WO2016152469A1 - 車両用自動変速機の制御装置 - Google Patents

車両用自動変速機の制御装置 Download PDF

Info

Publication number
WO2016152469A1
WO2016152469A1 PCT/JP2016/056915 JP2016056915W WO2016152469A1 WO 2016152469 A1 WO2016152469 A1 WO 2016152469A1 JP 2016056915 W JP2016056915 W JP 2016056915W WO 2016152469 A1 WO2016152469 A1 WO 2016152469A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
output shaft
rotational speed
automatic transmission
Prior art date
Application number
PCT/JP2016/056915
Other languages
English (en)
French (fr)
Inventor
大城 岩佐
徹也 泉
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to EP16768372.1A priority Critical patent/EP3276218A4/en
Priority to CN201680018159.3A priority patent/CN107429828B/zh
Priority to JP2017508168A priority patent/JP6340136B2/ja
Priority to US15/560,701 priority patent/US10378644B2/en
Priority to KR1020177025890A priority patent/KR20170117544A/ko
Publication of WO2016152469A1 publication Critical patent/WO2016152469A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/06Ratio selector apparatus the ratio being infinitely variable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66227Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed and torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0006Vibration-damping or noise reducing means specially adapted for gearings
    • F16H2057/0012Vibration-damping or noise reducing means specially adapted for gearings for reducing drive line oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/704Monitoring gear ratio in CVT's
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/08Timing control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6645Friction gearings controlling shifting exclusively as a function of speed and torque

