WO2016158361A1 - 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト - Google Patents
酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト Download PDFInfo
- Publication number
- WO2016158361A1 WO2016158361A1 PCT/JP2016/058034 JP2016058034W WO2016158361A1 WO 2016158361 A1 WO2016158361 A1 WO 2016158361A1 JP 2016058034 W JP2016058034 W JP 2016058034W WO 2016158361 A1 WO2016158361 A1 WO 2016158361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- delayed fracture
- wire
- bolt
- Prior art date
Links
- 230000003111 delayed effect Effects 0.000 title claims abstract description 52
- 238000005554 pickling Methods 0.000 title claims abstract description 37
- 238000010791 quenching Methods 0.000 title claims abstract description 23
- 230000000171 quenching effect Effects 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 title claims abstract description 20
- 238000005496 tempering Methods 0.000 title claims abstract description 15
- 239000002253 acid Substances 0.000 title abstract 3
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 8
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910001566 austenite Inorganic materials 0.000 claims description 24
- 239000002344 surface layer Substances 0.000 claims description 19
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 description 37
- 229910000831 Steel Inorganic materials 0.000 description 35
- 239000010959 steel Substances 0.000 description 35
- 238000012360 testing method Methods 0.000 description 23
- 239000013078 crystal Substances 0.000 description 17
- 238000005096 rolling process Methods 0.000 description 17
- 239000002436 steel type Substances 0.000 description 15
- 238000005261 decarburization Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000003303 reheating Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005491 wire drawing Methods 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000010273 cold forging Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910000639 Spring steel Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- -1 ε carbides Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0093—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B33/00—Features common to bolt and nut
- F16B33/008—Corrosion preventing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B33/00—Features common to bolt and nut
- F16B33/06—Surface treatment of parts furnished with screw-thread, e.g. for preventing seizure or fretting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B35/00—Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
Definitions
- the present invention relates to a bolt wire and a bolt obtained using the wire, and more particularly to a bolt wire and a bolt excellent in pickling property and delayed fracture resistance after quenching and tempering.
- the hydrogen embrittlement phenomenon occurs when hydrogen generated by the corrosion reaction on the steel surface penetrates and diffuses into the steel (hereinafter sometimes referred to as “diffusible hydrogen”). Therefore, conventionally, it has been considered that improving the corrosion resistance of steel is an effective means for preventing delayed fracture. However, it has been pointed out that when the corrosion resistance is improved, the scale remains even after pickling for removing the scale, which may cause flaws during wire drawing and cracks during forging. For this reason, improvement of the pickling property of the wire is a new problem, and is not necessarily an effective means for suppressing hydrogen embrittlement.
- Patent Document 1 has a predetermined component composition, the austenite grain size number of the bolt shaft portion is 9.0 or more, and a G value (%) indicating the proportion of carbide precipitated at the austenite grain boundary of the bolt shaft portion.
- This technique increases the strength of the austenite grain boundary, which is the origin of delayed fracture, and reduces hydrogen trap sites such as carbides. Therefore, a high-strength bolt that exhibits excellent hydrogen embrittlement resistance can be obtained not only in an environment where the amount of hydrogen is relatively small but also in an environment where there is a large amount of hydrogen where all the hydrogen trap sites are consumed.
- Patent Document 2 has a predetermined component composition, the average crystal grain size Dc at the center of the steel wire is 80 ⁇ m or less, and the average crystal grain size Ds of the surface layer of the steel wire is 3.0 ⁇ m or more.
- a spring steel wire rod excellent in decarburization and wire drawing workability is disclosed. According to this technique, there is no decarburization after hot rolling, and a spring steel wire rod excellent in wire drawing workability can be obtained.
- Patent Document 3 has a predetermined component composition and is a structure mainly composed of pearlite, and the average value Pave of pearlite nodule particle size numbers satisfies 6.0 ⁇ Pave ⁇ 12.0, and the entire surface layer
- a high-strength spring steel wire rod having a decarburized layer depth of 0.20 mm or less and a Cr-based alloy carbide content of 7.5% or less and excellent in the machinability is disclosed.
- a steel wire for a high-strength spring capable of exhibiting good SV processability such that disconnection does not occur during SV processing in addition to good cutting performance and shavings discharge performance is obtained. It is done.
- Patent Document 4 a steel material having a predetermined component composition is subjected to a first heating and holding, a second heating and holding, a first cooling, and a second cooling in that order to perform spheroidizing of carbides in the steel.
- a method for producing hot forging steel is disclosed. According to this technique, even a steel material having a Cr amount of 0.4% or less can be reliably spheroidized and a steel material having excellent cold forgeability can be obtained.
- Patent Document 3 since it is a metal structure mainly composed of pearlite, carbide dispersibility during annealing is poor, and cracks may occur during cold heading. Moreover, in the technique of patent document 4, since the addition amount of Si is low and a transition carbide cannot be stabilized, it is difficult to ensure delayed fracture resistance.
- the present invention has been made in view of the circumstances as described above, and the purpose thereof is a bolt excellent in pickling properties and delayed fracture resistance after quenching and tempering (hereinafter referred to as “delayed fracture resistance”). It is to provide a wire rod and a bolt.
- the bolt wire of the present invention having excellent pickling property and delayed fracture resistance, which has solved the above problems, is C: 0.3-0.6%, Si: 1.0-3. 0%, Mn: 0.1 to 1.5%, P: more than 0%, 0.020% or less, S: more than 0%, 0.020% or less, Cr: 0.3 to 1.5%, Al : 0.02 to 0.10%, N: 0.001 to 0.020%, the balance is iron and inevitable impurities, and the ferrite area ratio at the diameter d ⁇ 1/4 position of the wire is 10
- the outline is that -40%, the balance is composed of bainite, pearlite, and an unavoidable structure, and the C content at a depth of 0.1 mm from the surface layer is 50 to 100% of the base material C content.
- Mo At least one selected from the group consisting of more than 0%, 3% or less, and W: more than 0%, 0.5% or less
- Ca at least one selected from the group consisting of more than 0% and 0.01% or less
- the tensile strength obtained using the above-mentioned bolt wire material is 1400 MPa or more, and the austenite grain size number of the surface layer and the bolt shaft diameter d ⁇ 1/4 position is No. Also included are bolts with a delayed fracture resistance of 7.0 or higher.
