WO2016157969A1 - 焼却プラントの排水処理方法 - Google Patents

焼却プラントの排水処理方法 Download PDF

Info

Publication number
WO2016157969A1
WO2016157969A1 PCT/JP2016/052263 JP2016052263W WO2016157969A1 WO 2016157969 A1 WO2016157969 A1 WO 2016157969A1 JP 2016052263 W JP2016052263 W JP 2016052263W WO 2016157969 A1 WO2016157969 A1 WO 2016157969A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
membrane
water
incineration plant
treatment
Prior art date
Application number
PCT/JP2016/052263
Other languages
English (en)
French (fr)
Inventor
邦洋 早川
和義 内田
恵一 水品
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201680009973.9A priority Critical patent/CN107531515A/zh
Publication of WO2016157969A1 publication Critical patent/WO2016157969A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • C02F1/12Spray evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a method for treating waste water discharged from an incineration plant.
  • a wastewater treatment method Emission from an incineration plant equipped with an incinerator for burning organic matter, a heat recovery device for recovering the heat of combustion exhaust gas discharged from the incinerator, and a temperature reducing device for further reducing the temperature of the exhaust gas recovered by heat recovery
  • a wastewater treatment method a wastewater treatment method is known in which the wastewater is subjected to a coagulation treatment with a coagulant or the like and then filtered.
  • Patent Document 1 a wastewater treatment method in which wastewater discharged from an incineration plant is agglomerated with a flocculant and the like, followed by biological treatment and further filtered by sand filtration.
  • Patent Document 1 describes that most of the purified water purified by this wastewater treatment method can be discharged.
  • purified water is vaporized by jetting it to a temperature reducing device such as a temperature reducing tower to reduce the capacity of the purified water.
  • a temperature reducing device such as a temperature reducing tower
  • purified water is vaporized by injecting purified water or the like in the temperature reduction device to the combustion exhaust gas after heat recovery from the combustion exhaust gas by a heat recovery device such as a waste heat boiler. The capacity is reduced while the combustion exhaust gas is reduced in temperature by the heat of vaporization.
  • the heat recovery device such as a waste heat boiler on the upstream side of the temperature reducing device Therefore, the amount of heat recovered from the combustion exhaust gas must be set small. That is, in order to evaporate a large amount of purified water in the temperature reducing device, it is necessary to reduce the amount of heat recovered from the combustion exhaust gas in the heat recovery device, and the heat recovery efficiency from the combustion exhaust gas in the incineration plant is lowered.
  • Patent Document 2 discloses that incineration plant wastewater is treated with an MF membrane, the permeate is treated with an RO membrane, and MF membrane concentrated water and RO membrane concentrated water. Is supplied to a temperature reducing device.
  • the amount of water sprayed on the temperature reducing device can be reduced by concentrating the wastewater with the MF membrane and the RO membrane, and the reduction of the heat recovery amount can be suppressed.
  • An object of the present invention is to provide a wastewater treatment method for an incineration plant capable of efficiently recovering the heat of combustion exhaust gas in the incineration plant and stably and efficiently concentrating wastewater.
  • An incineration plant wastewater treatment method comprises an incinerator for burning organic matter, a heat recovery device for recovering the heat of the combustion exhaust gas discharged from the incinerator, and the combustion exhaust gas recovered by the heat recovery device.
  • a wastewater treatment method for wastewater discharged from an incineration plant further comprising a temperature reducing device for reducing temperature, comprising a membrane separation step for separating wastewater discharged from an incineration plant into permeate and concentrated water by a separation membrane.
  • the wastewater treatment method for an incineration plant wherein at least a part of the concentrated water is supplied to the temperature reducing device and blown into the combustion exhaust gas to evaporate to reduce the temperature of the combustion exhaust gas.
  • Supplying the mixed waste water which mixed at least 2 types of can water, boiler blow water, cooling tower blow water, and miscellaneous waste water to the said membrane separation process process, It is characterized by the above-mentioned. That.
  • miscellaneous wastewater is treated in a first pretreatment step having at least one of neutralization, aggregation, precipitation, filtration, and biological treatment, and then mixed into the mixed wastewater.
  • the mixed wastewater is treated with a pretreatment device using a filter, an MF membrane, or a UF membrane, and then subjected to membrane separation treatment with an RO membrane in the membrane separation step.
  • the mixed waste water is treated with a pretreatment device using a filter, an MF membrane, or a UF membrane, and then in the membrane separation step, membrane separation is performed with an RO membrane, and the pretreatment device is concentrated. Water or backwash waste water is sent to the first pretreatment step.
  • At least one of floor washing wastewater and car washing wastewater of an incineration plant is supplied to the temperature reducing device without performing RO treatment.
  • the wastewater discharged from the incineration plant is concentrated by the separation membrane to obtain concentrated water having a reduced volume, and this concentrated water is reduced. Since the temperature is supplied to the temperature device, the amount of concentrated water supplied to the temperature reduction device is small, and the temperature of the combustion exhaust gas introduced into the temperature reduction device can be lowered. As a result, it is possible to increase the amount of heat recovered from the combustion exhaust gas in the heat recovery device installed on the upstream side of the temperature reducing device.
  • the mixed wastewater is preferably subjected to membrane separation treatment with an RO membrane.
  • water treatment chemicals such as a dispersant and a slime control agent are contained in order to stabilize and increase the efficiency of the treatment.
  • Dispersant contained in boiler blow water and cooling water blow water becomes an impediment to the coagulation treatment.
  • Slime control agents have an adverse effect on biological treatment and may reduce biological activity.
  • these waters are subjected to a simple pretreatment consisting of sand filtration, an MF membrane, or a UF membrane, and then subjected to membrane separation treatment, so that the size of the wastewater treatment facility can be reduced.
  • miscellaneous wastewater is treated in a preliminary treatment step having at least one of neutralization, aggregation, precipitation, filtration, and biological treatment, and SS components in the wastewater and organic components are removed.
  • concentration is performed by membrane treatment.
  • the concentrated water or backwash water in the pretreatment apparatus is also treated in the first pretreatment process to remove organic components from SS. However, it may be processed in the second preliminary processing step.
  • Car wash wastewater and floor wash wastewater are preferably sprayed with a temperature reducing device without membrane treatment.
  • Car wash wastewater and floor wash wastewater may contain substances that block the MF membrane or RO membrane, such as oil and surfactant, and the concentration is not constant, which may make stable treatment difficult. . Therefore, car wash wastewater and floor wash wastewater are treated in a second preliminary treatment step having at least one of neutralization, aggregation, precipitation, filtration, and biological treatment, and solid-liquid separation and organic component removal are performed. In addition, spraying with a temperature reducing device is preferred.
  • the mixed waste water may be a mixture of waste water other than boiler canned water.
  • an incineration plant to which the wastewater treatment method of the present embodiment is applied includes an incinerator 1 that combusts organic matter, a heat recovery device 2 that recovers heat of combustion exhaust gas discharged from the incinerator 1, and And a temperature reducing device 3 for further reducing the temperature of the combustion exhaust gas (hereinafter also referred to as heat recovery combustion exhaust gas) recovered by the heat recovery device. Furthermore, you may provide another apparatus etc.
  • a stoker furnace As the incinerator 1, a stoker furnace, a fluidized bed furnace, a gasification melting furnace, an ash melting furnace, an incineration plant, or the like can be used.
  • the burning organic matter is not particularly limited, and examples thereof include municipal waste, industrial waste, sewage sludge, and waste wood.
  • the combustion exhaust gas discharged from the incinerator 1 is usually at a temperature of about 800 to 1300 ° C.
  • the heat recovery device 2 recovers the heat of the combustion exhaust gas discharged from the incinerator 1.
