WO2016155136A1 - 一种低共熔溶剂萃取脱除油品中含氮化合物的方法 - Google Patents

一种低共熔溶剂萃取脱除油品中含氮化合物的方法 Download PDF

Info

Publication number
WO2016155136A1
WO2016155136A1 PCT/CN2015/083069 CN2015083069W WO2016155136A1 WO 2016155136 A1 WO2016155136 A1 WO 2016155136A1 CN 2015083069 W CN2015083069 W CN 2015083069W WO 2016155136 A1 WO2016155136 A1 WO 2016155136A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
extraction
eutectic solvent
nitrogen
deep eutectic
Prior art date
Application number
PCT/CN2015/083069
Other languages
English (en)
French (fr)
Inventor
杨启炜
M.C.阿里
张治国
鲍宗必
苏宝根
邢华斌
任其龙
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2016155136A1 publication Critical patent/WO2016155136A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/16Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/18Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds

Definitions

  • the present invention relates to a method for removing nitrogen-containing compounds in oil products, and belongs to the technical field of chemical engineering, and particularly relates to a method for extracting nitrogen-containing compounds from oil products by eutectic solvent extraction.
  • Products such as naphtha, gasoline, kerosene, diesel oil, lubricating oil, and wax oil obtained by petroleum refining contain a certain concentration of nitrogen-containing compounds, including basic nitrogen compounds and non-basic nitrogen.
  • the basic nitrogen compounds mainly include pyridine, quinoline, azaindole, azaphenanthrene and the like
  • the non-basic nitrogen compounds mainly include pyrrole, carbazole, anthracene and the like.
  • nitrogen-containing compounds adversely affects the color, oxidation stability, and performance of the oil, and easily leads to deactivation of the precious metal catalyst during oil processing such as catalytic cracking, hydrocracking, and hydrorefining. Further, in the nitrogen-containing compound may be formed during the combustion of nitrogen oxides NO x, is one of the main causes of air pollution and acid rain. Therefore, it is important to remove nitrogen compounds from oils.
  • the methods for removing nitrogen compounds in oil products mainly include hydrodenitrogenation, adsorption denitrification, acid extraction denitrification, organic solvent extraction denitrification, complex extraction denitrification, ionic liquid extraction denitrification and the like.
  • hydrodenitrogenation technology has the advantages of convenient operation and high oil yield.
  • the denitrification rate of this method is usually low.
  • the denitrification rate of general hydrogenation catalyst is only 10% ⁇ 25%.
  • the denitrification rate of the hydrorefining catalyst can only reach 70% ⁇ 75%, and it needs to consume a large amount of hydrogen source, and the equipment investment is large, and the running cost is high.
  • Chinese patent CN200910082846. 3 uses a fixed bed adsorption process to remove nitrogen compounds and sulfur compounds in hydrocracking tail oil.
  • the composition of the denitrification adsorbent used is: sulfuric acid acid; ⁇ 20%, iron sulfate Complexing agent 20%, alumina carrier powder 6 ( ⁇ 95%, water 5 ⁇ 20%.
  • the hydrogen content of the hydrogenated tail oil after refining is less than 2 g ' g -', which meets the requirements of the subsequent oil processing technology. Nitrogen has a high denitrification efficiency, but it has a small amount of treatment, a large amount of adsorbent, a low degree of automation, and a large amount of solid waste.
  • US Patent No. 4,790,930 uses a mass fraction of 2 ( ⁇ 95% aqueous carboxylic acid solution to extract nitrogen-containing heterocyclic compounds from reduced pressure wax oil and coking diesel oil, and the nitrogen removal rate is 26 3%.
  • US 4960508 uses concentrated carboxylic acid, dilute carboxylic acid Acid two The step method extracts the nitrogen-containing heterocyclic compound from the oil, and the yield of the raffinate oil is higher than that of the one-step extraction method, but the denitrification rate is low.
  • Russian patent RU2257398 uses a sulfuric acid-acetic acid-water mixture to extract and remove nitrogen compounds from oils. In general, the acid extraction method has a good effect on the removal of basic nitrogen compounds, but generally there are low removal rates of non-basic nitrogen compounds, low oil yield, corrosion equipment, environmental pollution, and acid slag. Difficult to deal with other issues.
  • Chinese patent CN92113955. 1 uses a low carbon alcohol and water or an extractant composed of a lower alcohol and a dilute aqueous alkali solution to extract total nitrogen, basic nitrogen, mercaptan sulfur and low in liquid petroleum products. The removal rate of molecular organic acids, total nitrogen and basic nitrogen can reach 50-80%.
  • US Patent No. 5,944,572 uses a nitrogen-containing heterocyclic solvent such as pyrrolidone, an amide solvent, or an organic solvent such as a mixture of a pyridinium salt and water or a liquid lower alcohol as an extractant to remove nitrogenous compounds and sulfur in light oil.
  • the compound was found to gradually increase the denitrification rate to more than 90% as the amount of the extractant increased, but the oil yield gradually decreased to below 61%. Due to the mutual solubility of organic solvents and oils, organic solvent extraction and denitrification technology generally has problems such as low oil yield and secondary pollution of oil after denitrification, and the removal of basic nitrogen. Not ideal enough
  • US Patent No. 4,113,607 uses a furfural solution of ferric chloride to extract and remove nitrogen-containing compounds from oil, and the complexation reaction between ferric chloride and nitrogen-containing compounds enhances the separation selectivity of nitrogen-containing compounds, and the denitrification rate can be Up to 99%.
  • the complex extraction method generally has a high removal rate of basic nitrogen, but the complex product is inevitably partially soluble in the oil, which makes the oil color darker, and the hydrocarbon component in the oil can be dissolved in the complex extraction. Among the organic solvents used, the yield of the refined oil is lowered.
  • US Patent No. 2010270211 uses a mixed solvent composed of at least one ionic liquid and at least one metal salt to extract and remove sulfides and nitrides from petroleum products.
  • ionic liquids are almost non-volatile, and their structure and properties are easily adjusted. This helps to reduce the environmental pollution of the denitrification process and achieve higher denitrification efficiency, but the preparation cost of ionic liquids is higher. , limiting the large-scale application of ionic liquid extraction and denitrification technology.
  • the present invention provides a eutectic solvent extraction method for removing nitrogen compounds in oil products, based on a liquid-liquid two-phase system, using a eutectic solvent as an extractant, after single-stage extraction or more
  • the stage extraction removes the nitrogen-containing compound from the oil, and the operation process is simple, the nitrogen removal rate is high, and the oil yield is high.
  • a method for extracting nitrogen compounds in an oil by eutectic solvent extraction comprising the following steps:
  • Extraction and denitrification have the advantages of convenient operation, simple device, and easy industrialized continuous production, and the key problem lies in the design of the extractant.
  • the extractant When the nitrogen-containing compound in the oil is removed by the selected extractant, the extractant must have a good solubility for the nitrogen-containing compound and be immiscible with the oil. Moreover, the extractant should have good biodegradability and relatively low preparation costs.
