ポリマーの重量平均分子量(Mw)は、省燃費性を向上させる観点から、好ましくは1,000~1,000,000、より好ましくは5,000~800,000であり、50,000~700,000がさらに好ましい。分子量分布(Mw/Mn)は、好ましくは6以下、より好ましくは5.6以下であり、更に好ましくは5以下であり、下限値としては特に制限はないが、通常1.01以上、好ましくは1.05以上、より好ましくは1.10以上、更に好ましくは1.5以上である。
 櫛形ポリマーの含有量は、省燃費性を向上させる観点から、組成物全量基準で、0.1~20質量%が好ましく、0.5~10質量%がより好ましく、1~8質量%が更に好ましい。ここで、櫛形ポリマーの含有量は、櫛形ポリマーからなる樹脂分のみの含有量を意味し、例えば該櫛形ポリマーとともに含有する希釈油等の質量は含まれない、固形分基準の含有量である。
 また、本発明の潤滑油組成物は、上記のポリ(メタ)アクリレート、櫛形ポリマー以外の粘度指数向上剤、例えば、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体等)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体等)を含んでもよい。
 本発明で用いられる粘度指数向上剤における、好ましく用いられるポリ(メタ)アクリレート及び/又は櫛形ポリマーの含有量としては、潤滑油組成物の清浄性を向上させる観点から、当該粘度指数向上剤中の固形分の全量(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%であり、更に好ましくは90~100質量%である。
(耐摩耗剤)
 本発明の潤滑油組成物は、省燃費性及び耐摩耗特性の向上の観点から、耐摩耗剤、極圧剤を含むことが好ましい。耐摩耗剤、極圧剤としては、例えば、リン酸亜鉛、ジアルキルジチオリン酸亜鉛(ZnDTP)、ジチオカルバミン酸亜鉛(ZnDTC)等の有機亜鉛化合物;ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類、チオカーバメート類、ポリサルファイド類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、及びこれらのアミン塩又は金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオリン酸エステル類、チオホスホン酸エステル類、及びこれらのアミン塩又は金属塩等の硫黄及びリン含有耐摩耗剤が挙げられ、これらを単独で、又は複数種を組み合わせて用いることができる。なかでも、ジアルキルジチオリン酸亜鉛(ZnDTP)が好ましい。
 ジアルキルジチオリン酸亜鉛(ZnDTP)は、例えば下記一般式(4)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(4)中、R及びRは、各々独立に炭素数3~22の第1級もしくは第2級のアルキル基、又は炭素数3~18のアルキル基で置換されたアルキルアリール基を示す。
 ここで、炭素数3~22の1級もしくは2級のアルキル基としては、第1級もしくは第2級のプロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等が挙げられる。また、炭素数3~18のアルキル基で置換されたアルキルアリール基としては、例えばプロピルフェニル基、ペンチルフェニル基、オクチルフェニル基、ノニルフェニル基、ドデシルフェニル基等が挙げられる。
 ジアルキルジチオリン酸亜鉛(ZnDTP)を用いる場合、上記一般式(3)で示されるものを単独で、又は複数種を組み合わせて用いることができるが、1級アルキル基を有する1級ジアルキルジチオリン酸亜鉛(1級アルキルZnDTP)を少なくとも用いることが好ましく、1級アルキルZnDTPを単独で用いることがより好ましい。1級アルキルZnDTPと2級アルキル基を有する2級ジアルキルジチオリン酸亜鉛(2級アルキルZnDTP)とを組み合わせて用いる場合は、1級アルキルZnDTPと2級アルキルZnDTPとの質量配合比は、1:3~1:15が好ましく、1:4~1:10がより好ましく、1:6~1:10が更に好ましい。
 耐摩耗剤としてジアルキルジチオリン酸亜鉛(ZnDTP)を用いる場合、ZnDTPのリン原子換算の含有量は、組成物全量基準で、100~2,000質量ppmが好ましく、300~1,500質量ppmがより好ましく、500~1,000質量ppmが更に好ましく、特に600~840質量ppmが好ましい。
(酸化防止剤)
 本発明の潤滑油組成物は、酸化防止剤を含むことが好ましい。酸化防止剤としては、例えば、アミン系酸化防止剤、フェノール系酸化防止剤、モリブデン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等が挙げられる。
 アミン系酸化防止剤としては、例えばジフェニルアミン、炭素数3~20のアルキル基を有するアルキル化ジフェニルアミン等のジフェニルアミン系酸化防止剤;α-ナフチルアミン、炭素数3~20のアルキル置換フェニル-α-ナフチルアミン等のナフチルアミン系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール系酸化防止剤;4,4'-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)等のジフェノール系酸化防止剤;ヒンダードフェノール系酸化防止剤等を挙げられる。