  • Examples of the heat recovery device 2 include a waste heat boiler.
  • the temperature reduction device 3 further reduces the temperature of the combustion exhaust gas (heat recovery combustion exhaust gas) recovered by the heat recovery device 2.
  • the temperature reducing device 3 is configured to inject or spray water on the heat recovery combustion exhaust gas introduced from the heat recovery device 2, and to reduce the temperature of the heat recovery combustion exhaust gas by the heat of vaporization of water.
  • the heat recovery combustion exhaust gas introduced into the temperature reducing device 3 is usually at a temperature of about 250 to 400 ° C.
  • the water sprayed or sprayed by the temperature reducing device 3 is the waste water from the incineration plant, and the mixed waste water mixed with at least two types of boiler canned water, boiler blow water, cooling tower blow water, and miscellaneous waste water is concentrated by the separation membrane. Concentrated water.
  • the temperature of exhaust gas introduced into the temperature reducing device 3 can be made lower than that in Patent Document 2. Thereby, the amount of heat recovery in the heat recovery apparatus 2 can be increased.
  • the temperature of the exhaust gas after being reduced in temperature by the temperature reducing device 3 is usually about 150 to 200 ° C.
  • This gas contains water vapor obtained by vaporizing the concentrated water.
  • the exhaust gas is purified by the dust collector 4 or the like and then released into the atmosphere.
  • the waste water discharged from the incineration plant means the waste water generated within the site of the incineration plant.
  • the waste water generated in the premises of the incineration plant include boiler blow water blown from the heat recovery device 2 such as a waste heat boiler, boiler maintenance filled in the can of the heat recovery device when stopped, and discharged before restarting
  • boiler blow water blown from the heat recovery device 2
  • miscellaneous wastewater include incineration residue generated from an incinerator 1 such as an incinerator, residue cooling wastewater that cools slag, and wastewater other than the above that does not contain a surfactant and oil generated in an incineration plant.
  • the mixed waste water mixed with boiler canned water, boiler blow water and cooling tower blow water (however, boiler canned water may be excluded) is preferably pretreated 5 and then subjected to membrane separation.
  • membrane separation is performed. At least a part of the concentrated water is supplied to the temperature reducing device 3 to evaporate the concentrated water to reduce the temperature of the combustion exhaust gas.
  • the miscellaneous wastewater is preferably subjected to the first preliminary treatment 7 and then mixed with boiler canned water, boiler blow water and cooling tower blow water, and supplied to the pretreatment 5.
  • preliminarily treating the miscellaneous wastewater in this manner the blockage of the membrane in the membrane separation step 6 is suppressed.
  • a sand filter, MF membrane, UF membrane or the like can be used as the pretreatment 5.
  • an RO membrane is suitable.
  • At least one of neutralization, aggregation, precipitation, filtration, and biological treatment is preferable.
  • Car wash wastewater and floor wash wastewater may be mixed with the membrane concentrated water from the membrane separation step 6 after being subjected to the second preliminary treatment 8 for removing organic components for SS, and supplied to the temperature reducing device 3. preferable.
  • the second pretreatment at least one of neutralization, aggregation, precipitation, filtration, and biological treatment is preferable.
  • the MF or UF membrane concentrated water is treated in the first preliminary treatment 7 to remove organic components from SS.
  • the second preliminary process 8 may be used.
  • Dispersant contained in boiler blow water and cooling water blow water becomes an impediment to the coagulation treatment. Therefore, when the boiler blow water and the cooling water blow water are flowed into the first pretreatment 7, the necessary amount of the flocculant is remarkably increased.
  • the slime control agent has an adverse effect on biological treatment, and there are cases where the biological activity decreases, and it is necessary to make it harmless separately when treating wastewater. Therefore, by supplying these waters to the pretreatment 5 without pretreatment, the pretreatment facility can be reduced.
  • Car wash wastewater and floor washing wastewater are sprayed by the temperature reducing device 3 after the second preliminary treatment 8.
  • Car wash wastewater and floor wash wastewater may contain substances that block the MF membrane or RO membrane, such as oil and surfactant, and the concentration is not constant, making it difficult to perform membrane separation treatment stably. is there. Therefore, the car wash wastewater and the floor wash wastewater are treated by the second pretreatment 8 having at least one of neutralization, aggregation, precipitation, filtration, and biological treatment to perform solid-liquid separation and organic component removal. In addition, spraying is performed by the temperature reducing device 3.
  • first and second pretreatments 7 and 8 for the purpose of reducing the organic component in the SS component contained in the water to be treated, after adding a flocculant to the waste water, mainly aggregating the suspended matter, A filtration process such as sand filtration may be performed, or a precipitation step may be performed instead of filtration. When the load is high, a pressurized levitation process can be added. In order to appropriately perform the aggregation treatment, a pH adjustment step can be added. By performing a series of preliminary treatment steps, aggregates can be removed from the waste water, and organic components can be reduced by the amount of SS that can be contained in the car wash waste water and floor washing waste water.
  • a membrane separation activated sludge method using an MF membrane (immersion membrane) instead of the sand filtration device can be used. Aggregates captured by the MF film (immersion film) are extracted and then put into a garbage pit and incinerated by the incinerator 1.
  • flocculant examples include iron-based flocculants such as ferrous sulfate, ferric sulfate, and ferric chloride, aluminum-based flocculants such as aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), and the like. A mixture etc. are illustrated. The amount of the flocculant added can be adjusted as appropriate.
  • polymer flocculant to be added to the water to be treated as a flocculant examples include poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and anions such as alkali metal salts thereof.
  • Organic polymer flocculants nonionic organic polymer flocculants such as poly (meth) acrylamide, dimethylaminoethyl (meth) acrylate or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide or its 4 Homopolymers composed of cationic monomers such as quaternary ammonium salts, and cationic organic polymer flocculants such as copolymers of nonionic monomers copolymerizable with these cationic monomers, and the above anionic monomers, Copolymerization with cationic monomers and nonionic monomers copolymerizable with these monomers Organic polymer flocculant of amphoteric is united and the like.
  • nonionic organic polymer flocculants such as poly (meth) acrylamide, dimethylaminoethyl (meth) acrylate or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide or
  • the amount of the polymer flocculant added is not particularly limited, and may be adjusted according to the properties of the water to be treated. However, the solid content is generally 0.01 to 10 mg / L with respect to the water to be treated. Phenol type flocculants described in WO2011 / 018978 can also be used.
  • examples of impurities removed by the RO membrane include ionic components and organic substances.
  • ionic components include cationic substances, anionic substances, and the like. Specifically, calcium ions, magnesium ions, etc. that easily form scales that are ion-bonded to anions and are not easily dissolved in water. Illustrated.
  • organic substances include water-soluble organic substances dissolved in waste water.
  • the MF membrane differential pressure increases due to adhesion of scale, turbidity, organic matter, etc. to the MF membrane surface.
  • back pressure cleaning and chemical cleaning of the MF membrane are performed.
  • MF membranes usually have pores with a pore size of about 50 nm to 10 ⁇ m.
  • a membrane unit in which a hollow fiber membrane, a spiral membrane, and a tubular membrane are held in a vessel can be used.
  • a hollow fiber membrane or a flat membrane can be used as it is by immersing it in the water to be treated.
  • an ultrafiltration membrane (UF membrane) having a pore diameter of about 2 nm to 200 nm can also be used.
  • the MF membrane is preferably PVDF
  • the UF membrane is polysulfone
  • the RO membrane is preferably made of polyamide, but is not limited thereto.
  • RO membrane examples include a composite membrane composed of a dense layer of an asymmetric membrane and a fine porous layer.
  • RO membrane a unit in which a filtration membrane installed in a state of a hollow fiber membrane, a spiral membrane, a tubular membrane or the like is held in a vessel can be used.
  • Dispersants used for cooling water treatment etc. include inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutanetricarboxylic acid, maleic acid, acrylic acid, itaconic acid, etc.
  • Carboxyl group-containing material, and optionally combined with vinyl monomers having sulfonic acid groups such as vinyl sulfonic acid, allyl sulfonic acid, 2-methacrylamide-2-methylpropane sulfonic acid, and nonionic vinyl monomers such as acrylamide Copolymers and the like can be used, but materials other than those listed here can also be applied.
  • a terpolymer can be used by using other components.
  • N-tert-butylacrylamide is used as the third component.
  • the dispersant is most preferably a polymer containing HAPS, AMPS and acrylic acid and / or methacrylic acid.
  • HAPS is 3-allyloxy-2-hydroxy-1-propanesulfonic acid
  • AMPS is 2-acrylamido-2-methylpropanesulfonic acid.
  • the molecular weight of the dispersant is preferably 1,000 or more and 30,000 or less. If the molecular weight is 1,000 or less, a sufficient dispersion effect cannot be obtained, and if it is 30,000 or more, there is a fear that it will be removed by the pretreatment film.
  • Slime control agents include hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates, chlorine such as monochlorosulfamic acid, amide sulfate, and amide sulfate. Bonded chlorine agent reacted with a compound having hydrogen, bromine agent such as dibromohydantoin, hypobromite such as sodium hypobromite, organic agent such as DBNPA (dibromonitrilopropionate), MIT (methylisothiazolone) .
  • hypochlorites such as sodium hypochlorite (NaClO)
  • chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates
  • chlorine such as monochlorosulfamic acid, amide sulfate, and amide sulfate. Bonded chlorine agent reacted with a compound having hydrogen, bromine agent such as dibromohydantoin, hypo
  • Examples of the chlorine-based oxidizing agent that can be used in the present invention include the above chlorine gas, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanur.
  • An acid or a salt thereof can be used.
  • the salt include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as barium, other metal salts such as nickel, ammonium salts, and the like. One or more of these can be used. Among these, sodium hypochlorite is preferable because of its excellent handleability.
  • Nitrogen compounds to which free chlorine is bound include ammonia or its compounds, melamine, urea, acetamide, sulfamide, cyclolamic acid, sulfamic acid, toluenesulfonamide, succinimide, phthalimide, isocyanuric acid, N-chloro Examples thereof include toluenesulfonamide, uric acid, saccharin, and salts thereof.
  • the bonded chlorine agent used in the present invention is a compound in which the above-mentioned free chlorine is bonded to these nitrogen compounds.
  • the combined chlorine agent used in the present invention those obtained by mixing and reacting the above nitrogen compound and free chlorine agent, particularly those obtained by mixing and reacting each in the state of an aqueous solution are preferable.
  • Examples of such bonded chlorinating agents include chloramine, chlorinated oxidant and sulfamic acid compound, chloramine-T (sodium salt of N-chloro-4-methylbenzenesulfonamide), chloramine-B. (Sodium salt of N-chloro-benzenesulfonamide), sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, sodium salt or potassium salt of mono- or di-chloromelamine, trichloro-isocyanurate, mono- or 5 such as sodium salt or potassium salt of di-chloroisocyanuric acid, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin or 1,3-dichlorohydantoin, 5,5-dimethylhydantoin 5-alkyl derivatives.
  • chloramine-T sodium salt of N-chloro-4-methylbenzenesulfonamide
  • chloramine-B
  • cleansing agents In boiler water treatment, cleansing agents, oxygen scavengers, and amines are used alone or in combination.
  • canning agent examples include phosphoric acid and / or salt thereof, polymerized phosphoric acid and / or salt thereof, phosphonic acid and / or salt thereof, chelating agent such as EDTA, poly (meth) acrylic acid and / or salt thereof, and AMPS. And a polymer containing acrylic acid and / or methacrylic acid can be applied.
  • oxygen scavenger examples include 1-amino-4-methylpiperazine, hydrazine, carbohydrazide, erythorbic acid and / or its salt, gluconic acid and / or its salt, N, N-diethylhydroxylamine, sulfurous acid and / or its salt Bisulfite and / or a salt thereof, tannic acid and / or a salt thereof, gallic acid and / or a salt thereof, isopropylhydroxylamine and the like can be applied.
  • amines include neutralizing amines such as monoisopropanolamine, 3-methoxy-propylamine, cyclohexylamine, 2-aminoethanol, 2-amino-2-methyl-1-propanol, morpholine, 2-diethylaminoethanol, and the like.
  • a film-forming amine such as octadecylamine can be applied.
  • a part of the pretreatment 5 MF membrane permeate can be used as car wash water.
  • the RO membrane permeated water in the membrane separation step 6 can be used as boiler raw water for waste heat boilers, equipment cooling water, plant water, and the like.
  • Permeated water such as the MF membrane permeated water and the RO membrane permeated water may be discharged to the sea, rivers, sewage, or the like.
  • a mixed gas obtained by mixing combustion exhaust gas and ammonia is brought into contact with a denitration catalyst, and NOx gas is decomposed by a catalytic reduction reaction. ing. Since ammonia remains in this combustion exhaust gas, the waste water discharged from the incineration plant may contain ammonia (ammonium ions). Therefore, a biological treatment apparatus may be provided upstream of the pretreatment process to reduce ammonium ions and the like.
  • the biological treatment process includes, for example, a biological treatment apparatus including a nitrification tank that performs a nitrification process using aerobic microorganisms and a denitrification tank that performs a denitrification process using facultative anaerobic microorganisms. Can be used.
  • Example 1 Boiler blow water, cooling tower blow water, miscellaneous waste water, domestic waste water, car wash waste water and floor washing waste water discharged from an incineration plant for incinerating combustible waste were treated according to the flow of FIG.
  • Boiler blow water 10 m 3 / h and cooling tower blow water 10 m 3 / h were supplied as they were to the pretreatment (MF membrane 11).
  • the miscellaneous wastewater 2 m 3 / h was treated by the first preliminary treatment (flocculation treatment 13 by adding PAC 10 mg / L and polymer polymer 2 mg / L and gravity two-layer sand filtration treatment 14), and then supplied to the MF membrane 11.
  • the permeated water (recovery rate 95%) of the MF membrane 11 was supplied to the RO membrane 12, and the permeated water (recovery rate 75%) 17 m 3 / h was supplied to the cooling tower as makeup water.
  • the RO concentrated water 6 m 3 / h was sprayed by the temperature reducing device 18.
  • the concentrated water of the MF membrane 11 was supplied to the aggregation treatment 13.
  • the domestic wastewater 2 m 3 / h was supplied to the aggregation treatment 13 after the biological treatment 15.
  • Car wash drainage 1m 3 / h and floor washing drainage 1m 3 / h are subjected to a second pretreatment (flocculation treatment 16 with PAC 10 mg / L and high polymer 2 mg / L and gravity two-layer sand filtration treatment 17). Spraying was performed with a temperature reducing device 18.
  • the boiler blow water contains a dispersant
  • the cooling water blow water contains a dispersant and a slime control agent.
  • the treatment could be performed stably without adding a slime control agent or a dispersant.
  • the recovery rate of RO membrane 12 was able to be made high by processing floor washing waste_water
  • the recovered water 17m 3 / h of the RO membrane 12 could be reused as the replenishing water for the cooling water, and the amount of the replenishing water could be reduced accordingly.
  • Example 1 Each waste water of the incineration plant of Example 1 was processed according to the flow of FIG. That is, the above effluent other than domestic effluent (each flow rate is the same as in Example 1) was directly subjected to agglomeration treatment 21 by adding PAC 200 mg / L and polymer polymer 2 mg / L. About domestic wastewater 2m ⁇ 3 > / h, after performing the biological treatment 25, it supplied to the aggregation process 21. FIG.
  • the treated water of the agglomeration treatment 21 is subjected to gravity two-layer sand filtration treatment filtration 22, supplied to the MF membrane 23, permeated water (recovery rate 95%) is supplied to the RO membrane 24, and RO permeated water 15 m 3 / h (recovered) 60%) was used as cooling tower make-up water.
  • the amount of PAC added was 200 mg / L because of the dispersant contained in the boiler blow water and cooling water blow water.
  • a slime control agent and a dispersing agent were necessary to stabilize the membrane treatment.
  • As a membrane treatment slime control agent Krivater EC-503 5 mg / L was used.
  • As the membrane treatment dispersant Krivator N-500 5 mg / L was used.
  • Comparative Example 1 since oil was mixed from floor washing wastewater and car wash wastewater, the RO recovery rate was reduced to 60%. In Comparative Example 1, the amount of water for the agglomeration treatment increased, and a huge pretreatment facility was required.

Abstract

 焼却プラントにおける燃焼排ガスの熱を効率よく回収できると共に、安定して効率よく排水を濃縮処理することができる焼却プラントの排水処理方法を提供する。焼却装置1と、燃焼排ガスの熱回収装置2と、該熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置3とを備えた焼却プラントから排出される排水の排水処理方法であって、焼却プラントから排出される排水を分離膜によって透過水と濃縮水とに分離する膜分離工程6を行い、該濃縮水の少なくとも一部を減温装置3に吹き込むことにより燃焼排ガスを減温させる。焼却プラント排水のうち、ボイラ保缶水、ボイラブロー水、冷却塔ブロー水、及び雑排水の少なくとも2種を混合した混合排水を膜分離処理工程6に供給する。

Description

焼却プラントの排水処理方法
 本発明は、焼却プラントから排出される排水の処理方法に関する。
 有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の処理方法としては、該排水を凝集剤などによって凝集処理した後に濾過処理する排水処理方法などが知られている。
 また、焼却プラントから排出される排水を凝集剤などによって凝集処理した後に生物処理を行い、さらに砂濾過によって濾過処理する排水処理方法も知られている(特許文献1)。特許文献1には、この排水処理方法によって浄化された浄化水の大部分を放流できることが記載されている。
 近年、焼却プラントから排出される排水の処理により生じた浄化水を極力放流しないことが求められている。
 焼却プラントから排出される排水の処理により生じた浄化水を極力放流しないようにするために、浄化水の一部を減温塔などの減温装置に噴射等して気化させ浄化水の容量を減らすことが行われている。この方法では、詳しくは、廃熱ボイラなどの熱回収装置で燃焼排ガスから熱回収された後の燃焼排ガスに対して、減温装置において浄化水を噴射等することにより、浄化水を気化させてその容量を減らし、一方でその気化熱によって燃焼排ガスを減温する。
 このように、排水処理によって浄化された浄化水を極力放流しないように、極力多くの浄化水を減温装置に供給する場合、減温装置の上流側にある廃熱ボイラなどの熱回収装置において、燃焼排ガスから回収する熱量を少なく設定せざるを得ない。即ち、減温装置において多量の浄化水を蒸発させるために、熱回収装置における燃焼排ガスからの熱回収量を少なくすることが必要となり、焼却プラントにおける燃焼排ガスからの熱回収効率が低くなる。
 この減温装置に噴射される水量を減らすために、特許文献2には、焼却プラント排水をMF膜で処理し、その透過水をRO膜処理し、MF膜の濃縮水とRO膜の濃縮水とを減温装置に供給することが記載されている。
 この方法であれば排水をMF膜及びRO膜で濃縮することにより、減温装置に噴霧する水量を減らすことが出来、熱回収量の減少を抑えることができる。
 しかしながら、焼却プラントから排出される排水は多種多様であり、水質によっては膜を閉塞させ、十分な減量が出来ない、あるいは運転が安定しない、あるいは頻繁なメンテナンス、洗浄処理が必要になるといった問題があった。また、膜濾過装置の逆洗水は排水中のSSが濃縮された状態の水であるため、噴霧時のノズルが閉塞し、メンテナンスが必要である、といった欠点があった。
特開平10-99898号公報 特許5636163号公報
 本発明は、焼却プラントにおける燃焼排ガスの熱を効率よく回収できると共に、安定して効率よく排水を濃縮処理することができる焼却プラントの排水処理方法を提供することを目的とする。
 本発明の焼却プラントの排水処理方法は、有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とを備えた焼却プラントから排出される排水の排水処理方法であって、焼却プラントから排出される排水を分離膜によって透過水と濃縮水とに分離する膜分離工程を行い、該濃縮水の少なくとも一部を前記減温装置に供給し前記燃焼排ガス中に吹き込んで蒸発させることにより燃焼排ガスを減温させる焼却プラントの排水処理方法において、焼却プラント排水のうち、ボイラ保缶水、ボイラブロー水、冷却塔ブロー水、及び雑排水の少なくとも2種を混合した混合排水を前記膜分離処理工程に供給することを特徴とするものである。
 本発明の一態様では、雑排水は、中和、凝集、沈殿、濾過、及び生物処理の内の少なくとも1つを有する第1の予備処理工程で処理されてから混合されて前記混合排水とされる。
 本発明の一態様では、混合排水を濾過器、MF膜、又はUF膜を用いた前処理装置で処理した後、前記膜分離工程において、RO膜によって膜分離処理する。
 本発明の一態様では、混合排水を濾過器、MF膜、又はUF膜を用いた前処理装置で処理した後、前記膜分離工程において、RO膜によって膜分離処理し、該前処理装置の濃縮水又は逆洗排水を前記第1の予備処理工程に送る。
 本発明の一態様では、焼却プラントの床洗浄排水及び洗車排水の少なくとも一方を、RO処理することなく、前記減温装置へ供給する。
 本発明の一態様では、焼却プラントの床洗浄排水及び洗車排水の少なくとも一方を中和、凝集、沈殿、濾過、生物処理の内の少なくとも1つを有する第2の予備処理工程で処理した後、前記減温装置へ供給する。
 本発明の排水処理方法においても、特許文献2と同様に、膜分離工程において、焼却プラントから排出された前記排水を分離膜によって濃縮して容積が減じられた濃縮水とし、この濃縮水を減温装置に供給するので、減温装置への供給濃縮水量が少なく、減温装置に導入する燃焼排ガスの温度を低くすることができる。この結果、減温装置の上流側に設置された熱回収装置において燃焼排ガスから回収する熱量を大きくすることができる。
 本発明に係る排水処理方法においては、混合排水を好ましくはRO膜により膜分離処理する。
 ボイラ保缶水、ボイラブロー水、冷却水ブロー水中には、処理の安定化、効率化のために、分散剤やスライムコントロール剤などの水処理薬品が含まれている。これらの薬品として、膜処理に悪影響を及ぼさず、膜処理の安定化に寄与するものを選択して使用することにより、RO膜処理に際して、水処理薬品を新たに全く又は殆ど添加することなく、安定して膜分離処理することが可能となる。
 ボイラブロー水、冷却水ブロー水に含まれる分散剤は凝集処理の阻害要因となる。スライムコントロール剤は生物処理に悪影響があり、生物活性が低下するケースがある。本発明の一態様では、これらの水を砂濾過、MF膜又はUF膜よりなる簡単な前処理を施した後、膜分離処理するので、排水処理設備の大きさを小さくすることができる。
 本発明に係る排水処理方法の一態様では、雑排水を中和、凝集、沈殿、濾過、生物処理の内の少なくとも一つを有する予備処理工程で処理し、排水中のSS分、有機成分を除去した上で、膜処理で濃縮操作を行う。このように、雑排水を予備処理することにより、排水に含まれるSS分、有機成分を減少させることができ、分離膜の目詰まりが起こりにくく、分離膜の継続使用期間を長くすることができる。これにより、前記分離膜の交換頻度が低くなり、前記濃縮水を効率的に得ることができ、焼却プラントにおける燃焼排ガスの熱をより効率よく回収できる。
 前処理装置の濃縮水又は逆洗水についても、第1の予備処理工程で処理し、SS分、有機成分を除去することが好ましい。ただし、第2の予備処理工程で処理してもかまわない。
 洗車排水、床洗浄排水については、膜処理せずに減温装置にて噴霧することが好ましい。洗車排水や床洗浄排水には油分、界面活性剤など、MF膜やRO膜を閉塞させる物質が含まれることがあり、またその濃度が一定でなく、安定的な処理が困難になることがある。従って、洗車排水、床洗浄排水については、中和、凝集、沈殿、濾過、生物処理の内の少なくとも一つを有する第2の予備処理工程で処理し、固液分離、有機成分の除去を行ったうえで、減温装置にて噴霧することが好ましい。
 本発明では、混合排水は、ボイラ保缶水以外の排水を混合したものであってもよい。
焼却プラントのブロック図である。 実施の形態のフロー図である。 実施例のフロー図である。 比較例のフロー図である。
 以下、図面を参照して本発明に係る排水処理方法の一実施形態について説明する。
 本実施形態の排水処理方法が適用される焼却プラントは、図1の通り、有機物を燃焼させる焼却装置1と、該焼却装置1から排出される燃焼排ガスの熱を回収する熱回収装置2と、該熱回装置で熱回収された燃焼排ガス(以下、熱回収燃焼排ガスともいう)をさらに減温させる減温装置3とを有する。さらに他の装置等を備えてもよい。
 焼却装置1としては、ストーカ炉、流動床炉、ガス化溶融炉、灰溶融炉等、焼却プラント等を用いることができる。
 燃焼する有機物としては、特に限定されるものではないが、例えば、都市ごみ、産業廃棄物、下水汚泥、廃木材などが挙げられる。焼却装置1から排出される燃焼排ガスは、通常、800~1300℃程度の温度になっている。
 熱回収装置2は、焼却装置1から排出される燃焼排ガスの熱を回収する。熱回収装置2としては廃熱ボイラなどが挙げられる。
 減温装置3は、熱回収装置2で熱回収された燃焼排ガス(熱回収燃焼排ガス)をさらに減温させる。減温装置3は、熱回収装置2から導入される熱回収燃焼排ガスに水を噴射又は噴霧し、熱回収燃焼排ガスの温度を水の気化熱により低下させるよう構成されている。減温装置3に導入される熱回収燃焼排ガスは、通常、250~400℃程度の温度になっている。減温装置3で噴射又は噴霧される水は、焼却プラント排水のうち、ボイラ保缶水、ボイラブロー水、冷却塔ブロー水、及び雑排水の少なくとも2種を混合した混合排水を分離膜で濃縮した濃縮水である。
 本発明では、減温装置3への吹き込み水量が特許文献2の場合よりも少ないので、減温装置3への導入排ガス温度を特許文献2よりも低くすることができる。これにより、熱回収装置2での熱回収量を多くすることができる。
 減温装置3によって減温された後の排ガスの温度は、通常、150~200℃程度になっている。このガスは、前記濃縮水が気化した水蒸気を含んでいる。この排ガスは、集塵器4等で浄化された後、大気中に放出される。
 焼却プラントから排出される排水とは、焼却プラントの敷地内で生じる排水を意味している。焼却プラントの敷地内で生じる排水としては、例えば、廃熱ボイラなどの熱回収装置2からブローされるボイラブロー水、停止時に熱回収装置の缶内に満たされ、再起動前に排出されるボイラ保缶水、冷却塔ブロー水、焼却プラントにある床などを洗浄したときに発生する床洗浄排水、廃棄物収集車を洗浄したときに発生する洗車排水のほか、生活排水や雑排水が挙げられる。雑排水としては、焼却炉などの焼却装置1から発生する焼却残渣やスラグを冷却する残渣冷却排水や焼却プラント内で発生する界面活性剤や油分を含まない上記以外の排水が挙げられる。
 図2のように、ボイラ保缶水、ボイラブロー水及び冷却塔ブロー水(ただし、ボイラ保缶水は除外されてもよい。)を混合した混合排水を、好ましくは前処理5した後、膜分離工程6で膜分離処理する。この濃縮水の少なくとも一部を減温装置3に供給して濃縮水を蒸発させて燃焼排ガスを減温させる。
 雑排水については、好ましくは、第1の予備処理7を施した後、ボイラ保缶水、ボイラブロー水及び冷却塔ブロー水と混合し、前処理5に供給する。このように雑排水を予備処理することにより、膜分離工程6の膜の閉塞が抑制される。
 前処理5としては、砂濾過器又はMF膜、UF膜などを用いることができる。
 混合排水をこのように前処理することにより、膜分離工程6の膜の閉塞が抑制される。膜分離工程6の膜としてはRO膜が好適である。
 雑排水を処理する第1の予備処理7としては、中和、凝集、沈殿、濾過、生物処理の少なくとも1つが好ましい。
 洗車排水、床洗浄排水は、SS分、有機成分を除去する第2の予備処理8を行った後、膜分離工程6からの膜濃縮水と混合され、減温装置3に供給されることが好ましい。第2の予備処理としては、中和、凝集、沈殿、濾過、生物処理の少なくとも1つが好ましい。
 前処理5において、MF膜又はUF膜を用いた場合、MF又はUF膜濃縮水については第1の予備処理7で処理し、SS分、有機成分を除去することが好ましい。ただし、第2の予備処理8で処理してもかまわない。前処理5のMF又はUF膜濃縮水を減温装置3で噴霧しないことにより、噴霧ノズルの閉塞を防止し、安定的な減温処理が可能となる。
 前述の通り、ボイラ保缶水、ボイラブロー水、及び冷却塔ブロー水中には、処理の安定化、効率化のために、防食剤、分散剤やスライムコントロール剤、復水アミン剤、脱酸素剤などの水処理薬品が含まれている。これらの薬品として、膜処理に悪影響を及ぼさず、膜処理の安定化に寄与するものを選択し、かつ、ボイラ保缶水、ボイラブロー水、及び冷却塔ブロー水を前処理5のみを行ってRO膜処理を行うことで、水処理薬品をRO膜処理のために新たに添加することなく、効率的な膜分離処理が可能となる。薬品濃度が不足する場合には、必要な薬品を添加してもよい。
 ボイラブロー水、冷却水ブロー水に含まれる分散剤は凝集処理の阻害要因となる。そのため、ボイラブロー水、冷却水ブロー水を第1の予備処理7に流入させると、凝集剤の必要量が著しく増大する。スライムコントロール剤は生物処理に悪影響があり、生物活性が低下するケースがあり、排水処理する場合には別途無害化する必要がある。そこで、これらの水を予備処理せずに前処理5に供給することで、予備処理設備を小さくすることができる。
 洗車排水、床洗浄排水については、第2の予備処理8後、減温装置3にて噴霧する。洗車排水や床洗浄排水には油分、界面活性剤など、MF膜やRO膜を閉塞させる物質が含まれることがあり、またその濃度が一定でなく、安定して膜分離処理することが困難である。そこで、洗車排水、床洗浄排水については、中和、凝集、沈殿、濾過、生物処理の内の少なくとも1つを有する第2の予備処理8で処理し、固液分離、有機成分の除去を行ったうえで、減温装置3にて噴霧する。
 第1及び第2の予備処理7,8では、被処理水に含まれるSS分、有機成分を減少させる目的で、前記排水に凝集剤を添加し、主に前記浮遊物を凝集させた後、砂濾過等の濾過処理を行うか、濾過の代りに沈殿工程を行なってもよい。負荷が高い場合は加圧浮上工程を追加することもできる。凝集処理を適切に行うために、pH調整工程を追加することもできる。一連の予備処理工程を実施することにより、凝集物を前記排水から除去し、前記洗車排水及び床洗浄排水に含まれ得るSS分、有機成分を減少させることができる。
 第1及び第2の予備処理7,8では、砂濾過装置の代わりにMF膜(浸漬膜)を用いて膜分離活性汚泥法を用いることもできる。MF膜(浸漬膜)にて捕捉された凝集物は、抜き出された後にごみピットに投入され、焼却装置1にて焼却処理される。
 凝集剤としては、例えば、硫酸第一鉄,硫酸第二鉄,塩化第二鉄などの鉄系凝集剤、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)などのアルミ系凝集剤、これらの混合物等が例示される。前記凝集剤の添加量は、適宜調整され得る。
 被処理水に凝集剤として添加する高分子凝集剤としては、例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系の有機系高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系の有機系高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系の有機系高分子凝集剤、及び上記アニオン性モノマー、カチオン性モノマーやこれらモノマーと共重合可能なノニオン性モノマーとの共重合体である両性の有機系高分子凝集剤が挙げられる。高分子凝集剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01~10mg/Lである。WO2011/018978に記載のフェノール型凝集剤なども使用することができる。
 膜分離工程6でRO膜を用いた場合、RO膜で除去される不純物としては、イオン成分、有機物などが挙げられる。イオン成分としては、例えば、陽イオン性物質、陰イオン性物質などが挙げられ、具体的には、陰イオンとイオン結合して水に溶解しにくいスケールを発生させやすいカルシウムイオン、マグネシウムイオンなどが例示される。有機物としては、排水に溶解している水溶性有機物などが挙げられる。
 前処理5において、MF膜を用いた場合、MF膜表面にスケール、濁質、有機物などが付着することによりMF膜差圧が上昇する。この場合、MF膜の逆圧洗浄や薬品洗浄を行う。MF膜の逆圧洗浄においては、MF膜差圧の上昇をより抑制できる点で、定期的/不定期に次亜塩素酸ナトリウムなどの次亜塩素酸塩を含んだ水で洗浄することが好ましい。
 MF膜は、通常、50nm~10μm程度の孔径の孔を有している。MF膜としては、例えば、中空糸膜、スパイラル膜、チューブラー膜がベッセル内に保持された膜ユニットを用いることができる。中空糸膜あるいは平膜をそのまま被処理水中に浸漬して用いることもできる。MF膜の代わりに、2nm~200nm程度の孔径を有する限外濾過膜(UF膜)を用いることもできる。
 MF膜としてはPVDF、UF膜としてはポリサルホン、RO膜ではポリアミドを材質とするものが好適に使用されるがこれに限定されない。
 RO膜としては、例えば、非対称膜の緻密層と微細多孔層とで構成される複合膜が挙げられる。
 RO膜としては、中空糸膜、スパイラル膜、管状膜等の状態で設置された濾過膜が、ベッセル内に保持されたユニットを用いることができる。
 冷却水処理等に用いられる分散剤としては、ヘキサメタリン酸ソーダやトリポリリン酸ソーダ等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類、マレイン酸、アクリル酸、イタコン酸等のカルボキシル基含有素材、必要に応じてそれとビニルスルホン酸、アリルスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有するビニルモノマーや、アクリルアミド等のノニオン性ビニルモノマーを組み合わせたコポリマーなどを使用することができるが、ここに挙げた以外の素材も適用することができる。分散剤の第三の成分として、そのほかの成分を使用して、三元重合物を使用することもできる。たとえば第三の成分として、N-tert-ブチルアクリルアミドなどを使用する。分散剤としては、その中でも、HAPS、AMPSとアクリル酸および/あるいはメタクリル酸を含む重合物であることが最も好ましい。HAPSは3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸、AMPSは2-アクリルアミド-2-メチルプロパンスルホン酸である。
 分散剤の分子量としては1,000以上30,000以下であることが好ましい。分子量が1,000以下であると十分な分散効果が得られず、30,000以上であると前処理膜で除去される恐れが出てくる。
 スライムコントロール剤としては、次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩、塩素ガス、クロラミン、塩素化イソシアヌル酸塩などの塩素剤、モノクロルスルファミン酸などの塩素とアミド硫酸、アミド硫酸基を有する化合物の反応した結合塩素剤、ジブロモヒダントインなどの臭素剤、次亜臭素酸ナトリウムなどの次亜臭素酸塩、DBNPA(ジブロモニトリロプロピオンアシド)、MIT(メチルイソチアゾロン)などの有機剤が適用できる。本発明で使用できる塩素系酸化剤としては、上記塩素ガス、次亜塩素酸またはその塩のほか、亜塩素酸またはその塩、塩素酸またその塩、過塩素酸またはその塩、塩素化イソシアヌール酸またはその塩などを用いることができる。塩としては、ナトリウム、カリウム等のアルカリ金属塩、バリウム等のアルカリ土類金属塩、ニッケル等の他の金属塩、アンモニウム塩などが挙げられる。これらは1種以上を用いることができる。これらの中では次亜塩素酸ナトリウムが取扱性に優れるため好ましい。
 上記の遊離塩素が結合する窒素化合物としては、アンモニアまたはその化合物、メラミン、尿素、アセトアミド、スルファミド、サイクロラミン酸、スルファミン酸、トルエンスルホンアミド、コハク酸イミド、フタル酸イミド、イソシアヌル酸、N-クロロトルエンスルホンアミド、尿酸、サッカリンまたはこれらの塩などを挙げることができる。本発明で使用する結合塩素剤は、これらの窒素化合物に上記の遊離塩素が結合したものである。本発明で使用する結合塩素剤としては、上記の窒素化合物と遊離塩素剤とを混合して反応させたもの、特にそれぞれを水溶液の状態で混合して反応させたものが好ましい。
 このような結合塩素剤としては、クロラミンや塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤のほか、クロラミン-T(N-クロロ-4-メチルベンゼンスルホンアミドのナトリウム塩)、クロラミン-B(N-クロロ-ベンゼンスルホンアミドのナトリウム塩)、N-クロロ-パラニトロベンゼンスルホンアミドのナトリウム塩、トリクロロメラミン、モノ-もしくはジ-クロロメラミンのナトリウム塩またはカリウム塩、トリクロロ-イソシアヌレート、モノ-もしくはジ-クロロイソシアヌール酸のナトリウム塩またはカリウム塩、モノ-もしくはジ-クロロスルファミン酸のナトリウム塩またはカリウム塩、モノクロロヒダントインもしくは1,3-ジクロロヒダントイン、5,5-ジメチルヒダントインのような5,5-アルキル誘導体等が挙げられる。
 ボイラ水処理においては、清缶剤、脱酸素剤、アミン類が単独、もしくは複合して用いられている。清缶剤としては、リン酸及び/又はその塩、重合リン酸及び/又はその塩、ホスホン酸及び/又はその塩、EDTA等のキレート剤、ポリ(メタ)アクリル酸及び/又はその塩、AMPSとアクリル酸及び/又はメタクリル酸を含む重合体などが適用できる。脱酸素剤としては、1-アミノ-4-メチルピペラジン、ヒドラジン、カルボヒドラジド、エリソルビン酸及び/又はその塩、グルコン酸及び/又はその塩、N,N-ジエチルヒドロキシルアミン、亜硫酸及び/又はその塩、重亜硫酸及び/又はその塩、タンニン酸及び/又はその塩、没食子酸及び/又はその塩、イソプロピルヒドロキシルアミン等が適用できる。アミン類としては、モノイソプロパノールアミン、3-メトキシ-プロピルアミン、シクロヘキシルアミン、2-アミノエタノール、2-アミノ-2-メチル-1-プロパノール、モルフォリン、2-ジエチルアミノエタノール等の中和性アミンやオクタデシルアミン等の皮膜性アミンを適用することができる。
 前処理5のMF膜透過水の一部を洗車用水などとして用いることができる。膜分離工程6のRO膜透過水を廃熱ボイラのボイラ原水、機器冷却水、プラント用水などとして用いることができる。前記MF膜透過水、前記RO膜透過水などの透過水を海、河川、又は下水等へ放流してもよい。
 焼却プラントにおいては、燃焼排ガスに含まれ得るNOxガスを除去すべく、燃焼排ガスとアンモニアとを混合した混合ガスを脱硝触媒と接触させ、接触還元反応により、NOxガスを分解することなどがおこなわれている。この燃焼排ガス中にはアンモニアが残存することから、焼却プラントから排出される排水には、アンモニア(アンモニウムイオン)が含まれることがある。そのため、前処理工程の上流側に生物処理装置を設け、アンモニウムイオン等を減少させるようにしてもよい。
 前記生物処理工程は、例えば、好気性微生物を利用して硝化工程を実施する硝化槽と、通性嫌気性微生物を利用して脱窒工程を実施する脱窒槽とを備えた生物処理装置等を用いることができる。
 詳細な記述は省略するが、焼却プラントでごみを焼却すると、HCl、SO等の有害ガス、ダイオキシン、重金属を含む飛灰等が発生するため、これらを処理する工程が必要となる。例えば、集塵器の手前で酸性ガス処理を行う場合には消石灰や重曹、水酸化ヒドロマイトを添加したり、減温装置やスクラバーにおいて酸性ガス処理を行う場合にはNaOH等のアルカリを用いた中和処理等の公知の処理手段が適用される。ダイオキシン処理や飛灰処理においても公知の方法が適用される。
[実施例1]
 可燃ごみを焼却する焼却プラントから排出されるボイラブロー水、冷却塔ブロー水、雑排水、生活排水、洗車排水及び床洗浄排水を図3のフローに従って処理した。
 ボイラブロー水10m/hと冷却塔ブロー水10m/hはそのまま前処理(MF膜11)に供給した。
 雑排水2m/hについては第1の予備処理(PAC10mg/L及び高分子ポリマー2mg/L添加による凝集処理13と重力2層砂濾過処理14)によって処理した後、MF膜11に供給した。MF膜11の透過水(回収率95%)はRO膜12に供給し、その透過水(回収率75%)17m/hは冷却塔に補給水として供給した。
 RO濃縮水6m/hについては、減温装置18にて噴霧した。MF膜11の濃縮水については、凝集処理13に供給した。
 生活排水2m/hは、生物処理15の後、凝集処理13に供給した。
 洗車排水1m/h及び床洗浄排水1m/hについては、第2の予備処理(PAC10mg/L及び高分子ポリマー2mg/Lによる凝集処理16と、重力2層砂濾過処理17)を行い、減温装置18にて噴霧した。
 ボイラブロー水には分散剤、冷却水ブロー水には分散剤とスライムコントロール剤が含まれており、これらを含む混合排水をMF膜11処理後、RO膜12処理を行うことにより、RO膜処理でスライムコントロール剤、分散剤を添加しなくても安定的に処理を行うことができた。また、床洗浄排水、洗車排水をこれらとは別系統で処理することにより、RO膜12の回収率を高くすることができた。減温装置3に送る水量は図1のとおり、8m/hと少なく、熱回収装置2(図2)の熱回収量が増加した。RO膜12の回収水17m/hは冷却水の補給水として再利用でき、その分補給水量を削減することができた。
[比較例1]
 実施例1の焼却プラントの各排水を図4のフローに従って処理した。即ち、生活排水以外の上記各排水(それぞれの流量は実施例1と同じ)をそのままPAC200mg/L、高分子ポリマー2mg/L添加による凝集処理21を行った。生活排水2m/hについては、生物処理25を行った後、凝集処理21に供給した。凝集処理21の処理水を重力2層砂濾過処理濾過22を行い、MF膜23に供給し、透過水(回収率95%)をRO膜24に供給し、RO透過水15m/h(回収率60%)を冷却塔補給水として用いた。MF膜23の濃縮水1m/h及びRO膜24の濃縮水9m/hを減温装置18にて噴霧した。
 比較例1では、減温装置3に供給される濃縮水量が10m/hと多いため、熱回収装置2での熱回収量を減少させて、減温装置3への導入排ガス温度を高くする必要があった。
 ボイラブロー水、冷却水ブロー水に含まれる分散剤のため、PAC添加量は200mg/L必要であった。膜処理の安定化のためにスライムコントロール剤、分散剤が必要であった。膜処理スライムコントロール剤としては、クリバーターEC-503 5mg/Lを用いた。膜処理分散剤としては、クリバーター N-500 5mg/Lを用いた。
 比較例1では、床洗浄排水、洗車排水から油分が混入したため、ROの回収率は60%に低下した。比較例1では、凝集処理の水量が多くなり、巨大な前処理設備が必要であった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2015年3月31日付で出願された日本特許出願2015-072958に基づいており、その全体が引用により援用される。
 3 減温装置
 5 前処理工程
 6 膜分離工程
 7 第1の予備処理
 8 第2の予備処理

Claims (6)

  1.  有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスをさらに減温させる減温装置とを備えた焼却プラントから排出される排水の排水処理方法であって、
     焼却プラントから排出される排水を分離膜によって透過水と濃縮水とに分離する膜分離工程を行い、該濃縮水の少なくとも一部を前記減温装置に供給し前記燃焼排ガス中に吹き込んで蒸発させることにより燃焼排ガスを減温させる焼却プラントの排水処理方法において、
     焼却プラント排水のうち、ボイラ保缶水、ボイラブロー水、冷却塔ブロー水、及び雑排水の少なくとも2種を混合した混合排水を前記膜分離処理工程に供給することを特徴とする焼却プラントの排水処理方法。
  2.  請求項1において、前記雑排水は、中和、凝集、沈殿、濾過、及び生物処理の内の少なくとも1つを有する第1の予備処理工程で処理されてから混合されて前記混合排水とされることを特徴とする焼却プラントの排水処理方法。
  3.  請求項1又は2において、前記混合排水を濾過器、MF膜、又はUF膜を用いた前処理装置で処理した後、前記膜分離工程において、RO膜によって膜分離処理することを特徴とする焼却プラントの排水処理方法。
  4.  請求項2において、前記混合排水を濾過器、MF膜、又はUF膜を用いた前処理装置で処理した後、前記膜分離工程において、RO膜によって膜分離処理し、該前処理装置の濃縮水又は逆洗排水を前記第1の予備処理工程に送ることを特徴とする焼却プラントの排水処理方法。
  5.  請求項1ないし4のいずれか1項において、焼却プラントの床洗浄排水及び洗車排水の少なくとも一方を、RO処理することなく、前記減温装置へ供給することを特徴とする焼却プラントの排水処理方法。
  6.  請求項1ないし4のいずれか1項において、焼却プラントの床洗浄排水及び洗車排水の少なくとも一方を中和、凝集、沈殿、濾過、生物処理の内の少なくとも1つを有する第2の予備処理工程で処理した後、前記減温装置へ供給することを特徴とする焼却プラントの排水処理方法。
PCT/JP2016/052263 2015-03-31 2016-01-27 焼却プラントの排水処理方法 WO2016157969A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680009973.9A CN107531515A (zh) 2015-03-31 2016-01-27 焚烧厂的废水处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072958A JP6123833B2 (ja) 2015-03-31 2015-03-31 焼却プラントの排水処理方法
JP2015-072958 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157969A1 true WO2016157969A1 (ja) 2016-10-06

Family

ID=57005619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052263 WO2016157969A1 (ja) 2015-03-31 2016-01-27 焼却プラントの排水処理方法

Country Status (4)

Country Link
JP (1) JP6123833B2 (ja)
CN (1) CN107531515A (ja)
TW (1) TWI679172B (ja)
WO (1) WO2016157969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116789265A (zh) * 2023-08-28 2023-09-22 福建英辉新材料科技有限公司 一种节能型厌氧塔

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108744565B (zh) * 2018-07-31 2023-07-14 中国大唐集团科学技术研究院有限公司西北分公司 一种蒸发结晶换热装置与燃煤厂脱硫废水零排放系统
CN109665658A (zh) * 2019-01-31 2019-04-23 宁夏保利节能科技有限公司 一种净水浓缩水洗车装置及其应用方法
CN111603908A (zh) * 2020-05-11 2020-09-01 扬州澳洋顺昌金属材料有限公司 基于碱液中和酸雾处理装置及处理方法
JP7074156B2 (ja) 2020-06-01 2022-05-24 栗田工業株式会社 水処理方法及び水処理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099898A (ja) * 1996-09-26 1998-04-21 Hitachi Zosen Corp ごみ焼却処理施設における排水処理方法
JP2006281171A (ja) * 2005-04-05 2006-10-19 Sumitomo Heavy Ind Ltd 有機性廃水と焼却炉廃ガスの処理方法および装置
JP2011016100A (ja) * 2009-07-10 2011-01-27 Kobelco Eco-Solutions Co Ltd 排水処理方法
JP2014024049A (ja) * 2012-07-30 2014-02-06 Jfe Engineering Corp 焼却プラント排水の処理方法および処理設備
JP2015128754A (ja) * 2014-01-08 2015-07-16 三菱重工業株式会社 水処理システム及び方法
JP2016030243A (ja) * 2014-07-30 2016-03-07 Jfeエンジニアリング株式会社 排水処理方法及び排水処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153189B2 (ja) * 1998-09-17 2001-04-03 川崎重工業株式会社 ごみ固形化燃料製造方法
JP2002292363A (ja) * 2001-01-26 2002-10-08 Nkk Corp 廃棄物処理設備の排水中のダイオキシン類処理方法及びその処理装置
JP2003130587A (ja) * 2001-10-29 2003-05-08 Ebara Corp 冷却水の循環冷却装置及びその水質管理方法
JP4437262B2 (ja) * 2005-10-13 2010-03-24 矢崎総業株式会社 冷却塔

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099898A (ja) * 1996-09-26 1998-04-21 Hitachi Zosen Corp ごみ焼却処理施設における排水処理方法
JP2006281171A (ja) * 2005-04-05 2006-10-19 Sumitomo Heavy Ind Ltd 有機性廃水と焼却炉廃ガスの処理方法および装置
JP2011016100A (ja) * 2009-07-10 2011-01-27 Kobelco Eco-Solutions Co Ltd 排水処理方法
JP2014024049A (ja) * 2012-07-30 2014-02-06 Jfe Engineering Corp 焼却プラント排水の処理方法および処理設備
JP2015128754A (ja) * 2014-01-08 2015-07-16 三菱重工業株式会社 水処理システム及び方法
JP2016030243A (ja) * 2014-07-30 2016-03-07 Jfeエンジニアリング株式会社 排水処理方法及び排水処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116789265A (zh) * 2023-08-28 2023-09-22 福建英辉新材料科技有限公司 一种节能型厌氧塔
CN116789265B (zh) * 2023-08-28 2023-11-17 福建英辉新材料科技有限公司 一种节能型厌氧塔

Also Published As

Publication number Publication date
TWI679172B (zh) 2019-12-11
TW201636304A (zh) 2016-10-16
JP2016190223A (ja) 2016-11-10
JP6123833B2 (ja) 2017-05-10
CN107531515A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2016157969A1 (ja) 焼却プラントの排水処理方法
JP5636163B2 (ja) 排水処理方法及び排水処理設備
JP5874925B2 (ja) 焼却プラント排水の処理方法および処理設備
TWI504572B (zh) A method for treating water for activated carbon, a method for treating water containing organic matter, and a treatment device
WO2017022113A1 (ja) 水処理システム、発電プラント及び水処理システムの制御方法
JP5874924B2 (ja) 焼却プラント排水の処理方法および処理設備
JP2006239578A (ja) アンモニア性窒素及び溶解性塩類含有水の処理装置及び処理方法
CN109641765B (zh) 焚烧成套设备的排水回收方法和装置
CN107176726A (zh) 燃煤电厂脱硫废水综合除氟方法
JP7143333B2 (ja) 廃水処理システム
JP2003103260A (ja) フッ化物含有排水の処理方法
JP2011523890A (ja) 廃水、特に光電池の製造方法由来の廃水処理装置
JP4571086B2 (ja) 浄水処理設備及び処理方法
JP5055746B2 (ja) 膜利用による水循環使用システム
CN210559895U (zh) 一种电厂全厂废水零排放及资源化利用的系统
JP6052041B2 (ja) 排水処理方法及び排水処理装置
CN210595643U (zh) 一种电厂全厂废水零排放和资源化利用的系统
KR100896209B1 (ko) 난분해성 혼합폐수의 증발응축수 처리시스템 및 처리방법
JP5084130B2 (ja) 廃液処理方法及び廃液処理システム
US5908560A (en) Treatment of hazardous wastewater
JPH11165180A (ja) スクラバ排水の処理方法
JP2020148373A (ja) PFCs含有排ガスの処理装置及び方法
JP7354744B2 (ja) 排水利用システム
JPH11267447A (ja) 排煙脱硫排水の処理方法
US20160208658A1 (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771854

Country of ref document: EP

Kind code of ref document: A1