  • the eutectic solvent is a liquid substance formed by mixing two or more solid substances in a certain ratio, and is a novel solvent.
  • the eutectic solvent has almost no volatilization and strong polarity. Therefore, compared with the conventional organic solvent, the eutectic solvent can not only reduce the volatile pollution of the traditional solvent, but also significantly reduce the oil in the extractant.
  • the solubility in the solution increases the yield of the denitrified oil and reduces the secondary contamination of the oil by the extractant.
  • the eutectic solvent has a strong hydrogen bonding ability, and therefore has a good dissolving ability for both the basic nitrogen compound and the non-basic nitrogen compound, thereby obtaining a higher denitrification efficiency.
  • the eutectic solvent is usually composed of choline chloride or betaine with 2-hydroxy-1,2,3-propanetricarboxylic acid (alias “citric acid”), 2-hydroxysuccinic acid (alias “malic acid”) , 2, 3-dihydroxysuccinic acid (alias “tartaric acid”), monosaccharide, urea, and other biocompatible solid materials are simply mixed to prepare I", so compared with ionic liquids, eutectic
  • the solvent has the advantages of simple preparation process, easy availability of raw materials, low cost, good degradability, etc., thereby improving the technical economy and environment of the oil denitrification process while obtaining high denitrification efficiency and oil yield.
  • the eutectic solvent is composed of a hydrogen bond acceptor compound A and a hydrogen bond donor compound B.
  • the hydrogen bond acceptor compound A is at least one of choline chloride, betaine and an amino acid.
  • the hydrogen bond donor compound B is an aliphatic dicarboxylic acid having 6 carbon atoms, an aliphatic tricarboxylic acid having 6 carbon atoms, an aromatic monocarboxylic acid having 9 carbon atoms, and having a hydroxyl group substitution.
  • the number of carbon atoms of the group is: an aliphatic dicarboxylic acid of ⁇ 6, an aliphatic tricarboxylic acid having 6 hydroxy substituents, and an aromatic monocarboxylic acid having 9 hydroxy substituents And at least one of a monosaccharide having 5 carbon atoms, a sugar alcohol having 5 carbon atoms, urea, 1-methyl urea, and levulinic acid.
  • the hydrogen bond acceptor compound A, the hydrogen bond donor compound B have a melting point higher than 25 ° C ; and the eutectic solvent has a freezing point lower than 60 ° C.
  • the hydrogen bond donor compound B is oxalic acid, phenylpropionic acid, xylose, 2,3-dihydroxysuccinic acid, urea, ⁇ -hydroxyphenylacetic acid, benzoic acid, 2- A mixture of hydroxy-1,2,3-propanthenetricarboxylic acid, D-sorbitol, levulinic acid, 2-hydroxysuccinic acid, xylose and 2-hydroxysuccinic acid.
  • the eutectic solvent is one of the following combinations:
  • choline chloride / oxalic acid choline chloride / phenylpropionic acid, choline chloride / xylose, choline chloride / 2, 3-dihydroxysuccinic acid choline / urea, Betaine/ ⁇ -hydroxyphenylacetic acid, betaine/benzoic acid, betaine/2_hydroxy-1, 2, 3-propantricarboxylic acid, choline chloride/D-sorbitol, choline chloride/ Levulinic acid, L-serine/2-hydroxysuccinic acid, choline chloride/xylitol/2-hydroxysuccinic acid, choline chloride/betaine/D-sorbitol.
  • the removal rate of the nitrogen-containing compound in the oil is 80% or more, and the yield of the denitrification oil is 98% or more.
  • the eutectic solvent is one of the following combinations:
  • the eutectic solvent is one of the following combinations:
  • the hydrogen bond acceptor compound A is choline chloride
  • the hydrogen bond donor compound B is oxalic acid
  • the molar ratio of choline chloride to oxalic acid is 1:1;
  • the hydrogen bond acceptor compound A is choline chloride
  • the hydrogen bond donor compound B is urea
  • the molar ratio of choline chloride to urea is 1: 2;
  • the hydrogen bond acceptor compound A is choline chloride, and the hydrogen bond donor compound B is levulinic acid, and the molar ratio of choline chloride to levulinic acid is 1:2.
  • the denitrification rate is over 95%, and the yield of the denitrification oil is over 99%.
  • the eutectic solvent is a mixture of choline chloride and levulinic acid in a molar ratio of 1:2. 4% ⁇
  • the denitrification rate of the denitrification oil is as high as 99. 4%.
  • the weakly polar solvent is an anthracene hydrocarbon having 6 carbon atoms, petroleum ether having a boiling range of 60 to 90 ° C, ethyl acetate or toluene.
  • the oil is naphtha, gasoline, kerosene, diesel oil, lubricating base oil or wax oil obtained by petroleum refining.
  • the ratio of the mass flow rate of the eutectic solvent to the oil is 2: wide 1:5.
  • the rate of nitrogen removal will decrease.
  • the removal rate of the nitrogen-containing compound in the oil in the above ratio range is 80% or more, and the yield of the denitrification oil is 98% or more.
  • the operating temperature of the extraction is between the freezing point of the eutectic solvent to 60 ° C; when the freezing point of the eutectic solvent is equal to or lower than 25 At °C, the extraction operating temperature is between 25 ° C and 60 ° C.
  • the eutectic solvent may solidify and the extraction operation cannot be performed, and the mass transfer rate of the two phases is lowered, and the time required for the extraction equilibrium is long, which is disadvantageous for the production operation; if the temperature is too high
  • the extraction partition coefficient and selectivity of nitrogen-containing compounds are reduced, resulting in a decrease in denitrification rate and oil yield.
  • the test proves that in the present invention, the removal rate of the nitrogen-containing compound in the oil in the above temperature range is 80% or more, and the yield of the denitrification oil is 98% or more.
  • the extraction device used in the extraction process is a common extraction device such as a packed column, a plate column, a rotary column, a mixed clarification tank, a centrifugal extractor, and the like.
  • the multi-stage extraction operation mode is one of multi-stage cross-flow extraction and multi-stage countercurrent extraction.
  • the cross-flow extraction and countercurrent extraction are all conventional technical means in the art.
  • the plurality of stages are preferably 10 stages in the present invention.
  • the invention adopts a eutectic solvent as an extracting agent, and has higher removal efficiency of the nitrogen-containing compound in the oil than the conventional oil denitrifying extractant, and can obtain a higher extraction efficiency. High oil yield. According to the different process conditions, the removal rate of the nitrogen-containing compound in the oil is above 80%, and the yield of the denitrification oil is above 98%.
  • the eutectic solvent has the advantages of almost no volatilization and good degradability, less environmental pollution, and low preparation cost, and has broad application prospects.
  • the following implementation adopts the boat injection chemiluminescence method specified in GB/T17674-2012 (measurement range: 100 g/g ⁇ nitrogen content ⁇ 10000 g/g) and oxidative combustion and chemistry specified in SH/T 0657-2007 Luminescence method (measurement range: 0.3 g/g ⁇ nitrogen content: 100 g/g)
  • lubricating base oil nitrogen content: 1390 g / g
  • choline chloride / urea eutectic solvent molar ratio of choline chloride to urea is 1:2, freezing point is lower than 25 ° C
  • Three-stage countercurrent extraction was carried out in a packed column at 35 ° C, and the ratio of the mass flow rate of the eutectic solvent to the lubricating oil was 1:1.
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 48.7 g/g), the denitrification rate was 96.5%, and the yield of the denitrified oil was 99.1%.
  • the extract was subjected to back-extraction of n-heptane at 50 ° C to remove the nitrogen-containing compound, and the residual n-heptane was removed by evaporation to obtain a regenerated choline chloride/urea eutectic solvent.
  • lubricating base oil nitrogen content: 1390 g / g
  • choline chloride / phenylpropionic acid eutectic solvent cholinyl chloride and phenylpropionic acid molar ratio of 1:1, the freezing point is lower than 25 ° C
  • the extract was subjected to back-extraction of n-heptane at 50 ° C to remove the nitrogen-containing compound, and the residual n-heptane was removed by evaporation to obtain a regenerated choline chloride / phenylpropionic acid eutectic solvent.
  • Coking wax oil (nitrogen content: 2793 ⁇ g / g) and choline chloride / xylose eutectic solvent (choline chloride
  • the molar ratio of xylose is 3:1, the freezing point is lower than 25 ° C.
  • the five-stage countercurrent extraction is carried out in a packed column at 40 ° C, and the ratio of the mass flow rate of the eutectic solvent to the coking wax oil is 2:1.
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 413 g/g), the denitrification rate was 85.2%, and the yield of the denitrified oil was 98.2%.
  • the extract was subjected to back extraction with toluene at 60 ° C to remove the nitrogen-containing compound, and the residual toluene was removed by evaporation to obtain a regenerated choline chloride/xylose eutectic solvent.
  • Catalytic cracking diesel (nitrogen content: 810 g/g) and choline chloride/2,3-dihydroxysuccinic acid eutectic solvent (choline chloride and 2,3-dihydroxysuccinic acid)
  • the molar ratio is 2:1, the freezing point is 47 ° C.
  • the four-stage countercurrent extraction is carried out in a tray column at 55 ° C.
  • the ratio of the mass flow rate of the eutectic solvent to the catalytic cracking diesel oil is 1:2.
  • Collecting the raffinate oil The raffinate oil was washed and dried to obtain a denitrified oil (nitrogen content: 59.
  • the denitrification rate was 92.7%, and the yield of the denitrified oil was 99.5%.
  • the extract was subjected to back extraction with toluene at 55 ° C to remove the nitrogen-containing compound, and the residual toluene was removed by evaporation to obtain a regenerated choline chloride 2,3-dihydroxysuccinic acid eutectic solvent.
  • Diesel oil blended from straight-run diesel and catalytically cracked diesel nitrogen content: 503 g/g
  • choline chloride/1-methyl urea eutectic solvent choline chloride and 1-methyl chloride
  • the molar ratio of urea is 1:2
  • the freezing point is lower than 25 ° C.
  • Six-stage countercurrent extraction is carried out in the packed column at 40 ° C, and the ratio of the mass flow rate of the eutectic solvent to the diesel oil is 1:5.
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 83.5 g/g), the denitrification rate was 83.4%, and the yield of the denitrified oil was 99.7%.
  • the extract is subjected to back-extraction of petroleum compounds at a boiling point of 6 (T90 ° C) at 40 ° C to remove nitrogen compounds, and then evaporated to remove residual petroleum ether to obtain regenerated choline chloride / 1-methyl urea. Co-melting solvent.
  • Naphtha nitrogen content: 4.6 g / g
  • betaine / ⁇ -hydroxyphenylacetic acid eutectic solvent beta ratio of betaine to ⁇ -hydroxyphenylacetic acid is 1:1, freezing point is lower than 25 °C
  • Catalytic cracking gasoline nitrogen content: 68.2 g / g
  • betaine / benzoic acid eutectic solvent beta to benzoic acid molar ratio of 1:1.5, freezing point of 53 ° C
  • Three-stage countercurrent extraction was carried out in a centrifugal extractor, and the mass flow ratio of the eutectic solvent to the catalytically cracked gasoline was 1:4.
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 9.5 g/g), the denitrification rate was 86.1%, and the yield of the denitrified oil was 98.9%.
  • the extract was subjected to back extraction with ethyl acetate at 60 ° C to remove the nitrogen-containing compound, and the residual ethyl acetate was evaporated to obtain a regenerated betained / benzoic acid eutectic solvent.
  • coking diesel oil nitrogen content: 2630 g / g
  • betaine / 2-hydroxy-1, 2, 3 - propionate tricarboxylic acid eutectic solvent betaine and 2-hydroxy-1, 2,
  • the molar ratio of 3-propene tricarboxylic acid is 1:1.5, the freezing point is 48 ° C.
  • the four-stage countercurrent extraction is carried out in a rotary table at 55 ° C.
  • the ratio of the mass flow rate of eutectic solvent to coking diesel is 2 :1.
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 234.1 / g), the denitrification rate was 91.1%, and the yield of the denitrified oil was 98.1%.
  • the extract was back-extracted with toluene at 55 ° C to remove the nitrogen-containing compound, and then evaporated to remove residual toluene to obtain regenerated betaine/2-hydroxy-1, 2, 3-propanthenetricarboxylic acid eutectic. Solvent.
  • the extract was subjected to back-extraction of n-heptane at 45 ° C to remove the nitrogen-containing compound, and the residual n-heptane was removed by evaporation to obtain a regenerated choline chloride / D-sorbitol eutectic solvent.
  • Catalytic cracking gasoline nitrogen content: 68.2 g/g
  • the extract was subjected to back-extraction with ethyl acetate at 50 ° C to remove the nitrogen-containing compound, and the residual ethyl acetate was evaporated to obtain a regenerated L-serine / 2-hydroxysuccinic acid eutectic solvent.
  • Catalytic cracking diesel nitrogen content: 810 g/g
  • choline chloride/xylitol/2-hydroxysuccinic acid eutectic solvent choline chloride, xylose, 2-hydroxybutyrate
  • the molar ratio of acid is 1:1:1, the freezing point is lower than 25 °C.
  • four-stage countercurrent extraction is carried out in the rotary table.
  • the ratio of mass flow of eutectic solvent to catalytic cracking diesel is 1:1. .
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 47.8 / g), the denitrification rate was 94.1%, and the yield of the denitrified oil was 99.2%.
  • the extract is subjected to back-extraction at 40 ° C to remove the nitrogen-containing compound, and then evaporated to remove residual n-hexanide to obtain regenerated choline chloride / xylitol/2-hydroxysuccinic acid eutectic solvent .
  • Catalytic cracking gasoline nitrogen content: 68.2 g/g
  • choline chloride/betaine/D-sorbitol eutectic solvent cholinylcholine, betaine, D-sorbitol molar
  • the ratio is 3:3:2
  • the freezing point is lower than 25 ° C.
  • the four-stage countercurrent extraction is carried out in a rotating tower at 35 ° C, and the ratio of the mass flow rate of the eutectic solvent to the catalytic cracking gasoline is 1:3.
  • the raffinate oil was collected, and the raffinate oil was washed with water and dried to obtain a denitrified oil (nitrogen content: 6.6 / g), the denitrification rate was 90.3%, and the yield of the denitrified oil was 99.5%.
  • the extract is subjected to back extraction with ethyl acetate at 50 ° C to remove the nitrogen-containing compound, and the residual ethyl acetate is evaporated to obtain a regenerated choline chloride / betaine / D-sorbitol eutectic solvent. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种低共熔溶剂萃取脱除油品中含氮化合物的方法,包括如下步骤:(1)以油品为原料液,以低共熔溶剂为萃取剂,在萃取设备中进行单级萃取或多级萃取,得萃余油和富集含氮化合物的萃取液;(2)将步骤(1)中的萃余油经水洗、干燥,得到脱氮油;(3)将步骤(1)中的萃取液经弱极性溶剂反萃取除去其中的含氮化合物,再经蒸发后得到再生的低共熔溶剂。本发明以液-液两相体系为基础,采用低共熔溶剂为萃取剂,经过单级萃取或多级萃取,脱除油品中的含氮化合物,操作过程简单,脱氮率高、油品收率高。

Description

一种低共熔溶剂萃取脱除油品中含氮化合物的方法 技术领域
[0001] 本发明涉及油品中含氮化合物的脱除方法, 属于化学工程技术领域, 具体涉及 一种低共熔溶剂萃取脱除油品中含氮化合物的方法。
背景技术
[0002] 石油炼制得到的石脑油、 汽油、 煤油、 柴油、 润滑油、 蜡油等产品 (统称为油 品) 中含有一定浓度的含氮化合物, 包括碱性氮化合物和非碱性氮化合物。 碱 性氮化合物主要有吡啶、 喹啉、 氮杂蒽、 氮杂菲等及其同系物, 非碱性氮化合 物主要有吡咯、 咔唑、 吲哚等及其同系物。 这些含氮化合物的存在对油品的色 度、 抗氧化安定性和使用性能都有不利影响, 并且容易导致催化裂化、 加氢裂 化、 加氢精制等油品加工过程中贵金属催化剂的失活。 此外, 含氮化合物在燃 烧过程中可以形成氮氧化物 NO x , 是导致大气污染和酸雨形成的主要原因之一 。 因此, 脱除油品中的含氮化合物十分重要。
[0003] 目前脱除油品中含氮化合物的方法主要有加氢脱氮、 吸附脱氮、 酸萃取脱氮、 有机溶剂萃取脱氮、 络合萃取脱氮、 离子液体萃取脱氮等方法。 其中加氢脱氮 技术具有操作方便、 油品收率高等优点, 目前开发较多, 但该方法的脱氮率通 常较低, 采用一般加氢催化剂脱氮率只有 10%〜25%, 采用特种加氢精制催化剂 脱氮率也只能达到 70%〜 75%, 而且需要消耗大量的氢源, 设备投资大, 运行费 用高。
[0004] 中国专利 CN200910082846. 3采用固定床吸附工艺脱除加氢裂化尾油中的含氮化 合物和含硫化合物, 所采用的脱氮吸附剂的组成为: 硫酸酸性剂; Γ20%, 硫酸铁 络合剂 20%, 氧化铝载体粉末 6(Γ95%, 水 5〜20%。 精制后加氢尾油的氮含量小 于 2 g ' g -', 满足后续油品加工工艺的要求。 吸附法脱氮的脱氮效率较高, 但存在处理量小、 吸附剂用量大、 自动化程度低、 产生固废较多等不足。
[0005] 美国专利 US4790930采用质量分数为 2(Γ95%的羧酸水溶液从减压蜡油和焦化柴 油中萃取含氮杂环化合物, 脱氮率为 26 3%。 US4960508采用浓羧酸、 稀羧酸两 步法从油品中萃取含氮杂环化合物, 萃余油的收率高于一步萃取法, 但脱氮率 较低。 俄罗斯专利 RU2257398采用硫酸-醋酸-水混合物萃取脱除油品中的含氮化 合物。 总体上, 酸萃取方法对碱性氮化合物的脱除效果较好, 但通常存在对非 碱性氮化合物脱除率低、 油品收率偏低、 腐蚀设备、 环境污染大、 产生的酸渣 难于处理等问题。
[0006] 中国专利 CN92113955. 1采用一种低碳醇与水或一种低碳醇与稀碱水溶液组成的 萃取剂萃取脱除液体石油产品中的总氮、 碱性氮、 硫醇硫及低分子有机酸, 总 氮和碱性氮的脱除率均可达 50— 80 %。 美国专利 US5494572采用吡咯垸酮等含氮 杂环类溶剂、 酰胺类溶剂、 或者吡啶盐与水或液态低碳醇的混合物等有机溶剂 作为萃取剂脱除轻质油中的含氮化合物和含硫化合物, 发现随着萃取剂用量的 增加, 脱氮率逐渐增加至 90%以上, 但油品收率逐渐降低至 61%以下。 由于有机 溶剂与油品存在一定的互溶度, 有机溶剂萃取脱氮技术普遍存在油品收率低、 脱氮后的油品易被有机溶剂二次污染等问题, 对碱性氮的脱除效果也不够理想
[0007] 美国专利 US4113607采用氯化铁的糠醛溶液萃取脱除油品中的含氮化合物, 利 用氯化铁与含氮化合物的络合反应增强对含氮化合物的分离选择性, 脱氮率可 达 99%。 络合萃取法对碱性氮的脱除率普遍较高, 但络合产物难免部分溶于油品 中, 易使油品颜色加深, 而且油品中的烃类成分能够溶解在络合萃取所使用的 有机溶剂中, 降低了精制油的收率。
[0008] 美国专利 US2010270211采用由至少一种离子液体和至少一种金属盐组成的混合 溶剂萃取脱除石油产品中的硫化物和氮化物。 中国专利 CN200880116144. 6采用 酸性离子液体 1-丁基 -3-甲基咪唑硫酸氢盐 ([Bmim] HS0 4) 、 1_丁基 _3_甲基咪 唑硫酸甲酯 ( [BmimJ CH 3S0 4) 或 1_乙基 _3_甲基咪唑硫酸乙酯 ( [Emim] C 2H 5S0 4) 为介质萃取脱除柴油中的氮化物。 与传统的有机溶剂相比, 离子液体具有几 乎不挥发、 结构和性质容易调节等特点, 有助于降低脱氮过程的环境污染并获 得较高的脱氮效率, 但离子液体的制备成本较高, 限制了离子液体萃取脱氮技 术的规模化应用。
发明概述 技术问题
[0009] 本发明提供了一种低共熔溶剂萃取脱除油品中含氮化合物的方法, 以液 -液两 相体系为基础, 采用低共熔溶剂为萃取剂, 经过单级萃取或多级萃取, 脱除油 品中的含氮化合物, 操作过程简单, 脱氮率高、 油品收率高。
问题的解决方案
技术解决方案
[0010] 一种低共熔溶剂萃取脱除油品中含氮化合物的方法, 包括如下步骤:
[0011] ( 1 ) 以油品为原料液, 以低共熔溶剂为萃取剂, 在萃取设备中进行单级萃取 或多级萃取, 得萃余油和富集含氮化合物的萃取液;
[0012] ( 2) 将步骤 (1 ) 中的萃余油经水洗、 干燥, 得到脱氮油;
[0013] ( 3) 将步骤 (1 ) 中的萃取液经弱极性溶剂反萃取除去其中的含氮化合物, 再 经蒸发后得到再生的低共熔溶剂。
[0014] 萃取脱氮具有操作方便、 装置简单、 易于工业化连续生产等优点, 其关键问题 在于萃取剂的设计。 用选定的萃取剂脱除油品中的含氮化合物时, 萃取剂必须 对含氮化合物具有良好的溶解能力, 并与油品不互溶。 而且萃取剂应当具有良 好的生物可降解性以及较为低廉的制备成本。
[0015] 低共熔溶剂是由两种或两种以上固体物质按一定比例混合之后形成的液态物质 , 是一类新型溶剂。 低共熔溶剂具有几乎不挥发、 极性强的特点, 因此, 与传 统有机溶剂相比, 低共熔溶剂作为萃取剂不仅可以降低传统溶剂的挥发性污染 , 而且可以显著降低油品在萃取剂中的溶解度, 提高脱氮油的收率, 并减少萃 取剂对油品的二次污染。 同时, 低共熔溶剂具有较强的氢键作用能力, 因此对 于碱性氮化合物和非碱性氮化合物都具有较好的溶解能力, 从而获得较高的脱 氮效率。 低共熔溶剂通常由氯化胆碱或甜菜碱与 2-羟基 -1, 2, 3-丙垸三羧酸 (别 名 "柠檬酸" ) 、 2-羟基丁二酸 (别名 "苹果酸" ) 、 2, 3-二羟基丁二酸 (别 名 "酒石酸" ) 、 单糖、 尿素等生物相容性很好的固体物质简单混合而制备得 至 I」, 因此与离子液体相比, 低共熔溶剂具有制备工艺简单、 制备原料易得、 成 本低、 可降解性好等优点, 从而在获得较高的脱氮效率和油品收率的同时, 提 高油品脱氮过程的技术经济性和环境友好性。 [0016] 本发明中优选地, 所述低共熔溶剂由氢键受体化合物 A与氢键供体化合物 B组成
[0017] 所述氢键受体化合物 A为氯化胆碱、 甜菜碱和氨基酸中的至少一种。 所述氢键 供体化合物 B为碳原子数为 6的脂肪族二元羧酸、 碳原子数为 6的脂肪族三元羧 酸、 碳原子数为 9的芳香族一元羧酸、 具有羟基取代基的碳原子数为; Γ6的脂 肪族二元羧酸、 具有羟基取代基的碳原子数为 6的脂肪族三元羧酸、 具有羟基取 代基的碳原子数为 9的芳香族一元羧酸、 碳原子数为 5 的单糖、 碳原子数为 5 的糖醇、 尿素、 1-甲基尿素和乙酰丙酸中的至少一种。
[0018] 所述氢键受体化合物 A、 氢键供体化合物 B的熔点都高于 25 °C ; 所述低共熔溶剂 的凝固点低于 60°C。
[0019] 本发明低共熔溶剂的制备方法如下:
[0020] 按所述比例将氢键受体化合物 A和氢键供体化合物 B混合并在 8(T120°C温度下加 热搅拌直至成均一的无色液体。
[0021] 进一步优选地, 所述氢键供体化合物 B为乙二酸、 苯丙酸、 木糖、 2, 3-二羟基 丁二酸、 尿素、 α _羟基苯乙酸、 苯甲酸、 2-羟基 -1, 2, 3-丙垸三羧酸、 D-山梨 糖醇、 乙酰丙酸、 2-羟基丁二酸、 木糖和 2-羟基丁二酸混合物。
[0022] 更进一步优选, 所述低共熔溶剂为以下组合中的一种:
[0023] 氯化胆碱 /乙二酸、 氯化胆碱 /苯丙酸、 氯化胆碱 /木糖、 氯化胆碱 /2, 3-二羟基 丁二酸氯化胆碱 /尿素、 甜菜碱 / α _羟基苯乙酸、 甜菜碱 /苯甲酸、 甜菜碱 /2_羟 基 -1, 2, 3-丙垸三羧酸、 氯化胆碱 /D-山梨糖醇、 氯化胆碱 /乙酰丙酸、 L-丝氨酸 /2-羟基丁二酸、 氯化胆碱 /木糖醇 /2-羟基丁二酸、 氯化胆碱 /甜菜碱 /D-山梨糖 醇。
[0024] 当选择上述任一组合时, 对油品中含氮化合物的脱除率在 80%以上, 脱氮油收 率在 98%以上。
[0025] 更进一步优选, 所述低共熔溶剂为以下组合中的一种:
[0026] 氯化胆碱 /乙二酸、 氯化胆碱 /苯丙酸、 氯化胆碱 /木糖、 甜菜碱 / α -羟基苯乙 酸、 甜菜碱 /2_羟基 -1, 2, 3-丙垸三羧酸、 氯化胆碱 /D-山梨糖醇、 氯化胆碱 /乙 酰丙酸、 氯化胆碱 /木糖醇 /2-羟基丁二酸、 氯化胆碱 /甜菜碱 /D-山梨糖醇。 [0027] 以上述任一一种组合作为低共熔溶剂对油品进行萃取, 脱氮率达到 90%以上, 脱氮油收率达到 98%以上。
[0028] 更进一步优选地, 所述低共熔溶剂为以下组合中的一种:
[0029] 所述氢键受体化合物 A为氯化胆碱, 所述氢键供体化合物 B为乙二酸, 氯化胆碱 与乙二酸的摩尔比为 1 : 1 ;
[0030] 所述氢键受体化合物 A为氯化胆碱, 所述氢键供体化合物 B为尿素, 氯化胆碱与 尿素的摩尔比为 1 : 2;
[0031] 所述氢键受体化合物 A为氯化胆碱, 所述氢键供体化合物 B为乙酰丙酸, 氯化胆 碱与乙酰丙酸的摩尔比为 1: 2。
[0032] 当选取上述任一种低共熔溶剂为萃取剂对油品进行萃取脱氮, 脱氮率达到 95% 以上, 脱氮油收率达到 99%以上。
[0033] 最优选地, 所述低共熔溶剂为摩尔比为 1 : 2的氯化胆碱与乙酰丙酸混合物。 选 用该组合为萃取剂时脱氮率高达 97%, 脱氮油收率高达 99. 4%。
[0034] 作为优选, 所述弱极性溶剂为碳原子数为 6 的垸烃、 沸程为 60〜90°C的石油 醚、 乙酸乙酯或甲苯。
[0035] 作为优选, 所述油品为石油炼制得到的石脑油、 汽油、 煤油、 柴油、 润滑油基 础油或蜡油。
[0036] 作为优选, 所述低共熔溶剂与油品的质量流量之比为 2 :广 1 : 5。
[0037] 如果低共熔溶剂与油品的质量比过高, 低共熔溶剂的用量太大, 不利于萃取过 程的经济性, 而且脱氮油的收率会降低; 如果低共熔溶剂与油品的质量比过低
, 脱氮率会降低。 试验证明本发明中在上述比例范围内油品中含氮化合物的脱 除率在 80%以上, 脱氮油收率在 98%以上。
[0038] 作为优选, 当低共熔溶剂的凝固点高于 25°C时, 萃取的操作温度为低共熔溶剂 的凝固点至 60°C之间; 当低共熔溶剂的凝固点等于或低于 25°C时, 萃取的操作 温度为 25°C至 60°C之间。
[0039] 如果温度过低, 低共熔溶剂可能会发生凝固导致萃取操作无法进行, 而且两相 传质速率降低, 达到萃取平衡所需时间较长, 不利于生产操作; 如果温度过高
, 含氮化合物的萃取分配系数和选择性会降低, 导致脱氮率和油品收率降低。 试验证明本发明中在上述温度范围内油品中含氮化合物的脱除率在 80%以上, 脱 氮油收率在 98%以上。
[0040] 所述的萃取过程中使用的萃取设备为填料塔、 板式塔、 转盘塔、 混合澄清槽、 离心萃取器等常见的萃取装置。
[0041] 所述的多级萃取的操作方式为多级错流萃取、 多级逆流萃取中的一种。
[0042] 所述的错流萃取和逆流萃取均为本技术领域常规技术手段。 所述多级在本发明 中优选为 10级。
发明的有益效果
有益效果
[0043] 与现有的脱氮方法相比, 本发明的优点在于:
[0044] (1) 本发明采用低共熔溶剂为萃取剂, 与传统的油品脱氮萃取剂相比, 不仅 对油品中的含氮化合物具有较高的脱除效率, 而且能获得较高的油品收率。 依 据工艺条件的不同, 本发明对油品中含氮化合物的脱除率在 80%以上, 脱氮油收 率在 98%以上。
[0045] (2) 低共熔溶剂具有几乎不挥发、 可降解性好的优点, 对环境的污染少, 并 且其制备成本较低, 具有广阔的应用前景。
发明实施例
本发明的实施方式
[0046] 以下实施中采用 GB/T17674-2012规定的舟进样化学发光法 (测定范围: 100 g/g 〈氮含量〈10000 g/g) 和 SH/T 0657-2007规定的氧化燃烧和化学发光法 (测定范围: 0.3 g/g 〈氮含量 100 g/g) 对油品的氮含量进行分析, 脱 氮率 = (1-脱氮油氮含量 /原料油氮含量) χιοο%。
[0047] 实施例 1
[0048] 将直馏柴油 (氮含量: 205 g/g) 与氯化胆碱 /乙二酸低共熔溶剂 (氯化胆碱 与乙二酸的摩尔比为 1:1, 凝固点为 34°C) 在 40°C于混合澄清槽中进行单级萃取 , 直馏柴油与低共熔溶剂的质量流量之比为 1:1。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 9.8 g/g) , 脱氮率为 95.2%, 脱氮油收率为 99.5 %。 将萃取液在 40°C下经正己垸反萃取除去其中的含氮化合物, 再蒸发除去残留 的正己垸后得到再生的氯化胆碱 /乙二酸低共熔溶剂。
[0049] 实施例 2
[0050] 将润滑油基础油 (氮含量: 1390 g/g) 与氯化胆碱 /尿素低共熔溶剂 (氯化胆 碱与尿素的摩尔比为 1:2, 凝固点低于 25°C) 在 35°C下于填料塔中进行三级逆流 萃取, 低共熔溶剂与润滑油的质量流量之比为 1:1。 收集萃余油, 将萃余油水洗 、 干燥后得到脱氮油 (氮含量: 48.7 g/g) , 脱氮率为 96.5%, 脱氮油收率为 9 9.1%。 将萃取液在 50°C下经正庚垸反萃取除去其中的含氮化合物, 再蒸发除去 残留的正庚垸后得到再生的氯化胆碱 /尿素低共熔溶剂。
[0051] 实施例 3
[0052] 将润滑油基础油 (氮含量: 1390 g/g) 与氯化胆碱 /苯丙酸低共熔溶剂 (氯化 胆碱与苯丙酸的摩尔比为 1:1, 凝固点低于 25°C) 在 40°C下于填料塔中进行三级 逆流萃取。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油。 改变低共熔溶剂 与润滑油的质量流量之比, 得到不同的脱氮率和脱氮油收率 (表 1) 。 将萃取液 在 50°C下经正庚垸反萃取除去其中的含氮化合物, 再蒸发除去残留的正庚垸后 得到再生的氯化胆碱 /苯丙酸低共熔溶剂。
[0053] 表 1氯化胆碱 /苯丙酸低共熔溶剂三级逆流萃取脱除润滑油 (氮含量: 1390
/g) 中含氮化合物, 40°C。
[] [表 1]
Figure imgf000008_0001
[0054] 实施例 4
[0055] 将焦化蜡油 (氮含量: 2793 μ g/g) 与氯化胆碱 /木糖低共熔溶剂 (氯化胆碱与 木糖的摩尔比为 3:1, 凝固点低于 25°C) 在 40°C下于填料塔中进行五级逆流萃取 , 低共熔溶剂与焦化蜡油的质量流量之比为 2:1。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 413 g/g) , 脱氮率为 85.2%, 脱氮油收率为 98.2 %。 将萃取液在 60°C下经甲苯反萃取除去其中的含氮化合物, 再蒸发除去残留的 甲苯后得到再生的氯化胆碱 /木糖低共熔溶剂。
[0056] 实施例 5
[0057] 将催化裂化柴油 (氮含量: 810 g/g) 与氯化胆碱 /2, 3-二羟基丁二酸低共熔 溶剂 (氯化胆碱与 2, 3-二羟基丁二酸的摩尔比为 2:1, 凝固点为 47°C) 在 55°C下 于板式塔中进行四级逆流萃取, 低共熔溶剂与催化裂化柴油的质量流量之比为 1 :2ο 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 59. lwg/g) , 脱氮率为 92.7%, 脱氮油收率为 99.5%。 将萃取液在 55°C下经甲苯反萃取除去其 中的含氮化合物, 再蒸发除去残留的甲苯后得到再生的氯化胆碱 /2, 3-二羟基丁 二酸低共熔溶剂。
[0058] 实施例 6
[0059] 将由直馏柴油与催化裂化柴油调和而成的柴油 (氮含量: 503 g/g) 与氯化 胆碱 /1-甲基尿素低共熔溶剂 (氯化胆碱与 1-甲基尿素的摩尔比为 1:2, 凝固点 低于 25°C) 在 40°C下于填料塔中进行六级逆流萃取, 低共熔溶剂与柴油的质量 流量之比为 1:5。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 83 .5 g/g) , 脱氮率为 83.4%, 脱氮油收率为 99.7%。 将萃取液在 40 °C下经沸点为 6(T90°C的石油醚反萃取除去其中的含氮化合物, 再蒸发除去残留的石油醚后得 到再生的氯化胆碱 /1-甲基尿素低共熔溶剂。
[0060] 实施例 7
[0061] 将石脑油 (氮含量: 4.6 g/g) 与甜菜碱 /α -羟基苯乙酸低共熔溶剂 (甜菜碱 与 α -羟基苯乙酸的摩尔比为 1:1, 凝固点低于 25°C) 在 25°C下于填料塔中进行 两级逆流萃取, 低共熔溶剂与石脑油的质量流量之比为 1:5。 收集萃余油, 将萃 余油水洗、 干燥后得到脱氮油 (氮含量: 0.45 g/g) , 脱氮率为 90.2%, 脱氮 油收率为 99.1%。 将萃取液在 25°C下经乙酸乙酯反萃取除去其中的含氮化合物, 再蒸发除去残留的乙酸乙酯后得到再生的甜菜碱 /α -羟基苯乙酸低共熔溶剂。 [0062] 实施例 8
[0063] 将催化裂化汽油 (氮含量: 68.2 g/g) 与甜菜碱 /苯甲酸低共熔溶剂 (甜菜碱 与苯甲酸的摩尔比为 1:1.5, 凝固点为 53°C) 在 60°C下于离心萃取器中进行三级 逆流萃取, 低共熔溶剂与催化裂化汽油的质量流量之比为 1:4。 收集萃余油, 将 萃余油水洗、 干燥后得到脱氮油 (氮含量: 9.5 g/g) , 脱氮率为 86.1%, 脱氮 油收率为 98.9%。 将萃取液在 60°C下经乙酸乙酯反萃取除去其中的含氮化合物, 再蒸发除去残留的乙酸乙酯后得到再生的甜菜碱 /苯甲酸低共熔溶剂。
[0064] 实施例 9
[0065] 将焦化柴油 (氮含量: 2630 g/g) 与甜菜碱 /2-羟基 -1, 2, 3_丙垸三羧酸低共 熔溶剂 (甜菜碱与 2-羟基 -1,2,3-丙垸三羧酸的摩尔比为 1:1.5, 凝固点为 48°C ) 在 55°C下于转盘塔中进行四级逆流萃取, 低共熔溶剂与焦化柴油的质量流量 之比为 2:1。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 234.1 /g) , 脱氮率为 91.1%, 脱氮油收率为 98.1%。 将萃取液在 55°C下经甲苯反萃 取除去其中的含氮化合物, 再蒸发除去残留的甲苯后得到再生的甜菜碱 /2_羟基 -1, 2, 3-丙垸三羧酸低共熔溶剂。
[0066] 实施例 10
[0067] 将直馏煤油 (氮含量: 5. l g/g) 与氯化胆碱 /D-山梨糖醇低共熔溶剂 (氯化 胆碱与 D-山梨糖醇的摩尔比为 1:1, 凝固点低于 25°C) 在 35°C下于转盘塔中进行 三级错流萃取, 低共熔溶剂与直馏煤油的质量流量之比为 1:5。 收集萃余油, 将 萃余油水洗、 干燥后得到脱氮油 (氮含量: 0.35 g/g) , 脱氮率为 93.2%, 脱 氮油收率为 99.3%。 将萃取液在 45°C下经正庚垸反萃取除去其中的含氮化合物, 再蒸发除去残留的正庚垸后得到再生的氯化胆碱 /D-山梨糖醇低共熔溶剂。
[0068] 实施例 11
[0069] 将直馏柴油 (氮含量: 205 g/g) 与氯化胆碱 /乙酰丙酸低共熔溶剂 (氯化胆 碱与乙酰丙酸的摩尔比为 1:2, 凝固点低于 25°C) 在 25°C于转盘塔中进行四级逆 流萃取, 直馏柴油与低共熔溶剂的质量流量之比为 1:2。 收集萃余油, 将萃余油 水洗、 干燥后得到脱氮油 (氮含量: 6.2 g/g) , 脱氮率为 97.0%, 脱氮油收率 为 99.4%。 将萃取液在 40°C下经正己垸反萃取除去其中的含氮化合物, 再蒸发除 去残留的正己垸后得到再生的氯化胆碱 /乙酰丙酸低共熔溶剂。
[0070] 实施例 12
[0071] 将催化裂化汽油 (氮含量: 68.2 g/g) 与 L-丝氨酸 /2-羟基丁二酸低共熔溶剂
(L-丝氨酸与 2-羟基丁二酸的摩尔比为 3 :2, 凝固点低于 25°C) 在 50°C下于离心 萃取器中进行九级逆流萃取, 低共熔溶剂与催化裂化汽油的质量流量之比为 1:2 .5。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 8.0wg/g) , 脱氮率为 88.3%, 脱氮油收率为 99.0%。 将萃取液在 50°C下经乙酸乙酯反萃取除 去其中的含氮化合物, 再蒸发除去残留的乙酸乙酯后得到再生的 L-丝氨酸 /2-羟 基丁二酸低共熔溶剂。
[0072] 实施例 13
[0073] 将催化裂化柴油 (氮含量: 810 g/g) 与氯化胆碱 /木糖醇 /2-羟基丁二酸低共 熔溶剂 (氯化胆碱、 木糖、 2-羟基丁二酸的摩尔比为 1:1:1, 凝固点低于 25°C) 在 40°C下于转盘塔中进行四级逆流萃取, 低共熔溶剂与催化裂化柴油的质量流 量之比为 1:1。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 47.8 /g) , 脱氮率为 94.1%, 脱氮油收率为 99.2%。 将萃取液在 40 °C下经正己垸反 萃取除去其中的含氮化合物, 再蒸发除去残留的正己垸后得到再生的氯化胆碱 / 木糖醇 /2-羟基丁二酸低共熔溶剂。
[0074] 实施例 14
[0075] 将催化裂化汽油 (氮含量: 68.2 g/g) 与氯化胆碱 /甜菜碱 /D-山梨糖醇低共 熔溶剂 (氯化胆碱、 甜菜碱、 D-山梨糖醇的摩尔比为 3:3:2, 凝固点低于 25°C) 在 35°C下于转盘塔中进行四级逆流萃取, 低共熔溶剂与催化裂化汽油的质量流 量之比为 1:3。 收集萃余油, 将萃余油水洗、 干燥后得到脱氮油 (氮含量: 6.6 /g) , 脱氮率为 90.3%, 脱氮油收率为 99.5%。 将萃取液在 50°C下经乙酸乙酯 反萃取除去其中的含氮化合物, 再蒸发除去残留的乙酸乙酯后得到再生的氯化 胆碱 /甜菜碱 /D-山梨糖醇低共熔溶剂。

Claims

权利要求书
一种低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 包 括如下步骤: (1 ) 以油品为原料液, 以低共熔溶剂为萃取剂, 在萃 取设备中进行单级萃取或多级萃取, 得萃余油和富集含氮化合物的萃 取液;
( 2) 将步骤 (1 ) 中的萃余油经水洗、 干燥, 得到脱氮油;
( 3) 将步骤 (1 ) 中的萃取液经弱极性溶剂反萃取除去其中的含氮化 合物, 再经蒸发后得到再生的低共熔溶剂;
所述低共熔溶剂由氢键受体化合物 A与氢键供体化合物 B组成; 所述氢键受体化合物 A为氯化胆碱、 甜菜碱和氨基酸中的至少一种; 所述氢键供体化合物 B为碳原子数为 6的脂肪族二元羧酸、 碳原子数 为 6的脂肪族三元羧酸、 碳原子数为 9的芳香族一元羧酸、 具有羟基 取代基的碳原子数为; Γ6的脂肪族二元羧酸、 具有羟基取代基的碳原 子数为 6的脂肪族三元羧酸、 具有羟基取代基的碳原子数为 9的芳香 族一元羧酸、 碳原子数为 5 的单糖、 碳原子数为 5 的糖醇、 尿素、 1-甲基尿素和乙酰丙酸中的至少一种。
根据权利要求 1所述低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 所述的低共熔溶剂的凝固点低于 60°C。
根据权利要求 1所述低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 所述弱极性溶剂为碳原子数为 6 的垸烃、 沸程为 60〜9 0°C的石油醚、 乙酸乙酯或甲苯。
根据权利要求 1所述低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 所述油品为石油炼制得到的石脑油、 汽油、 煤油、 柴油 、 润滑油基础油或蜡油。
根据权利要求 1所述低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 所述低共熔溶剂与油品的质量流量之比为 2 :广 1 : 5。 根据权利要求 1所述低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 所述多级萃取为多级错流萃取或多级逆流萃取。 [权利要求 7] 根据权利要求 1所述低共熔溶剂萃取脱除油品中含氮化合物的方法, 其特征在于, 当低共熔溶剂的凝固点高于 25°C时, 萃取的操作温度为 低共熔溶剂的凝固点至 60°C之间; 当低共熔溶剂的凝固点等于或低于 25°C时, 萃取的操作温度为 25°C至 60°C之间。
PCT/CN2015/083069 2015-03-30 2015-07-01 一种低共熔溶剂萃取脱除油品中含氮化合物的方法 WO2016155136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510141450.7A CN104762100B (zh) 2015-03-30 2015-03-30 一种低共熔溶剂萃取脱除油品中含氮化合物的方法
CN201510141450.7 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016155136A1 true WO2016155136A1 (zh) 2016-10-06

Family

ID=53644204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083069 WO2016155136A1 (zh) 2015-03-30 2015-07-01 一种低共熔溶剂萃取脱除油品中含氮化合物的方法

Country Status (2)

Country Link
CN (1) CN104762100B (zh)
WO (1) WO2016155136A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106474869B (zh) * 2016-10-14 2019-04-02 浙江大学 一种从干气或工业尾气中吸收分离轻烃的方法
CN106542969B (zh) * 2016-11-08 2019-06-11 北京化工大学 一种用内盐从含酚油中萃取酚类化合物的方法
CN106631967B (zh) * 2016-12-20 2019-03-29 北京化工大学 一种用季铵盐萃取剂萃取分离洗油中吲哚的方法
CN108467745A (zh) * 2017-02-23 2018-08-31 中国石油化工股份有限公司 分子筛催化氧化脱除油品中氮化物的方法
CN107349753A (zh) * 2017-08-16 2017-11-17 天津大学 一种利用基于1,3‑二甲基硫脲低共熔溶剂捕集一氧化氮的方法
CN107721899B (zh) * 2017-11-14 2020-08-28 天津大学 一种低共熔溶剂及其制备方法
CN107987867B (zh) * 2017-11-14 2020-05-22 天津大学 用于重质油矿分离的微乳液萃取剂及用法
CN107964420B (zh) * 2017-12-04 2020-10-30 辽宁石油化工大学 一种新型低共熔溶剂的模拟汽油萃取脱硫方法
CN108192655B (zh) * 2018-01-24 2020-03-10 中国石油大学(华东) 一种萃取脱除原油中含硫化合物的方法
CN108913195B (zh) * 2018-07-12 2020-08-21 太原理工大学 一种选择性分离煤直接转化液体油中酚类化合物的方法
CN109181747B (zh) * 2018-09-21 2021-03-30 武汉工程大学 一种用于燃油萃取脱氮的低共熔溶剂及其使用方法
CN109679678B (zh) * 2018-12-27 2020-11-10 青岛科技大学 从模拟汽油中萃取碱性/非碱性氮的低共熔溶剂及方法
CN109694723B (zh) * 2018-12-27 2021-08-27 青岛科技大学 从模拟汽油中萃取非碱性氮的低共熔溶剂及方法
CN110079387B (zh) * 2019-05-28 2022-08-09 广东省农业科学院蚕业与农产品加工研究所 一种超声辅助低共熔溶剂萃取脱除猪油中胆固醇的方法
CN110627624B (zh) * 2019-09-06 2020-08-18 陕西煤业化工集团神木天元化工有限公司 酚类产品中碱性氮化物的分离方法
CN110627623B (zh) * 2019-09-06 2020-09-22 陕西煤业化工集团神木天元化工有限公司 酚类产品中碱性氮化物的分离系统及方法
CN112048334B (zh) * 2020-08-31 2022-06-17 上饶师范学院 一种芳香酸类低共熔溶剂萃取脱氮的方法
CN112162056A (zh) * 2020-09-27 2021-01-01 江苏集萃托普索清洁能源研发有限公司 石油产品中超低氮含量的检测方法
CN112500884A (zh) * 2020-11-09 2021-03-16 南京师范大学 一种脱除溶剂油中硫化物的方法
CN113354570B (zh) * 2021-06-02 2023-01-24 太原理工大学 一种用低共熔溶剂高效萃取分离蒽油中咔唑的方法
CN113509751B (zh) * 2021-07-13 2022-07-19 武汉大学 一种基于烷醇低共熔溶剂的萃取-反萃取体系及其应用
CN115216330A (zh) * 2022-07-11 2022-10-21 青岛科技大学 一种分离油品中的含氮化合物的方法
CN116836754B (zh) * 2023-05-29 2024-03-12 河南工业大学 一种脱除芝麻油中杂环胺的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465587A (en) * 1983-02-28 1984-08-14 Air Products And Chemicals, Inc. Process for the hydroliquefaction of heavy hydrocarbon oils and residua
US4483763A (en) * 1982-12-27 1984-11-20 Gulf Research & Development Company Removal of nitrogen from a synthetic hydrocarbon oil
US4671865A (en) * 1985-09-27 1987-06-09 Shell Oil Company Two step heterocyclic nitrogen extraction from petroleum oils
CN1197834A (zh) * 1997-04-25 1998-11-04 清华大学 催化柴油溶剂萃取脱氮精制的工艺方法
CN101638586A (zh) * 2008-07-31 2010-02-03 中国石油天然气股份有限公司 一种烃油硫氮化合物脱除剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376842B (zh) * 2007-08-31 2012-07-18 中国石油化工股份有限公司 一种降低汽油中硫含量的方法
US7749377B2 (en) * 2007-11-14 2010-07-06 Uop Llc Methods of denitrogenating diesel fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483763A (en) * 1982-12-27 1984-11-20 Gulf Research & Development Company Removal of nitrogen from a synthetic hydrocarbon oil
US4465587A (en) * 1983-02-28 1984-08-14 Air Products And Chemicals, Inc. Process for the hydroliquefaction of heavy hydrocarbon oils and residua
US4671865A (en) * 1985-09-27 1987-06-09 Shell Oil Company Two step heterocyclic nitrogen extraction from petroleum oils
CN1197834A (zh) * 1997-04-25 1998-11-04 清华大学 催化柴油溶剂萃取脱氮精制的工艺方法
CN101638586A (zh) * 2008-07-31 2010-02-03 中国石油天然气股份有限公司 一种烃油硫氮化合物脱除剂及其制备方法和应用

Also Published As

Publication number Publication date
CN104762100B (zh) 2016-03-09
CN104762100A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2016155136A1 (zh) 一种低共熔溶剂萃取脱除油品中含氮化合物的方法
CN104774643B (zh) 一种无氮低共熔溶剂萃取脱除油品中碱性氮化物的方法
Yao et al. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents
JP2011519578A (ja) 有機酸の回収
Ji et al. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction
RU2016112932A (ru) Способ удаления серы из метанола-сырца
CN108893137B (zh) 一种水基低共熔溶剂及其制备方法和一种油品萃取脱硫方法
CN110914230B (zh) 从包含乙酸的含水料流中回收乙酸的方法
CN102533319B (zh) 一种脱除油品中碱性氮化物的方法
CN112521280A (zh) 一种基于分子蒸馏技术从文冠果油中提取神经酸的方法
CN111253376A (zh) 一种福比他韦srss型异构体的制备方法
CN108211423B (zh) 一种用可生物降解化合物作为吸附剂吸附分离油中酚类化合物的方法
CN108277344B (zh) 一种钴湿法工艺中的高效提铜药剂
JP2024513822A (ja) 高速向流クロマトグラフィーによるテトラヒドロカンナビバリンの分離精製方法
Wang et al. New compound N-methyl-N-isopropyl octanthioamide for palladium selective extraction and separation from HCl media
CN116836754B (zh) 一种脱除芝麻油中杂环胺的方法
CN108690656B (zh) 一种合成酯类润滑油粗品的精制方法
CN111205298A (zh) 一种福比他韦rrrs型异构体的制备方法
CN100575343C (zh) 精制咔唑的工艺方法
CN104560124B (zh) 一种汽车工业用燃油深度脱氮方法
CN115572614B (zh) 一种脱除费托油中窄馏分含氧化合物的方法
KR20050037994A (ko) 에칭폐액 또는 폐산의 처리방법에 있어서, 용매추출법을 통하여 산을 회수하는 공정에서 세정을 통하여 보다 정제된산을 회수하는 방법
CN105801452B (zh) 脱除磺酸盐中无机盐的方法
CN109809548B (zh) 一种有机氮农药废水去除剂及其制备方法
CN106957346B (zh) 利用胡杨叶制取水杨苷的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887103

Country of ref document: EP

Kind code of ref document: A1