- the wire rod of the present invention appropriately controls the chemical composition, metal structure, and decarburization rate, it can achieve both pickling and delayed fracture resistance at a high level. Moreover, the bolt obtained using the bolt wire of the present invention has high strength and excellent delayed fracture resistance.
- the inventors of the present invention have made extensive studies to ensure pickling properties and delayed fracture resistance. As a result, the inventors have found that the above problems can be achieved by appropriately controlling the chemical component composition, the metal structure, and the decarburization rate, and have reached the present invention.
- the delayed fracture resistance can be improved by increasing the Si content and decreasing the decarburization rate, and the pickling property can be improved by reducing the ferrite area ratio.
- the wire for bolts of the present invention will be described.
- the amount of C at a depth of 0.1 mm from the surface layer is 50 to 100% of the amount of base material C
- the C amount at a depth of 0.1 mm from the surface layer is 50% or more, preferably 60% or more, more preferably 65% or more, and 100% or less of the base material C amount.
- the amount of C in the base material is a value obtained by measuring the wire in accordance with the combustion-infrared absorption method (JIS G 1211 (2011)).
- the ferrite area ratio at the diameter d ⁇ 1/4 position of the wire (hereinafter sometimes referred to as “D / 4 position”) is 10% or more, preferably 13% or more, more preferably 15% or more.
- the ferrite area ratio is 40% or less, preferably 35% or less, more preferably 30% or less.
- the structure other than ferrite is mainly pearlite and bainite, but may contain inevitably martensite and retained austenite.
- C is an element effective for securing the strength of steel.
- the C content is 0.3% or more, preferably 0.35% or more, more preferably 0.38% or more.
- the C content is 0.6% or less, preferably 0.55% or less, more preferably 0.52% or less.
- Si acts as a deoxidizer and is an effective element for securing the strength of steel. In addition, it suppresses the precipitation of coarse cementite during tempering and also exhibits the effect of improving delayed fracture resistance.
- the Si content is 1.0% or more, preferably 1.3% or more, more preferably 1.5% or more.
- the Si content is 3.0% or less, preferably 2.7% or less, more preferably 2.5% or less.
- Mn is an element effective for ensuring the strength of the steel, and forming a compound with S to suppress the formation of FeS, which deteriorates delayed fracture resistance.
- the Mn content is 0.1% or more, preferably 0.15% or more, more preferably 0.2% or more.
- Mn content is 1.5% or less, preferably 1.3% or less, more preferably 1.1% or less.
- P is an impurity element that lowers the toughness of steel and concentrates the delayed fracture resistance by concentrating at the grain boundaries. Delayed fracture resistance can be improved by reducing the P content.
- the P content is 0.020% or less, preferably 0.015% or less, more preferably 0.010% or less. The smaller the P content, the better. However, it is difficult to make it zero, and about 0.003% may be contained as an inevitable impurity.
- S is an impurity element that lowers the toughness of steel by concentrating on the grain boundaries and degrades delayed fracture resistance. Delayed fracture resistance can be improved by reducing the S content.
- the S content is 0.020% or less, preferably 0.015% or less, more preferably 0.010% or less. The smaller the content of S, the better. However, it is difficult to make it zero, and it may contain about 0.003% as an inevitable impurity.
- Cr 0.3-1.5%
- Cr is an element effective for improving the corrosion resistance of steel and ensuring delayed fracture resistance.
- the Cr content is 0.3% or more, preferably 0.4% or more, more preferably 0.5% or more.
- the Cr content is 1.5% or less, preferably 1.4% or less, more preferably 1.3% or less.
- Al acts as a deoxidizing agent and is an element effective in forming a nitride to refine crystal grains.
- the Al content is 0.02% or more, preferably 0.03% or more, more preferably 0.035% or more.
- the Al content is 0.10% or less, preferably 0.08% or less, more preferably 0.06% or less.
- N is an element that is effective for producing Al and nitride and making the crystal grains finer.
- the N content is 0.001% or more, preferably 0.003% or more, more preferably 0.004% or more.
- the N content is 0.020% or less, preferably 0.01% or less, more preferably 0.008% or less.
- the basic chemical composition of the bolt wire according to the present invention is as described above, and the balance is substantially iron. However, it is naturally allowed that steel contains inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like. Moreover, it is also effective to make the bolt wire of the present invention contain the following elements as necessary.
- Cu at least one selected from the group consisting of more than 0%, 0.5% or less, Ni: more than 0%, 1.0% or less, and Sn: more than 0%, 0.5% or less]
- Cu, Ni, and Sn are effective elements for improving the corrosion resistance of steel and improving delayed fracture resistance.
- the Cu content is preferably 0.03% or more, more preferably 0.1% or more, and further preferably 0.15% or more.
- Ni content becomes like this.
- it is 0.1% or more, More preferably, it is 0.2% or more, More preferably, it is 0.3% or more.
- the Sn content is preferably 0.03% or more, more preferably 0.1% or more, and still more preferably 0.15% or more.
- the Cu content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.35% or less.
- content of Ni and Sn becomes excessive, pickling property deteriorates.
- the Ni content is preferably 1.0% or less, more preferably 0.8% or less, and even more preferably 0.7% or less.
- the Sn content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
- Ti at least one selected from the group consisting of more than 0%, 0.1% or less, Nb: more than 0%, 0.1% or less, and Zr: more than 0%, 0.3% or less]
- Ti, Nb, and Zr are elements that are effective in forming carbonitrides with C and N and refining crystal grains. Further, by forming nitride, the amount of N in a solid solution state is reduced, so that it is an element effective for improving cold heading.
- the Ti content is preferably 0.02% or more, more preferably 0.03% or more, and further preferably 0.04% or more.
- the Nb content is preferably 0.02% or more, more preferably 0.03% or more, and further preferably 0.04% or more.
- the Zr content is 0.03% or more, more preferably 0.08% or more, and further preferably 0.10% or more.
- the Ti content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less.
- the Nb content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less.
- the Zr content is preferably 0.3% or less, more preferably 0.25% or less, and still more preferably 0.2% or less.
- Mo and W are elements that are effective in increasing the strength of steel and improving the delayed fracture resistance by forming fine precipitates in the steel. In order to obtain such an effect, it is preferable to contain at least one of Mo and W.
- the Mo content is preferably 0.05% or more, more preferably 0.15% or more, and further preferably 0.20% or more.
- the W content is preferably 0.03% or more, more preferably 0.08%, and even more preferably 0.10%.
- the Mo content is preferably 3% or less, more preferably 2% or less, and even more preferably 1.5% or less.
- the W content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.35% or less.
- V forms a solid solution during quenching heating and precipitates as a carbide during tempering to generate hydrogen trap sites, which is effective in improving delayed fracture resistance.
- the V content is preferably 0.01% or more, more preferably 0.05% or more, and further preferably 0.08% or more.
- the V content is preferably 0.5% or less, more preferably 0.4% or less, and even more preferably. Is 0.3% or less.
- Mg and Ca are effective in forming carbonitrides, preventing coarsening of austenite crystal grains during quenching heating, improving toughness, and improving delayed fracture resistance.
- the Mg content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more.
- the Ca content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more.
- the Mg content is preferably 0.01% or less, more preferably 0.007% or less, and still more preferably 0.005% or less.
- the Ca content is preferably 0.01% or less, more preferably 0.007% or less, and still more preferably 0.005% or less.
- the wire for bolts of the present invention is obtained by melting a steel material having the above chemical components, casting, and hot rolling.
- the steel is heated to 950 ° C. or higher during reheating of the billet before rolling (hereinafter, sometimes referred to as “billet reheating temperature”), and a temperature of 900 to 1100 ° C.
- the steel is subsequently cooled to 730 ° C. at an average cooling rate of 3 to 8 ° C./sec (hereinafter sometimes referred to as “cooling rate I”), and then 8 to 13 ° C. It is important to cool to 350 ° C. at an average cooling rate of / sec (hereinafter sometimes referred to as “cooling rate II”).
- the billet reheating temperature is preferably 950 ° C. or higher, more preferably 1000 ° C. or higher in order to reduce deformation resistance during hot rolling. When this temperature is less than 950 ° C., the deformation resistance during hot rolling increases. On the other hand, if the billet reheating temperature becomes too high, it becomes close to the melting temperature of steel. Accordingly, the billet reheating temperature is preferably 1400 ° C. or lower, more preferably 1300 ° C. or lower, and further preferably 1250 ° C. or lower.
- the finish rolling temperature is preferably 900 ° C. or higher, more preferably 950 ° C. or higher.
- the finish rolling temperature is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower.
- the temperature range similar to the said finish rolling temperature may be sufficient.
- the finish rolling temperature is preferably 900 ° C. or higher, more preferably 950 ° C. or higher, the additive element can be precipitated in the steel as fine carbon / nitride.
- the finish rolling temperature is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower, carbon / nitride can be sufficiently precipitated.
- the average cooling rate after hot rolling is made faster than before, and the average cooling rate is controlled in two stages, so that the decarburization rate at the following cooling rate I and the ferrite area at the following cooling rate II. You can control the rate.
- Cooling rate I Average cooling rate from finish rolling to 730 ° C: 3-8 ° C / sec
- the cooling rate after finish rolling is slowed to promote softening of the bolt wire.
- the ferrite-austenite two-phase region is wider than the normal bolt steel, and excessive decarburization occurs when the cooling rate is slow. Therefore, in order to promote softening of the wire for bolts while preventing excessive decarburization, it is desirable to cool to 730 ° C. as quickly as possible after finish rolling. Therefore, the average cooling rate is 3 ° C./second or more, preferably 4 ° C./second or more, more preferably 4.5 ° C./second or more.
- the average cooling rate from finish rolling to 730 ° C. is 8 ° C./second or less, preferably 7 ° C./second or less, more preferably 6.5 ° C./second or less.
- Cooling rate II [average cooling rate from less than 730 ° C. to 350 ° C .: 8 to 13 ° C./second]
- the average cooling rate from less than 730 ° C. to 350 ° C. is 8 ° C./second or more, preferably 9 ° C./second or more, more preferably 9.5 ° C./second or more.
- the average cooling rate in this temperature range is 13 ° C./second or less, preferably 12 ° C./second or less, more preferably 11.5 ° C./second or less.
- the wire obtained under the conditions as described above has a good chemical pickling property because the chemical composition is appropriately controlled, and the ferrite area ratio is appropriately controlled, and the carbide dispersibility during annealing. Also excellent in cold heading. Moreover, since the decarburization of the wire is also suppressed, the austenite crystal grain coarsening during quenching heating can be suppressed, so that the delayed fracture resistance is also excellent.
- the bolt of the present invention is a steel wire obtained by subjecting the wire to heat treatment such as descaling and spheroidizing annealing, coating treatment, and finish wire drawing as necessary, and then forming a bolt by cold forging and further quenching and tempering.
- Bolts can be manufactured by processing.
- the heating temperature before quenching is preferably 930 ° C. or lower, more preferably 920 ° C. or lower, and further preferably 910 ° C. or lower.
- the heating temperature before quenching is preferably 870 ° C.
- Heating time before quenching 10 to 45 minutes
- Cooling method oil cooling, temperature: room temperature to 70 ° C
- Furnace atmosphere Mixed atmosphere of carbon monoxide (RX gas) and carbon dioxide, nitrogen atmosphere, air atmosphere, etc.
- Tempering conditions such as temperature and time can be appropriately changed according to the required strength.
- a bolt exhibiting a tensile strength of 1400 MPa or more and excellent fracture resistance can be obtained.
- the upper limit of the tensile strength is not particularly limited as long as the requirements of the present invention are satisfied, and is about 1900 MPa, for example.
- the bolt of the present invention has a fine austenite grain size.
- the finer the austenite crystal grain size the better the toughness and the delayed fracture resistance.
- the austenite grain size number of the bolt of the present invention is preferably No. in both the surface layer and the D / 4 position. 7.0 or more, more preferably No. Have 9 or more.
- the finer the austenite crystal grain size the better as it is fine. 14 or less.
- the ferrite area ratio of the obtained wire and the amount of C at a position 0.1 mm deep from the surface were measured, and the pickling property was evaluated.
- cross section After cutting with a cross section perpendicular to the axis of the wire (hereinafter referred to as “cross section”), the cross section is subjected to the “steel macrostructure test method” defined in JIS G 0553 (2015). The metal structure was etched. An arbitrary 0.156 mm 2 region at the D / 4 position of the wire was observed with an optical microscope having a magnification of 200 times, and image analysis was performed to calculate the ferrite area ratio. Observation was performed in 4 fields, and the average value was defined as the ferrite area ratio.
- a flange bolt of M10 mm ⁇ P1.5 mm and length 80 mm was produced from each steel wire by cold heading using a multistage former.
- M represents the diameter of the shaft
- P represents the pitch.
- cold forging was evaluated based on the presence or absence of flange cracking.
- the cold heading property was evaluated as acceptable “P” when no cracking occurred and rejected “F” when cracking occurred.
- the prepared bolts were quenched and tempered under the conditions shown in Table 3. At this time, the quenching heating time was 15 minutes, the atmosphere in the furnace was an air atmosphere, and the quenching was oil-cooled at 25 ° C. The tempering heating time was 45 minutes. In addition, it excluded when the cold heading property failed.
- the austenite grain size, tensile strength, and delayed fracture resistance of each bolt were evaluated.
- Austenite crystal grain size After cutting the bolt shaft section with a cross section perpendicular to the bolt axis (hereinafter referred to as the transverse section), the diameter d ⁇ 1/4 position of the transverse section and any 0 of the outermost layer A region of .039 mm 2 was observed with an optical microscope having a magnification of 400 times, and the prior austenite grain size number was measured in accordance with the “steel-grain size microscopic test method” defined in JIS G 0551 (2015). Measurements were made with 4 fields of view, and the average value was defined as the austenite grain size number. The austenite grain size number is no. 7.0 or higher pass “P”, No. A value of less than 7.0 was regarded as “F”.
- Test No. Reference numerals 1 to 18, 23 to 25, and 41 to 43 are invention examples that satisfy the requirements defined in the present invention. All of these were high in strength, and excellent in pickling properties, cold heading properties, and delayed fracture resistance.
- Test No. No. 19 was decarburized because the average cooling rate I was slow.
- the amount of C at a depth of 0.1 mm from the surface layer was small, austenite crystal grains were coarsened by quenching and tempering treatment, and delayed fracture resistance was poor.
- Test No. 26 is an example using steel type A1 whose C content is lower than the lower limit of the present invention. In this example, a tensile strength of 1400 MPa or more could not be secured.
- Test No. 27 is an example using steel type B1 in which the C content exceeds the upper limit of the present invention.
- the delayed fracture resistance was inferior because the toughness decreased.
- Test No. 28 is an example using steel type C1 whose Si content is lower than the lower limit of the present invention. In this example, coarse cementite precipitated during tempering, so delayed fracture resistance was poor.
- Test No. 29 is an example using the steel type D1 whose Si content exceeds the upper limit of the present invention. In this example, since an amorphous layer was formed on the surface layer of the wire, pickling performance deteriorated.
- Test No. 30 is an example using steel type D1 whose Si content exceeds the upper limit of the present invention.
- the amount of C at a depth of 0.1 mm from the surface layer was reduced, the austenite crystal grains were coarsened by quenching and tempering treatment, and the delayed fracture resistance was inferior.
- Test No. 31 is an example using steel type E1 whose Mn content is lower than the lower limit of the present invention. In this example, a large amount of FeS was formed, so the delayed fracture resistance was poor.
- Test No. 32 is an example using steel type F1 whose Mn content exceeds the upper limit of the present invention. In this example, since the MnS was coarsened, the cold heading was inferior.
- Test No. 33 is an example using steel type G1 in which the P content exceeds the upper limit of the present invention.
- the delayed fracture resistance was inferior because the toughness decreased.
- Test No. 34 is an example using the steel type H1 whose S content exceeds the upper limit of the present invention.
- the delayed fracture resistance was inferior because the toughness decreased.
- Test No. 35 is an example using steel type I1 with a small amount of Cr added. In this example, the corrosion resistance was lowered, so the delayed fracture resistance was inferior.
- Test No. 36 is an example using steel type J1 whose Cr content exceeds the upper limit of the present invention.
- the pickling property was inferior because a Cr concentrated layer was formed on the surface layer of the wire.
- Test No. 37 is an example using a steel type K1 whose Al content is lower than the lower limit of the present invention. In this example, since the ferrite crystal grains were coarsened, the cold heading was inferior.
- Test No. No. 38 is an example using the steel type L1 whose Al content exceeds the upper limit of the present invention. In this example, since coarse AlN was generated, the cold heading was inferior.
- Test No. 39 is an example using steel type M1 whose N content exceeds the upper limit of the present invention. In this example, since the amount of dissolved N increased, the cold heading was inferior.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
(a)Cu:0%超、0.5%以下、Ni:0%超、1.0%以下、およびSn:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
(b)Ti:0%超、0.1%以下、Nb:0%超、0.1%以下、およびZr:0%超、0.3%以下よりなる群から選ばれる少なくとも1種
(c)Mo:0%超、3%以下、およびW:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
(d)V:0%超、0.5%以下
(e)Mg:0%超、0.01%以下、およびCa:0%超、0.01%以下よりなる群から選ばれる少なくとも1種
表層にC欠乏層が形成された状態、すなわち脱炭率が高い状態で焼入れ焼戻し処理をすると、オーステナイト結晶粒が粗大化して耐遅れ破壊性が悪化する。したがって耐遅れ破壊性向上には脱炭率はできるだけ低い方がよい。表層から深さ0.1mm位置におけるC量は母材C量の50%以上、好ましくは60%以上、より好ましくは65%以上であって、100%以下である。なお、母材のC量は線材を燃焼-赤外線吸収法(JIS G 1211(2011年))に準じて測定した値である。
マルテンサイト等の硬質組織が増えると強度は向上するが、酸洗時に水素を吸収して脆化や折損が生じたり、腐食が生じやすいなど酸洗性が悪化する。そのため酸洗性向上にはマルテンサイト等を抑制する必要がある。一方、フェライトは酸洗時に上記問題が起こらず、酸洗性向上に有効な組織である。したがって線材の直径d×1/4位置(以下、「D/4位置」ということがある)におけるフェライト面積率は10%以上、好ましくは13%以上、より好ましくは15%以上である。一方、フェライト面積率が高くなり過ぎると焼鈍時の炭化物分散性が低下して冷間圧造性が悪化すると共に、酸洗時にスケールが残存して伸線時に疵が発生したり、圧造時に割れが発生する恐れがある。したがってフェライト面積率は40%以下、好ましくは35%以下、より好ましくは30%以下である。なお、フェライト以外の組織は主にパーライト、およびベイナイトであるが、その他不可避的に生成するマルテンサイトや残留オーステナイトなどが含まれていることがある。
Cは鋼の強度を確保するために有効な元素である。目標とする1400MPa以上のボルト引張強度を確保するため、C含有量は0.3%以上、好ましくは0.35%以上、より好ましくは0.38%以上である。しかしながらC含有量が過剰になると、耐遅れ破壊性が劣化するため、C含有量は0.6%以下、好ましくは0.55%以下、より好ましくは0.52%以下である。
Siは脱酸剤として作用すると共に、鋼の強度を確保するために有効な元素である。また、焼戻し時に粗大なセメンタイトの析出を抑制し、耐遅れ破壊性を向上させる作用も発揮する。これらの効果を有効に発揮させるためには、Si含有量は1.0%以上、好ましくは1.3%以上、より好ましくは1.5%以上である。一方、Si含有量が過剰になると、フェライト-オーステナイト2相域が広くなり、脱炭し易くなる。また、鋼の表面に非晶質層を形成し、酸洗性が悪化する。Si含有量は3.0%以下、好ましくは2.7%以下、より好ましくは2.5%以下である。
Mnは鋼の強度を確保すると共に、Sと化合物を形成し、耐遅れ破壊性を劣化させるFeSの生成を抑制する作用を発揮するのに有効な元素である。このような効果を発揮させるためには、Mn含有量は0.1%以上、好ましくは0.15%以上、より好ましくは0.2%以上である。一方、Mn含有量が過剰になると、MnSが粗大化し、応力集中源となって冷間圧造性や耐遅れ破壊性が悪化する。Mn含有量は1.5%以下、好ましくは1.3%以下、より好ましくは1.1%以下である。
Pは結晶粒界に濃化することで鋼の靭延性を低下させ、耐遅れ破壊性を劣化させる不純物元素である。P含有量を低減することで耐遅れ破壊性を向上できる。P含有量は0.020%以下、好ましくは0.015%以下、より好ましくは0.010%以下である。P含有量は少ないほど好ましいが、ゼロとするのは製造上困難であり、0.003%程度は不可避的不純物として含有することがある。
SもPと同様、結晶粒界上に濃化することで鋼の靭延性を低下させ、耐遅れ破壊性を劣化させる不純物元素である。S含有量を低減することで耐遅れ破壊性を向上できる。S含有量は0.020%以下、好ましくは0.015%以下、より好ましくは0.010%以下である。Sの含有量は少ないほど好ましいが、ゼロとするのは製造上困難であり、不可避的不純物として0.003%程度は含有することがある。
Crは鋼の耐食性を向上させると共に、耐遅れ破壊性を確保するために有効な元素である。このような効果を発揮させるためには、Cr含有量は0.3%以上、好ましくは0.4%以上、より好ましくは0.5%以上である。一方、Cr含有量が過剰になると表層にCr濃化層が形成され、酸洗性が悪化する。したがってCr含有量は1.5%以下、好ましくは1.4%以下、より好ましくは1.3%以下である。
Alは脱酸剤として作用すると共に、窒化物を形成して結晶粒の微細化に有効な元素である。このような効果を発揮させるためには、Al含有量は0.02%以上、好ましくは0.03%以上、より好ましくは0.035%以上である。一方、Al含有量が過剰になると粗大な窒化物が生成し、結晶粒が粗大化することで冷間圧造性や耐遅れ破壊性が劣化する。したがってAl含有量は0.10%以下、好ましくは0.08%以下、より好ましくは0.06%以下である。
Nは、Alと窒化物を生成し、結晶粒を微細化させるために有効な元素である。このような効果を発揮させるためには、N含有量は0.001%以上、好ましくは0.003%以上、より好ましくは0.004%以上である。一方、N含有量が過剰になると、化合物を形成しないで固溶状態となっているN量が増加し、冷間圧造性が低下する。したがってN含有量は0.020%以下、好ましくは0.01%以下、より好ましくは0.008%以下である。
Cu、Ni、Snは鋼の耐食性を向上させると共に、耐遅れ破壊性を向上させるのに有効な元素である。このような効果を発揮させるためには、Cu含有量は好ましくは0.03%以上、より好ましくは0.1%以上、さらに好ましくは0.15%以上である。またNi含有量は、好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上である。Sn含有量は、好ましくは0.03%以上、より好ましくは0.1%以上、さらに好ましくは0.15%以上である。
Ti、NbおよびZrは、CやNと炭窒化物を形成し、結晶粒を微細化させるのに有効な元素である。また窒化物を形成することで、固溶状態のN量を低減させるため、冷間圧造性の向上にも有効な元素である。これらの効果を発揮させるためには、Ti含有量は好ましくは0.02%以上、より好ましくは0.03%以上、さらに好ましくは0.04%以上である。Nb含有量は好ましくは0.02%以上、より好ましくは0.03%以上、さらに好ましくは0.04%以上である。またZr含有量は0.03%以上、より好ましくは0.08%以上、さらに好ましくは0.10%以上である。
Mo、Wは鋼の強度を高めると共に、鋼中に微細な析出物を形成して耐遅れ破壊性を向上させるのに有効な元素である。このような効果を得るには、MoおよびWの少なくとも1種を含有させることが好ましい。Mo含有量は好ましくは0.05%以上、より好ましくは0.15%以上、さらに好ましくは0.20%以上である。W含有量は好ましくは0.03%以上、より好ましくは0.08%、さらに好ましくは0.10%である。一方、Mo、W含有量が過剰になると製造コストが上昇する。Mo含有量は好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下である。W含有量は好ましくは0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.35%以下である。
Vは焼入れ加熱時に固溶し、焼戻し時に炭化物として析出することで水素トラップサイトを生成し、耐遅れ破壊性向上に有効である。このような効果を発揮させるためには、V含有量は好ましくは0.01%以上、より好ましくは0.05%以上、さらに好ましくは0.08%以上である。一方、V含有量が過剰になると粗大な炭窒化物を形成し、冷間圧造性が悪化するため、V含有量は好ましくは0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.3%以下である。
Mg、Caは炭窒化物を形成し、焼入れ加熱時のオーステナイト結晶粒の粗大化を防止し、靭延性を向上させ、耐遅れ破壊性を向上させるのに有効である。このような効果を発揮させるためには、Mg含有量は好ましくは0.001%以上、より好ましくは0.002%以上、さらに好ましくは0.003%以上である。Ca含有量は好ましくは0.001%以上、より好ましくは0.002%以上、さらに好ましくは0.003%以上である。一方、Mg、Ca含有量が過剰になると上記効果が飽和して製造コストの増加を招く。Mg含有量は好ましくは0.01%以下、より好ましくは0.007%以下、さらに好ましくは0.005%以下である。Ca含有量は好ましくは0.01%以下、より好ましくは0.007%以下、さらに好ましくは0.005%以下である。
ビレット再加熱では、熱間圧延時の変形抵抗を下げるため、ビレット再加熱温度は好ましくは950℃以上、より好ましくは1000℃以上とする。この温度が950℃未満になると、熱間圧延時の変形抵抗が増大する。一方、ビレット再加熱温度が高くなりすぎると鋼の溶解温度に近くなる。したがってビレット再加熱温度は好ましくは1400℃以下、より好ましくは1300℃以下、さらに好ましくは1250℃以下である。
仕上げ圧延温度が低くなりすぎると、AlNが微細分散せず、焼入れ後にオーステナイト結晶粒が粗大化する。したがって仕上げ圧延温度は好ましくは900℃以上、より好ましくは950℃以上である。一方、仕上げ圧延温度が高くなりすぎるとフェライト結晶粒が粗大化し、冷間圧造性や耐遅れ破壊性が劣化する。したがって仕上げ圧延温度は好ましくは1100℃以下、より好ましくは1050℃以下である。
通常、仕上げ圧延後の冷却速度を遅くしてボルト用線材の軟質化を促進している。しかしながら本発明のSi含有量の範囲では、フェライト-オーステナイト2相域が通常のボルト用鋼よりも広くなっており、冷却速度が遅いと過度な脱炭が生じる。そのため過度な脱炭を防止しつつボルト用線材の軟質化を促進するには、仕上げ圧延後から730℃までできるだけ速く冷却することが望ましい。したがって平均冷却速度は3℃/秒以上、好ましくは4℃/秒以上、より好ましくは4.5℃/秒以上である。一方、平均冷却速度が速くなりすぎると表層やD/4位置にマルテンサイトが生成し、酸洗性が劣化する。したがって仕上げ圧延後から730℃までの平均冷却速度は8℃/秒以下、好ましくは7℃/秒以下、より好ましくは6.5℃/秒以下である。
フェライトの析出割合を低く制御して焼鈍時の炭化物分散性を向上させるためには、350℃までの平均冷却速度を速くする必要がある。したがって730℃未満から350℃までの平均冷却速度は8℃/秒以上、好ましくは9℃/秒以上、より好ましくは9.5℃/秒以上である。一方、平均冷却速度が速くなりすぎるとフェライトの析出割合が減少しすぎて酸洗性が劣化する。したがってこの温度域での平均冷却速度は13℃/秒以下、好ましくは12℃/秒以下、より好ましくは11.5℃/秒以下である。
焼入れ前加熱時間:10~45分
冷却方法:油冷、温度:室温~70℃
炉内雰囲気:一酸化炭素(RXガス)と二酸化炭素の混合雰囲気、窒素雰囲気、大気雰囲気など
表1に示す化学成分組成の鋼材(鋼種A~M、A1~M1)を溶製し、鋳造、熱間圧延して直径12mmの線材を製造した。その際、表2に示す条件でビレット再加熱、仕上げ圧延した後、平均冷却速度I、平均冷却速度IIで冷却を行った。
線材の軸に対して垂直な断面(以下、「横断面」という)で切断後、該横断面をJIS G 0553(2015)に規定の「鋼のマクロ組織試験方法」に従って金属組織をエッチングした。線材のD/4位置の任意の0.156mm2の領域を、倍率200倍の光学顕微鏡で観察し、画像解析してフェライト面積率を算出した。観察は4視野行い、その平均値をフェライト面積率とした。
表層から深さ0.1mm位置におけるC量は、EPMA(Electron Probe Micro Analyzer)ライン分析にて測定した。また該測定値を用いて表2に記載の母材C量に対する割合を算出した。
線材を塩酸浴に浸漬することで酸洗した後、横断面の表面を観察して残存するスケールの有無を観察した。酸洗条件は、塩酸濃度:25%、塩酸温度:70℃、浸漬時間:8分とした。全周にわたって残存するスケールが無い場合は合格「P」(Pass)、少なくとも一部にスケールが残存する場合は不合格「F」(Failure)と評価した。
上記各線材を上記酸洗性評価の酸洗条件で酸洗して脱スケール処理を行った後、下記条件にて球状化焼鈍、脱スケール処理、皮膜処理、および仕上げ伸線を実施して鋼線を作製した。なお、上記酸洗性評価で「F」評価の線材は除外した。
均熱温度:760℃
均熱時間:5時間
平均冷却速度:13℃/hr
抽出温度:685℃
脱スケール条件
塩酸濃度:25%
塩酸温度:70℃
浸漬時間:8分
皮膜処理条件
皮膜種類:石灰皮膜
浸漬時間:10分
仕上げ伸線条件
伸線速度:1m/秒
減面率:8%(φ9.3 ⇒ φ9.06)
上記各鋼線から多段フォーマーを用いてM10mm×P1.5mm、長さ80mmのフランジボルトを冷間圧造で作製した。尚、Mは軸部の直径、Pはピッチを意味する。
上記冷間圧造した際、フランジ割れの有無により冷間圧造性を評価した。冷間圧造性は、割れが生じないときには合格「P」、割れが生じたときは不合格「F」と評価した。
ボルトの軸部をボルトの軸に対して垂直な断面(以下、横断面)で切断後、該横断面の直径d×1/4位置、および最表層の任意の0.039mm2の領域を、倍率400倍の光学顕微鏡で観察し、JIS G 0551(2015)に規定の「鋼-結晶粒度の顕微鏡試験方法」に従って旧オーステナイト結晶粒度番号を測定した。各4視野で測定し、その平均値をオーステナイト結晶粒度番号とした。オーステナイト結晶粒度番号がNo.7.0以上を合格「P」、No.7.0未満を不合格「F」とした。
JIS B 1051(2014)に従って引張試験を行ってボルトの引張強度を測定した。1400MPa以上を合格、1400MPa未満を不合格とした。
ボルトを冶具に降伏点狙いで締め付けた後、(a)冶具ごと1%HClに15分浸漬、(b)大気中で24時間暴露、(c)破断有無の確認、を1サイクルとし、これを10サイクル繰り返して評価した。ボルトは1水準に対し10本ずつ評価し、1本も破断しなかった場合は合格「P」とし、1本でも破断した場合は不合格「F」と評価した。
Claims (3)
- 質量%で、
C :0.3~0.6%、
Si:1.0~3.0%、
Mn:0.1~1.5%、
P :0%超、0.020%以下、
S :0%超、0.020%以下、
Cr:0.3~1.5%、
Al:0.02~0.10%、
N :0.001~0.020%を含有し、
残部が鉄および不可避的不純物であって、
線材の直径d×1/4位置におけるフェライト面積率は10~40%、残部はベイナイト、パーライト、および不可避的に生成する組織からなり、且つ
表層から深さ0.1mm位置におけるC量が母材C量の50~100%である酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材。 - 更に、質量%で、以下の(a)~(e)の少なくとも1つを含有する請求項1に記載のボルト用線材。
(a)Cu:0%超、0.5%以下、Ni:0%超、1.0%以下、およびSn:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
(b)Ti:0%超、0.1%以下、Nb:0%超、0.1%以下、およびZr:0%超、0.3%以下よりなる群から選ばれる少なくとも1種
(c)Mo:0%超、3%以下、およびW:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
(d)V:0%超、0.5%以下
(e)Mg:0%超、0.01%以下、およびCa:0%超、0.01%以下よりなる群から選ばれる少なくとも1種 - 請求項1または2に記載のボルト用線材を用いて得られた引張強さ1400MPa以上、表層とボルト軸部の直径d×1/4位置のオーステナイト結晶粒度番号が共にNo.7.0以上の耐遅れ破壊性に優れたボルト。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177026605A KR102021216B1 (ko) | 2015-03-27 | 2016-03-14 | 산세성 및 담금질 템퍼링 후의 내지연파괴성이 우수한 볼트용 선재, 및 볼트 |
US15/561,530 US20180066344A1 (en) | 2015-03-27 | 2016-03-14 | Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt |
CN201680017865.6A CN107429352B (zh) | 2015-03-27 | 2016-03-14 | 酸洗性和淬火回火后的抗延迟断裂性优异的螺栓用线材及螺栓 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015066205A JP6479527B2 (ja) | 2015-03-27 | 2015-03-27 | 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト |
JP2015-066205 | 2015-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016158361A1 true WO2016158361A1 (ja) | 2016-10-06 |
Family
ID=57005009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058034 WO2016158361A1 (ja) | 2015-03-27 | 2016-03-14 | 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180066344A1 (ja) |
JP (1) | JP6479527B2 (ja) |
KR (1) | KR102021216B1 (ja) |
CN (1) | CN107429352B (ja) |
TW (1) | TWI601833B (ja) |
WO (1) | WO2016158361A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6992535B2 (ja) * | 2018-01-18 | 2022-02-04 | 大同特殊鋼株式会社 | 高強度ボルト及びその製造方法 |
CN108950384A (zh) * | 2018-06-29 | 2018-12-07 | 湖南铂固标准件制造有限公司 | 一种高强螺栓用钢及其应用 |
CN109652627B (zh) * | 2019-01-16 | 2020-09-15 | 天长市润源金属制品有限公司 | 一种高性能金属丝生产的退火加工工艺 |
CN110760648A (zh) * | 2019-11-14 | 2020-02-07 | 北京金兆博高强度紧固件有限公司 | 耐候螺栓生产工艺 |
CN111118406B (zh) * | 2020-01-15 | 2020-09-01 | 南京福贝尔五金制品有限公司 | 一种耐海洋大气腐蚀高强度螺栓的制造方法 |
CN111945063B (zh) * | 2020-07-27 | 2022-02-08 | 马鞍山钢铁股份有限公司 | 一种高强度海洋风电用耐蚀紧固件用钢及生产方法 |
JP7562357B2 (ja) * | 2020-09-30 | 2024-10-07 | 三菱重工マリンマシナリ株式会社 | 回転機械 |
TWI741884B (zh) * | 2020-11-24 | 2021-10-01 | 中國鋼鐵股份有限公司 | 雙相鋼線材及其製造方法 |
KR102429603B1 (ko) * | 2020-11-27 | 2022-08-05 | 주식회사 포스코 | 내응력부식 특성이 향상된 냉간 가공용 선재 및 그 제조 방법 |
CN112795854A (zh) * | 2020-12-23 | 2021-05-14 | 石家庄钢铁有限责任公司 | 高强度紧固件螺栓用钢及其生产方法 |
CN113584390B (zh) * | 2021-08-03 | 2022-05-13 | 宝武杰富意特殊钢有限公司 | 一种高强螺栓用圆钢及其制备方法 |
CN114058974B (zh) * | 2021-11-30 | 2022-09-13 | 马鞍山钢铁股份有限公司 | 一种15.9级耐腐蚀高强度螺栓用钢及其生产方法和热处理方法 |
KR102507468B1 (ko) | 2022-08-22 | 2023-03-08 | 디와이스틸 주식회사 | 볼트 제작용 금속 선재의 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0754042A (ja) * | 1993-08-18 | 1995-02-28 | Daido Steel Co Ltd | 高強度ボルトの製造方法 |
JP2003183780A (ja) * | 2001-12-20 | 2003-07-03 | Kobe Steel Ltd | ボルト用鋼及びそのボルト用鋼より製造されたボルトによる鋼構造物 |
JP2005029870A (ja) * | 2003-07-11 | 2005-02-03 | Kobe Steel Ltd | 耐水素脆化特性に優れた高強度鋼およびその製造方法 |
WO2011048971A1 (ja) * | 2009-10-22 | 2011-04-28 | 日産自動車株式会社 | 高強度ボルト用鋼及び高強度ボルトの製造方法 |
WO2015001950A1 (ja) * | 2013-07-05 | 2015-01-08 | 株式会社神戸製鋼所 | ボルト用鋼およびボルト、並びにそれらの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100380739B1 (ko) * | 1998-11-26 | 2003-09-19 | 주식회사 포스코 | 지연파괴저항성이우수한고강도고연신율의볼트용복합조직강및그제조방법 |
KR100363194B1 (ko) * | 1998-12-26 | 2003-01-24 | 주식회사 포스코 | 고인성 볼트의 제조방법 |
JP3816721B2 (ja) * | 2000-04-07 | 2006-08-30 | 株式会社神戸製鋼所 | 耐遅れ破壊性と首下靭性、または耐遅れ破壊性と鍛造性および首下靭性に優れた高強度線材並びにその製造方法 |
JP4569961B2 (ja) * | 2005-09-13 | 2010-10-27 | 山陽特殊製鋼株式会社 | ボールネジまたはワンウェイクラッチ用部品の製造方法 |
CN102268604A (zh) * | 2007-07-20 | 2011-12-07 | 株式会社神户制钢所 | 弹簧用钢线材及其制造方法 |
JP5121360B2 (ja) * | 2007-09-10 | 2013-01-16 | 株式会社神戸製鋼所 | 耐脱炭性および伸線加工性に優れたばね用鋼線材およびその製造方法 |
JP5674620B2 (ja) * | 2011-10-07 | 2015-02-25 | 株式会社神戸製鋼所 | ボルト用鋼線及びボルト、並びにその製造方法 |
WO2013105344A1 (ja) * | 2012-01-11 | 2013-07-18 | 株式会社神戸製鋼所 | ボルト用鋼、ボルトおよびボルトの製造方法 |
JP5796782B2 (ja) | 2012-03-30 | 2015-10-21 | 株式会社神戸製鋼所 | 皮削り性に優れた高強度ばね用鋼線材および高強度ばね |
JP6108924B2 (ja) | 2013-04-08 | 2017-04-05 | 株式会社神戸製鋼所 | 冷間鍛造用鋼の製造方法 |
-
2015
- 2015-03-27 JP JP2015066205A patent/JP6479527B2/ja not_active Expired - Fee Related
-
2016
- 2016-03-14 US US15/561,530 patent/US20180066344A1/en not_active Abandoned
- 2016-03-14 WO PCT/JP2016/058034 patent/WO2016158361A1/ja active Application Filing
- 2016-03-14 KR KR1020177026605A patent/KR102021216B1/ko active IP Right Grant
- 2016-03-14 CN CN201680017865.6A patent/CN107429352B/zh not_active Expired - Fee Related
- 2016-03-22 TW TW105108832A patent/TWI601833B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0754042A (ja) * | 1993-08-18 | 1995-02-28 | Daido Steel Co Ltd | 高強度ボルトの製造方法 |
JP2003183780A (ja) * | 2001-12-20 | 2003-07-03 | Kobe Steel Ltd | ボルト用鋼及びそのボルト用鋼より製造されたボルトによる鋼構造物 |
JP2005029870A (ja) * | 2003-07-11 | 2005-02-03 | Kobe Steel Ltd | 耐水素脆化特性に優れた高強度鋼およびその製造方法 |
WO2011048971A1 (ja) * | 2009-10-22 | 2011-04-28 | 日産自動車株式会社 | 高強度ボルト用鋼及び高強度ボルトの製造方法 |
WO2015001950A1 (ja) * | 2013-07-05 | 2015-01-08 | 株式会社神戸製鋼所 | ボルト用鋼およびボルト、並びにそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201708568A (zh) | 2017-03-01 |
TWI601833B (zh) | 2017-10-11 |
CN107429352A (zh) | 2017-12-01 |
US20180066344A1 (en) | 2018-03-08 |
KR102021216B1 (ko) | 2019-09-11 |
JP6479527B2 (ja) | 2019-03-06 |
KR20170118879A (ko) | 2017-10-25 |
JP2016186099A (ja) | 2016-10-27 |
CN107429352B (zh) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6479527B2 (ja) | 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト | |
KR100949373B1 (ko) | 고강도 스프링용 열처리 강 | |
WO2013151009A1 (ja) | 冷間鍛造性に優れた鋼線材または棒鋼 | |
WO2010082481A1 (ja) | 肌焼鋼、浸炭部品、及び肌焼鋼の製造方法 | |
WO2015129403A1 (ja) | 高強度ばね用圧延材および高強度ばね用ワイヤ | |
WO2012043074A1 (ja) | 肌焼鋼およびその製造方法 | |
JP6267618B2 (ja) | ボルト用鋼およびボルト | |
JP5385656B2 (ja) | 最大結晶粒の縮小化特性に優れた肌焼鋼 | |
JP2007031733A (ja) | 耐遅れ破壊特性に優れた引張強さ1600MPa級以上の鋼およびその成型品の製造方法 | |
KR20080057205A (ko) | 고강도 스프링용 강 및 고강도 스프링용 열처리 강선 | |
JP5913214B2 (ja) | ボルト用鋼およびボルト、並びにそれらの製造方法 | |
JP6461672B2 (ja) | 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト | |
CN115261715A (zh) | 一种高温渗碳齿轴用钢及其制造方法 | |
CN109790602B (zh) | 钢 | |
JP5600502B2 (ja) | ボルト用鋼、ボルトおよびボルトの製造方法 | |
JP4867638B2 (ja) | 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト | |
JP2012237052A (ja) | 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼とその製造方法 | |
CN114231703B (zh) | 一种高强度简化退火冷镦钢生产方法 | |
JP2010215961A (ja) | 焼入性に優れたボロン鋼鋼板およびその製造方法 | |
JP6536459B2 (ja) | 厚鋼板およびその製造方法 | |
WO2013084265A1 (ja) | 機械構造用鋼およびその製造方法 | |
KR101867677B1 (ko) | 내지연파괴 특성이 우수한 선재 및 그 제조방법 | |
WO2024202565A1 (ja) | 棒鋼、ボルト及びボルトの製造方法 | |
CN111334708B (zh) | 一种抗拉强度≥2250MPa且疲劳性能优异的高强度弹簧钢及其生产方法 | |
JP3237990B2 (ja) | 冷間加工性と焼入れ性に優れた冷間鍛造用鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16772244 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177026605 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15561530 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16772244 Country of ref document: EP Kind code of ref document: A1 |