Definitions

  • the present invention relates to a control device for a vehicle automatic transmission suitable for use in a vehicle automatic transmission using a continuously variable transmission mechanism.
  • a drive system of a vehicle is equipped with a power transmission system that shifts output torque of a drive source such as an engine (internal combustion engine) or a motor (electric motor) by a speed change mechanism or a speed reduction mechanism and transmits it to drive wheels.
  • a drive source such as an engine (internal combustion engine) or a motor (electric motor)
  • gears are used in the speed change mechanism and the speed reduction mechanism, vibrations and noises due to gear backlash are generated, which may give the driver a sense of incongruity. For example, if the drive torque acting on the drive shaft (drive wheel) is reversed between positive and negative, vibration, noise and shock may be caused due to backlash of the gear.
  • Patent Document 1 discloses a technique for suppressing the occurrence of the above-described shock accompanying the positive / negative reversal of the driving torque and suppressing the decrease in energy efficiency. This technique estimates the drive torque acting on the drive shaft when the brake is turned on during traveling, and when this drive torque is within a predetermined torque range (including a value of 0) corresponding to the positive / negative reversal.
  • the output torque of the motor is controlled by the motor target braking torque having a change rate smaller than a predetermined normal rate.
  • the rotational speed of the output shaft of the transmission is the rotational speed of the drive wheel (wheel speed).
  • wheel speed corresponds to the vehicle speed, and the wheel speed is often converted to the vehicle speed, but the wheel speed is affected by the differential of the left and right wheels, so the rotation speed of the transmission output shaft must be converted to the vehicle speed. Is common.
  • the transmission output shaft rotation speed is detected and converted into a vehicle speed and used for vehicle control, a vehicle speed value different from the actual vehicle speed is used for vehicle control due to the fluctuation in the rotation speed.
  • vehicle control may not be performed properly.
  • the shift control of the automatic transmission is performed based on the vehicle speed information and the engine load information.
  • the shift control cannot be performed appropriately.
  • the automatic transmission is a continuously variable transmission
  • the vehicle speed information appears in the vehicle behavior as the longitudinal G vibration of the vehicle when the vehicle speed information is affected by fluctuations in the rotational speed.
  • a continuously variable transmission even a slight fluctuation in the vehicle speed is reflected in the instruction value for the gear ratio, causing a fluctuation in the gear ratio.
  • the present invention has been devised in view of such problems, and detects the transmission output shaft rotation speed and uses this as vehicle speed information to control the automatic transmission.
  • a control device for an automatic transmission for a vehicle which can suppress the influence of the vertical fluctuation on the control of the automatic transmission when the vertical fluctuation occurs in the rotating element in a running state. For the purpose.
  • a control device for an automatic transmission for a vehicle is an automatic transmission control device provided in a power transmission system between a drive source and drive wheels of a vehicle.
  • the vehicle speed detecting means for detecting the vehicle speed of the vehicle
  • the accelerator opening detecting means for detecting the accelerator opening of the vehicle
  • the vehicle speed detected by the vehicle speed detecting means and the accelerator opening detecting means Shift control means for controlling the gear ratio of the automatic transmission based on the accelerator opening, and the vehicle speed detection means comprises output shaft rotation speed detection means for detecting the rotation speed of the output shaft of the automatic transmission.
  • the wheel rotation speed detecting means for detecting the rotation speed of the wheel equipped in the vehicle, and information on the wheel rotation speed when a predetermined condition set in advance as a condition for causing the output shaft rotation speed to fluctuate vertically is established.
  • the wheel rotation speed detection means is provided for each of the plurality of vehicle wheels, and the calculation means detects the wheel rotation detected from the plurality of wheel rotation speed detection means when the predetermined condition is satisfied. It is preferable to select a wheel rotational speed detection means whose vertical fluctuation range is less than or equal to a reference value and calculate the vehicle speed from the rotational speed information.
  • the wheel rotation speed detection means is provided for each of a plurality of wheels, and the calculation means detects the wheel rotation speed detected from the plurality of wheel rotation speed detection means at the time of determination when the predetermined condition is satisfied. It is preferable to select a wheel rotational speed detecting means closest to the output shaft rotational speed detected by the output shaft rotational speed detecting means and calculate the vehicle speed from the rotational speed information.
  • the arithmetic means It is determined whether the rotational speed of any of the plurality of wheels is greater than the vertical fluctuation range. If the determination is affirmative, the vehicle speed is calculated from the average value of the plurality of wheel rotations. If the determination is negative, the output shaft speed is calculated. It is preferable to calculate the vehicle speed.
  • a notch filter that removes a specific frequency range from the rotational speed information input to the calculation means is provided, and the drive source input to the automatic transmission is included in the specific frequency range.
  • the specific frequency range includes a frequency range of vibration of the rotating element according to the transmission gear ratio applied to the natural vibration of the drive source.
  • the calculation means includes rate processing means for performing rate processing for smooth switching when switching the rotational speed information for calculating the vehicle speed.
  • a request for output torque to the drive source is detected, the detected drive torque of the drive source is in a minute state equal to or less than a torque determination threshold, and the acceleration of the vehicle is determined as an acceleration It is preferable that it is included that all of the minute states are equal to or less than the threshold value.
  • the automatic transmission is preferably a continuously variable transmission.
  • the vehicle speed is calculated from the information on the wheel rotational speed, and the predetermined condition must be satisfied.
  • the vehicle speed is calculated from the output shaft rotation speed information. Even when the vertical fluctuation of the output shaft speed occurs, the vertical fluctuation of the wheel speed is small, so the vehicle speed for controlling the gear ratio of the automatic transmission is suppressed by the influence of the vertical speed fluctuation.
  • the gear ratio can be appropriately controlled using this vehicle speed.
  • 1 is an overall configuration diagram illustrating a drive system and a control system of a vehicle to which a control device for an automatic transmission for a vehicle according to an embodiment of the present invention is applied. It is a figure explaining the driving
  • 1 is a schematic configuration diagram of a vehicle drive system to which a control device for an automatic transmission for a vehicle according to an embodiment of the present invention is applied.
  • the number of rotations described in the following description is “the number of rotations per unit time (for example, per minute)” and corresponds to “the rotation speed”.
  • the vehicle drive system includes a drive source and a power transmission system that transmits the drive force of the drive source to the drive wheels.
  • an engine internal combustion engine
  • the power transmission system is equipped with an automatic transmission.
  • a belt type continuously variable transmission hereinafter referred to as a belt type CVT or simply referred to as CVT
  • CVT belt type continuously variable transmission
  • a toroidal CVT or the like is used as an automatic transmission.
  • Other continuously variable transmissions and stepped transmissions can also be applied.
  • FIG. 1 is a configuration diagram illustrating a drive system and a control system of a vehicle according to the present embodiment.
  • the vehicle drive system includes an engine 1 as a drive source, a torque converter 2 constituting a power transmission system, a forward / reverse switching mechanism 3, a belt-type continuously variable transmission mechanism (hereinafter also referred to as a variator). 4 and a final reduction mechanism 5 and drive wheels 6 and 6 are provided.
  • the CVT 100 is configured by housing the torque converter 2, the forward / reverse switching mechanism 3, and the variator 4 in a transmission case.
  • the engine 1 is equipped with an output torque control actuator 10 that performs output torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like. As a result, the engine 1 can control the output torque by an engine control signal from the outside in addition to the output torque control by the accelerator operation by the driver.
  • the output torque of the engine 1 is also simply referred to as engine torque.
  • the torque converter 2 is provided with a pump impeller 23 connected to the engine output shaft 11 via a converter housing 22, a turbine runner 24 connected to the torque converter output shaft 21, and a case via a one-way clutch 25.
  • the stator 26 is a component.
  • the lock-up clutch 20 includes a lock-up state (clutch complete engagement (engaged) state), an unlock-up state (clutch complete release state), a slip lock-up state (clutch) according to the vehicle state and driving state.
  • a lock-up state (clutch complete engagement (engaged) state
  • an unlock-up state (clutch complete release state)
  • a slip lock-up state (clutch) according to the vehicle state and driving state.
  • Any of the sliding engagement state that is, the rotational speed of the input side rotating member of the lockup clutch and the state where the output side rotating member has differential rotation but torque is transmitted from the input side to the output side) Switching control is carried out.
  • the forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 (forward friction engagement element) composed of a plurality of clutch plates, and a reverse brake 32 (reverse friction engagement) composed of a plurality of brake plates. Element).
  • the forward clutch 31 is engaged by the forward clutch pressure Pfc when a forward travel range such as the D range (drive range) is selected.
  • the reverse brake 32 is engaged by the reverse brake pressure Prb when the R range (reverse range) that is the reverse travel range is selected.
  • the forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range, non-running range) is selected.
  • the variator 4 has a continuously variable transmission function that continuously changes a gear ratio, which is a ratio between the transmission input rotation speed and the transmission output rotation speed, by changing the contact diameter of the belt with respect to the pulley.
  • a pulley 43 and a belt 44 are included.
  • the primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b, and the slide pulley 42 b moves in the axial direction by the primary pressure Ppri guided to the primary pressure chamber 45.
  • the secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b, and the slide pulley 43 b moves in the axial direction by the secondary pressure Psec guided to the secondary pressure chamber 46.
  • the sheave surfaces that are the opposed surfaces of the fixed pulley 42a and the slide pulley 42b of the primary pulley 42 and the sheave surfaces that are the opposed surfaces of the fixed pulley 43a and the slide pulley 43b of the secondary pulley 43 are all V-shaped.
  • the flank surfaces on both sides of the belt 44 are in contact with these sheave surfaces.
  • the gear ratio is changed by changing the winding radius of the belt 44 around the primary pulley 42 and the secondary pulley 43 according to the movement of the slide pulleys 42b and 43b.
  • the final deceleration mechanism 5 is a mechanism that decelerates the transmission output rotation from the transmission output shaft 41 of the variator 4 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the final reduction mechanism 5 is interposed between the transmission output shaft 41 and the left and right drive shafts 51, 51, and includes a first gear 52 provided on the transmission output shaft 41 and a first gear provided on the idler shaft 50. It has a second gear 53 and a third gear 54, a final reduction gear 55, and a front differential gear 56 having a differential function.
  • FIG. 1 shows the left and right drive shafts 51 and 51 and the left and right drive wheels 6 and 6 related to the left and right front wheels
  • the differential gear 56 shows a front wheel differential gear
  • 51 and drive wheels 6 and 6 are also related to the left and right rear wheels not shown in FIG. 1, and the differential gear 56 is also equipped with a rear wheel differential gear connected to the left and right rear wheels via a transfer.
  • the control system for the CVT 100 in particular includes a hydraulic control unit 7 and a CVT electronic control unit (CVTECU) 8 as transmission control means, as shown in FIG.
  • an engine electronic control unit (engine ECU) 9 as a drive source control means for exchanging information with the CVT electronic control unit 8 is provided.
  • Each electronic control unit (ECU: Electric Control Unit) 8, 9 includes an input / output device, a storage device (ROM, RAM, BURAM, etc.) incorporating a number of control programs, a central processing unit (CPU), a timer counter, etc. It is configured with.
  • the control means according to the present invention includes these CVT ECU (transmission control means) 8 and engine ECU (drive source control means) 9.
  • the hydraulic control unit 7 includes a primary pressure Ppri guided to the primary pressure chamber 45, a secondary pressure Psec guided to the secondary pressure chamber 46, a forward clutch pressure Pfc to the forward clutch 31, and a reverse brake pressure Prb to the reverse brake 32. And a control unit for generating a solenoid pressure Psol to the lock-up control valve 78.
  • the hydraulic control unit 7 includes an oil pump 70 and a hydraulic control circuit 71.
  • the hydraulic control circuit 71 includes a line pressure solenoid 72, a primary pressure solenoid 73, a secondary pressure solenoid 74, and a forward clutch pressure solenoid 75. And a reverse brake pressure solenoid 76 and a lock-up solenoid 77.
  • the line pressure solenoid 72 adjusts the hydraulic oil pumped from the oil pump 70 to the instructed line pressure PL in response to the line pressure instruction output from the CVTECU 8.
  • the primary pressure solenoid 73 adjusts the primary pressure Ppri to the instructed primary pressure Ppri using the line pressure PL as the original pressure in accordance with the primary pressure instruction output from the CVTECU 8.
  • the secondary pressure solenoid 74 adjusts the secondary pressure Psec to the instructed secondary pressure Psec using the line pressure PL as the original pressure.
  • the forward clutch pressure solenoid 75 adjusts the pressure to the forward clutch pressure Pfc instructed using the line pressure PL as the original pressure in accordance with the forward clutch pressure instruction output from the CVT ECU 8.
  • the reverse brake pressure solenoid 76 adjusts the reverse brake pressure Prb to the instructed reverse brake pressure Prb using the line pressure PL as the original pressure in response to the reverse brake pressure instruction output from the CVT ECU 8.
  • the lockup solenoid 77 generates a solenoid pressure Psol as an instruction signal pressure to the lockup control valve 78 according to an instruction from the CVTECU 8.
  • the lock-up clutch engagement pressure and the lock-up clutch release pressure are generated so that
  • the CVTECU 8 outputs an instruction to obtain the target line pressure according to the throttle opening degree to the line pressure solenoid 72, and issues an instruction to obtain the target gear ratio according to the vehicle speed, the throttle opening degree, etc. to the primary pressure solenoid 73 and the secondary Shift hydraulic control output to the pressure solenoid 74, forward / reverse switching control to output an instruction to control the engagement / release of the forward clutch 31 and the reverse brake 32 to the forward clutch pressure solenoid 75 and the reverse brake pressure solenoid 76, and lock An instruction is output to the up solenoid 77 to control engagement (complete engagement), release, slip engagement (clutch slip engagement), etc. of the lockup clutch 20.
  • the CVT ECU 8 includes a primary rotation sensor 80, a secondary rotation sensor 81, a secondary pressure sensor 82, an oil temperature sensor 83, an engine speed sensor 84, a brake switch 85, a throttle opening sensor 86, a primary pressure sensor 87, and a line pressure sensor 89.
  • Sensor information and switch information from a transmission output shaft rotational speed sensor (vehicle speed sensor) 90, wheel speed sensors (vehicle speed sensors) 90B to 90E, an accelerator opening sensor 91, an idle switch 92, and the like are input.
  • torque information is input from the engine ECU 9 and a torque request is output to the engine 1.
  • an inhibitor switch (not shown) detects a range position (D range, N range, R range, etc.) selected by the driver's operation of the shift lever, and outputs a range position signal corresponding to the range position.
  • the vehicle according to the present embodiment is a four-wheel drive vehicle in which left and right front wheels 6a and 6b and left and right rear wheels 6c and 6d are drive wheels, and a drive wheel wheel speed sensor. 90B to 90E detect wheel speeds (tire rotation speeds) of these drive wheels. Power is transmitted to the left and right front wheels 6a and 6b via a front-wheel differential gear 56f having a differential function and left and right drive shafts 51f and 51f, and the left and right rear wheels 6c and 6d are rear-wheel differential having a differential function. Power is transmitted through the gear 56r and the left and right drive shafts 51r and 51r.
  • the present invention is not limited to a four-wheel drive vehicle and can be applied to a vehicle equipped with another drive system such as a two-wheel drive vehicle. Even in this case, it is preferable to detect the number of rotations of a large number of wheels as much as possible without being limited to driving wheels.
  • the control device for an automatic transmission for a vehicle is configured such that when the vehicle is traveling in a state where the longitudinal acceleration is near zero, an abnormal noise called rattle noise or a vertical fluctuation of the rotational speed of a rotating element of a power transmission system (Rotational speed vibration, or simply referred to as vibration) may occur, and in particular, since the vehicle speed obtained from the rotational speed of the rotating element is used for the gear ratio control, the influence of the rotational speed vibration on the shift control is suppressed. It is something that can be done.
  • the inventor of the present application conducted an experiment using a vehicle having the configuration shown in FIG. 1, and analyzed the reason why such an event such as abnormal noise and rotational frequency vibration occurred from the experimental result.
  • the analysis was conducted focusing on the driving torque of the vehicle when the vehicle is traveling in a state where the longitudinal acceleration is near zero and the above event occurs.
  • the vehicle longitudinal acceleration Gv is a predetermined acceleration.
  • a minute state in which the net drive torque Tdn of the drive system, which is a drive torque applied to the drive wheels 6, is a predetermined torque T 0 or less (light load running state) ) It was found that the conditions were met.
  • the net drive torque Tdn can be obtained from the engine ECU 9 as torque information.
  • Tn can be obtained by correcting with a gear ratio or the like.
  • the state in which the longitudinal acceleration Gv is near zero is a so-called road-load running state, for example, from the net driving force Fn of the driving system obtained from the net driving torque Tn and the driving wheel rotational speed Nd, the vehicle speed.
  • a so-called road-load running state for example, from the net driving force Fn of the driving system obtained from the net driving torque Tn and the driving wheel rotational speed Nd, the vehicle speed.
  • the driving force used for acceleration of the vehicle obtained by subtracting the running resistance rr corresponding to the slope, the vehicle weight, the road surface ⁇ , etc. is very small.
  • FIGS. 2 (a) and 2 (b) are diagrams showing the data of the experimental results organized under conditions in which such an event such as abnormal noise or vibration has occurred.
  • FIG. 2 (a) shows data relating to the engine torque command value (net driving torque of the driving system) Tdn when the above event occurs (torque-related data of the round mark) and the driving wheel when the above event occurs.
  • Data relating to acceleration (vehicle longitudinal acceleration Gv) (acceleration-related data of rhombus marks) is shown.
  • the torque-related data (round mark) is plotted for each value of the gear ratio and engine torque command when the above event occurs.
  • the acceleration-related data (diamond mark) is the data when the above event occurs. It is plotted about each value of a gear ratio and driving wheel acceleration (longitudinal acceleration Gv).
  • FIG. 2B shows a torque-related characteristic region where the event shown in FIG. 2A occurs (region below the curve L1) and an acceleration-related property region where the event shown in FIG. 2 is a diagram showing the vehicle speed and the net driving torque Tdn of the driving system.
  • the above event occurs, in the region of the net driving torque Tdn predetermined torque T 0 or less (straight LL1 hereinafter), and longitudinal acceleration Gv of the vehicle is near zero load It can be said that this is a region in the vicinity of the load line (R / L line) (region between the curves LL2 and LL3).
  • FIGS. 3A to 3D are diagrams for explaining the mechanism of the occurrence of this event.
  • the power transmission gear pairs G 1 and G 2 provided in the power transmission system, for example, the CVT 100 or the final reduction mechanism 5 are shown. It shows the situation at the time of power transmission by.
  • Input gear G 1 is coupled to the input side shaft S 1
  • the output-side gear G 2 is coupled to the output side shaft S 2
  • an input-side gear G 1 and the output-side gear G 2 is engaged.
  • It is directly or indirectly driven wheels 6 connected to the side of the output-side shaft S 2.
  • the input torque from Tin is the input-side shaft S 1
  • Tout is the output torque from the output side shaft S 2 to the driving wheels 6
  • R 1 is the input side shaft S 1
  • R 2 indicates the rotation state of the input side gear G 1
  • R 2 indicates the rotation state of the output side shaft S 2 and the output side gear G 2 , respectively.
  • the input torque from the input side shaft S 1 is expressed with the teeth of the gears G 1 and G 2 in order to clearly express the backlash of the gear pair G 1 and G 2. The tooth spacing is exaggerated.
  • the output torque Tout corresponding to the input torque Tin to the driving wheels 6 is transmitted through the output-side shaft S 2, etc., this time, because the vehicle inertia is large (of course, the drive wheel 6 is a road surface without slipping The number of rotations of the drive wheel 6 hardly changes.
  • the input torque Tin transmitted by the gear pair G 1 , G 2 is the shaft of the power transmission system reaching the drive wheels 6 (output side shaft S 2 , drive shaft 51, etc., here the output side shaft S 2 ). It acts to give a twist to.
  • the twist releasing torque Ttr acts on the gear G 1 and the input-side shaft S 1 through the contact portion between the tooth C 2 tooth C 1 and the gear G 2 of the gear G 1.
  • the output side of the gear G 1 and the input side shaft S 1 also receives the rotational force component in the reverse rotation direction R 2 ′, and the rotational speed is reduced, and the input side shaft S 1 rotates in reverse according to the torsion release torque Ttr.
  • a torque Ttr ′ in the direction is applied. If the input torque Tin is small, under the influence of such reverse torque transmission, the gears G 1 and G 2 are idled again, and the tooth C 1 and the gear G of the gear G 1 to be meshed next. The second tooth C 2 is separated (see FIGS. 3C and 3D).
  • the vehicle The longitudinal acceleration Gv is near zero (acceleration zero condition).
  • the traveling state of the vehicle is a so-called road load traveling (light load traveling) state shown in FIG.
  • the magnitude of the driving torque (net driving torque Tdn) is small means that the net driving torque Tdn is not more than the predetermined torque T 0 (straight line LL1 or less) shown in FIG.
  • the driver is requesting output torque from the engine 1.
  • the driving torque output from the engine 1 to the driving wheel 6 is in a minute state with a predetermined torque T 0 or less.
  • the longitudinal acceleration Gv of the vehicle is in a state of near zero (that is, the longitudinal acceleration Gv is a predetermined acceleration Gv 0 or less).
  • the CVT ECU 8 that controls the CVT 100 is provided with a speed change control unit (speed change control means) 8D that controls the speed change ratio R of the variator 4 as a functional element.
  • the control device for an automatic transmission for a vehicle includes a vehicle speed detecting means for detecting a vehicle speed VS, an accelerator opening sensor (accelerator opening means) 91 for detecting an accelerator opening APO, and a detected vehicle speed VS. And a shift control unit 8D that controls the speed ratio of the automatic transmission 100, that is, the speed ratio R of the variator 4, based on the accelerator opening APO.
  • the vehicle speed detecting means detects a transmission output shaft rotational speed sensor (output shaft rotational speed detecting means) 90 for detecting the rotational speed of the transmission output shaft 41, and detects wheel speeds (tire rotational speeds) of the drive wheels 6a to 6d.
  • Wheel speed sensors (wheel rotation speed detection means) 90B to 90E and CVTECU 8 are provided as functional elements, and the vehicle speed is calculated from the rotation speed information detected by the transmission output shaft rotation speed sensor 90 and the wheel speed sensors 90B to 90E.
  • Vehicle speed calculation unit (calculation means) 8B Vehicle speed calculation unit (calculation means) 8B.
  • the secondary rotation sensor 81 can be used for the transmission output shaft rotation speed sensor 90.
  • the detection signal of the transmission output shaft rotational speed sensor 90 is converted into a pulse signal, and the rotational speed of the transmission output shaft 41 obtained based on the number of pulses per unit time is converted into the transmission output shaft 41. Is converted into the vehicle speed VS based on the reduction ratio of the final reduction mechanism 5 and the like from the vehicle to the drive wheel 6 and the tire diameter of the drive wheel 6.
  • the shift control by the shift control unit 8 ⁇ / b> D is based on the vehicle speed VS and the rotational speed Npri of the primary pulley 42 (the lock-up clutch 20 is fully engaged) according to the accelerator opening APO.
  • the speed change line corresponding to the engine speed Ne is set, and the speed Npri of the primary pulley 42 is controlled according to the vehicle speed VS and the accelerator opening APO.
  • the gear ratio R is controlled.
  • the rotational speed of the rotating element may fluctuate up and down together with the rattle sound.
  • the rotating element also includes the transmission output shaft 41, and the rotational speed of the transmission output shaft 41 increases and decreases. Variations also occur. If the vehicle speed VS is calculated from the rotation speed information detected by the transmission output shaft rotation speed sensor 90, the calculated vehicle speed VS also fluctuates up and down if the rotation speed information includes fluctuations in the rotation speed. As shown in the shift diagram of FIG. 4, when the calculated vehicle speed VS fluctuates up and down, the gear ratio R varies even if the accelerator opening APO is constant.
  • T DSFT (T in ⁇ I * d ⁇ p / dt ⁇ T Fric ) * Ip * If T DSFT : Drive shaft torque [Nm] T in : Primary shaft input torque [Nm] I: Primary shaft inertia [kgm2] ⁇ p : PRI angular acceleration [rad / S2] T Fric : Total friction of transmission [Nm] Ip: Variator gear ratio If: Final gear ratio
  • FIG. 5A is a diagram showing the factors causing the drive shaft rotational torque T DSFT to fluctuate up and down on the right side, and further showing the factors causing the factor event on the right side.
  • the factors of vertical movements of the input torque ( the engine torque) T in, vertical change and accelerator opening APO, there are vertical fluctuations of the engine speed Ne.
  • the cause of the vertical fluctuation of the inertia torque I is the vertical fluctuation of the engine speed Ne.
  • Factors that cause the friction T Fric to fluctuate up and down include a fluctuation in the hydraulic pressure and a fluctuation in the gear ratio R.
  • the cause of the vertical fluctuation of the engine speed Ne is the vertical fluctuation of the speed ratio R.
  • FIG. 5 (b) shows the factor of the vertical fluctuation of the transmission ratio R on the right side, and further shows the factor causing the factor event on the right side.
  • Factors causing the vertical fluctuation of the gear ratio R include the vertical fluctuation of the hydraulic pressure command and the poor stability of the gear ratio feedback.
  • Factors for the vertical fluctuation of the hydraulic pressure command include the vertical fluctuation of the accelerator opening APO and the vertical fluctuation of the vehicle speed VS.
  • Factors that cause vertical fluctuations in the vehicle speed VS include vertical fluctuations in the drive shaft torque T DSFT and other road surface disturbances.
  • the drive shaft torque T DSFT fluctuates up and down.
  • the vehicle speed VS fluctuates up and down and the transmission gear ratio R increases and decreases. It falls into an infinite loop that fluctuates.
  • the gear ratio R fluctuates up and down, and if the gear ratio R fluctuates up and down, the drive shaft torque As T DSFT fluctuates up and down and the drive shaft torque T DSFT fluctuates up and down, the transmission gear ratio R fluctuates up and down.
  • the up / down fluctuation of the vehicle speed VS used for the shift control amplifies the up / down fluctuation of the gear ratio R and the up / down fluctuation of the drive shaft torque T DSFT , thereby increasing the shift hunting level and amplifying the rattle shock. Therefore, it is important to suppress the vertical fluctuation of the vehicle speed VS.
  • the rotational speed (tire rotational speed) detected by the wheel speed sensors 90B to 90E of the drive wheels is used.
  • the vehicle speed VS is calculated by the calculation unit 8B.
  • the rotation speed information of the wheel speed sensors 90B to 90E is used even when the transmission output shaft rotation speed fluctuates as shown in FIG. 7B. This is because the up-and-down fluctuations of the are small. That is, as shown in FIG. 7 (a), a gear G 1 of the transmission output shaft 41 side and the drive wheel 6 side of the gear G 2 is an impact input is generated by traversing the play portion by the backlash of the gear
  • the drive wheel 6 side (the tire shaft side) is a heavy inertia side called the vehicle body, so that it is difficult to change the rotation with respect to the impact input. Since the 41 side is lighter than the drive wheel 6 side, it is easy to rotate and change in response to an impact input.
  • the vehicle speed calculation unit 8B may change the rotation speed to the rotation speed information detected by the transmission output shaft rotation speed sensor 90. In a situation where no occurrence occurs, the vehicle speed VS is basically calculated using the output shaft rotational speed.
  • the vehicle speed calculation unit 8B performs a predetermined condition (control) that is set in advance as a condition for causing the output shaft rotational speed to fluctuate, that is, a condition for using the tire rotational speed information. Based on the tire rotation speed detected by any of the wheel speed sensors 90B to 90E based on the determination result of the control condition determination unit (control condition determination means) 8A for determining the permission condition) and the control condition determination unit 8A.
  • a first calculation unit (wheel speed base calculation unit) 8e that calculates the vehicle speed VS
  • a second calculation unit rotation number base calculation
  • Second calculation unit 8 a vehicle speed selection unit (speed selecting means) 8 g of selecting a vehicle speed V1 that is calculated on the control vehicle speed by.
  • the following four conditions (A) to (D) are set as the control permission conditions of the control condition determination unit 8A, and it is assumed that the control permission conditions are satisfied when all of these conditions are satisfied.
  • the driver is requesting output torque from the engine 1.
  • the driving torque output from the engine 1 to the driving wheel 6 is in a minute state with a predetermined torque T 0 or less.
  • the longitudinal acceleration Gv of the vehicle is near zero (that is, the longitudinal acceleration Gv is a predetermined acceleration Gv 0 or less).
  • the drive wheel 6 is not slipping.
  • the conditions (A) to (C) are the conditions (A) to (C) that are the rattle generation region in which the rattle noise and the rotational speed of the rotating element fluctuate up and down.
  • the condition “(D)“ The drive wheels 6 are not slipping ” is an indispensable requirement for calculating the vehicle speed VS from the rotational speed of the rotating element of the power transmission system.
  • the vehicle speed selection unit 8g of the vehicle speed calculation unit 8B when the tire rotation speed information is used, information on any of the tire rotation speeds among a plurality (four in this case) of the wheel speed sensors 90B to 90E is used.
  • the vehicle speed VS is calculated using the selected wheel speed sensors 90B to 90E.
  • the vehicle speed selection unit 8g selects one to be used from the wheel speed sensors 90B to 90E based on the tire rotation speed fluctuation range and the difference between the tire rotation speed and the output shaft rotation speed. Note that once the wheel speed sensors 90B to 90E to be used are selected, the selection is not changed while the control continues.
  • the CVTECU 8 determines each of the vertical fluctuations from the transmission output shaft rotational speed information output from the transmission output shaft rotational speed sensor 90 and the tire rotational speed information output from the wheel speed sensors 90B to 90E.
  • a fluctuation range extraction unit 8AA for extracting a fluctuation range (variation level) is provided.
  • the fluctuation range can be extracted by processing the rotation speed information with a bandpass filter, or the fluctuation range can be extracted by processing the differential value of the rotation speed information with a low-pass filter. it can.
  • the vehicle speed selection unit 8g selects wheel speed sensors 90B to 90E to be used as follows based on the tire rotation speed fluctuation range and the difference between the tire rotation speed and the output shaft rotation speed. (1) First, it is determined whether or not the tire rotation speed fluctuation ranges of the left and right front wheels 6a and 6b are both equal to or smaller than a predetermined value (small).
  • the predetermined value in this case is set in advance as a threshold value that allows the fluctuation range.
  • the front wheels 6a and 6b are closer to the transmission output shaft 41 detected by the transmission output shaft rotational speed sensor 90 than when considered in terms of the power transmission path. This is because the difference between the detection value of the output shaft rotation speed sensor 90 and the front wheels 6a and 6b is smaller than the rear wheels 6c and 6d, and the probability is high.
  • the difference between the left and right front wheels 6a and 6b with the output shaft rotation speed is small (closest to the output shaft rotation speed).
  • a wheel speed sensor that detects the number of rotations is selected, and the vehicle speed V2 based on this is set as the vehicle speed for shift control.
  • the tire rotation speed fluctuation widths of the left and right rear wheels 6c and 6d are both equal to or less than the predetermined value. It is determined whether (small). Here, if the fluctuation widths of the tire rotation speeds of the left and right rear wheels 6c and 6d are both equal to or less than a predetermined value, the difference between the left and right rear wheels 6c and 6d and the output shaft rotation speed is small (in the output shaft rotation speed).
  • the wheel speed sensor that detects the closest rotation speed is selected, and the vehicle speed V3 based on the wheel speed sensor is set as the vehicle speed for shift control.
  • the output shaft rotation speed fluctuation width is compared with the tire rotation speed fluctuation widths of all four wheels. If the output shaft rotational speed fluctuation range is larger than the tire rotational speed fluctuation range of all four wheels, the vehicle speed V4 based on the average value of the tire rotational speeds of the four wheels is set as the vehicle speed for shift control.
  • the speed control vehicle speed is obtained from the output shaft rotational speed.
  • the vehicle speed V1 ′ based on the rotational speed information obtained by removing a specific frequency range from the rotational speed information detected by the transmission output shaft rotational speed sensor 90 using the notch filter 90a is used for shift control. Car speed.
  • the rotation speed detected by the transmission output shaft rotation speed sensor 90 is processed by the notch filter 90a. Based on this, the vehicle speed V1 ′ is calculated. It should be noted that both the calculation of the vehicle speed V1 ′ based on the filter processing rotation speed by the calculation unit 8e ′ and the calculation of the vehicle speed V1 based on the detected rotation speed not filtered by the calculation unit 8f ′ are both periodically input. Since the vehicle speed is calculated from the time interval of (pulse signal), continuous calculation is necessary, and these vehicle speed calculations are always performed in parallel.
  • the notch filter 90a attenuates the input amplitude in a notch shape with a desired width W at a desired frequency f.
  • the vertical fluctuation frequency f 1 and the natural vibration of the engine (powertrain) 1 are transmitted to the transmission output shaft 41 in a situation in which the rattle noise and the vertical fluctuation of the rotational speed detected by the transmission output shaft rotational speed sensor 90 occur. is designed to attenuate the input amplitude notched at the desired widths W1, W2 at the frequency f 2 Metropolitan of when it is.
  • the specific frequency range to be attenuated by the notch filter 90a includes the frequency range of the frequency component related to the vertical fluctuation of the rotational speed detected by the transmission output shaft rotational speed sensor 90, and the engine (drive source) 1
  • the frequency range of the vibration in which the natural vibration is transmitted to the transmission output shaft 41 according to the gear ratio is included.
  • the vehicle speed calculation unit 8B performs rate processing for smoothing this switching when the vehicle speed selection unit 8g switches the vehicle speeds V1 to V4 and V1 ′ (that is, when switching the rotation speed information for calculating the vehicle speed).
  • a rate processing unit (rate processing means) 8C is provided. In the rate processing unit 8C, when the vehicle speed is switched, the change in the vehicle speed is limited within a predetermined rate, and the switching is smoothed.
  • the vehicle speed calculation unit 8B selects the vehicle speed, and the shift control unit 8D. Used for shift control in
  • the vehicle speed calculation unit 8B determines whether or not a control permission condition is satisfied (step S10). That is, it is determined whether or not any of the above four conditions (A) to (D) is satisfied. If any of the four conditions (A) to (D) is satisfied, the control permission condition is satisfied. In this case, it is a rattle generation region, and in principle, wheel speed (tire rotation speed) is used.
  • step S20 it is determined whether or not the tire rotation speed fluctuation ranges of the left and right front wheels 6a and 6b are equal to or less than a predetermined value.
  • the difference between the left and right front wheels 6a and 6b with the output shaft rotation speed is small (closest to the output shaft rotation speed).
  • the wheel speed sensor that detects the number of rotations) is selected to determine the vehicle speed for shift control (step S30).
  • step S40 If at least one of the tire rotation speed fluctuation ranges of the left and right front wheels 6a, 6b is greater than a predetermined value, whether or not the tire rotation speed fluctuation widths of the left and right rear wheels 6c, 6d are both equal to or less than the predetermined value Is determined (step S40).
  • the fluctuation widths of the tire rotation speeds of the left and right rear wheels 6c and 6d are both equal to or less than a predetermined value, the difference between the left and right rear wheels 6c and 6d and the output shaft rotation speed is small (in the output shaft rotation speed).
  • a wheel speed sensor that detects the closest rotation speed is selected to determine the vehicle speed for shift control (step S50).
  • step S60 When at least one of the tire rotation speed fluctuation ranges of the left and right rear wheels 6c, 6d is larger than a predetermined value, it is determined whether or not the output shaft rotation speed fluctuation width is larger than the tire rotation speed fluctuation width of all four wheels. Determination is made (step S60). If the output shaft rotational speed fluctuation range is larger than the tire rotational speed fluctuation range of all four wheels, the shift control vehicle speed is obtained from the average value of the tire rotational speeds of the four wheels (step S70).
  • the speed control vehicle speed is obtained from the output shaft rotation speed (step S80).
  • the notch filter 90a is used to calculate the shift control vehicle speed from the rotation speed information obtained by removing a specific frequency range from the rotation speed information detected by the transmission output shaft rotation speed sensor 90 ( Step S80).
  • the vehicle speed calculation unit 8B appropriately performs rate processing on the calculated vehicle speed VS and outputs the result (step S90). That is, in the vehicle speed selection unit 8g, when switching between the vehicle speed calculated by the first calculation unit 8e and the vehicle speed calculated by the second calculation unit 8f, rate processing is performed by the rate processing unit 8C, and switching is performed smoothly. To.
  • FIG. 10 is a time chart showing an example of this control state.
  • (A) shows the control permission status
  • (b) shows the vehicle speed status used for the shift control
  • (c) shows the status of the target gear ratio by the shift control.
  • the solid line indicates the case where the control is performed by the present control device
  • the broken line indicates the case where the control is not performed by the present control device
  • the two-dot chain line is also calculated when the control is not performed.
  • Vehicle speeds V2 to V4 are shown based on the wheel speeds to be performed.
  • the second calculation unit 8f is calculated based on the rotation speed detected by the transmission output shaft rotation speed sensor 90.
  • the vehicle speed VS is selected as the control vehicle speed.
  • the vehicle speeds V2 to V4 based on the respective wheel speeds and the vehicle speed V1 ′ based on the filter processing rotational speed processed by the notch filter 90a are calculated in parallel with the vehicle speed V1 based on the detected rotational speed not filtered.
  • the vehicle speed VS is calculated using the wheel speed, but rate processing is performed to prevent a sudden change in the vehicle speed during the transition to the control.
  • the vehicle speed VS based on the wheel speed or the vehicle speed V1 ′ based on the filter processing rotation speed is used for the shift control.
  • the vehicle speed VS based on the wheel speed or the vehicle speed V1 ′ calculated by the effect of the notch filter 90a stabilizes the rotational speed, so that the target speed ratio (command value of the speed ratio R) is also stabilized, and the speed change servo system The whole is stable. For this reason, the shift hunting level can be reduced and the rattle shock can be mitigated.
  • the vehicle speed VS calculated based on the rotational speed detected by the transmission output shaft rotational speed sensor 90 is selected as the control vehicle speed.
  • rate processing is performed to prevent a sudden change in the vehicle speed even during a transition from this control.
  • the vehicle speed VS is smoothly switched and the target gear ratio is stabilized by the rate processing at the time of transition into control and transition out of control.
  • the notch filter 90a is configured by hardware such as a filter circuit, but the notch filter may be configured by software. However, the processing by the notch filter is not essential. Moreover, although the rate processing means is configured by software, it may be configured by hardware.
  • the present invention is applied to an automatic transmission including a continuously variable transmission mechanism.
  • the present invention can also be applied to an automatic transmission including a stepped transmission mechanism.
  • the drive source of the vehicle is the engine (internal combustion engine)
  • the drive source of the vehicle may be a motor (electric motor), and may be an engine and a motor.
  • the transmission may be a manual transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 車速検出手段と、アクセル開度検出手段(91)と、変速制御手段(8D)とを備え、車速検出手段は、自動変速機の出力軸回転数を検出する出力軸回転数検出手段(90)と、車輪回転数を検出する車輪回転数検出手段(90B~90E)と、出力軸の回転数の上下変動が発生する条件として予め設定された所定条件が成立したら、車輪回転数の情報から車速を演算し、所定条件が成立しなければ、前記出力軸回転数の情報から車速を演算する演算手段(8B)と、から構成される。

Description

車両用自動変速機の制御装置
 本発明は、無段変速機構を用いた車両用自動変速機に用いて好適の車両用自動変速機の制御装置に関するものである。
 車両(自動車)の駆動系には、エンジン(内燃機関)やモータ(電動機)といった駆動源の出力トルクを、変速機構や減速機構によって変速して駆動輪に伝達する動力伝達系が装備される。変速機構や減速機構には、歯車が用いられているため、歯車のバックラッシュに起因する振動や騒音が発生し、運転者等に違和感を与える場合がある。
 例えば、駆動軸(駆動輪)に作用する駆動トルクに正負の反転があると、これに伴って歯車のバックラッシュに起因して振動や騒音やショックを招く場合がある。
 特許文献1には、この駆動トルクの正負の反転に伴う上記のショックの発生を抑制すると共に、エネルギ効率の低下を抑制する技術が開示されている。この技術は、走行中にブレーキオンされたとき、駆動軸に作用している駆動トルクを推定し、この駆動トルクがその正負の反転時に対応する所定のトルク範囲内(値0を含む)のときには、予め定められた通常レートより小さい変化レートのモータ目標制動トルクでモータの出力トルクを制御している。
特開2013-187959号公報
 ところで、特許文献1のショックの発生状況とは異なるが、車両試験の結果、車両が前後加速度ゼロ近傍の一定速度状態で走行している際に、車両の駆動系から所謂ラトル音と呼ばれる異音が発生する場合があることが判明した。また、このようなラトル音が発生する状況下で、車両の駆動系に回転数(回転速度)の上下変動(振動)が発生する場合があることも判明した。このようにラトル音や回転数変動が発生する現象は、後に詳述するが、駆動トルクの正負の繰り返し反転、即ち、駆動トルクの周期的な変動の結果、これに伴って回転数変動や歯車のバックラッシュに起因するラトル音や回転数変動が発生するものと考えられる。
 また、例えば、変速機の出力軸は駆動輪と終減速機構等の歯車機構を介して駆動輪に接続されるため、変速機の出力軸の回転数は駆動輪の回転数(車輪速)と対応する。車輪速と車速とは対応し、車輪速を車速に換算することもしばしば行われるが、車輪速は左右輪の差動の影響を受けるため、変速機出力軸の回転数を車速に換算することが一般的である。しかし、車両が前後加速度ゼロ近傍で走行していると、上述のように、駆動トルクの周期的な変動により変速機出力軸回転数の上下変動が発生し、これに伴って変速機の出力軸と駆動輪との間に介在する歯車機構のバックラッシュに起因するラトル音や変速機出力軸回転数の上下変動が発生する。
 このため、例えば、変速機出力軸回転数を検出してこれを車速に換算して車両の制御に用いると、回転数の上下変動によって実際の車速とは異なる車速値が車両の制御に使用されることになり、車両制御を適切に行なえなくなる場合がある。自動変速機の変速制御は、車速情報とエンジン負荷情報とに基づいて行なうが、車速情報が上記のような回転数上下変動の影響を受けると変速制御を適切に行なうことができない。
 特に、自動変速機が無段変速機の場合、車速情報が回転数上下変動の影響を受けると車両の前後G振動として車両挙動に現れることが判明した。無段変速機の場合、僅かな車速の上下変動であっても変速比の指示値に反映され変速比の上下変動を招くことになる。
 変速比が上下変動するとエンジン回転数が上下変動し、エンジン回転数が上下変動するとプライマリ軸への入力トルクやプライマリ軸のイナーシャトルクが上下変動することになり、ドライブシャフトトルクも上下変動し、最終的には車両の前後G振動として車両挙動に現れることになると考えられる。
 本発明は、このような課題に鑑み創案されたもので、変速機出力軸回転数を検出し、これを車速情報として用いて自動変速機の制御を行なうものにおいて、車両が前後加速度ゼロ近傍で走行している状態で当該回転要素に上下変動が発生した場合にこの上下変動の自動変速機の制御への影響を抑制することができるようにした、車両用自動変速機の制御装置を提供することを目的とする。
 (1)上記の目的を達成するために、本発明の車両用自動変速機の制御装置は、車両の駆動源と駆動輪との間の動力伝達系に装備された自動変速機の制御装置であって、前記車両の車速を検出する車速検出手段と、前記車両のアクセル開度を検出するアクセル開度検出手段と、前記車速検出手段により検出された車速及び前記アクセル開度検出手段により検出されたアクセル開度に基づいて前記自動変速機の変速比を制御する変速制御手段とを備え、前記車速検出手段は、前記自動変速機の出力軸の回転数を検出する出力軸回転数検出手段と、前記車両に装備された車輪の回転数を検出する車輪回転数検出手段と、前記出力軸回転数の上下変動が発生する条件として予め設定された所定条件が成立したら、前記車輪回転数の情報から車速を演算し、前記所定条件が成立しなければ、前記出力軸回転数の情報から車速を演算する演算手段と、から構成されていることを特徴としている。
 (2)前記車輪回転数検出手段は、複数の車動輪毎に設けられ、前記演算手段は、前記所定条件が成立したら、その判定時点で複数の前記車輪回転数検出手段のうち検出した車輪回転数の上下変動幅が基準値以下の車輪回転数検出手段を選定してその回転数情報から車速を演算することが好ましい。
 (3)前記車輪回転数検出手段は、複数の車輪毎に設けられ、前記演算手段は、前記所定条件が成立したら、その判定時点で複数の前記車輪回転数検出手段のうち検出した車輪回転数が前記出力軸回転数検出手段により検出された出力軸回転数に最も近い車輪回転数検出手段を選定してその回転数情報から車速を演算することが好ましい。
 (4)前記演算手段は、前記所定条件が成立したときに、前記複数の車輪回転数の上下変動幅の何れかが基準値以下でない場合には、前記出力軸回転数の上下変動幅が前記複数の車輪の何れの回転数の上下変動幅よりも大きいか否かを判定して、肯定判定なら前記複数の車輪回転数の平均値から車速を演算し、否定判定なら前記出力軸回転数から車速を演算することが好ましい。
 (5)この場合、前記演算手段に入力される前記回転数情報から特定の周波数域を除去するノッチフィルタが装備され、前記特定の周波数域には、前記自動変速機に入力される前記駆動源の駆動トルクが微小な状態において駆動輪に入力される駆動トルクの周期的な変動に起因して発生する前記出力軸回転数の上下変動にかかる周波数成分の周波数域が含まれ、前記演算手段は、前記所定条件が成立し前記出力軸回転数から車速を演算するときには、前記出力軸回転数検出手段により検出された回転数情報を前記ノッチフィルタでフィルタ処理したものから車速を演算することが好ましい。
 (6)前記特定の周波数域には、前記駆動源の固有振動にかかる前記変速比に応じた回転要素の振動の周波数域が含まれていることが好ましい。
 (7)前記演算手段は、車速を演算する回転数情報を切り替える際に、切替を滑らかにするレート処理を行なうレート処理手段を備えていることが好ましい。
 (8)前記所定条件には、前記駆動源への出力トルク要求が検出されていること、前記駆動源の検出駆動トルクがトルク判定閾値以下の微小状態であること、前記車両の加速度が加速度判定閾値以下の微小状態であること、が何れも成立していることが含まれていることが含まれていることが好ましい。
 (9)前記自動変速機は、無段変速機であることが好ましい。
 例えば、車両が前後加速度ゼロ近傍の状態で走行しているときなどに、駆動輪に入力される駆動トルクが周期的に変動し、これに起因して自動変速機の出力軸以降の回転要素の回転数に上下変動が生じる場合があって、当該回転要素の回転数を検出しこれに基づく車速に応じて自動変速機の変速制御を行なうと、回転数の上下変動が変速制御に影響する。これに対し、本発明によれば、出力軸の回転数の上下変動が発生する条件として予め設定された所定条件が成立したら、車輪回転数の情報から車速を演算し、所定条件が成立しなければ、出力軸回転数の情報から車速を演算する。出力軸回転数の上下変動が発生する場合でも、車輪回転数の上下変動は少ないので、自動変速機の変速比を制御するための車速には、前記回転数の上下変動の影響が抑制され、この車速を用いて変速比を適正に制御できるようになる。
本発明の一実施形態にかかる車両用自動変速機の制御装置が適用された車両の駆動系及び制御系を示す全体構成図である。 本発明の一実施形態にかかる車両用自動変速機の制御装置の制御対象の車両の運転領域を説明する図である。 本発明の課題にかかる事象の発生のメカニズムを説明する模式図である。 本発明の課題にかかる状況を説明する速度線図である。 本発明の課題にかかる事象とその要因との関係を説明するブロック図である。 本発明の一実施形態にかかる車両用自動変速機の制御装置が適用された車両の駆動系の概略構成図である。 本発明の一実施形態にかかる車両用自動変速機の制御装置の制御にかかる現象を説明する図である。 本発明の一実施形態にかかる車両用自動変速機の制御装置の要部構成を示すブロック図である。 本発明の一実施形態にかかる車両用自動変速機の制御装置による制御を説明するフローチャートである。 本発明の一実施形態にかかる車両用自動変速機の制御装置による制御の一例を示すタイムチャートである。 本発明の一実施形態の車両用自動変速機の制御装置の要部構成を示すブロック図である。 本発明の一実施形態の車両用自動変速機の制御装置に適用されるノッチフィルタを説明するフィルタ特性図である。
 以下、図面を参照して、本発明の実施形態について説明する。
 なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。
 また、以下の説明で記載する「回転数」は、「単位時間当たり(例えば、1分当たり)の回転数」であり「回転速度」に相当する。
 まず、本実施形態にかかる車両の駆動系と制御系の構成を説明する。なお、車両の駆動系には、駆動源と、この駆動源の駆動力を駆動輪に伝達する動力伝達系が備えられるが、本実施形態では、駆動源としてエンジン(内燃機関)が装備され、動力伝達系には自動変速機が装備されている。本実施形態では、自動変速機に、ベルト式無段変速機(以下、ベルト式CVT、又は、単に、CVTとも記す)が適用されたものを例示するが、自動変速機としては、トロイダルCVTなどその他の無段変速機や、有段変速機を適用することもできる。
 [全体システム構成]
 図1は、本実施形態にかかる車両の駆動系と制御系を示す構成図である。
 図1に示すように、車両の駆動系は、駆動源であるエンジン1と、動力伝達系を構成するトルクコンバータ2,前後進切替機構3,ベルト式無段変速機構(以下、バリエータとも呼ぶ)4,及び終減速機構5と、駆動輪6,6と、を備えている。なお、トルクコンバータ2と前後進切替機構3とバリエータ4とをトランスミッションケース内に収納することによりCVT100が構成される。
 エンジン1には、スロットルバルブ開閉動作や燃料カット動作等により出力トルク制御を行なう出力トルク制御アクチュエータ10が装備される。これによって、エンジン1は、ドライバによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号による出力トルクの制御も可能になっている。なお、エンジン1の出力トルクについては、単にエンジントルクとも言う。
 トルクコンバータ2は、トルク増大機能を有する発進要素であり、トルク増大機能を必要としないときに、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21とを直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、エンジン出力軸11にコンバータハウジング22を介して連結されたポンプインペラ23と、トルクコンバータ出力軸21に連結されたタービンランナ24と、ケースにワンウェイクラッチ25を介して設けられたステータ26と、を構成要素とする。
 また、ロックアップクラッチ20は、車両の状態や運転状態に応じてロックアップ状態(クラッチ完全係合(締結)状態)と、アンロックアップ状態(クラッチ完全解放状態)と、スリップロックアップ状態(クラッチ滑り係合状態、つまり、ロックアップクラッチの入力側の回転部材の回転数と、出力側の回転部材に差回転があるが、入力側から出力側へトルクが伝達されている状態)との何れかに、切り替え制御される。
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数のクラッチプレートから成る前進クラッチ31(前進側摩擦係合要素)と、複数のブレーキプレートから成る後退ブレーキ32(後退側摩擦係合要素)と、を有する。
 前進クラッチ31は、Dレンジ(ドライブレンジ)等の前進走行レンジの選択時に前進クラッチ圧Pfcにより係合される。後退ブレーキ32は、後退走行レンジであるRレンジ(後退レンジ)の選択時に後退ブレーキ圧Prbにより係合される。なお、前進クラッチ31及び後退ブレーキ32は、Nレンジ(ニュートラルレンジ、非走行レンジ)の選択時、前進クラッチ圧Pfcと後退ブレーキ圧Prbとをドレーンすることで、いずれも解放される。
 バリエータ4は、プーリに対するベルトの接触径の変更により変速機入力回転数と変速機出力回転数との比である変速比を無段階に変化させる無段変速機能を備え、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有する。プライマリプーリ42は、固定プーリ42a及びスライドプーリ42bにより構成され、スライドプーリ42bは、プライマリ圧室45に導かれるプライマリ圧Ppriにより軸方向に移動する。セカンダリプーリ43は、固定プーリ43a及びスライドプーリ43bにより構成され、スライドプーリ43bは、セカンダリ圧室46に導かれるセカンダリ圧Psecにより軸方向に移動する。
 プライマリプーリ42の固定プーリ42a及びスライドプーリ42bの各対向面であるシーブ面、及び、セカンダリプーリ43の固定プーリ43a及びスライドプーリ43bの各対向面であるシーブ面は、何れもV字形状をなし、ベルト44の両側のフランク面は、これらの各シーブ面と接触する。スライドプーリ42b,43bの移動に応じて、プライマリプーリ42及びセカンダリプーリ43へのベルト44の巻付き半径が変更されることにより、変速比が変更される。
 終減速機構5は、バリエータ4の変速機出力軸41からの変速機出力回転を減速するとともに差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、変速機出力軸41と左右のドライブシャフト51,51との間に介装され、変速機出力軸41に設けられた第1ギヤ52,アイドラ軸50に設けられた第2ギヤ53及び第3ギヤ54と、最終減速ギヤ55と、差動機能を持つ前輪ディファレンシャルギヤ56とを有する。
 なお、図1には、左右のドライブシャフト51,51及び左右の駆動輪6,6として左右の前輪に関するものを示し、ディファレンシャルギヤ56として前輪ディファレンシャルギヤを示しているが、左右のドライブシャフト51,51や駆動輪6,6としては、図1には示さない左右の後輪に関するものもあり、ディファレンシャルギヤ56としては、トランスファーを介して左右の後輪に接続される後輪ディファレンシャルギヤも装備される。
 車両の制御系のうち、特にCVT100の制御系は、図1に示すように、油圧コントロールユニット7と、変速機制御手段としてのCVT電子コントロールユニット(CVTECU)8と、を備えている。また、このCVT電子コントロールユニット8と情報を授受する駆動源制御手段としてのエンジン電子コントロールユニット(エンジンECU)9が装備されている。
 なお、各電子コントロールユニット(ECU:Electric Control Unit)8,9は、入出力装置,多数の制御プログラムを内蔵した記憶装置(ROM,RAM,BURAM等),中央処理装置(CPU),タイマカウンタ等を備えて構成される。本発明にかかる制御手段は、これらのCVTECU(変速機制御手段)8及びエンジンECU(駆動源制御手段)9を含んで構成される。
 油圧コントロールユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppriと、セカンダリ圧室46に導かれるセカンダリ圧Psecと、前進クラッチ31への前進クラッチ圧Pfcと、後退ブレーキ32への後退ブレーキ圧Prbと、ロックアップコントロールバルブ78へのソレノイド圧Psolとを作り出す制御ユニットである。この油圧コントロールユニット7は、オイルポンプ70と、油圧制御回路71と、を備え、油圧制御回路71は、ライン圧ソレノイド72と、プライマリ圧ソレノイド73と、セカンダリ圧ソレノイド74と、前進クラッチ圧ソレノイド75と、後退ブレーキ圧ソレノイド76と、ロックアップソレノイド77とを有する。
 ライン圧ソレノイド72は、CVTECU8から出力されるライン圧指示に応じ、オイルポンプ70から圧送される作動油を、指示されたライン圧PLに調圧する。
 プライマリ圧ソレノイド73は、CVTECU8から出力されるプライマリ圧指示に応じ、ライン圧PLを元圧として指示されたプライマリ圧Ppriに減圧調整する。
 セカンダリ圧ソレノイド74は、CVTECU8から出力されるセカンダリ圧指示に応じ、ライン圧PLを元圧として指示されたセカンダリ圧Psecに減圧調整する。
 前進クラッチ圧ソレノイド75は、CVTECU8から出力される前進クラッチ圧指示に応じ、ライン圧PLを元圧として指示された前進クラッチ圧Pfcに減圧調整する。
 後退ブレーキ圧ソレノイド76は、CVTECU8から出力される後退ブレーキ圧指示に応じ、ライン圧PLを元圧として指示された後退ブレーキ圧Prbに減圧調整する。
 ロックアップソレノイド77は、CVTECU8からの指示により、ロックアップコントロールバルブ78への指示信号圧としてのソレノイド圧Psolを作り出す。ロックアップコントロールバルブ78は、ソレノイド圧Psolを作動信号圧として、ロックアップクラッチ20のクラッチ前後油室の差圧であるロックアップ差圧ΔP(ΔP=Pa-Pr)がCVTECU8からの指示に基づく値となるようにロックアップクラッチ係合圧とロックアップクラッチ解放圧とを作り出す。
 CVTECU8は、スロットル開度等に応じた目標ライン圧を得る指示をライン圧ソレノイド72に出力するライン圧制御、車速やスロットル開度等に応じて目標変速比を得る指示をプライマリ圧ソレノイド73及びセカンダリ圧ソレノイド74に出力する変速油圧制御、前進クラッチ31と後退ブレーキ32の係合/解放を制御する指示を前進クラッチ圧ソレノイド75及び後退ブレーキ圧ソレノイド76に出力する前後進切替制御を行なうとともに、ロックアップソレノイド77に指示を出力してロックアップクラッチ20の係合(完全係合),解放,スリップ係合(クラッチ滑り係合)等の制御を行なう。
 このCVTECU8には、プライマリ回転センサ80,セカンダリ回転センサ81,セカンダリ圧センサ82,油温センサ83,エンジン回転数センサ84,ブレーキスイッチ85,スロットル開度センサ86,プライマリ圧センサ87,ライン圧センサ89,変速機出力軸回転数センサ(車速センサ)90,車輪速センサ(車速センサ)90B~90E,アクセル開度センサ91,アイドルスイッチ92等からのセンサ情報やスイッチ情報が入力される。また、エンジンECU9からはトルク情報が入力され、エンジン1へはトルクリクエストを出力する。ここで、図示しないインヒビタースイッチは、運転者のシフトレバーの操作によって選択されているレンジ位置(Dレンジ,Nレンジ,Rレンジ等)を検出し、レンジ位置に応じたレンジ位置信号を出力する。
 また、本実施形態にかかる車両は、図6に示すように、左右の前輪6a,6b及び左右の後輪6c,6dが何れも駆動輪である四輪駆動車であり、駆動輪車輪速センサ90B~90Eはこれらの各駆動輪の車輪速(タイヤ回転数)を検出する。なお、左右の前輪6a,6bは差動機能を持つ前輪ディファレンシャルギヤ56f及び左右のドライブ軸51f,51fを介して動力を伝達され、左右の後輪6c,6dは差動機能を持つ後輪ディファレンシャルギヤ56r及び左右のドライブ軸51r,51rを介して動力を伝達される。
 ただし、本発明は、四輪駆動車に限定されるものではなく、二輪駆動車等の他の駆動方式が備えられた車両にも適用可能であることは言うまでもない。なお、その場合でも、駆動輪限らず、極力多数の車輪の回転数を検出することが好ましい。
 [発明の課題にかかる異音や回転数の上下変動の発生メカニズム]
 本実施形態の車両用自動変速機の制御装置は、車両が前後加速度ゼロ近傍の状態で走行している際に、ラトル音と呼ばれる異音や、動力伝達系の回転要素の回転数の上下変動(回転数振動、或いは、単に振動とも呼ぶ)が発生することがあり、特に、回転要素の回転数から求められる車速を変速比の制御に用いるため、回転数振動の変速制御への影響を抑制することができるようにするものである。本願発明者は、図1に示す構成を有する車両による実験を実施し、この実験結果から、かかる異音や回転数振動といった事象の発生する理由について分析した。
 まず、車両が前後加速度ゼロ近傍の状態で走行していて上記事象が発生する際の車両の駆動トルクに着目して分析した。この結果、こうした事象が発生する状況は、ロックアップクラッチ20が係合された直結状態であって、ドライバがエンジン1に出力トルク要求をしている状況下で、車両の前後加速度Gvが所定加速度Gv0以下の微小状態(ゼロ近傍の状態)であることに加えて、駆動輪6に加えられる駆動トルクである駆動系の正味駆動トルクTdnが所定トルクT0以下の微小状態(軽負荷走行状態)であること、の条件が揃った場合であることが判明した。
 なお、正味駆動トルクTdnは、エンジンECU9からトルク情報として入手できるが、例えばエンジンへの指令トルクに対してエンジントルクのバラツキを考慮した補正と、フリクション分の減算をして得ることができる正味トルクTnを変速比等で補正して得ることができる。
 また、前後加速度Gvがゼロ近傍の状態とは、いわゆるロードロード(Road Load)走行の状態であり、例えば正味駆動トルクTn及び駆動輪回転数Ndから得られる駆動系の正味駆動力Fnから、車速,勾配,車重,路面μ等に応じた走行抵抗rrを減算して得られる車両の加速に用いられる駆動力が微小である状態に対応する。
 図2(a),(b)は、実験結果のデータを、こうした異音や振動等の事象が発生した条件で整理して示す図である。図2(a)には、上記事象が発生した時のエンジントルク指令値(駆動系の正味駆動トルク)Tdnに関するデータ(丸形マークのトルク関連データ)と、上記事象が発生した時の駆動輪加速度(車両の前後加速度Gv)に関するデータ(ひし形マークの加速度関連データ)とを示している。
 なお、トルク関連データ(丸形マーク)は、上記事象が発生した時の変速比及びエンジントルク指令の各値についてプロットしたもので、加速度関連データ(ひし形マーク)は、上記事象が発生した時の変速比及び駆動輪加速度(前後加速度Gv)の各値についてプロットしたものである。
 トルク関連データ(丸形マーク)から、変速比及びエンジントルク指令に関しては曲線L1以下の領域で上記事象が発生するものと推定できる。また、加速度関連データ(ひし形マーク)から、加速度0を中心とした一定の加減速範囲(直線L2とL3との間の範囲)内で上記事象が発生するものと推定できる。
 図2(b)は、図2(a)に示す事象が発生したトルク関連特性の領域(曲線L1以下の領域)と、図2(a)に示す事象が発生した加速度関連特性の領域(直線L2と直線L3との間の領域)とを、車速及び駆動系の正味駆動トルクTdnに関して示す図である。図2(b)に示すように、上記事象が発生するのは、正味駆動トルクTdnが所定トルクT以下(直線LL1以下)の領域で、且つ、車両の前後加速度Gvがゼロ近傍となるロードロード線(R/L線)付近の領域(曲線LL2と曲線LL3との間の領域)であると言える。
 図3(a)~(d)はこの事象の発生のメカニズムを説明する図であり、動力伝達系の例えばCVT100内や終減速機構5に装備される動力伝達用の歯車対G,Gによる動力伝達時の状況を示すものである。入力側歯車Gは入力側軸Sに結合され、出力側歯車Gは出力側軸Sに結合され、入力側歯車Gと出力側歯車Gとが噛合している。出力側軸Sの側には直接または間接的に駆動輪6が接続されている。
 図3(a)~(d)において、Tinは入力側軸Sからの入力トルクを、Toutは出力側軸S2から駆動輪6側への出力トルクを、R1は入力側軸S1及び入力側歯車G1の回転状態を、R2は出力側軸S及び出力側歯車Gの回転状態を、それぞれ示している。また、入力側軸S1からの入力トルクを、図3(a)~(d)では歯車対G1,G2のバックラッシュを明確に表現するため、各歯車G1,G2の歯と歯の間隔を誇張して描いている。
 図3(a)に示すように、噛み合うべき歯車G1の歯C1と歯車G2の歯C2とが離隔していると、歯車G1,G2間は空転状態となっており、入力側軸S1からの入力トルクTinは歯車G1の回転R1の速度(回転数)の上昇のみに使われ、出力側軸S2にはトルクは伝達されず、歯車G2の回転R2の速度(回転数)の上昇には寄与しない。このため、駆動輪6側への出力トルクToutは略0(Nm)となる。
 図3(b)に示すように、歯車G1,G2の相互のガタがつまって歯車G1の歯C1と歯車G2の歯C2の各対向面が接触すると、歯C1,歯C2を通じて、入力側軸S1からの入力トルクTinが出力側軸S2に伝達され始め、歯車G2の回転R2の速度(回転数)の上昇に寄与し始める。
 こうして、出力側軸S2等を通じて駆動輪6側へ入力トルクTinに応じた出力トルクToutが伝達されるが、このとき、車両イナーシャが大きいので(当然ながら、駆動輪6はスリップせずに路面をグリップしていることが前提)、駆動輪6の回転数はほとんど変化しない。そして、歯車対G1,G2により伝達される入力トルクTinは、駆動輪6に至る動力伝達系の軸(出力側軸S2やドライブシャフト51等、ここでは出力側軸S2とする)に捩れを与えるように作用する。
 ドライブシャフト51等の動力伝達系の出力側軸Sに捩れが生じてこの捩れによる出力側軸Sの入力側と出力側との位相差がピークに達すると、この捩れが開放するため、出力側軸Sの入力側(即ち、歯車G側)は入力トルクTinと逆方向に捩れ解放トルクTtrを受けて、出力側軸Sの入力側及び歯車Gは逆転方向R´への回転力成分を受けて回転数が引き下げられる。
 また、捩れ解放トルクTtrは、歯車G1の歯C1と歯車G2の歯C2との接触部を介して歯車G1及び入力側軸S1に作用する。これにより、歯車G1及び入力側軸S1の出力側も逆転方向R2´への回転力成分を受けて回転数が引き下げられ、入力側軸S1には捩れ解放トルクTtrに応じた逆転方向へのトルクTtr´が加えられる。入力トルクTinが小さいと、このような逆向きのトルク伝達の影響を受けて、歯車G1,G2間は再び空転状態となって、次に噛み合うべき歯車G1の歯C1と歯車G2の歯C2とが離隔する(図3(c),(d)参照)。
 このようにして、歯車G1と歯車G2との間で、トルク伝達方向が周期的に逆転する状況(即ち、駆動輪6に入力される駆動トルクの周期的な変動、換言すれば、駆動トルクの正負の繰り返し反転)が続くとバックラッシュに起因する衝撃(ラトルショック)によってラトル音が発生し、同時に、歯車G1及びその回転軸や、歯車G2及びその回転軸において、回転数の上下変動が発生するものと考えられる。
 トルク伝達方向が周期的に逆転する状況(駆動輪6に入力される駆動トルクの周期的な変動)とは、入力側軸S1(歯車G1)と出力側軸S2(歯車G2)とが略同期した回転を継続し、且つ、エンジン1側から駆動輪6側に入力される駆動トルク(正味駆動トルクTdn)の大きさが小さくて上記捩れ解放トルクTtrの影響を受ける状況である。
 入力側軸S1と出力側軸S2とが略同期した回転を継続するのは、通常、入力側軸S1と出力側軸S2とが速度変化しない状態であり、換言すれば、車両の前後加速度Gvがゼロ近傍の状態(加速度ゼロ条件)である。これは、車両の走行状態が、図2(b)に示す、いわゆるロードロード(Road Load)走行(軽負荷走行)の状態の場合である。
 また、駆動トルク(正味駆動トルクTdn)の大きさが小さいとは、正味駆動トルクTdnが図2(b)に示す所定トルクT0以下(直線LL1以下)の状況である。
 したがって、以下の3つの条件が揃うと、ラトル音の発生や回転要素の回転数の上下変動の発生といった事象が発生しうるものと考えることができる。
(A)ドライバがエンジン1に出力トルクを要求していること。
(B)エンジン1から駆動輪6へ出力される駆動トルクが所定トルクT0以下の微小状態であること。
(C)車両の前後加速度Gvがゼロ近傍の状態(すなわち、前後加速度Gvが所定加速度Gv0以下の状態)であること。
 [車両用自動変速機の制御装置の構成]
 図1に示すように、CVT100を制御するCVTECU8には、バリエータ4の変速比Rを制御する変速制御部(変速制御手段)8Dが機能要素として設けられている。本実施形態にかかる車両用自動変速機の制御装置は、車速VSを検出する車速検出手段と、アクセル開度APOを検出するアクセル開度センサ(アクセル開度手段)91と、検出された車速VSとアクセル開度APOとに基づいて、自動変速機100の変速比、即ち、バリエータ4の変速比Rを制御する変速制御部8Dとを備えて構成される。
 車速検出手段は、変速機出力軸41の回転数を検出する変速機出力軸回転数センサ(出力軸回転数検出手段)90と、各駆動輪6a~6dの車輪速(タイヤ回転数)を検出する車輪速センサ(車輪回転数検出手段)90B~90Eと、CVTECU8に機能要素として設けられ、変速機出力軸回転数センサ90及び車輪速センサ90B~90Eにより検出された回転数情報から車速を演算する車速演算部(演算手段)8Bとから構成される。なお、本実施形態では、変速機出力軸41の回転数はセカンダリプーリ43の回転数と一致するので、変速機出力軸回転数センサ90にはセカンダリ回転センサ81を流用することができる。
 車速演算部8Bでは、変速機出力軸回転数センサ90の検出信号をパルス信号に変換し、単位時間当たりのパルス数に基づいて得られる変速機出力軸41の回転数を、変速機出力軸41から駆動輪6に至る間の終減速機構5等の減速比や駆動輪6のタイヤ径等に基づいて車速VSに換算する。
 変速制御部8Dによる変速制御は、例えば図4の変速線図に示すように、アクセル開度APOに応じて車速VSとプライマリプーリ42の回転数Npri(ロックアップクラッチ20が完全係合されていれば、エンジン回転数Neと同一)とを対応させる変速線を設定し、車速VSとアクセル開度APOとに応じてプライマリプーリ42の回転数Npriを制御する。これにより、変速比Rが制御される。
 上述のように、ラトル音と共に回転要素の回転数の上下変動の発生する場合があるが、この場合の回転要素には変速機出力軸41も含まれ、変速機出力軸41の回転数の上下変動も発生する。変速機出力軸回転数センサ90により検出された回転数情報から車速VSを演算すると、回転数情報は回転数の上下変動を含むものなら演算された車速VSも上下変動することになる。
 図4の変速線図に示すように、演算された車速VSが上下変動すると、アクセル開度APOが一定であっても変速比Rが変動することになる。
 ところで、正味駆動トルクTdnであるドライブシャフトの回転トルクTDSFTは、次式のように演算できる。
(数1)
DSFT=(Tin-I*dωp/dt-TFric)*Ip*If
DSFT:ドライブシャフトトルク[Nm]
in:プライマリ軸入力トルク[Nm]
I:プライマリ軸イナーシャ[kgm2]
ωp:PRI角加速度[rad/S2]
Fric:変速機のトータルフリクション[Nm]
Ip:バリエータ変速比
If:ファイナルギヤ比
 また、図5(a)はドライブシャフトの回転トルクTDSFTが上下変動する要因を、その右側に示し、更にその要因の事象が発生する要因を、その右側に示すようにした図である。ドライブシャフトトルクTDSFTが上下変動する要因には、CVT100に入力されるプライマリ入力トルク(=エンジントルク)Tinの上下変動や、プライマリ軸のイナーシャトルクIの上下変動や、変速機のトータルフリクションTFricの上下変動が挙げられる。
 また、入力トルク(=エンジントルク)Tinの上下変動の要因には、アクセル開度APOの上下変動や、エンジン回転数Neの上下変動がある。イナーシャトルクIの上下変動の要因には、エンジン回転数Neの上下変動がある。フリクションTFricの上下変動の要因には、油圧の上下変動や、変速比Rの上下変動がある。さらに、エンジン回転数Neの上下変動の要因には、変速比Rの上下変動がある。油圧の上下変動の要因には、変速比Rのフィードバックによる油圧指令の上下変動や、入力トルクTinの上下変動がある。
 図5(b)は変速比Rの上下変動の要因を、その右側に示し、更にその要因の事象が発生する要因を、その右側に示すようにしている。変速比Rの上下変動の要因には、油圧指令の上下変動や、変速比フィードバックの安定性不良がある。油圧指令の上下変動の要因には、アクセル開度APOの上下変動や、車速VSの上下変動がある。車速VSの上下変動の要因には、ドライブシャフトトルクTDSFTの上下変動や、その他の路面外乱がある。
 図5(a)に示すように、変速比Rが上下変動すると、ドライブシャフトトルクTDSFTが上下変動し、ドライブシャフトトルクTDSFTが上下変動すると車速VSが上下変動して、変速比Rが上下変動するといった無限ループに陥る。ここで、車速VSに着目すると、実際の車速が変動していなくても、変速制御に用いる車速VSが上下変動すれば、変速比Rが上下変動し、変速比Rが上下変動するとドライブシャフトトルクTDSFTが上下変動し、ドライブシャフトトルクTDSFTが上下変動すると変速比Rが上下変動するというように、やはり無限ループに陥る。
 このように、変速制御に用いる車速VSの上下変動は、変速比Rの上下変動やドライブシャフトトルクTDSFTの上下変動を増幅することになり、変速ハンチングレベルを増大させ、ラトルショックも増幅させることになるので、車速VSの上下変動を抑制することが重要になる。
 本制御装置では、このような車速VSの上下変動を抑制するために、変速機出力軸回転数センサ90により検出された回転数情報に回転数の上下変動が発生する状況では、一定条件下で、変速機出力軸回転数センサ90により検出された回転数(出力軸回転数)に替えて、駆動輪の車輪速センサ90B~90Eにより検出された回転数(タイヤ回転数)を用いて、車速演算部8Bによる車速VSの演算を行なうようにしている。
 このように、車輪速センサ90B~90Eの回転数情報を用いるのは、図7(b)に示すように、変速機出力軸回転数に上下変動が発生する状況であっても、タイヤ回転数の上下変動は僅かなものになるためである。
 つまり、図7(a)に示すように、変速機出力軸41側のギヤGと駆動輪6側のギヤGとがギヤのバックラッシュによる遊び部分を行き来することで衝撃入力が発生し、ラトル音や回転数の上下変動(ラトルショック)を招くが、駆動輪6側(タイヤ軸側)は車体という重たいイナーシャ側であるために衝撃入力に対して回転変化し難く、変速機出力軸41側は駆動輪6側に対して軽いイナーシャであるために衝撃入力に対して回転変化し易い。
 したがって、図7(b)に示すように、変速機出力軸回転数に大きな上下変動が発生しても、タイヤ回転数の上下変動は僅かなものになる。ただし、ラトルショックが大きい場合にはタイヤ回転数の上下変動も大きくなる場合がある。
 ただし、車輪の左右では旋回時に差動を生じて車速と対応しなくなる場合があるので、車速演算部8Bでは、変速機出力軸回転数センサ90により検出された回転数情報に回転数の上下変動が発生しない状況では、基本的に出力軸回転数を用いて車速VSの演算を行なうようにしている。
 このため、車速演算部8Bは、図1,図8に示すように、出力軸回転数の上下変動が発生する条件、即ち、タイヤ回転数情報を使用する条件として予め設定された所定条件(制御許可条件)を判定する制御条件判定部(制御条件判定手段)8Aと、制御条件判定部8Aの判定結果に基づいて、車輪速センサ90B~90Eの何れかで検出されたタイヤ回転数に基づいて車速VSを演算する第1演算部(車輪速ベース演算部)8eと、変速機出力軸回転数センサ90により検出された回転数に基づいて車速VSを演算する第2演算部(回転数ベース演算部)8fと、制御許可条件(所定条件)が成立したら、第1演算部8eにより演算された車速V2~V4を制御用車速(検出車速)に選定し、制御許可条件が成立しなければ、第2演算部8fにより演算された車速V1を制御用車速に選定する車速選定部(車速選定手段)8gと、を備えている。
 制御条件判定部8Aの制御許可条件には、以下の(A)~(D)の4つの条件が設定され、これらが何れも成立したら制御許可条件が成立したとする。
(A)ドライバがエンジン1に出力トルクを要求していること。
(B)エンジン1から駆動輪6へ出力される駆動トルクが所定トルクT0以下の微小状態であること。
(C)車両の前後加速度Gvがゼロ近傍の状態(すなわち、前後加速度Gvが所定加速度Gv以下の状態)であること。
(D)駆動輪6がスリップしていないこと。
 なお、(A)~(C)の条件は、前記のラトル音や回転要素の回転数の上下変動が発生するラトル発生領域である条件(A)~(C)である。
 (D)の「駆動輪6がスリップしていないこと」の条件は動力伝達系の回転要素の回転数から車速VSを演算する場合の必須要件である。
 また、車速演算部8Bの車速選定部8gでは、タイヤ回転数情報を使用する場合に、複数(ここでは、4つ)の車輪速センサ90B~90Eのうちの何れのタイヤ回転数の情報を使用するかを選定して、選定した車輪速センサ90B~90Eを利用して車速VSを演算する。このとき、車速選定部8gでは、タイヤ回転数変動幅、及び、タイヤ回転数と出力軸回転数との差に基づいて、車輪速センサ90B~90Eのうちから使用するものを選定する。なお、使用する車輪速センサ90B~90Eを一度選定したらその制御が継続する間は選定変更しない。
 このため、CVTECU8は、変速機出力軸回転数センサ90から出力される変速機出力軸回転数情報、及び、車輪速センサ90B~90Eから出力される各タイヤ回転数情報から、それぞれの上下変動の変動幅(変動レベル)を抽出する変動幅抽出部8AAをそなえている。この変動幅抽出部8AAでは、回転数情報をバンドパスフィルタで処理することで変動幅を抽出したり、回転数情報の微分値をローパスフィルタで処理することで変動幅を抽出したりすることができる。
 車速選定部8gでは、タイヤ回転数変動幅、及び、タイヤ回転数と出力軸回転数との差に基づいて、以下のように使用する車輪速センサ90B~90Eを選定する。
(1)まず、左右の前輪6a,6bのタイヤ回転数変動幅が何れも所定値以下(小さい)か否かを判定する。この場合の所定値は、変動幅を許容できる閾値として予め設定する。はじめに前輪6a,6bに着目するのは、図6からも解るように、本実施形態の車両が前輪駆動車をベースとした四輪駆動車であるためである。つまり、後輪6c,6dに比べ、前輪6a,6bは、変速機出力軸回転数センサ90が検出する変速機出力軸41に対し、動力伝達経路で考えた場合に近い位置にあり、変速機出力軸回転数センサ90の検出値との差が、後輪6c,6dに比べ前輪6a,6bの方が小さい蓋然性が高いためである。
 ここで、左右の前輪6a,6bのタイヤ回転数変動幅が何れも所定値以下であれば、左右の前輪6a,6bのうち出力軸回転数との差が小さい(出力軸回転数に最も近い)方の回転数を検出した車輪速センサを選定してこれに基づいた車速V2を変速制御用車速とする。
(2)左右の前輪6a,6bのタイヤ回転数変動幅の少なくとも何れかが所定値よりも大きい場合には、左右の後輪6c,6dのタイヤ回転数変動幅が何れも所定値所定値以下(小さい)か否かを判定する。ここで、左右の後輪6c,6dのタイヤ回転数変動幅が何れも所定値以下であれば、左右の後輪6c,6dのうち出力軸回転数との差が小さい(出力軸回転数に最も近い)方の回転数を検出した車輪速センサを選定してこれに基づいた車速V3を変速制御用車速とする。
(3)左右の後輪6c,6dのタイヤ回転数変動幅の少なくとも何れかが所定値よりも大きい場合には、出力軸回転数変動幅と4輪すべてのタイヤ回転数変動幅とを比較して、出力軸回転数変動幅が4輪すべてのタイヤ回転数変動幅よりも大きければ、4輪のタイヤ回転数の平均値に基づいた車速V4を変速制御用車速とする。
(4)出力軸回転数変動幅が4輪いずれかのタイヤ回転数変動幅以下であれば、出力軸回転数から変速制御用車速を求める。ただし、この場合には、ノッチフィルタ90aを用いて、変速機出力軸回転数センサ90により検出された回転数情報から特定の周波数域を除去した回転数情報に基づいた車速V1´を変速制御用車速とする。
 ノッチフィルタ90aを用いる場合には、図11に示すように、車速演算部8Bでは、変速機出力軸回転数センサ90により検出された回転数をノッチフィルタ90aで処理し、このフィルタ処理回転数に基づいて車速V1´を演算する。
 なお、演算部8e´によるフィルタ処理回転数に基づく車速V1´の演算も、演算部8f´によるフィルタ処理しない検出回転数に基づく車速V1の演算も、何れも周期的に入力される回転数情報(パルス信号)の時間間隔から車速を演算するため、連続的な演算が必要であり、これらの車速の演算は、常時並行して行なわれる。
 なお、変速機出力軸の回転数情報に基づく車速だけでなく、車輪速の回転数情報に基づく車速の演算についても、何れも周期的に入力される回転数情報(パルス信号)の時間間隔から車速を演算するため、連続的な演算が必要であり、第2演算部8fでは、を用いた車速VSの演算も、常時並行して行なわれる。
 ノッチフィルタ90aは、図12に示すように、所望の周波数fにおいて所望の幅Wでノッチ状に入力振幅を減衰させる。ここでは、ラトル音や変速機出力軸回転数センサ90の検出回転数の上下変動が発生する状況における上下変動周波数fと、エンジン(パワートレイン)1の固有振動が変速機出力軸41に伝達された際の周波数fとにおいて所望の幅W1,W2でノッチ状に入力振幅を減衰させるように設計されている。
 つまり、ノッチフィルタ90aにより減衰させる特定の周波数域には、変速機出力軸回転数センサ90により検出される回転数の上下変動にかかる周波数成分の周波数域が含まれ、エンジン(駆動源)1の固有振動が変速比に応じて変速機出力軸41に伝達される振動の周波数域が含まれている。
 また、車速演算部8Bは、車速選定部8gにおいて、車速V1~V4,V1´を切り替える際に(即ち、車速を演算する回転数情報を切り替える際に)、この切替を滑らかにするレート処理を行なうレート処理部(レート処理手段)8Cをそなえている。このレート処理部8Cでは、車速を切り替える際に、車速の変化を所定のレート内に制限し、切替を滑らかにする。
 [作用及び効果]
 本実施形態にかかる自動変速機の制御装置は、上述のように構成されているので、例えば、図9のフローチャートに示すようにして、車速演算部8Bにより車速を選定して、変速制御部8Dにおける変速制御に用いる。
 図9に示すように、車速演算部8Bでは、制御許可条件が成立しているか否かを判定する(ステップS10)。つまり、上記の(A)~(D)の4つの条件が何れも成立しているか否かを判定する。(A)~(D)の4つの条件が何れも成立していれば、制御許可条件が成立し、する。この場合は、ラトル発生領域であり、原則として車輪速(タイヤ回転数)を利用する。
 まず、左右の前輪6a,6bのタイヤ回転数変動幅が何れも所定値以下か否かを判定する(ステップS20)。ここで、左右の前輪6a,6bのタイヤ回転数変動幅が何れも所定値以下であれば、左右の前輪6a,6bのうち出力軸回転数との差が小さい(出力軸回転数に最も近い)方の回転数を検出した車輪速センサを選定して変速制御用車速を求める(ステップS30)。
 左右の前輪6a,6bのタイヤ回転数変動幅の少なくとも何れかが所定値よりも大きい場合には、左右の後輪6c,6dのタイヤ回転数変動幅が何れも所定値所定値以下か否かを判定する(ステップS40)。ここで、左右の後輪6c,6dのタイヤ回転数変動幅が何れも所定値以下であれば、左右の後輪6c,6dのうち出力軸回転数との差が小さい(出力軸回転数に最も近い)方の回転数を検出した車輪速センサを選定して変速制御用車速を求める(ステップS50)。
 左右の後輪6c,6dのタイヤ回転数変動幅の少なくとも何れかが所定値よりも大きい場合には、出力軸回転数変動幅が4輪すべてのタイヤ回転数変動幅よりも大きいか否かを判定する(ステップS60)。出力軸回転数変動幅が4輪すべてのタイヤ回転数変動幅よりも大きければ、4輪のタイヤ回転数の平均値から変速制御用車速を求める(ステップS70)。
 出力軸回転数変動幅が4輪いずれかのタイヤ回転数変動幅以下であれば、出力軸回転数から変速制御用車速を求める(ステップS80)。ただし、この場合には、ノッチフィルタ90aを用いて、変速機出力軸回転数センサ90により検出された回転数情報から特定の周波数域を除去した回転数情報から、変速制御用車速を演算する(ステップS80)。
 車速演算部8Bでは、こうして、演算された車速VSに対して、適宜レート処理を施して出力する(ステップS90)。つまり、車速選定部8gにおいて、第1演算部8eにより演算された車速と、第2演算部8fにより演算された車速とで切り替える際には、レート処理部8Cによってレート処理を行ない、切替を滑らかにする。
 例えば図10は、この制御状態の一例を示すタイムチャートである。(a)は制御許可状況を示し、(b)は変速制御に用いられる車速状況を示し、(c)は変速制御にによる目標変速比の状況を示す。(b),(c)において、実線は本制御装置による制御を行なった場合を示し、破線は本制御装置による制御を行なわなかった場合を示し、二点鎖線は制御を行なわない場合にも演算される車輪速に基づくに基づく車速V2~V4を示す。
 図10に示すように、時点t1で制御が許可(制御ON)されるまでは、第2演算部8fにおいて変速機出力軸回転数センサ90により検出されたままの回転数に基づいて演算された車速VSが制御用車速に選定される。このとき、各車輪速に基づくに基づく車速V2~V4も、ノッチフィルタ90aで処理されたフィルタ処理回転数に基づく車速V1´も、フィルタ処理しない検出回転数に基づく車速V1と並行して演算される。
 時点t1で制御が許可(制御ON)されると、車輪速を用いて車速VSが演算されるが、制御に入る過渡時には車速の急変を防止するレート処理が行われる。制御中は、車輪速に基づく車速VS、またはフィルタ処理回転数に基づく車速V1´が変速制御に用いられる。この結果、車輪速に基づく車速VS、またはノッチフィルタ90aの効果で演算された車速V1´の方は回転数が安定するので目標変速比(変速比Rの指令値)も安定し、変速サーボ系全体が安定する。このため、変速ハンチングレベルを低減しラトルショックを緩和することができる。
 そして、時点t2で制御が不許可(制御OFF)になったら、変速機出力軸回転数センサ90により検出されたままの回転数に基づいて演算された車速VSが制御用車速に選定されるようになるが、この制御を抜ける過渡時にも車速の急変を防止するレート処理が行われる。制御に入り及び制御抜けの過渡時のレート処理によって、車速VSが円滑に切り替わり、目標変速比も安定する。
 [その他]
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形したり、一部を採用したりして実施することができる。
 例えば、上記実施形態ではノッチフィルタ90aをフィルタ回路といったハードウェアにより構成したが、ノッチフィルタをソフトウェアにより構成してもよい。ただし、ノッチフィルタによる処理は必須ではない。
 また、レート処理手段をソフトウェアにより構成したが、これをハードウエアにより構成してもよい。
 また、上記実施形態では、本発明を、無段変速機構を備えた自動変速機に適用したが、本発明は、有段変速機構を備えた自動変速機にも適用できる。
 また、上記実施形態では、車両の駆動源をエンジン(内燃機関)にしているが、車両の駆動源はモータ(電動機)であってもよく、エンジン及びモータであってもよい。
 変速機は手動変速機でもよい。

Claims (9)

  1.  車両の駆動源と駆動輪との間の動力伝達系に装備された自動変速機の制御装置であって、
     前記車両の車速を検出する車速検出手段と、
     前記車両のアクセル開度を検出するアクセル開度検出手段と、
     前記車速検出手段により検出された車速及び前記アクセル開度検出手段により検出されたアクセル開度に基づいて前記自動変速機の変速比を制御する変速制御手段とを備え、
     前記車速検出手段は、
     前記自動変速機の出力軸の回転数を検出する出力軸回転数検出手段と、
     前記車両に装備された車輪の回転数を検出する車輪回転数検出手段と、
     前記出力軸回転数の上下変動が発生する条件として予め設定された所定条件が成立したら、前記車輪回転数の情報から車速を演算し、前記所定条件が成立しなければ、前記出力軸回転数の情報から車速を演算する演算手段と、から構成されている
    、車両用自動変速機の制御装置。
  2.  前記車輪回転数検出手段は、複数の車輪毎に設けられ、
     前記演算手段は、前記所定条件が成立したら、その判定時点で複数の前記車輪回転数検出手段のうち検出した車輪回転数の上下変動幅が基準値以下の車輪回転数検出手段を選定してその回転数情報から車速を演算する
    、請求項1記載の車両用自動変速機の制御装置。
  3.  前記車輪回転数検出手段は、複数の車輪毎に設けられ、
     前記演算手段は、前記所定条件が成立したら、その判定時点で複数の前記車輪回転数検出手段のうち検出した車輪回転数が前記出力軸回転数検出手段により検出された出力軸回転数に最も近い車輪回転数検出手段を選定してその回転数情報から車速を演算する
    、請求項1又は2記載の車両用自動変速機の制御装置。
  4.  前記演算手段は、前記所定条件が成立したときに、前記複数の車輪回転数の上下変動幅の何れかが基準値以下でない場合には、前記出力軸回転数の上下変動幅が前記複数の車輪の何れの回転数の上下変動幅よりも大きいか否かを判定して、肯定判定なら前記複数の車輪回転数の平均値から車速を演算し、否定判定なら前記出力軸回転数から車速を演算する、請求項1~3の何れか1項に記載の車両用自動変速機の制御装置。
  5.  前記演算手段に入力される前記回転数情報から特定の周波数域を除去するノッチフィルタが装備され、
     前記特定の周波数域には、前記自動変速機に入力される前記駆動源の駆動トルクが微小な状態において前記駆動輪に入力される駆動トルクの周期的な変動に起因して発生する前記出力軸回転数の上下変動にかかる周波数成分の周波数域が含まれ、
     前記演算手段は、前記所定条件が成立し前記出力軸回転数から車速を演算するときには、前記出力軸回転数検出手段により検出された回転数情報を前記ノッチフィルタでフィルタ処理したものから車速を演算する
    、請求項4記載の車両用自動変速機の制御装置。
  6.  前記特定の周波数域には、前記駆動源の固有振動にかかる前記変速比に応じた回転要素の振動の周波数域が含まれている
    、請求項5記載の車両用自動変速機の制御装置。
  7.  前記演算手段は、
     車速を演算する回転数情報を切り替える際に、切替を滑らかにするレート処理を行なうレート処理手段を備えている
    、請求項1~6の何れか1項に記載の車両用自動変速機の制御装置。
  8.  前記所定条件には、前記駆動源への出力トルク要求が検出されていること、前記駆動源の検出駆動トルクがトルク判定閾値以下の微小状態であること、前記車両の加速度が加速度判定閾値以下の微小状態であること、が何れも成立していることが含まれている
    、請求項1~7の何れか1項に記載の車両用自動変速機の制御装置。
  9.  前記自動変速機は、無段変速機である
    、請求項1~8の何れか1項に記載の車両用自動変速機の制御装置。
PCT/JP2016/056915 2015-03-26 2016-03-07 車両用自動変速機の制御装置 WO2016152469A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16768372.1A EP3276218A4 (en) 2015-03-26 2016-03-07 Control device for automatic transmission for vehicle
CN201680018159.3A CN107429828B (zh) 2015-03-26 2016-03-07 车辆用自动变速器的控制装置
JP2017508168A JP6340136B2 (ja) 2015-03-26 2016-03-07 車両用自動変速機の制御装置
US15/560,701 US10378644B2 (en) 2015-03-26 2016-03-07 Control device for automatic transmission for vehicle
KR1020177025890A KR20170117544A (ko) 2015-03-26 2016-03-07 차량용 자동 변속기의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065176 2015-03-26
JP2015065176 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152469A1 true WO2016152469A1 (ja) 2016-09-29

Family

ID=56977387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056915 WO2016152469A1 (ja) 2015-03-26 2016-03-07 車両用自動変速機の制御装置

Country Status (6)

Country Link
US (1) US10378644B2 (ja)
EP (1) EP3276218A4 (ja)
JP (1) JP6340136B2 (ja)
KR (1) KR20170117544A (ja)
CN (1) CN107429828B (ja)
WO (1) WO2016152469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189470A1 (ja) * 2019-03-15 2020-09-24 ジヤトコ株式会社 無段変速機の変速油圧制御装置及び無段変速機の変速油圧制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427806B1 (ko) 2017-12-06 2022-08-02 현대자동차주식회사 Cvt 차량의 선회 주행 제어 방법
JP7131144B2 (ja) * 2018-07-09 2022-09-06 株式会社デンソー 車両の駆動システムに適用される駆動制御装置
CN110857863A (zh) * 2018-08-24 2020-03-03 陕西重型汽车有限公司 一种重型越野汽车基于变速箱输出轴的车速里程检测方法及其系统
US20200101961A1 (en) * 2018-10-02 2020-04-02 GM Global Technology Operations LLC System and method for inhibiting harsh engagement of a one-way clutch in a vehicle
CN114857259A (zh) * 2022-05-24 2022-08-05 绿传(北京)汽车科技股份有限公司 一种无转速传感器的自动变速器换挡控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151068A (ja) * 1990-10-09 1992-05-25 Aisin Aw Co Ltd 回転センサを用いる自動変速機制御系のフェールセーフ装置
JPH05180326A (ja) * 1991-12-28 1993-07-20 Toyota Motor Corp 車両用回転速度センサの異常判定装置
JP2009243623A (ja) * 2008-03-31 2009-10-22 Jatco Ltd 車両用車速センサの故障対応装置及び方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107191B2 (ja) * 2003-07-02 2008-06-25 トヨタ自動車株式会社 車両の制御装置
JP4222181B2 (ja) * 2003-10-27 2009-02-12 トヨタ自動車株式会社 無段変速機を搭載した車両の制御装置
US7315774B2 (en) * 2006-03-22 2008-01-01 Gm Global Technology Operations, Inc. Jerk management using multivariable active driveline damping
US7577507B2 (en) * 2006-03-22 2009-08-18 Gm Global Technology Operations, Inc. Driveline lash estimation and clunk management using multivariable active driveline damping
US8046142B2 (en) * 2008-11-04 2011-10-25 GM Global Technology Operations LLC Apparatus and method for determining driveline lash estimate
DE112009005049B4 (de) * 2009-07-08 2020-06-10 Toyota Jidosha Kabushiki Kaisha Steuergerät eines Fahrzeugs
US8359144B2 (en) 2010-11-01 2013-01-22 GM Global Technology Operations LLC Driveline lash management in powertrain systems
US8645013B2 (en) * 2011-10-21 2014-02-04 GM Global Technology Operations LLC Method and apparatus for driveline noise control in a hybrid powertrain
JP2013187959A (ja) 2012-03-06 2013-09-19 Toyota Motor Corp 車両
JP5728422B2 (ja) * 2012-03-28 2015-06-03 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
DE102013104513A1 (de) * 2012-05-04 2013-11-07 Ford Global Technologies, Llc Verfahren und Systeme zum Verringern von Zahnradspielgeräuschen
EP2885188B1 (en) * 2012-08-16 2020-11-04 Jaguar Land Rover Limited System and method for selecting a driveline gear ratio
JP5863837B2 (ja) * 2013-03-07 2016-02-17 本田技研工業株式会社 自動変速機
JP6027507B2 (ja) * 2013-08-27 2016-11-16 ジヤトコ株式会社 回転センサの信号処理装置
JP6196857B2 (ja) * 2013-09-13 2017-09-13 ジヤトコ株式会社 車両の制御装置
US9458926B2 (en) * 2014-03-13 2016-10-04 Nissan North America, Inc. Automatic transmission control
JP6424380B2 (ja) * 2014-12-16 2018-11-21 ヤマハ発動機株式会社 車両用変速システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151068A (ja) * 1990-10-09 1992-05-25 Aisin Aw Co Ltd 回転センサを用いる自動変速機制御系のフェールセーフ装置
JPH05180326A (ja) * 1991-12-28 1993-07-20 Toyota Motor Corp 車両用回転速度センサの異常判定装置
JP2009243623A (ja) * 2008-03-31 2009-10-22 Jatco Ltd 車両用車速センサの故障対応装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276218A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189470A1 (ja) * 2019-03-15 2020-09-24 ジヤトコ株式会社 無段変速機の変速油圧制御装置及び無段変速機の変速油圧制御方法
JPWO2020189470A1 (ja) * 2019-03-15 2021-10-28 ジヤトコ株式会社 無段変速機の変速油圧制御装置及び無段変速機の変速油圧制御方法
JP7033236B2 (ja) 2019-03-15 2022-03-09 ジヤトコ株式会社 無段変速機の変速油圧制御装置及び無段変速機の変速油圧制御方法

Also Published As

Publication number Publication date
CN107429828A (zh) 2017-12-01
US20180106361A1 (en) 2018-04-19
JP6340136B2 (ja) 2018-06-06
KR20170117544A (ko) 2017-10-23
EP3276218A4 (en) 2018-05-23
CN107429828B (zh) 2019-12-31
JPWO2016152469A1 (ja) 2017-07-13
EP3276218A1 (en) 2018-01-31
US10378644B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
JP6340136B2 (ja) 車両用自動変速機の制御装置
US9523400B2 (en) Lockup clutch control device
JP6370472B2 (ja) 自動変速機の制御装置および制御方法
JP6332196B2 (ja) 動力伝達装置の制御装置
EP3176472B1 (en) Continuously variable transmission and control method therefor
KR101959157B1 (ko) 자동 변속기의 제어 장치 및 제어 방법
JP2009522514A (ja) 車両の駆動系におけるベルト式無段変速機および摩擦クラッチの制御方法
US8948988B2 (en) Speed ratio control device of continuously variable transmission for vehicle
JP6326498B2 (ja) 無段変速機の制御装置
EP3176473B1 (en) Continuously variable transmission and method for controlling the same
JP6911711B2 (ja) 車両用動力伝達装置の制御装置
JP5460920B2 (ja) 駆動源のトルク制御装置
JP6213502B2 (ja) 車両の制御装置
JP6879197B2 (ja) 車両用動力伝達装置の制御装置
KR20170042656A (ko) 차량 제어 장치 및 차량의 제어 방법
JP2011001973A (ja) 発進クラッチの制御装置
JP5341998B2 (ja) 車両の制御装置
JP2005030511A (ja) 無段変速機を備えた車両の制御装置
JP2004044757A (ja) 車両用駆動機構の制御装置
JP2016183760A (ja) 車両用自動変速機の制御装置
JP6387121B2 (ja) 車両の駆動力制御装置
JP4670891B2 (ja) 路面状態検出装置および無段変速機の制御装置
WO2020183818A1 (ja) 自動変速機及び自動変速機における振動箇所判定方法
JP2004176729A (ja) 車両用動力伝達機構の制御装置
JP4474880B2 (ja) 変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508168

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE