WO2016152115A1 - 光合分波装置及び光合分波装置の制御方法 - Google Patents
光合分波装置及び光合分波装置の制御方法 Download PDFInfo
- Publication number
- WO2016152115A1 WO2016152115A1 PCT/JP2016/001549 JP2016001549W WO2016152115A1 WO 2016152115 A1 WO2016152115 A1 WO 2016152115A1 JP 2016001549 W JP2016001549 W JP 2016001549W WO 2016152115 A1 WO2016152115 A1 WO 2016152115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- signal
- optical
- output
- wss
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 393
- 238000000034 method Methods 0.000 title claims description 19
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 208000010119 wrinkly skin syndrome Diseases 0.000 description 34
- 230000005540 biological transmission Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 21
- 238000004891 communication Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 13
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/0204—Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
- H04B10/032—Arrangements for fault recovery using working and protection systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/0205—Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/0209—Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
- H04J14/0212—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
Definitions
- the present invention relates to an optical multiplexing / demultiplexing device and an optical multiplexing / demultiplexing device control method, and more particularly to an OADM (optical add / drop multiplexing) device equipped with a WSS (wavelength selective ⁇ ⁇ switch) and a control method thereof.
- OADM optical add / drop multiplexing
- OADM optical add / drop multiplexing
- Patent Document 1 describes an ROADM device using a wavelength selective switch (wavelength selective switch, WSS).
- WSS wavelength selective switch
- the WSS has three functions: a demultiplexing function for separating an input optical signal in units of wavelengths, a switching function for selecting the demultiplexed optical signal, and a multiplexing function for the selected optical signal.
- the WSS may further comprise adjustment of the optical signal level of each wavelength.
- Patent Document 2 describes an optical cross-connect device having a redundant configuration. In a general ROADM device, WSSs are arranged on each of an uplink (Up line) and a downlink (Down line), and an optical signal having a predetermined wavelength is distributed to a trunk station and a branch station.
- FIG. 10 is a block diagram showing a configuration of a general optical submarine cable system 90.
- the optical submarine cable system 90 includes a ROADM device 900 and landing stations 101-103.
- the ROADM device 900 is a branch device installed on the seabed, and is connected to the landing stations 101 to 103 installed on the land.
- Landing stations 101 to 103 are terminal stations that terminate optical submarine cables.
- transmission of a wavelength division (WDM) optical signal (hereinafter referred to as “WDM signal”) is performed using an optical submarine cable.
- WDM signal wavelength division
- the optical signals of some wavelengths of the WDM signals transmitted and received by the landing station 101 and the landing station 102 are used for communication with the landing station 103.
- Landing stations 101 and 102 are also called trunk stations.
- the landing station 103 is a terminal station that terminates a line (branch line) branched from a line (trunk line) between trunk stations, and is also called a branch station.
- the directions and lines from the landing stations 101 and 103 to the landing station 102 are respectively referred to as “Up direction” and “Up line”, and the directions from the landing stations 102 and 103 to the landing station 101 and Lines are described as “Down direction” and “Down line”.
- FIG. 11 is a diagram illustrating an example of a wavelength band of a WDM signal input / output by the ROADM apparatus 900.
- Signal A and signal B are transmission signals of the landing station 101
- signal D and signal E are transmission signals of the landing station 102.
- Signal A is an optical signal transmitted from the landing station 101 to the landing station 102
- signal B is an optical signal transmitted from the landing station 101 to the landing station 103.
- Signal D is an optical signal transmitted from landing station 102 to landing station 101
- signal E is an optical signal transmitted from landing station 102 to landing station 103.
- Signal A 'and signal B' are transmission signals to the Up line of the landing station 103
- signals D 'and signal E' are transmission signals to the Down line of the landing station 103
- the signal B ′ is an optical signal transmitted from the landing station 103 to the landing station 102
- the signal E ′ is an optical signal transmitted from the landing station 103 to the landing station 101.
- the signal A ′ and the signal D ′ are dummy signals.
- the dummy signal is added at the landing station 103 in order to keep the optical power of the WDM signal input to the optical submarine repeater installed in the middle of the submarine cable within a certain range in the system.
- the dummy signal has no information to be transmitted.
- each of the signals A, A ′, B, B ′, D, D ′, E, and E ′ may be an optical signal of one carrier (carrier wave), or may include optical signals of a plurality of carriers.
- a WDM signal composed of signal A and signal B is referred to as signal AB.
- WDM signals composed of other optical signals such as the signal D and the signal E are also simply described using symbols such as D and E.
- the signal A is described as (A) and the signal AB ′ is described as (AB ′).
- a signal AB transmitted from the landing station 101 is branched by a coupler (CPL) 111 into the direction of the landing station 102 and the direction of the landing station 103.
- CPL coupler
- the signal A′B ′ transmitted from the landing station 103 and having the same wavelength band as the signal AB is input to the WSS 112.
- the WSS 112 combines and demultiplexes the input signal AB and signal A′B ′ to generate a signal AB ′.
- the generated signal AB ′ is transmitted to the landing station 102.
- the ROADM apparatus 900 includes a control circuit 950 for controlling the WSSs 112 and 122.
- a control circuit 950 for controlling the WSSs 112 and 122.
- the WSS 112 By controlling the WSS 112 and changing the wavelength bandwidth of the signals A, B, A ′ and B ′, the transmission capacity from the landing station 101 to the landing station 102 and the landing station 101 to the landing station 103 are changed.
- the ratio with the transmission capacity can be changed.
- the ratio between the transmission capacity from the landing station 102 to the landing station 101 and the transmission capacity from the landing station 102 to the landing station 103 can be changed using the coupler 121 and the WSS 122.
- FIG. 12 is a block diagram showing the configuration of another general optical submarine cable system 91.
- the optical submarine cable system 91 includes a ROADM device 901 and landing stations 101-103.
- the ROADM device 901 is installed on the seabed, and is connected to the landing stations 101 to 103 installed on land by optical submarine cables.
- the ROADM device 901 includes WSSs 131 and 132 and couplers 133 and 134 on the Up line.
- the ROADM device 901 includes WSSs 141 and 142 and couplers 143 and 144 on the Down line.
- the ROADM device 901 includes a control circuit 951 for controlling the WSSs 131 and 132 and the WSSs 141 and 142.
- WSS 131 separates signal AB received from landing station 101 into signal A and signal B, and outputs them.
- Signal A is output to coupler 133
- signal B is output to coupler 134.
- the WSS 132 separates the signal A′B ′ received from the landing station 103 into a signal A ′ and a signal B ′ and outputs the signal A ′.
- the signal B ′ is output to the coupler 133
- the signal A ′ is output to the coupler 134.
- the coupler 133 outputs a signal AB ′ obtained by combining the signal A and the signal B ′ to the landing station 102.
- the coupler 134 outputs a signal A′B obtained by combining the signal A ′ and the signal B to the landing station 103.
- the operation of the ROADM device 901 for the optical signal in the Down direction is the same. That is, the WSS 141 separates the signal DE received from the landing station 102 into a signal D and a signal E, and outputs them.
- the WSS 142 separates the signal D′ E ′ received from the landing station 103 into a signal D ′ and a signal E ′, and outputs them.
- the coupler 143 outputs a signal DE ′ obtained by combining the signal D and the signal E ′ to the landing station 101.
- the coupler 144 outputs a signal D′ E obtained by combining the signal D ′ and the signal E to the landing station 103. In this manner, the ROADM device 901 transmits the signal A′B and the signal D′ E to the landing station 103.
- FIG. 13 is a diagram illustrating an example of wavelength bands of optical signals input and output by the ROADM device 901.
- the signal A addressed to the landing station 102 and the signal D addressed to the landing station 101 were also transmitted to the landing station 103.
- the received signals from the Up line and the Down line of the landing station 103 are the signal A'B and the signal D'E, respectively.
- These WDM signals do not include signal A destined for landing station 102 and signal D destined for landing station 101. For this reason, the ROADM device 901 can prevent the signal A and the signal D from being intercepted by the landing station 103.
- JP 2010-098545 A [0019] paragraph, FIG. 2) Japanese Patent Laying-Open No. 2011-109173 (paragraph [0016], FIG. 4)
- a wavelength selection device such as WSS is composed of a plurality of optical components, and is used with a control circuit and a power supply connected.
- optical components include MEMS (micro electro mechanical systems), LCOS (liquid crystal on silicon, liquid crystal formed on silicon), optical filters and lenses.
- MEMS and LCOS are wavelength selection elements that switch optical paths and wavelengths.
- the optical filter transmits or blocks an optical signal having a specific wavelength.
- the lens optically couples between the wavelength selection element and the optical filter and the fiber.
- the wavelength selection element is controlled by an electrical signal from the control circuit.
- the WSS device is composed of such various types of components, high reliability is required for application to a backbone communication system. In an optical submarine cable system, for example, reliability that can be stably operated over a long period of 25 years is required. Therefore, a ROADM device using WSS is particularly required to have high reliability.
- Patent Documents 1 and 2 do not describe a specific configuration for improving the reliability when WSS is used in the ROADM device.
- An object of this invention is to provide the technique for implement
- the optical multiplexing / demultiplexing device of the present invention includes a first wavelength selective switch that multiplexes and outputs an optical signal included in the first wavelength multiplexed optical signal for each wavelength, and light included in the second wavelength multiplexed optical signal.
- a second wavelength selective switch that multiplexes and outputs a signal for each wavelength, and a first wavelength multiplexed signal and a second wavelength based on the states of the first wavelength selective switch and the second wavelength selective switch.
- An optical switch that outputs a wavelength-multiplexed signal to the first wavelength selective switch or the second wavelength selective switch, a first that couples the output of the first wavelength selective switch and the output of the second wavelength selective switch. 1 coupler.
- An optical multiplexing / demultiplexing device demultiplexes an optical signal included in a first wavelength-division-multiplexed signal for each wavelength, and the first coupler and the second coupler that combine and output optical signals.
- a first wavelength selective switch that outputs to the first and second couplers, and a second wavelength that demultiplexes the optical signal included in the second wavelength multiplexed signal for each wavelength and outputs the demultiplexed signals to the first and second couplers.
- a wavelength selective switch a third wavelength selective switch that demultiplexes an optical signal included in the third wavelength multiplexed signal for each wavelength and outputs the demultiplexed optical signal to the first and second couplers; and the first and second Based on the state of the wavelength selective switch, the first wavelength multiplexed signal is input to the first wavelength selective switch, or is input to the third wavelength selective switch as the third wavelength multiplexed signal, and the second Wavelength-division multiplexed signal is input to the second wavelength selective switch or the second wavelength selective switch Comprising an optical switch for inputting as said third wavelength-multiplexed signal to the wavelength selective switch is controlled as a.
- the optical signal included in the first wavelength multiplexed optical signal is multiplexed and output for each wavelength by the first wavelength selective switch, and the second wavelength multiplexed optical signal is output.
- the included optical signal is multiplexed and output for each wavelength by the second wavelength selective switch, and based on the state of the first wavelength selective switch and the second wavelength selective switch, the first wavelength multiplexed signal and Outputting a second wavelength multiplexed signal to the first wavelength selective switch or the second wavelength selective switch, and combining the output of the first wavelength selective switch and the output of the second wavelength selective switch; It is characterized by that.
- the present invention has the effect of realizing a highly reliable ROADM device.
- FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when both of the WSSs 131 and 132 are operating normally.
- FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 131 is out of order and the WSS 132 is operating normally.
- FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 132 is out of order and the WSS 131 is operating normally.
- FIG. It is a flowchart which shows the example of the operation
- movement procedure of the ROADM apparatus 200 of 2nd Embodiment. 1 is a block diagram showing a configuration of a general optical submarine cable system 90.
- FIG. 1 is a block diagram showing a configuration of a general optical submarine cable system 90.
- FIG. 5 is a diagram illustrating an example of a wavelength band of an optical signal input / output by the ROADM device 900.
- FIG. It is a block diagram which shows the structure of the other general optical submarine cable system 91.
- FIG. 6 is a diagram illustrating an example of a wavelength band of an optical signal input / output by the ROADM device 901.
- FIG. 6 is a diagram illustrating an example of a wavelength band of an optical signal input / output by the ROADM device 901.
- ROADM reconfigurable optical add / drop multiplexing
- the ROADM device uses an optical switch to switch the path of the optical signal input to the failed WSS to be input to the standby WSS. After switching, the WDM signal transmitted to the trunk station and the branch station is generated using the spare WSS and the coupler.
- the control circuit stops supplying power to the WSS that is not used (that is, the optical signal is not input).
- FIG. 1 is a block diagram showing a configuration example of an optical submarine cable system 10 according to the first embodiment of the present invention.
- the optical submarine cable system 10 includes a ROADM device 100 and landing stations 101-103. Landing stations 101-103 and ROADM device 100 are connected by an optical submarine cable. Landing stations 101 to 103 are terminal stations that terminate optical submarine cables. Landing stations 101 and 102 are also called trunk stations. The landing station 103 is also called a branch station. Between the landing stations 101 to 103 and the ROADM device 100, transmission of a WDM (wavelength division multiplexing) signal is performed using an optical submarine cable.
- WDM wavelength division multiplexing
- the ROADM apparatus 100 further includes couplers 113 and 123, optical switches 114, 115, 124 and 125, and WSSs 116 and 126, as compared with the ROADM apparatus 900 described with reference to FIG.
- the optical switches 114 and 115, the WSS 116, and the coupler 113 are provided in the Up line.
- Optical switches 124 and 125, WSS 126 and coupler 123 are provided in the Down line.
- Each optical switch is a 1 ⁇ 2 optical switch and outputs an input optical signal from one of two outputs.
- the configuration and operation of the ROADM device 100 in the Up direction will be described.
- the configurations and operations of the Down direction couplers 121 and 123, the WSSs 122 and 126, and the optical switches 124 and 125 can be considered in the same manner as the Up direction couplers 111 and 113, the WSSs 112 and 116, and the optical switches 114 and 115. Therefore, the description about the Down direction is omitted.
- the coupler 111 splits the WDM signal input from the landing station 101 into two, outputs one to the optical switch 114, and outputs the other to the landing station 103.
- the optical switch 114 outputs the WDM signal input from the coupler 111 to the WSS 112 or WSS 116.
- the optical switch 115 outputs the WDM signal input from the landing station 103 to the WSS 112 or WSS 116.
- One of the outputs of the optical switch 114 and one of the outputs of the optical switch 115 are input to the WSS 112.
- the other output of the optical switch 114 and the other output of the optical switch 115 are input to the WSS 116.
- FIG. 2 is a diagram illustrating an example of wavelength bands of optical signals input / output by the ROADM apparatus 100.
- An example of the wavelength band of the optical signal in FIG. 2 is the same as that in FIG. That is, the signal A and the signal B are transmission signals of the landing station 101, and the signal D and the signal E are transmission signals of the landing station 102.
- Signal A is an optical signal transmitted from the landing station 101 to the landing station 102
- signal B is an optical signal transmitted from the landing station 101 to the landing station 103
- Signal D is an optical signal transmitted from landing station 102 to landing station 101
- signal E is an optical signal transmitted from landing station 102 to landing station 103.
- Signal A 'and signal B' are transmission signals to the Up line of the landing station 103
- signals D 'and signal E' are transmission signals to the Down line of the landing station 103
- the signal B ′ is an optical signal transmitted from the landing station 103 to the landing station 102
- the signal E ′ is an optical signal transmitted from the landing station 103 to the landing station 101.
- the signal A ′ and the signal D ′ are dummy signals.
- the dummy signal is added at the landing station 103 in order to keep the optical power of the WDM signal input to the optical submarine repeater installed in the middle of the submarine cable within a certain range in the system.
- the dummy signal has no information to be transmitted.
- Each of the signals A, A ′, B, B ′, D, D ′, E, and E ′ may be an optical signal of one carrier (carrier wave), or may include optical signals of a plurality of carriers.
- the coupler 111 receives the signal AB from the landing station 101.
- One of the signals AB branched into two by the coupler 111 is input to the optical switch 114.
- the optical switch 114 outputs the input signal AB to the WSS 112 when the WSS 112 is operating normally.
- the optical switch 114 outputs the input signal AB to the WSS 116 when the WSS 112 fails.
- the signal A′B ′ output from the landing station 103 is input to the optical switch 115.
- the optical switch 115 outputs the input signal A′B ′ to the WSS 112 when the WSS 112 is operating normally.
- the optical switch 115 outputs the input signal A′B ′ to the WSS 116 when the WSS 112 fails.
- the WSS 112 demultiplexes and multiplexes the signal A and the signal B ′, and outputs the result to the coupler 113 as the signal AB ′.
- the WSS 116 also demultiplexes and combines the signal A and the signal B ′, and outputs the demultiplexed signal to the coupler 113 as the signal AB ′.
- the control circuit 500 is an electric circuit that monitors and controls the optical switches 114 and 115 and the WSSs 112 and 116.
- the control circuit 500 collects and holds the states of the WSSs 112 and 116, and controls the WSSs 112 and 116 and the optical switches 114 and 115 based on the states of the WSSs 112 and 116.
- the control circuit 500 performs the same control for the down direction optical switch and WSS. Note that the ROADM device 100 may be controlled by remote control from the outside.
- the control circuit 500 supplies power to the WSS 112 and stops supplying power to the WSS 116.
- the control circuit 500 supplies power to the WSS 116 and stops supplying power to the WSS 112.
- the control circuit 500 performs similar power control for the WSS 122 and WSS 126 used in the Down line. That is, the control circuit 500 supplies power only to the WSS that is operating upon receiving the WDM signal.
- the control circuit 500 changes the transmission bandwidth to the landing station 102 and the transmission capacity to the landing station 103 by changing the ratio of the wavelength bandwidth of the signals AB and A′B ′ in the WSS 112 and the WSS 116. Can change.
- the couplers 111, 113, 121 and 123 are, for example, optical directional couplers.
- the coupler 113 combines the optical signals input from the WSS 112 and the WSS 116 and outputs them to the landing station 102.
- the signal AB ′ is input to the coupler 113 from only one of the WSS 112 and the WSS 116 by the operation of the optical switches 114 and 115 described above.
- FIG. 3 is a flowchart illustrating an example of an operation procedure of the ROADM apparatus 100 according to the first embodiment.
- the signal AB received from the landing station 101 is branched into two by the coupler 111 (step S01 in FIG. 3). It is determined whether the WSS 112 is operating normally (S02). When the WSS 112 is normal (S02: Yes), the signal AB is output from the optical switch 114 to the WSS 112 (S03), and the signal A'B 'is output from the optical switch 115 to the WSS 112 (S04). A signal AB 'is generated in the WSS 112, and the generated signal AB' is output to the CPL 113 (S05). The signal AB ′ passes through the coupler 113 and is output to the landing station 102 (S06).
- the signal AB is output from the optical switch 114 to the WSS 116 (S07), and the signal A'B 'is output from the optical switch 115 to the WSS 116 (S08). In this case, it is assumed that the WSS 116 is normal. Then, the signal AB ′ is generated in the WSS 116, and the generated signal AB ′ is output to the CPL 113 (S09). The signal AB 'passes through the coupler 113 and is output to the landing station 102 (S06), and then steps S01 to S09 are repeatedly executed. Note that the description of FIG. 3 does not mean that only one of steps S01 to S09 is executed at the same time. In the flow of FIG. 3, a plurality of steps may be executed simultaneously.
- the ROADM device 100 outputs the signal AB ′ to the landing station 102 regardless of whether the WSS 112 is normal or malfunctioning.
- the operation of the ROADM device 100 for the WDM signal in the Down direction can be considered in the same manner as the operation in the Up direction described above. That is, the signal DE ′ is output to the landing station 101 regardless of whether the WSS 122 is normal or malfunctioning by the same procedure as in FIG. 3.
- the control circuit 500 changes the transmission capacity to the landing station 101 and the transmission capacity to the landing station 103 by changing the ratio of the wavelength bandwidths of the signals DE and D′ E ′ in the WSS 122 and the WSS 126. it can.
- the ROADM apparatus 100 continues communication using the WSS 116 or WSS 126 that is a spare WSS even when the WSS 112 of the Up line or the WSS 122 of the Down line fails.
- WSS 112 of the Up line or the WSS 122 of the Down line fails.
- the ROADM function is not impaired by using the WSS 116 or WSS 126 which is a spare WSS.
- the ROADM device 100 can improve the reliability of the ROADM device using WSS, and further improve the reliability of the optical submarine cable system.
- the control circuit 500 does not supply power to an unused WSS. For this reason, the power consumption of the ROADM device 100 does not increase before and after the WSS failure. That is, the ROADM device 100 of this embodiment can suppress an increase in power consumption of the ROADM device.
- the ROADM device 100 of the first embodiment is also described as an optical multiplexing / demultiplexing device having the following configuration. Elements corresponding to FIG. 1 are shown in parentheses. That is, the optical multiplexer / demultiplexer includes a first wavelength selective switch (WSS 112), a second wavelength selective switch (WSS 116), optical switches (optical switches 114 and 115), and a first coupler (coupler 113). .
- WSS 112 first wavelength selective switch
- WSS 116 second wavelength selective switch
- optical switches optical switches
- optical switches 114 and 115 optical switches
- a first coupler coupled 113
- the first wavelength selective switch (WSS 112) combines the optical signals included in the first wavelength multiplexed optical signal (signal AB) for each wavelength and outputs them.
- the second wavelength selective switch (WSS 116) combines the optical signals included in the second wavelength-multiplexed optical signal (signal A′B ′) for each wavelength and outputs them.
- the optical switches Based on the state of the first wavelength selective switch (WSS 112) and the second wavelength selective switch (WSS 116), the optical switches (optical switches 114 and 115) are connected to the first wavelength multiplexed signal (signal AB) and the second wavelength selective switch (WS).
- the wavelength multiplexed signal (signal A′B ′) is output to the first wavelength selective switch (WSS 112) or the second wavelength selective switch (WSS 116).
- the first coupler (coupler 113) couples the output of the first wavelength selective switch (WSS112) and the output of the second wavelength selective switch (WSS116).
- the optical multiplexing / demultiplexing device is also an optical multiplexing / demultiplexing device using WSS by substituting the function of WSS 112 using WSS 116 when WSS 112 fails.
- the reliability of the system can be improved.
- FIG. 4 is a block diagram showing a configuration example of the optical submarine cable system 20 according to the second embodiment of the present invention.
- the optical submarine cable system 20 includes a ROADM device 200 and landing stations 101-103. Landing stations 101-103 and ROADM device 200 are connected by an optical submarine cable.
- the ROADM apparatus 200 further includes optical switches 135 to 137, optical switches 145 to 147, WSSs 138 and 148, and couplers 139, 140, 149, and 150, as compared with the ROADM apparatus 901 described with reference to FIG.
- Optical switches 135 to 137, WSS 138, and couplers 139 and 140 are provided in the Up line.
- Optical switches 145 to 147, WSS 148, and couplers 149 and 150 are provided in the Down line.
- each optical component in the Down direction is symmetrical to the Up direction, and only the wavelength band is different. That is, the operation of the ROADM apparatus 200 for the optical signal in the Down direction can be considered in the same manner as in the Up direction, and thus the description of the Down direction is omitted.
- the optical switch 135 outputs the input WDM signal to the WSS 131 or the optical switch 137.
- the WSS 131 separates the WDM signal input from the optical switch 135 for each wavelength and outputs it to the coupler 134 and the coupler 139.
- the optical switch 136 outputs the input WDM signal to the WSS 132 or the optical switch 137.
- the WSS 132 separates the WDM signal input from the optical switch 136 for each wavelength and outputs it to the coupler 133 and the coupler 140.
- the optical switch 137 selects one of the WDM signal input from the optical switch 135 and the WDM signal input from 136 and outputs the selected WDM signal to the WSS 138.
- the WSS 138 separates and combines the WDM signals input from the optical switch 137 for each wavelength, and outputs the combined optical signals to the coupler 139 and the coupler 140.
- the couplers 133 and 139 shown in FIG. 4 can be described as one three-input one-output coupler 161.
- the couplers 134 and 140 can be described as one coupler 162
- the couplers 143 and 149 can be described as one coupler 171
- the couplers 144 and 150 can be described as one coupler 172.
- the coupler 161 combines the optical signals input from the WSSs 131, 132, and 138 and outputs the combined optical signals to the landing station 102.
- the coupler 162 combines the optical signals input from the WSSs 131, 132, and 138 and outputs the combined signals to the landing station 103. That is, two adjacent couplers such as couplers 133 and 139 may be combined into one star coupler.
- the control circuit 600 is an electric circuit that monitors and controls the WSSs 131, 132, 138, 141, 142, and 148 and the optical switches 135 to 137 and 145 to 147.
- the control circuit 600 collects and holds the states of these WSSs, and controls the WSSs and optical switches included in the ROADM device 200 based on these WSS states. Note that the ROADM device 200 may be controlled by remote control from the outside.
- the control circuit 600 supplies power only to the WSS being used. That is, the control circuit 600 does not supply power to an unused WSS and a failed WSS. Therefore, even if the WSS used is switched, the power consumption of the ROADM device 200 does not increase before and after that.
- FIG. 5 is a diagram illustrating an example of wavelength bands of optical signals input / output by the ROADM device 200.
- the configurations of the transmission signals of the landing stations 101 and 102 shown in FIG. 5 and the transmission signals of the landing station 103 to the Up line and the Down line are the same as those in FIG.
- the signal A addressed to the landing station 102 and the signal D addressed to the landing station 101 were also transmitted to the landing station 103.
- the received signals from the Up line and the Down line of the landing station 103 are a signal A'B and a signal D'E, respectively, as shown in FIG.
- These WDM signals do not include signal A destined for landing station 102 and signal D destined for landing station 101.
- the ROADM device 200 can prevent the signal A and the signal D from being intercepted by the landing station 103.
- a specific operation of the ROADM apparatus 200 in the Up direction will be described.
- FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when both of the WSSs 131 and 132 are operating normally. 6 to 8, optical paths that are not used for transmission of optical signals are indicated by broken lines.
- the optical switch 135 outputs the signal AB received from the landing station 101 to the WSS 131.
- the WSS 131 separates the signal AB input from the optical switch 135 for each wavelength, outputs the signal B to the coupler 134, and outputs the signal A to the coupler 139.
- the optical switch 136 outputs the signal A′B ′ received from the landing station 103 to the WSS 132.
- the WSS 132 separates the signal A′B ′ input from the optical switch 136 for each wavelength, outputs the signal B ′ to the coupler 133, and outputs the signal A ′ to the coupler 140.
- the WDM signal is not input to the WSS 138, so the WSS 138 does not output an optical signal. Therefore, the signal A output from the WSS 131 passes through the coupler 139 and is input to the coupler 133 as it is.
- the coupler 133 combines the signal A output from the WSS 131 and the signal B ′ output from the WSS 132 and outputs the combined signal AB ′ to the landing station 102.
- the signal A ′ output from the WSS 132 passes through the coupler 140 and is input to the coupler 134 as it is.
- the coupler 134 combines the signal B output from the WSS 131 and the signal A ′ output from the WSS 132 and outputs the combined signal A′B to the landing station 103.
- FIG. 7 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 131 is out of order and the WSS 132 is operating normally.
- the optical switch 135 outputs the signal AB received from the landing station 101 to the optical switch 137.
- the optical switch 137 outputs the signal AB input from the optical switch 135 to the WSS 138.
- WSS 138 generates signal A and signal B by separating signal AB.
- WSS 138 outputs signal A to coupler 139 and outputs signal B to coupler 140.
- the optical switch 136 outputs the signal A′B ′ received from the landing station 103 to the WSS 132 as in FIG. 6.
- the WSS 132 separates the signal A′B ′ input from the optical switch 136 for each wavelength, outputs the signal B ′ to the coupler 133, and outputs the signal A ′ to the coupler 140.
- the coupler 139 inputs the signal A output from the WSS 138 to the coupler 133.
- the coupler 133 combines the signal A input from the coupler 139 and the signal B ′ output from the WSS 132 to generate a signal AB ′ and outputs it to the landing station 102.
- the signal A ′ output from the WSS 132 is input to the coupler 140.
- the coupler 140 combines the signal B output from the WSS 138 and the signal A ′ output from the WSS 132, generates a signal A′B, and outputs the signal A′B to the coupler 134. Since the WSS 131 does not output an optical signal, the coupler 134 outputs the signal A′B input from the coupler 140 to the landing station 103.
- FIG. 8 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 132 is out of order and the WSS 131 is operating normally.
- the optical switch 136 outputs the signal A′B ′ received from the landing station 103 to the optical switch 137.
- the optical switch 137 outputs the signal A′B ′ input from the optical switch 136 to the WSS 138.
- WSS 138 separates signal A'B 'to generate signal A' and signal B '.
- WSS 138 outputs signal B ′ to coupler 139 and signal A ′ to coupler 140.
- the optical switch 135 outputs the signal AB received from the landing station 101 to the WSS 131 as in FIG.
- the WSS 131 separates the signal AB input from the optical switch 135 for each wavelength, outputs the signal B to the coupler 134, and outputs the signal A to the coupler 139.
- the coupler 140 inputs the signal A ′ output from the WSS 138 to the coupler 134.
- the coupler 134 combines the signal A ′ input from the coupler 140 and the signal B output from the WSS 131 to generate a signal A′B and outputs the signal A′B to the landing station 103.
- the signal A output from the WSS 131 is input to the coupler 139.
- the coupler 139 combines the signal B ′ output from the WSS 138 and the signal A output from the WSS 131 to generate a signal AB ′, and outputs the signal AB ′ to the coupler 133. Since the WSS 132 does not output an optical signal, the coupler 133 outputs the signal AB ′ input from the coupler 139 to the landing station 102.
- the propagation of the WDM signal in the Up direction when one of the WSSs 131 and 132 has failed has been described above with reference to FIGS.
- the ROADM device 200 substitutes the function of the failed WSS with the WSS 138.
- the ROADM device 200 can transmit the same optical signal in the Up direction as when both WSSs 131 and 132 are operating normally.
- the optical signal transmitted to the landing station 103 does not include the signal A destined for the landing station 102. That is, in the ROADM apparatus 200 of the second embodiment, the signal A destined for the landing station 102 is concealed even when one of the WSSs 131 and 132 fails.
- FIG. 9 is a flowchart illustrating an example of an operation procedure of the ROADM apparatus 200 according to the second embodiment.
- the couplers 133 and 139 are described as an integrated coupler 161
- the couplers 134 and 140 are described as an integrated coupler 162.
- step S21 in FIG. 9 the states of the WSSs 131 and 132 are confirmed (step S21 in FIG. 9). If both WSSs 131 and 132 are normal, the flow branches to step S22.
- the signal AB received from the landing station 101 is output from the optical switch 135 to the WSS 131 (S22).
- the signal A is output from the WSS 131 to the coupler 161
- the signal B is output from the WSS 131 to the coupler 162 (S23).
- the signal A'B 'received from the landing station 103 is output from the optical switch 136 to the WSS 132 (S24).
- the signal A ' is output from the WSS 132 to the coupler 162, and the signal B' is output from the WSS 132 to the coupler 161 (S25).
- the signal AB ′ combined with the signal A and the signal B ′ is output from the coupler 161 to the landing station 102 (S26), and the signal A′B combined with the signal B and the signal A ′ is output from the coupler 162. It is output to the landing station 103 (S27).
- the signal AB received from the landing station 101 is output from the optical switch 135 to the optical switch 137 (S28).
- the signal AB is output from the optical switch 137 to the WSS 138 (S29).
- the signal A is output from the WSS 138 to the coupler 161
- the signal B is output from the WSS 138 to the coupler 162 (S30).
- the signal A'B 'received from the landing station 103 is output from the optical switch 136 to the WSS 132 (S31).
- the signal A ' is output from the WSS 132 to the coupler 162, and the signal B' is output from the WSS 132 to the coupler 161 (S32).
- the signal AB ′ combined with the signal A and the signal B ′ is output from the coupler 161 to the landing station 102 (S26), and the signal A′B combined with the signal B and the signal A ′ is output from the coupler 162. It is output to the landing station 103 (S27).
- step S33 If the WSS 131 is normal and the WSS 132 is out of order, the flow branches to step S33.
- the signal A'B 'received from the landing station 102 is output from the optical switch 135 to the optical switch 137 (S33).
- the signal AB received from the landing station 101 is output from the optical switch 135 to the WSS 131 (S36).
- the signal A is output from the WSS 131 to the coupler 161, and the signal B is output from the WSS 131 to the coupler 162 (S37).
- the signal AB ′ combined with the signal A and the signal B ′ is output from the coupler 161 to the landing station 102 (S26), and the signal A′B combined with the signal B and the signal A ′ is output from the coupler 162.
- the data is output to the landing station 103 (S27), and then steps S21 to S37 are repeated. Note that the description in FIG. 9 does not mean that only one step S21 to S37 is executed at a time. In the flow of FIG. 9, a plurality of steps may be executed simultaneously.
- the optical switches 135 and 136 may output WDM signals (that is, the signal AB and the signal A′B ′) to the optical switch 137.
- the optical switch 137 may select one of the predetermined WDM signals from the signal AB and the signal A′B ′ and output the selected WDM signal to the WSS 138.
- the WSS 138 separates the signal AB into the signal A and the signal B, or separates the signal A'B 'into the signal A' and the signal B '.
- the signal A ′ is a dummy signal.
- the configuration and operation of the ROADM device 200 are the same in the Down direction. Therefore, the ROADM device 200 replaces the function of the failed WSS with the WSS 148 even when one of the WSSs 141 or 142 fails, so that the same optical signal as when both of the WSSs 141 and 142 are operating normally. Are transmitted in the Down direction. That is, the same effect as the Up direction WDM signal can be obtained for the Down direction WDM signal of the ROADM device 200.
- the ROADM apparatus 200 continues communication using the WSS 138 that is a spare WSS even when one of the WSSs 131 and 132 of the Up line fails. Even in the down line, even if one of the WSSs 141 and 142 fails, communication is continued using the WSS 148 that is a spare WSS. As a result, communication line disconnection and signal quality deterioration between the landing stations 101 to 103 due to the failure of the WSS 131 or WSS 132 and the failure of the WSS 141 or 142 are prevented. At this time, the ROADM function is not impaired by using the WSS 138 and WSS 148 which are spare WSSs.
- the ROADM device 200 of the present embodiment can improve the reliability of the ROADM device using WSS, and hence the reliability of the optical submarine cable system.
- the spare WSS of the ROADM device 200 of the second embodiment is made redundant in a standby state. For this reason, the power consumption of the ROADM device 200 does not increase before and after the WSS failure. That is, the ROADM device 200 of this embodiment can also suppress an increase in power consumption of the ROADM device.
- the ROADM apparatus 200 of the second embodiment is also described as an optical multiplexing / demultiplexing apparatus having the following configuration. Elements corresponding to FIG. 4 are shown in parentheses. That is, the optical multiplexer / demultiplexer includes first and second couplers (couplers 161 and 162), first to third wavelength selective switches (WSS 131, 132, and 138), and optical switches (optical switches 135 to 137). And comprising.
- the first wavelength selective switch (WSS 131) demultiplexes the optical signal included in the first wavelength multiplexed signal (signal AB) for each wavelength and outputs the demultiplexed optical signal to the first and second couplers (couplers 161 and 162). .
- the second wavelength selective switch (WSS 132) demultiplexes the optical signal included in the second wavelength multiplexed signal (signal A′B ′) for each wavelength, and first and second couplers (couplers 161 and 162). Output to.
- the third wavelength selective switch (WSS 138) demultiplexes the optical signal included in the third wavelength multiplexed signal (signal AB or signal A′B ′) for each wavelength, and first and second couplers (coupler 161). , 162).
- the first and second couplers (couplers 161 and 162) combine the inputted optical signals and output them.
- the optical switches Based on the states of the first and second wavelength selective switches (WSS 131 and 132), the optical switches (optical switches 135 to 137) send the first wavelength multiplexed signal (signal AB) to the first wavelength selective switch (WSS 131). ) Or the third wavelength selective switch (WSS 138) as a third wavelength multiplexed signal (signal AB or signal A′B ′).
- the optical switches (optical switches 135 to 137) input the second wavelength multiplexed signal (signal A′B ′) to the second wavelength selective switch (WSS132) or to the third wavelength selective switch (WSS138).
- a third wavelength multiplexed signal (signal AB or signal A′B ′) is input.
- the optical multiplexing / demultiplexing device of the modification of the second embodiment having such a configuration also uses WSS by substituting the function of the failed WSS using WSS 138 when WSS 131 or WSS 132 fails.
- the reliability of the optical multiplexing / demultiplexing device can be improved.
- the control circuits 500 and 600 described in the first and second embodiments may include a CPU (central processing unit) and a memory.
- the memory is, for example, a semiconductor memory or a magnetic disk device, and records a CPU program.
- the CPU implements the functions of the ROADM devices 100 and 200 including the WSS and the optical switch by executing a program stored in the memory.
- Embodiments of the present invention can also be described as in the following supplementary notes, but are not limited thereto.
- a first wavelength selective switch that multiplexes and outputs an optical signal included in the first wavelength-multiplexed optical signal for each wavelength
- a second wavelength selective switch that multiplexes and outputs an optical signal included in the second wavelength multiplexed optical signal for each wavelength
- the first wavelength selective switch and the second wavelength selective switch are used as the first wavelength selective signal and the second wavelength selective signal.
- An optical switch that outputs to A first coupler for coupling the output of the first wavelength selective switch and the output of the second wavelength selective switch;
- An optical multiplexing / demultiplexing device An optical multiplexing / demultiplexing device.
- the optical switch is If the first wavelength selective switch is normal, the first and second wavelength multiplexed signals are output to the first wavelength selective switch; When the first wavelength selective switch is out of order and the second wavelength selective switch is normal, the first and second wavelength multiplexed signals are output to the second wavelength selective switch.
- the optical multiplexing / demultiplexing device according to appendix 1.
- the first wavelength multiplexed optical signal includes a first optical signal having a first wavelength and a second optical signal having a second wavelength;
- the second wavelength-multiplexed optical signal includes a third optical signal having the first wavelength and a fourth optical signal having the second wavelength,
- the first and second wavelength selective switches output an optical signal obtained by combining the first optical signal and the fourth optical signal;
- the optical multiplexing / demultiplexing device according to appendix 1 or 2.
- Appendix 4 A control circuit for supplying power only to the first wavelength selective switch or the second wavelength selective switch to which the first and second wavelength division multiplexed signals are input; The optical multiplexer / demultiplexer according to any one of appendices 1 to 3.
- Appendix 6 An optical multiplexing / demultiplexing device according to appendix 5, and first to third terminal stations connected to be communicable with the optical multiplexing / demultiplexing device, A first wavelength multiplexed signal transmitted from the first terminal is input to the second coupler; The other first wavelength multiplexed signal branched by the second coupler is output to the third terminal station; The output of the first coupler is received at the second terminal station; An optical communication system configured as described above.
- Appendix 7 Two optical multiplexing / demultiplexing devices described in Appendix 5 are provided as a first optical multiplexing / demultiplexing device and a second optical multiplexing / demultiplexing device, and are further connected to be communicable with the first and second optical multiplexing / demultiplexing devices.
- the first wavelength multiplexed signal transmitted from the first terminal station is input to the second coupler of the first optical multiplexer / demultiplexer, and the first wavelength multiplexed signal transmitted from the second terminal station is Input to the second coupler of the second optical multiplexer / demultiplexer;
- the other first wavelength multiplexed signal branched by the second coupler of the first optical multiplexing / demultiplexing device is output to the third terminal station, and the second coupler of the second optical multiplexing / demultiplexing device
- the other first wavelength division multiplexed signal branched in the step is output to the third terminal station,
- the output of the first coupler of the first optical multiplexer / demultiplexer is received by the second terminal station, and the output of the first coupler of the second optical multiplexer / demultiplexer is received by the first terminal station.
- the first wavelength multiplexed optical signal includes a first optical signal having a first wavelength and a second optical signal having a second wavelength;
- the second wavelength-multiplexed optical signal includes a third optical signal having the first wavelength and a fourth optical signal having the second wavelength,
- the first wavelength selective switch outputs the first optical signal to the first coupler and outputs the second optical signal to the second coupler;
- the second wavelength selective switch outputs the third optical signal to the second coupler and outputs the fourth optical signal to the first coupler;
- the third wavelength selective switch outputs the first optical signal or the fourth optical signal to the first coupler, and outputs the second optical signal or the third optical signal to the second optical signal.
- Output to the coupler The optical multiplexing / demultiplexing device according to appendix 8 or 9.
- Appendix 11 A control circuit that supplies power only to the first to third wavelength selective switches to which the first wavelength multiplexed signal or the second wavelength multiplexed signal is input;
- the optical multiplexing / demultiplexing device according to any one of appendices 8 to 10.
- Appendix 12 An optical multiplexing / demultiplexing device according to any one of appendixes 8 to 11, and first to third terminal stations connected to be communicable with the optical multiplexing / demultiplexing device,
- the first terminal transmits a first wavelength multiplexed signal to the optical switch;
- the second terminal receives the output of the first coupler;
- the third terminal transmits a second wavelength multiplexed signal to the optical switch and receives an output of the second coupler;
- An optical communication system configured as described above.
- the optical multiplexing / demultiplexing device described in any one of Appendices 8 to 11 is provided as two first optical multiplexing / demultiplexing devices and a second optical multiplexing / demultiplexing device, and the first and second optical multiplexing / demultiplexing devices; First to third terminals connected to be communicable, The first terminal transmits a first wavelength multiplexed signal to the optical switch of the first optical multiplexer / demultiplexer, and the second terminal transmits the first wavelength multiplexed signal to the second optical multiplexed signal.
- the second terminal station receives an output of the first coupler of the first optical multiplexer / demultiplexer, and the first terminal station outputs an output of the first coupler of the second optical multiplexer / demultiplexer.
- Receive The third terminal station transmits a second wavelength multiplexed signal to the optical switch of the first optical multiplexing / demultiplexing device, and transmits another second wavelength multiplexed signal to the optical of the second optical multiplexing / demultiplexing device. Transmitting to the switch and receiving the output of the second coupler of the first optical multiplexer / demultiplexer and the output of the second coupler of the second optical multiplexer / demultiplexer; An optical communication system configured as described above.
- An optical signal included in the first wavelength-multiplexed optical signal is multiplexed and output for each wavelength by the first wavelength selective switch;
- the optical signal included in the second wavelength-multiplexed optical signal is output by being combined for each wavelength by the second wavelength selective switch, Based on the state of the first wavelength selective switch and the second wavelength selective switch, the first wavelength selective switch and the second wavelength selective switch are used as the first wavelength selective signal and the second wavelength selective signal.
- the optical signal included in the first wavelength division multiplexed signal is demultiplexed for each wavelength by the first wavelength selective switch, and is output to the first coupler and the second coupler, An optical signal included in the second wavelength multiplexed signal is demultiplexed for each wavelength by the second wavelength selective switch, and is output to the first and second couplers; An optical signal included in the third wavelength division multiplexed signal is demultiplexed for each wavelength by a third wavelength selective switch, and is output to the first and second couplers; Based on the states of the first and second wavelength selective switches, the first wavelength multiplexed signal is input to the first wavelength selective switch or the third wavelength selective switch, and the second wavelength multiplexed signal is input. To be input to the second wavelength selective switch or the third wavelength selective switch, In the first and second couplers, input optical signals are combined and output. Control method of optical multiplexer / demultiplexer.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Description
本発明は、信頼性が高いROADM装置を実現するための技術を提供することを目的とする。
以下に説明する実施形態では、WSS(wavelength selective switch、波長選択スイッチ)を備える、光海底ケーブルシステムで用いられるROADM(reconfigurable optical add/drop multiplexing)装置に本発明を適用した形態について説明する。各実施形態のROADM装置は、予備WSSを備える。ROADM装置は、使用中のWSSが故障した場合に予備WSSを用いることにより、陸揚局との間の通信を維持する。
図1は、本発明の第1の実施形態の光海底ケーブルシステム10の構成例を示すブロック図である。光海底ケーブルシステム10は、ROADM装置100及び陸揚局101~103を備える。陸揚局101~103とROADM装置100とは、光海底ケーブルによって接続される。陸揚局101~103は、光海底ケーブルを終端する端局である。陸揚局101及び102はトランク局とも呼ばれる。陸揚局103はブランチ局とも呼ばれる。陸揚局101~103とROADM装置100との間では、光海底ケーブルを用いてWDM(wavelength division multiplexing)信号の伝送が行われる。以降の図面の説明では、既出の構成要素には同一の名称及び参照符号を付して、重複する説明は省略する。
第1の実施形態のROADM装置100は、以下の構成を備える光合分波装置としても記述される。図1に対応する要素は括弧内に示される。すなわち、光合分波装置は、第1の波長選択スイッチ(WSS112)と、第2の波長選択スイッチ(WSS116)と、光スイッチ(光スイッチ114及び115)と、第1のカプラ(カプラ113)と、を備える。
次に、第2の実施形態について図面を参照して説明する。
第2の実施形態のROADM装置200は、以下の構成を備える光合分波装置としても記述される。図4に対応する要素は括弧内に示される。すなわち、光合分波装置は、第1及び第2のカプラ(カプラ161、162)と、第1乃至第3の波長選択スイッチ(WSS131、132、138)と、光スイッチ(光スイッチ135~137)と、を備える。
第1の波長多重光信号に含まれる光信号を波長毎に合波して出力する第1の波長選択スイッチと、
第2の波長多重光信号に含まれる光信号を波長毎に合波して出力する第2の波長選択スイッチと、
前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力する光スイッチと、
前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる第1のカプラと、
を備える光合分波装置。
前記光スイッチは、
前記第1の波長選択スイッチが正常である場合には、前記第1及び第2の波長多重信号を前記第1の波長選択スイッチへ出力し、
前記第1の波長選択スイッチが故障しており、前記第2の波長選択スイッチが正常である場合には、前記第1及び第2の波長多重信号を前記第2の波長選択スイッチへ出力する、
付記1に記載された光合分波装置。
第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
前記第1及び第2の波長選択スイッチは、前記第1の光信号と前記第4の光信号とを合波した光信号を出力する、
付記1又は2に記載された光合分波装置。
前記第1及び第2の波長多重信号が入力される前記第1の波長選択スイッチ又は前記第2の波長選択スイッチにのみ電力を供給する制御回路をさらに備える、
付記1乃至3のいずれかに記載された光合分波装置。
入力された前記第1の波長多重信号を2分岐する第2のカプラをさらに備え、
前記第2のカプラは、分岐された一方の前記第1の波長多重信号を前記光スイッチに入力し、分岐された他方の前記第1の波長多重信号を出力する、付記1乃至4のいずれかに記載された光合分波装置。
付記5に記載された光合分波装置と、前記光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
前記第1の端局が送信した第1の波長多重信号が前記第2のカプラに入力され、
前記第2のカプラで分岐された前記他方の第1の波長多重信号が前記第3の端局に出力され、
前記第1のカプラの出力が前記第2の端局で受信される、
ように構成された光通信システム。
付記5に記載された光合分波装置を第1の光合分波装置及び第2の光合分波装置として2台備え、さらに、前記第1及び第2の光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
前記第1の端局が送信した第1の波長多重信号が前記第1の光合分波装置の前記第2のカプラに入力され、前記第2の端局が送信した第1の波長多重信号が前記第2の光合分波装置の前記第2のカプラに入力され、
前記第1の光合分波装置の第2のカプラで分岐された前記他方の第1の波長多重信号が前記第3の端局に出力され、前記第2の光合分波装置の第2のカプラで分岐された前記他方の第1の波長多重信号が前記第3の端局に出力され、
前記第1の光合分波装置の第1のカプラの出力が前記第2の端局で受信され、前記第2の光合分波装置の第1のカプラの出力が前記第1の端局で受信される、
ように構成された光通信システム。
光信号を結合して出力する、第1のカプラ及び第2のカプラと、
第1の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第1の波長選択スイッチと、
第2の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第2の波長選択スイッチと、
第3の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第3の波長選択スイッチと、
前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチに入力し又は前記第3の波長選択スイッチに前記第3の波長多重信号として入力し、前記第2の波長多重信号を前記第2の波長選択スイッチに入力し又は前記第3の波長選択スイッチに前記第3の波長多重信号として入力する、ように制御する光スイッチと、
を備える光合分波装置。
記光スイッチは、
前記第1の波長選択スイッチ及び前記第2の波長選択スイッチがいずれも正常である場合には、前記第1の波長多重信号を前記第1の波長選択スイッチへ出力するとともに前記第2の波長多重信号を前記第2の波長選択スイッチへ出力し、
前記第1の波長選択スイッチが故障しており、前記第2の波長選択スイッチが正常である場合には、前記第1の波長多重信号を前記第3の波長選択スイッチへ出力するとともに前記第2の波長多重信号を前記第2の波長選択スイッチへ出力し、
前記第2の波長選択スイッチが故障しており、前記第1の波長選択スイッチが正常である場合には、前記第2の波長多重信号を前記第3の波長選択スイッチへ出力するとともに前記第1の波長多重信号を前記第1の波長選択スイッチへ出力する、
付記8に記載された光合分波装置。
第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
前記第1の波長選択スイッチは、前記第1の光信号を前記第1のカプラに出力するとともに前記第2の光信号を前記第2のカプラに出力し、
前記第2の波長選択スイッチは、前記第3の光信号を前記第2のカプラに出力するとともに前記第4の光信号を前記第1のカプラに出力し、
前記第3の波長選択スイッチは、前記第1の光信号又は前記第4の光信号を前記第1のカプラに出力するとともに前記第2の光信号又は前記第3の光信号を前記第2のカプラに出力する、
付記8又は9に記載された光合分波装置。
前記第1の波長多重信号又は第2の波長多重信号が入力される前記第1乃至第3の波長選択スイッチにのみ電力を供給する制御回路を備える、
付記8乃至10のいずれかに記載された光合分波装置。
付記8乃至11のいずれかに記載された光合分波装置と、前記光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
前記第1の端局は第1の波長多重信号を前記光スイッチへ送信し、
前記第2の端局は前記第1のカプラの出力を受信し、
前記第3の端局は第2の波長多重信号を前記光スイッチへ送信するとともに前記第2のカプラの出力を受信する、
ように構成された光通信システム。
付記8乃至11のいずれかに記載された光合分波装置を第1の光合分波装置及び第2の光合分波装置として2台備え、さらに、前記第1及び第2の光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
前記第1の端局は第1の波長多重信号を前記第1の光合分波装置の前記光スイッチへ送信し、前記第2の端局は第1の波長多重信号を前記第2の光合分波装置の前記光スイッチへ送信し、
前記第2の端局は前記第1の光合分波装置の前記第1のカプラの出力を受信し、前記第1の端局は前記第2の光合分波装置の前記第1のカプラの出力を受信し、
前記第3の端局は第2の波長多重信号を前記第1の光合分波装置の前記光スイッチへ送信し、他の第2の波長多重信号を前記第2の光合分波装置の前記光スイッチへ送信し、前記第1の光合分波装置の前記第2のカプラの出力及び前記第2の光合分波装置の前記第2のカプラの出力を受信する、
ように構成された光通信システム。
第1の波長多重光信号に含まれる光信号を第1の波長選択スイッチによって波長毎に合波して出力し、
第2の波長多重光信号に含まれる光信号を第2の波長選択スイッチによって波長毎に合波して出力し、
前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力し、
前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる、
光合分波装置の制御方法。
第1の波長多重信号に含まれる光信号を第1の波長選択スイッチによって波長毎に分波して第1のカプラ及び第2のカプラに出力し、
第2の波長多重信号に含まれる光信号を第2の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力し、
第3の波長多重信号に含まれる光信号を第3の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力し、
前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチ又は前記第3の波長選択スイッチに入力し、前記第2の波長多重信号を前記第2の波長選択スイッチ又は前記第3の波長選択スイッチに入力するように制御し、
前記第1及び第2のカプラにおいて、入力される光信号を結合して出力する、
光合分波装置の制御方法。
光合分波装置のコンピュータに、
第1の波長多重光信号に含まれる光信号を第1の波長選択スイッチによって波長毎に合波して出力する手順、
第2の波長多重光信号に含まれる光信号を第2の波長選択スイッチによって波長毎に合波して出力する手順、
前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力する手順、
前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる手順、
を実行させるための光合分波装置の制御プログラム。
光合分波装置のコンピュータに、
第1の波長多重信号に含まれる光信号を第1の波長選択スイッチによって波長毎に分波して第1のカプラ及び第2のカプラに出力する手順、
第2の波長多重信号に含まれる光信号を第2の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力する手順、
第3の波長多重信号に含まれる光信号を第3の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力する手順、
前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチ又は前記第3の波長選択スイッチに入力し、前記第2の波長多重信号を前記第2の波長選択スイッチ又は前記第3の波長選択スイッチに入力するように制御する手順、
前記第1及び第2のカプラにおいて、入力される光信号を結合して出力する手順、
を実行させるための光合分波装置の制御プログラム。
100、200、900、901 ROADM装置
101、102、103 陸揚局
111、113、121、123、133、134、139、140、143、144、149、150、161、162、171、172 カプラ
114、115、124、125、135~137、145~147 光スイッチ
112、116、122、126、131、132、138、141、142、148 WSS
500、600、950、951 制御回路
Claims (10)
- 第1の波長多重光信号に含まれる光信号を波長毎に合波して出力する第1の波長選択手段と、
第2の波長多重光信号に含まれる光信号を波長毎に合波して出力する第2の波長選択手段と、
前記第1の波長選択手段及び前記第2の波長選択手段の状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択手段又は前記第2の波長選択手段に出力する光切替手段と、
前記第1の波長選択手段の出力と前記第2の波長選択手段の出力とを結合させる第1の分岐結合手段と、
を備える光合分波装置。 - 前記光切替手段は、
前記第1の波長選択手段が正常である場合には、前記第1及び第2の波長多重信号を前記第1の波長選択手段へ出力し、
前記第1の波長選択手段が故障しており、前記第2の波長選択手段が正常である場合には、前記第1及び第2の波長多重信号を前記第2の波長選択手段へ出力する、
請求項1に記載された光合分波装置。 - 第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
前記第1及び第2の波長選択手段は、前記第1の光信号と前記第4の光信号とを合波した光信号を出力する、
請求項1又は2に記載された光合分波装置。 - 前記第1及び第2の波長多重信号が入力される前記第1の波長選択手段又は前記第2の波長選択手段にのみ電力を供給する制御回路をさらに備える、
請求項1乃至3のいずれかに記載された光合分波装置。 - 入力された前記第1の波長多重信号を2分岐する第2の分岐結合手段をさらに備え、
前記第2の分岐結合手段は、分岐された一方の前記第1の波長多重信号を前記光切替手段に入力し、分岐された他方の前記第1の波長多重信号を出力する、請求項1乃至4のいずれかに記載された光合分波装置。 - 光信号を結合して出力する、第1の分岐結合手段及び第2の分岐結合手段と、
第1の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2の分岐結合手段に出力する第1の波長選択手段と、
第2の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2の分岐結合手段に出力する第2の波長選択手段と、
第3の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2の分岐結合手段に出力する第3の波長選択手段と、
前記第1及び第2の波長選択手段の状態に基づいて、前記第1の波長多重信号を前記第1の波長選択手段に入力し又は前記第3の波長選択手段に前記第3の波長多重信号として入力し、前記第2の波長多重信号を前記第2の波長選択手段に入力し又は前記第3の波長選択手段に前記第3の波長多重信号として入力する、ように制御する光切替手段と、
を備える光合分波装置。 - 記光切替手段は、
前記第1の波長選択手段及び前記第2の波長選択手段がいずれも正常である場合には、前記第1の波長多重信号を前記第1の波長選択手段へ出力するとともに前記第2の波長多重信号を前記第2の波長選択手段へ出力し、
前記第1の波長選択手段が故障しており、前記第2の波長選択手段が正常である場合には、前記第1の波長多重信号を前記第3の波長選択手段へ出力するとともに前記第2の波長多重信号を前記第2の波長選択手段へ出力し、
前記第2の波長選択手段が故障しており、前記第1の波長選択手段が正常である場合には、前記第2の波長多重信号を前記第3の波長選択手段へ出力するとともに前記第1の波長多重信号を前記第1の波長選択手段へ出力する、
請求項6に記載された光合分波装置。 - 第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
前記第1の波長選択手段は、前記第1の光信号を前記第1の分岐結合手段に出力するとともに前記第2の光信号を前記第2の分岐結合手段に出力し、
前記第2の波長選択手段は、前記第3の光信号を前記第2の分岐結合手段に出力するとともに前記第4の光信号を前記第1の分岐結合手段に出力し、
前記第3の波長選択手段は、前記第1の光信号又は前記第4の光信号を前記第1の分岐結合手段に出力するとともに前記第2の光信号又は前記第3の光信号を前記第2の分岐結合手段に出力する、
請求項6又は7に記載された光合分波装置。 - 前記第1の波長多重信号又は第2の波長多重信号が入力される前記第1乃至第3の波長選択手段にのみ電力を供給する制御回路を備える、
請求項6乃至8のいずれかに記載された光合分波装置。 - 第1の波長多重光信号に含まれる光信号を第1の波長選択手段によって波長毎に合波して出力し、
第2の波長多重光信号に含まれる光信号を第2の波長選択手段によって波長毎に合波して出力し、
前記第1の波長選択手段及び前記第2の波長選択手段の状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択手段又は前記第2の波長選択手段に出力し、
前記第1の波長選択手段の出力と前記第2の波長選択手段の出力とを結合させる、
光合分波装置の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017507489A JP6500978B2 (ja) | 2015-03-23 | 2016-03-17 | 光合分波装置及び光合分波装置の制御方法 |
EP16768022.2A EP3276854A4 (en) | 2015-03-23 | 2016-03-17 | Optical multiplexing and demultiplexing device, and method of controlling optical multiplexing and demultiplexing device |
US15/558,353 US10349153B2 (en) | 2015-03-23 | 2016-03-17 | Optical multiplexing and demultiplexing device, and method of controlling optical multiplexing and demultiplexing device |
CN201680017657.6A CN107408981B (zh) | 2015-03-23 | 2016-03-17 | 光学复用和解复用设备以及控制光学复用和解复用设备的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-059061 | 2015-03-23 | ||
JP2015059061 | 2015-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016152115A1 true WO2016152115A1 (ja) | 2016-09-29 |
Family
ID=56978307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001549 WO2016152115A1 (ja) | 2015-03-23 | 2016-03-17 | 光合分波装置及び光合分波装置の制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10349153B2 (ja) |
EP (1) | EP3276854A4 (ja) |
JP (1) | JP6500978B2 (ja) |
CN (1) | CN107408981B (ja) |
WO (1) | WO2016152115A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079445A1 (ja) * | 2016-10-25 | 2018-05-03 | 日本電気株式会社 | 光分岐結合装置及び光分岐結合方法 |
WO2018105506A1 (ja) * | 2016-12-05 | 2018-06-14 | 日本電気株式会社 | 光伝送装置および光伝送方法 |
JP2020036312A (ja) * | 2018-07-30 | 2020-03-05 | サブコム,エルエルシー | ファイバ対切替を有する海中ケーブル分岐ユニット |
WO2020194842A1 (ja) * | 2019-03-27 | 2020-10-01 | 日本電気株式会社 | 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体 |
WO2020195737A1 (ja) * | 2019-03-25 | 2020-10-01 | 日本電気株式会社 | 光分岐挿入装置および光伝送方法 |
JPWO2020255466A1 (ja) * | 2019-06-19 | 2020-12-24 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3056367A1 (fr) * | 2016-09-16 | 2018-03-23 | Orange | Procede et dispositif de controle de charge d'une ligne de transmission optique a multiplexage en longueurs d'onde |
JP6525294B1 (ja) * | 2018-02-27 | 2019-06-05 | Necプラットフォームズ株式会社 | 光分岐挿入装置、光通信システム及び光分岐挿入装置の制御方法 |
CN111903074B (zh) * | 2018-03-26 | 2023-09-15 | 日本电气株式会社 | 海底分支设备、光学海底缆线系统和光学通信方法 |
US11336375B2 (en) * | 2018-09-07 | 2022-05-17 | Nec Corporation | Optical transmission apparatus, optical communication system, and optical signal transmission method |
US11089391B1 (en) * | 2020-04-29 | 2021-08-10 | Cisco Technology, Inc. | Process margin relaxation |
US11388491B2 (en) | 2020-10-23 | 2022-07-12 | Huawei Technologies Co., Ltd. | Systems and methods for fast wavelength selection in an optical network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109173A (ja) * | 2009-11-12 | 2011-06-02 | Nippon Telegr & Teleph Corp <Ntt> | 光クロスコネクト装置 |
JP2012004800A (ja) * | 2010-06-16 | 2012-01-05 | Nippon Telegr & Teleph Corp <Ntt> | 光ネットワークシステムのノード装置および冗長切替方法 |
JP2013541301A (ja) * | 2010-10-12 | 2013-11-07 | タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー | 波長選択スイッチのバンド・アグリゲータおよびバンド・デアグリゲータ、ならびにそれを使用するシステムおよび方法 |
JP2014220575A (ja) * | 2013-05-01 | 2014-11-20 | 富士通株式会社 | 光伝送装置、光伝送システム、及び光伝送方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7027732B2 (en) * | 2002-01-18 | 2006-04-11 | Pts Corporation | WDM cross-connects for core optical networks |
JP4638754B2 (ja) | 2005-03-18 | 2011-02-23 | 富士通株式会社 | 光装置および光クロスコネクト装置 |
WO2008031452A1 (en) | 2006-09-11 | 2008-03-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Communications network |
JP4937983B2 (ja) | 2008-10-16 | 2012-05-23 | 日本電信電話株式会社 | 光伝送装置 |
US8948592B2 (en) * | 2009-02-27 | 2015-02-03 | Jds Uniphase Corporation | Method for auto-configuration of a wavelength selective switch in an optical network |
JP5633281B2 (ja) * | 2010-09-29 | 2014-12-03 | 富士通株式会社 | 光通信システム、光ネットワーク管理装置および光ネットワーク管理方法 |
US9462358B2 (en) | 2011-08-25 | 2016-10-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Apparatus and method for an optical network |
ES2684771T3 (es) | 2013-04-16 | 2018-10-04 | Huawei Technologies Co., Ltd. | Dispositivo de nodo |
US9008514B2 (en) * | 2013-06-22 | 2015-04-14 | Mark E. Boduch | Method and apparatus for construction of compact optical nodes using wavelength equalizing arrays |
-
2016
- 2016-03-17 EP EP16768022.2A patent/EP3276854A4/en not_active Withdrawn
- 2016-03-17 JP JP2017507489A patent/JP6500978B2/ja active Active
- 2016-03-17 US US15/558,353 patent/US10349153B2/en active Active
- 2016-03-17 CN CN201680017657.6A patent/CN107408981B/zh active Active
- 2016-03-17 WO PCT/JP2016/001549 patent/WO2016152115A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109173A (ja) * | 2009-11-12 | 2011-06-02 | Nippon Telegr & Teleph Corp <Ntt> | 光クロスコネクト装置 |
JP2012004800A (ja) * | 2010-06-16 | 2012-01-05 | Nippon Telegr & Teleph Corp <Ntt> | 光ネットワークシステムのノード装置および冗長切替方法 |
JP2013541301A (ja) * | 2010-10-12 | 2013-11-07 | タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー | 波長選択スイッチのバンド・アグリゲータおよびバンド・デアグリゲータ、ならびにそれを使用するシステムおよび方法 |
JP2014220575A (ja) * | 2013-05-01 | 2014-11-20 | 富士通株式会社 | 光伝送装置、光伝送システム、及び光伝送方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3276854A4 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11438087B2 (en) | 2016-10-25 | 2022-09-06 | Nec Corporation | Optical branching/coupling device and optical branching/coupling method |
US11082145B2 (en) | 2016-10-25 | 2021-08-03 | Nec Corporation | Optical branching/coupling device and optical branching/coupling method |
JP2021073784A (ja) * | 2016-10-25 | 2021-05-13 | 日本電気株式会社 | 光分岐結合装置及び光分岐結合方法 |
JPWO2018079445A1 (ja) * | 2016-10-25 | 2019-07-18 | 日本電気株式会社 | 光分岐結合装置及び光分岐結合方法 |
WO2018079445A1 (ja) * | 2016-10-25 | 2018-05-03 | 日本電気株式会社 | 光分岐結合装置及び光分岐結合方法 |
EP3534552A4 (en) * | 2016-10-25 | 2019-10-30 | Nec Corporation | OPTICAL BRANCH / COUPLING DEVICE AND OPTICAL BRANCH / COUPLING METHOD |
EP3790206A1 (en) * | 2016-10-25 | 2021-03-10 | NEC Corporation | Optical branching/coupling device and optical branching/coupling method |
US10715270B2 (en) | 2016-10-25 | 2020-07-14 | Nec Corporation | Optical branching/coupling device and optical branching/coupling method |
JP7095762B2 (ja) | 2016-10-25 | 2022-07-05 | 日本電気株式会社 | 光分岐結合装置及び光分岐結合方法 |
JPWO2018105506A1 (ja) * | 2016-12-05 | 2019-10-24 | 日本電気株式会社 | 光伝送装置および光伝送方法 |
EP3550744A4 (en) * | 2016-12-05 | 2020-09-02 | Nec Corporation | OPTICAL TRANSMISSION DEVICE AND OPTICAL TRANSFER METHOD |
CN110024312A (zh) * | 2016-12-05 | 2019-07-16 | 日本电气株式会社 | 光传输设备和光传输方法 |
WO2018105506A1 (ja) * | 2016-12-05 | 2018-06-14 | 日本電気株式会社 | 光伝送装置および光伝送方法 |
JP7402585B2 (ja) | 2018-07-30 | 2023-12-21 | サブコム,エルエルシー | ファイバ対切替を有する海中ケーブル分岐ユニット及び光通信システム |
US12085771B2 (en) | 2018-07-30 | 2024-09-10 | Subcom, Llc | Submarine cable branching units with fiber pair switching |
JP2020036312A (ja) * | 2018-07-30 | 2020-03-05 | サブコム,エルエルシー | ファイバ対切替を有する海中ケーブル分岐ユニット |
JPWO2020195737A1 (ja) * | 2019-03-25 | 2021-12-16 | 日本電気株式会社 | 光分岐挿入装置および光伝送方法 |
CN113475019A (zh) * | 2019-03-25 | 2021-10-01 | 日本电气株式会社 | 光学分插复用器和光学传输方法 |
WO2020195737A1 (ja) * | 2019-03-25 | 2020-10-01 | 日本電気株式会社 | 光分岐挿入装置および光伝送方法 |
JPWO2020194842A1 (ja) * | 2019-03-27 | 2021-12-09 | 日本電気株式会社 | 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム |
JP7264233B2 (ja) | 2019-03-27 | 2023-04-25 | 日本電気株式会社 | 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム |
US11942991B2 (en) | 2019-03-27 | 2024-03-26 | Nec Corporation | Optical submarine branching apparatus, optical submarine cable system, switching method, non-transitory computer-readable medium |
WO2020194842A1 (ja) * | 2019-03-27 | 2020-10-01 | 日本電気株式会社 | 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体 |
WO2020255466A1 (ja) * | 2019-06-19 | 2020-12-24 | 日本電気株式会社 | 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体 |
JPWO2020255466A1 (ja) * | 2019-06-19 | 2020-12-24 | ||
JP7338684B2 (ja) | 2019-06-19 | 2023-09-05 | 日本電気株式会社 | 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム |
US11832032B2 (en) | 2019-06-19 | 2023-11-28 | Nec Corporation | Optical submarine branching apparatus, optical submarine cable system, switching method, and non-transitory computer readable medium |
Also Published As
Publication number | Publication date |
---|---|
US10349153B2 (en) | 2019-07-09 |
US20180070156A1 (en) | 2018-03-08 |
JPWO2016152115A1 (ja) | 2018-01-11 |
JP6500978B2 (ja) | 2019-04-17 |
CN107408981A (zh) | 2017-11-28 |
EP3276854A1 (en) | 2018-01-31 |
CN107408981B (zh) | 2020-09-18 |
EP3276854A4 (en) | 2018-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6500978B2 (ja) | 光合分波装置及び光合分波装置の制御方法 | |
EP3334062B1 (en) | Optical add/drop multiplexing device and optical add/drop multiplexing method | |
JP6265266B2 (ja) | 光通信装置、光通信システム、及び光通信方法 | |
US11251895B2 (en) | Seabed branching device, optical seabed cable system, and optical communication method | |
WO2018079445A1 (ja) | 光分岐結合装置及び光分岐結合方法 | |
JP2012124772A (ja) | 光伝送装置及び光伝送システム | |
JPWO2009060522A1 (ja) | 光送受信モジュールおよびその管理制御方法,光送受信装置ならびに波長多重光送受信装置 | |
JPWO2019065383A1 (ja) | 海底分岐装置、光海底ケーブルシステム、光通信方法 | |
JP4730145B2 (ja) | 光信号切替え装置および光信号切替え方法 | |
US20030185566A1 (en) | Optical cross-connect device | |
JP7136317B2 (ja) | 光分岐結合装置及び光分岐結合方法 | |
JP6954307B2 (ja) | 光伝送装置および光伝送方法 | |
JP5764989B2 (ja) | 光信号分岐装置、光信号分岐システム、および光信号分岐方法 | |
CN115967465A (zh) | 一种波分复用设备及光信号处理方法 | |
US20230353912A1 (en) | Optical branching/coupling device and method for controlling same | |
JP2013070280A (ja) | 光通信装置、光通信システム、および経路制御方法 | |
CN113475019A (zh) | 光学分插复用器和光学传输方法 | |
JP2009088606A (ja) | 光分岐システムおよび光分岐方法 | |
JP2005136994A (ja) | 光ネットワークのネットワーク容量を増加させるための方法及びシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16768022 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017507489 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15558353 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016768022 Country of ref document: EP |