 モリブデン系酸化防止剤としては、例えば、三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるモリブデンアミン錯体等が挙げられる。
 硫黄系酸化防止剤としては、例えば、ジラウリル-3,3'-チオジプロピオネイト等が挙げられる。
 リン系酸化防止剤としては、例えば、ホスファイト等が挙げられる。
 これらの酸化防止剤は、単独で又は複数種を組み合わせて用いてもよく、通常複数種を組み合わせて使用するのが好ましい。
 酸化防止剤の含有量は、組成物全量基準で、0.01~3質量%が好ましく、0.1~2質量%がより好ましい。また、酸化防止剤としてアミン系酸化防止剤を用いる場合、その窒素原子換算の含有量は、組成物全量基準で、50~1,500質量ppmが好ましく、100~1,000質量ppmがより好ましく、150~800質量ppmが更に好ましく、特に200~600質量ppmが好ましい。
(流動点降下剤)
 本発明の潤滑油組成物は、流動点降下剤を含むことが好ましい。流動点降下剤としては、上記のポリメタクリレートの他、例えば、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリアルキルスチレン、ポリ(メタ)アクリレート等が挙げられる。
 流動点降下剤の重量平均分子量(Mw)は、20,000~100,000であることが好ましく、30,000~80,000であることがより好ましく、40,000~60,000であることが更に好ましい。また、分子量分布(Mw/Mn)は、5以下が好ましく、3以下がより好ましく、2以下が更に好ましい。
 流動点降下剤の含有量は、所望のMRV粘度等に応じて適宜決定すればよく、0.01~5質量%が好ましく、0.02~2質量%がより好ましい。
(摩擦調整剤)
 本発明の潤滑油組成物は、省燃費性及び耐摩耗特性の向上の観点から、上記のモリブデンジチオカーバメート(MoDTC)以外の摩擦調整剤を含んでいてもよい。摩擦調整剤としては、潤滑油組成物の摩擦調整剤として通常用いられるものであれば制限なく用いることができ、例えば、炭素数6~30のアルキル基またはアルケニル基、特に炭素数6~30の直鎖アルキル基または直鎖アルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、及び脂肪族エーテル等の無灰摩擦調整剤;モリブデンジチオホスフェート(MoDTP)及びモリブデン酸のアミン塩等のモリブデン系摩擦調整剤等が挙げられ、これらを単独で、又は複数種を組み合わせて用いることができる。
 無灰摩擦調整剤を用いる場合、その組成物全量基準の含有量は、0.01~3質量%が好ましく、0.1~2質量%がより好ましい。モリブデンジチオカーバメート(MoDTC)以外のモリブデン系摩擦調整剤を用いる場合、そのモリブデン原子換算の含有量は、組成物全量基準で、60~1,000質量ppmが好ましく、80~1,000質量ppmがより好ましく、100質量ppm超900質量ppm以下が更に好ましく、110~800質量ppmが特に好ましい。含有量が上記範囲内であると、優れた省燃費性、耐摩耗特性が得られ、清浄性の低下を抑えることができる。
 モリブデンジチオカーバメート(MoDTC)と他のモリブデン系摩擦調整剤とを併用する場合、モリブデンジチオカーバメート(MoDTC)と他のモリブデン系摩擦調整剤とのモリブデン原子換算の合計量に対するモリブデンジチオカーバメート(MoDTC)のモリブデン原子換算の割合は、50質量%より大きいことが好ましく、60質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。また、上限については特に制限はないが、100質量%未満が好ましく、99質量%以下がより好ましい。なお、モリブデンジチオカーバメート(MoDTC)と他のモリブデン系摩擦調整剤とを併用する場合のモリブデンジチオカーバメート(MoDTC)の割合は上記の範囲となるが、本発明においては、モリブデンジチオカーバメート(MoDTC)は、他のモリブデン系摩擦調整剤と併用することなく用いることが好ましい。
(汎用添加剤)
 本発明の潤滑油組成物は、本発明の効果を損なわない範囲で必要に応じて、汎用添加剤を含有してもよい。汎用添加剤としては、例えば、防錆剤、金属不活性化剤、消泡剤、極圧剤等が挙げられる。
 防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。
 金属不活性化剤としては、例えば、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピリミジン系化合物等が挙げられる。
 消泡剤としては、例えば、シリコーン油、フルオロシリコーン油およびフルオロアルキルエーテル等が挙げられる。
 極圧剤としては、例えば、スルフィド類、スルフォキシド類、スルフォン類、チオホスフィネート類等の硫黄系極圧剤、塩素化炭化水素等のハロゲン系極圧剤、有機金属系極圧剤等が挙げられる。
 これらの汎用添加剤の各含有量は、本発明の効果を損なわない範囲内で、適宜調整することができ、組成物全量基準で、通常0.001~10質量%、好ましくは0.005~5質量%である。また、これらの汎用添加剤の合計含有量は、組成物全量基準で、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、より更に好ましくは2質量%以下である。
(潤滑油組成物の用途)
 本発明の潤滑油組成物は、ガソリンエンジン、ディーゼルエンジン、その他、各種産業用内燃機関等の潤滑用として用いることができ、ガソリンエンジン、とりわけ直噴過給機構を搭載したガソリンエンジンに好適に用いられる。このような用途に用いられることで、本発明の潤滑油組成物が有する優れた省燃費性を有しつつ、摩擦低減効果による省燃費性を短時間で発現しうる性能(省燃費性発現の即効性)を有効に活用することができる。
(潤滑油組成物の製造方法)
 本発明の潤滑油組成物の製造方法は、基油に、モリブデンジチオカーバメートと、カルシウム系清浄剤と、マグネシウム系清浄剤と、ホウ素非含有コハク酸イミドとを、該モリブデンジチオカーバメートのモリブデン原子換算の含有量が、組成物全量基準で、1,200質量ppm以下であり、該ホウ素非含有コハク酸イミドの窒素換算の含有量が、組成物全量基準で、1,200質量ppm未満であり、該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上、となるように配合することを特徴とするものである。
 必要に応じて他の成分、例えば、ホウ素含有コハク酸イミド、ポリ(メタ)アクリレート、粘度指数向上剤、耐摩耗剤、酸化防止剤、流動点降下剤、摩擦調整剤、その他、汎用添加剤を配合して製造することができる。これら各成分が配合される量(配合量)は、上記した各成分の含有量の範囲内で、所望の性能に応じて適宜選択して決定すればよい。
 また、上記の各成分は、いかなる方法で基油に配合されてもよく、その手法は限定されない。例えば、モリブデンジチオカーバメート、カルシウム系清浄剤、マグネシウム系清浄剤、及びホウ素非含有コハク酸イミド、さらにその他の添加剤は、別途混合した後、この混合物を基油に配合してもよいし、それぞれを基油に逐次添加し混合してもよく、また、この場合の添加順序は問わない。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、実施例及び比較例で調製した潤滑油組成物の各原子の含有量は、下記の方法により測定及び評価した。
[潤滑油組成物の各原子の含有量]
(ホウ素原子、カルシウム原子、カリウム原子、モリブデン原子、及びリン原子の含有量)
 JIS-5S-38-92に準拠して測定した。
(窒素原子の含有量)
 JIS K2609に準拠して測定した。
実施例1~8、比較例1~3
 実施例1~8は表1に示す種類及び配合量の基油及び各種添加剤を配合し、比較例1~3は表2に示す種類及び配合量の基油及び各種添加剤を配合して、潤滑油組成物をそれぞれ調製した。
(省燃費性発現の即効性の評価)
 調製したこれらの潤滑油組成物については、下記の摩擦係数の測定(HFRR試験)を行い、摩擦係数が0.10未満となる時間(秒)を測定し、省燃費性発現の即効性の評価を行った。その結果を表1及び表2に示す。
(摩擦係数の測定(HFRR試験))
 HFRR試験機(PCS Instruments社製)を用い、下記の条件にて、実施例及び比較例で調製した潤滑油組成物の摩擦係数を測定し、摩擦係数が0.10未満となった時間(秒)を測定した。摩擦係数が0.10未満となった時間(秒)が短いほど、省燃費性発現の即効性に優れているといえる。該時間について、以下の基準で評価した。
 A:200秒以下であった。
 B:200秒超250秒以下だった。
 C:250秒を超えた。
 ・テストピース:(A)ボール=HFRR標準テストピース(AISI 52100材)、(B)ディスク=HFRR標準テストピース(AISI 52100材)
 ・振幅:1.0mm
 ・周波数:50Hz
 ・荷重:5g
 ・温度:80℃
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

註)表1及び表2中の略語、使用した材料等は、以下の通りである。
 ppmCa、ppmMg、ppmNa、ppmP、ppmN、及びppmBは、各々カルシウム(Ca)、マグネシウム(Mg)、ナトリウム(Na)、リン(P)、窒素(N)、及びホウ素(B)原子換算の含有量(質量ppm)を示す。また、ZnDTPは、その他の添加剤に含まれるジアルキルジチオリン酸亜鉛である。
*1,Mo/Mgは、モリブデン原子(Mo)とマグネシウム原子(Mg)との質量比[Mo/Mg]を示す。
 また、表1及び表2に示される各実施例及び比較例の潤滑油組成物の調製に用いた基油及び各種添加剤は、以下の通りである。
・基油A:API基油カテゴリーのグループ3に分類される鉱油、100℃における動粘度:4.07mm/s、粘度指数:131、%C:-0.4、%C:12.8、%C:87.6
・基油B:合成油(ポリ-α-オレフィン(PAO)、100℃動粘度:5.1mm/s、粘度指数:143)
・清浄剤A:過塩基性カルシウムサリシレート、塩基価(過塩素酸法)350mgKOH/g、カルシウム含有量12質量%
・清浄剤B:過塩基性マグネシウムスルホネート、塩基価(過塩素酸法)410mgKOH/g、マグネシウム含有量9.4質量%、硫黄含有量2.0質量%
・清浄剤C:過塩基性ナトリウムスルホネート、塩基価(過塩素酸法)450mgKOH/g、ナトリウム含有量20質量%、硫黄含有量1.2質量%
・MoDTC:モリブデンジチオカーバメート(モリブデン含有量:10質量%)
・分散剤A:ホウ素非含有コハク酸イミド(ポリブテニルコハク酸ビスイミド)、窒素含有量1質量%
・分散剤B:ホウ素含有コハク酸イミド(ホウ素含有ポリブテニルコハク酸ビスイミド)、窒素含有量1.2質量%、ホウ素含有量1.3質量%
・粘度指数向上剤:樹脂分として、Mnが500以上のマクロモノマーに由来する構成単位を少なくとも有する櫛形ポリマー(Mw=42万、Mw/Mn=5.92)を含む、樹脂分濃度が19質量%の粘度指数向上剤。
・流動点降下剤:ポリメタクリレート(PMA,Mw=50,000、Mn=30,000、Mw/Mn=1.7、樹脂分濃度66質量%)
・その他:ジアルキルジチオリン酸亜鉛(1級アルキルZnDTP)、ヒンダードフェノール系酸化防止剤、ジフェニルアミン系酸化防止剤、消泡剤、金属不活性化剤
 表1に示されるように、実施例の潤滑油組成物は、優れた省燃費性を有しつつ、摩擦係数が0.10未満になる時間が250秒以下と、摩擦低減効果による省燃費性を短時間で発現する、優れた省燃費性発現の即効性を、さらには200秒以下という優れた省燃費性発現の即効性を有することが確認された。
 一方、表2に示されるように、モリブデン系清浄剤の代わりにナトリウム系清浄剤を用いた比較例1の潤滑油組成物、モリブデン系清浄剤及びナトリウム系清浄剤も含まない比較例2の潤滑油組成物、及びホウ素非含有コハク酸イミドを含有しない比較例3の潤滑油組成物は、摩擦係数が0.10未満になる時間が600秒を超えており、いずれも省燃費性発現の即効性に劣ることが確認された。

Claims (13)

  1.  基油、モリブデンジチオカーバメート、カルシウム系清浄剤、マグネシウム系清浄剤、及びホウ素非含有コハク酸イミドを含み、
     該モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が1,200質量ppm以下であり、
     該ホウ素非含有コハク酸イミドの組成物全量基準の窒素換算の含有量が1,200質量ppm未満であり、
     該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上である潤滑油組成物。
  2.  カルシウム系清浄剤の含有量が組成物全量基準のカルシウム原子換算で2,000質量ppm以下である請求項1に記載の潤滑油組成物。
  3.  さらに、ホウ素含有コハク酸イミドを含み、該ホウ素含有コハク酸イミドの組成物全量基準のホウ素原子の含有量が50質量ppm以上である請求項1又は2に記載の潤滑油組成物。
  4.  さらに、ポリ(メタ)アクリレート系粘度指数向上剤を含む請求項1~3のいずれか1項に記載の潤滑油組成物。
  5.  モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が60~1,200質量ppmである請求項1~4のいずれか1項に記載の潤滑油組成物。
  6.  モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が100~1,100質量ppmである請求項1~5のいずれか1項に記載の潤滑油組成物。
  7.  モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が300~1,100質量ppmである請求項1~6のいずれか1項に記載の潤滑油組成物。
  8.  カルシウム系清浄剤の含有量が組成物全量基準のカルシウム原子換算で1,000~2,000質量ppmである請求項1~7のいずれか1項に記載の潤滑油組成物。
  9.  ナトリウム系清浄剤を含まない請求項1~8のいずれか1項に記載の潤滑油組成物。
  10.  基油がAPI(米国石油協会)基油カテゴリーでグループ3~5に分類される鉱油及び合成油から選ばれる少なくとも一種である請求項1~9のいずれか1項に記載の潤滑油組成物。
  11.  100℃の動粘度が3.8~12.5mm/sである請求項1~10のいずれか1項に記載の潤滑油組成物。
  12.  ガソリンエンジンに用いられる請求項1~11のいずれか1項に記載の潤滑油組成物。
  13.  基油に、
     モリブデンジチオカーバメートと、
     カルシウム系清浄剤と、
     マグネシウム系清浄剤と、
     ホウ素非含有コハク酸イミドとを、
     該モリブデンジチオカーバメートの組成物全量基準のモリブデン原子換算の含有量が1,200質量ppm以下であり、
     該ホウ素非含有コハク酸イミドの組成物全量基準の窒素換算の含有量が1,200質量ppm未満であり、
     該モリブデン原子(Mo)と該マグネシウム系清浄剤のマグネシウム原子(Mg)との質量比[Mo/Mg]が0.1以上、
    となるように配合する潤滑油組成物の製造方法。
PCT/JP2016/060719 2015-03-31 2016-03-31 ガソリンエンジン用潤滑油組成物、及びその製造方法 WO2016159258A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16773138.9A EP3279294B1 (en) 2015-03-31 2016-03-31 Gasoline engine lubricant oil composition and manufacturing method therefor
EP19156155.4A EP3511398B1 (en) 2015-03-31 2016-03-31 Gasoline engine lubricant oil composition and manufacturing method therefor
CN201680001817.8A CN106459816B (zh) 2015-03-31 2016-03-31 汽油发动机用润滑油组合物及其制造方法
JP2016547964A JP6197123B2 (ja) 2015-03-31 2016-03-31 ガソリンエンジン用潤滑油組成物、及びその製造方法
US15/320,540 US10793803B2 (en) 2015-03-31 2016-03-31 Gasoline engine lubricant oil composition and manufacturing method therefor
KR1020177020761A KR102603891B1 (ko) 2015-03-31 2016-03-31 가솔린 엔진용 윤활유 조성물 및 그의 제조 방법
US16/267,495 US20190169525A1 (en) 2015-03-31 2019-02-05 Gasoline engine lubricant oil composition and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074359 2015-03-31
JP2015-074359 2015-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/320,540 A-371-Of-International US10793803B2 (en) 2015-03-31 2016-03-31 Gasoline engine lubricant oil composition and manufacturing method therefor
US16/267,495 Continuation US20190169525A1 (en) 2015-03-31 2019-02-05 Gasoline engine lubricant oil composition and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2016159258A1 true WO2016159258A1 (ja) 2016-10-06

Family

ID=57005922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060719 WO2016159258A1 (ja) 2015-03-31 2016-03-31 ガソリンエンジン用潤滑油組成物、及びその製造方法

Country Status (6)

Country Link
US (2) US10793803B2 (ja)
EP (2) EP3279294B1 (ja)
JP (1) JP6197123B2 (ja)
KR (1) KR102603891B1 (ja)
CN (2) CN106459816B (ja)
WO (1) WO2016159258A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099140A1 (ja) * 2015-12-07 2017-06-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油組成物
JP2017125214A (ja) * 2017-04-20 2017-07-20 Jxtgエネルギー株式会社 潤滑油組成物
WO2017170769A1 (ja) * 2016-03-30 2017-10-05 出光興産株式会社 内燃機関用潤滑油組成物
JP2017226793A (ja) * 2016-06-24 2017-12-28 Jxtgエネルギー株式会社 内燃機関用潤滑油組成物
JP2018003018A (ja) * 2016-06-30 2018-01-11 インフィニューム インターナショナル リミテッド 潤滑油組成物
JP2019085491A (ja) * 2017-11-07 2019-06-06 Emgルブリカンツ合同会社 潤滑油組成物
WO2019221296A1 (ja) * 2018-05-18 2019-11-21 Jxtgエネルギー株式会社 内燃機関用潤滑油組成物
WO2019221295A1 (ja) * 2018-05-18 2019-11-21 Jxtgエネルギー株式会社 内燃機関用潤滑油組成物
US11193080B2 (en) 2019-03-29 2021-12-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition
JP2022520492A (ja) * 2019-02-28 2022-03-30 アフトン・ケミカル・コーポレーション ディーゼル微粒子フィルタの性能のための潤滑組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572581B2 (ja) * 2015-03-24 2019-09-11 出光興産株式会社 火花点火式内燃機関用潤滑油組成物、該潤滑油組成物の製造方法、該潤滑油組成物を用いた火花点火式内燃機関、及び該内燃機関の潤滑方法
JP6896384B2 (ja) * 2016-08-02 2021-06-30 Emgルブリカンツ合同会社 潤滑油組成物
CN206775640U (zh) * 2016-09-14 2017-12-19 博特家庭自动化有限公司 音频/视频记录和通信装置及其安装装置
WO2020203525A1 (ja) * 2019-03-29 2020-10-08 出光興産株式会社 潤滑油組成物
CN115279871A (zh) * 2020-03-31 2022-11-01 出光兴产株式会社 润滑油组合物
US11987766B2 (en) * 2020-08-31 2024-05-21 Eneos Corporation Lubricating oil composition for internal combustion engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215697A (ja) * 1986-03-17 1987-09-22 Toyota Central Res & Dev Lab Inc 潤滑油組成物
JPH05279686A (ja) * 1992-03-31 1993-10-26 Tonen Corp 内燃機関用潤滑油組成物
JPH07316577A (ja) * 1994-05-20 1995-12-05 Tonen Corp 潤滑油組成物
JPH08209178A (ja) * 1995-02-02 1996-08-13 Tonen Corp 潤滑油組成物
JPH09263782A (ja) * 1996-03-28 1997-10-07 Idemitsu Kosan Co Ltd 無段変速機油組成物
JPH10510876A (ja) * 1994-12-20 1998-10-20 エクソン リサーチ アンド エンジニアリング カンパニー 燃費特性の改良されたエンジン油
JP2006152305A (ja) * 2004-11-30 2006-06-15 Infineum Internatl Ltd 潤滑油組成物
JP2006328265A (ja) * 2005-05-27 2006-12-07 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2011012213A (ja) * 2009-07-03 2011-01-20 Chevron Japan Ltd 内燃機関用潤滑油組成物
WO2015114920A1 (ja) * 2014-01-31 2015-08-06 東燃ゼネラル石油株式会社 潤滑油組成物

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241603B2 (ja) * 1996-08-09 2001-12-25 株式会社ジャパンエナジー ディ−ゼルエンジン用潤滑油
JP4201902B2 (ja) 1998-12-24 2008-12-24 株式会社Adeka 潤滑性組成物
JP4931299B2 (ja) 2001-07-31 2012-05-16 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP5283297B2 (ja) * 2001-09-17 2013-09-04 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US7026273B2 (en) * 2001-11-09 2006-04-11 Infineum International Limited Lubricating oil compositions
US6562765B1 (en) * 2002-07-11 2003-05-13 Chevron Oronite Company Llc Oil compositions having improved fuel economy employing synergistic organomolybdenum components and methods for their use
JP2004083746A (ja) * 2002-08-27 2004-03-18 Nippon Oil Corp 内燃機関用潤滑油組成物
EP1471130A1 (en) * 2003-04-23 2004-10-27 Ethyl Petroleum Additives Ltd Fuel composition containing molybdenum source and metal-containing detergent, and its use in two-stroke engines
CA2474959C (en) * 2003-08-07 2009-11-10 Infineum International Limited A lubricating oil composition
US20050043191A1 (en) * 2003-08-22 2005-02-24 Farng L. Oscar High performance non-zinc, zero phosphorus engine oils for internal combustion engines
JP4334986B2 (ja) 2003-12-05 2009-09-30 コスモ石油ルブリカンツ株式会社 エンジン油組成物
EP2184338A3 (en) * 2003-12-12 2010-08-11 The Lubrizol Corporation Lubricating composition containing metal salixarate as detergent and succinimides as dispersants
JP2006016453A (ja) * 2004-06-30 2006-01-19 Nippon Oil Corp 内燃機関用潤滑油組成物
ATE538195T1 (de) 2004-09-27 2012-01-15 Infineum Int Ltd Schmierölzusammenstzungen mit niedrigen phosphor-,schwefel- und sulfatierten asche-gehalten
JP5207599B2 (ja) * 2006-06-08 2013-06-12 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US7967876B2 (en) * 2006-08-17 2011-06-28 Afton Chemical Corporation Nanoalloy fuel additives
JP5203590B2 (ja) 2006-10-27 2013-06-05 出光興産株式会社 潤滑油組成物
JP2008120908A (ja) 2006-11-10 2008-05-29 Nippon Oil Corp 潤滑油組成物
EP2103673B1 (en) 2006-12-08 2015-07-15 Nippon Oil Corporation Lubricating oil composition for internal combustion engine
EP1967574A1 (de) * 2007-02-27 2008-09-10 Setral Chemie GMBH Schmiermittelzusammensetzung
JP2012036344A (ja) 2010-08-11 2012-02-23 Nisshin Oillio Group Ltd 潤滑油組成物
JP2012046555A (ja) * 2010-08-24 2012-03-08 Adeka Corp 内燃機関用潤滑油組成物
FR2964115B1 (fr) 2010-08-27 2013-09-27 Total Raffinage Marketing Lubrifiant moteur
JP5504137B2 (ja) * 2010-11-12 2014-05-28 Jx日鉱日石エネルギー株式会社 エンジン油組成物
CN102690711B (zh) * 2011-03-24 2013-12-25 中国石油化工股份有限公司 一种汽油发动机润滑油组合物
EP2692839B1 (en) 2012-07-31 2015-11-18 Infineum International Limited A lubricating oil compostion comprising a corrosion inhibitor
JP6014540B2 (ja) 2013-04-17 2016-10-25 コスモ石油ルブリカンツ株式会社 内燃機関用潤滑油組成物
JP6572581B2 (ja) * 2015-03-24 2019-09-11 出光興産株式会社 火花点火式内燃機関用潤滑油組成物、該潤滑油組成物の製造方法、該潤滑油組成物を用いた火花点火式内燃機関、及び該内燃機関の潤滑方法
CN108473905B (zh) * 2015-12-07 2021-03-09 Jxtg能源株式会社 内燃机用润滑油组合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215697A (ja) * 1986-03-17 1987-09-22 Toyota Central Res & Dev Lab Inc 潤滑油組成物
JPH05279686A (ja) * 1992-03-31 1993-10-26 Tonen Corp 内燃機関用潤滑油組成物
JPH07316577A (ja) * 1994-05-20 1995-12-05 Tonen Corp 潤滑油組成物
JPH10510876A (ja) * 1994-12-20 1998-10-20 エクソン リサーチ アンド エンジニアリング カンパニー 燃費特性の改良されたエンジン油
JPH08209178A (ja) * 1995-02-02 1996-08-13 Tonen Corp 潤滑油組成物
JPH09263782A (ja) * 1996-03-28 1997-10-07 Idemitsu Kosan Co Ltd 無段変速機油組成物
JP2006152305A (ja) * 2004-11-30 2006-06-15 Infineum Internatl Ltd 潤滑油組成物
JP2006328265A (ja) * 2005-05-27 2006-12-07 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2011012213A (ja) * 2009-07-03 2011-01-20 Chevron Japan Ltd 内燃機関用潤滑油組成物
WO2015114920A1 (ja) * 2014-01-31 2015-08-06 東燃ゼネラル石油株式会社 潤滑油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279294A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105875A (ja) * 2015-12-07 2017-06-15 東燃ゼネラル石油株式会社 潤滑油組成物
WO2017099140A1 (ja) * 2015-12-07 2017-06-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油組成物
WO2017170769A1 (ja) * 2016-03-30 2017-10-05 出光興産株式会社 内燃機関用潤滑油組成物
JP2017226793A (ja) * 2016-06-24 2017-12-28 Jxtgエネルギー株式会社 内燃機関用潤滑油組成物
JP2022107630A (ja) * 2016-06-30 2022-07-22 インフィニューム インターナショナル リミテッド 潤滑油組成物
JP2018003018A (ja) * 2016-06-30 2018-01-11 インフィニューム インターナショナル リミテッド 潤滑油組成物
JP7377913B2 (ja) 2016-06-30 2023-11-10 インフィニューム インターナショナル リミテッド 潤滑油組成物
JP2017125214A (ja) * 2017-04-20 2017-07-20 Jxtgエネルギー株式会社 潤滑油組成物
JP2019085491A (ja) * 2017-11-07 2019-06-06 Emgルブリカンツ合同会社 潤滑油組成物
JP7021908B2 (ja) 2017-11-07 2022-02-17 Emgルブリカンツ合同会社 潤滑油組成物
WO2019221295A1 (ja) * 2018-05-18 2019-11-21 Jxtgエネルギー株式会社 内燃機関用潤滑油組成物
US11649413B2 (en) 2018-05-18 2023-05-16 Eneos Corporation Lubricating oil composition for internal combustion engine
WO2019221296A1 (ja) * 2018-05-18 2019-11-21 Jxtgエネルギー株式会社 内燃機関用潤滑油組成物
JP2022520492A (ja) * 2019-02-28 2022-03-30 アフトン・ケミカル・コーポレーション ディーゼル微粒子フィルタの性能のための潤滑組成物
US11193080B2 (en) 2019-03-29 2021-12-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition

Also Published As

Publication number Publication date
CN109913294B (zh) 2022-03-08
CN106459816A (zh) 2017-02-22
EP3279294A4 (en) 2018-08-22
US10793803B2 (en) 2020-10-06
US20190169525A1 (en) 2019-06-06
CN109913294A (zh) 2019-06-21
US20170198235A1 (en) 2017-07-13
JP6197123B2 (ja) 2017-09-13
JPWO2016159258A1 (ja) 2017-04-27
CN106459816B (zh) 2021-12-14
EP3511398B1 (en) 2024-05-22
KR102603891B1 (ko) 2023-11-17
EP3279294B1 (en) 2023-07-05
KR20170134970A (ko) 2017-12-07
EP3511398A1 (en) 2019-07-17
EP3279294A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6197123B2 (ja) ガソリンエンジン用潤滑油組成物、及びその製造方法
JP6197124B2 (ja) ガソリンエンジン用潤滑油組成物、及びその製造方法
US10584302B2 (en) Lubricating oil composition and method for manufacturing said lubricating oil composition
CN106459821B (zh) 润滑油组合物
US11034908B2 (en) Lubricant composition
WO2016158622A1 (ja) 潤滑油組成物
JP2020164620A (ja) 潤滑油組成物
JP7113162B1 (ja) 潤滑油組成物
JP7164764B1 (ja) 潤滑油組成物
WO2022209942A1 (ja) 潤滑油組成物
WO2022209569A1 (ja) 潤滑油組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016547964

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15320540

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016773138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020761

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE