WO2016152115A1 - 光合分波装置及び光合分波装置の制御方法 - Google Patents

光合分波装置及び光合分波装置の制御方法 Download PDF

Info

Publication number
WO2016152115A1
WO2016152115A1 PCT/JP2016/001549 JP2016001549W WO2016152115A1 WO 2016152115 A1 WO2016152115 A1 WO 2016152115A1 JP 2016001549 W JP2016001549 W JP 2016001549W WO 2016152115 A1 WO2016152115 A1 WO 2016152115A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
signal
optical
output
wss
Prior art date
Application number
PCT/JP2016/001549
Other languages
English (en)
French (fr)
Inventor
元良 河井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017507489A priority Critical patent/JP6500978B2/ja
Priority to EP16768022.2A priority patent/EP3276854A4/en
Priority to US15/558,353 priority patent/US10349153B2/en
Priority to CN201680017657.6A priority patent/CN107408981B/zh
Publication of WO2016152115A1 publication Critical patent/WO2016152115A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0209Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the present invention relates to an optical multiplexing / demultiplexing device and an optical multiplexing / demultiplexing device control method, and more particularly to an OADM (optical add / drop multiplexing) device equipped with a WSS (wavelength selective ⁇ ⁇ switch) and a control method thereof.
  • OADM optical add / drop multiplexing
  • OADM optical add / drop multiplexing
  • Patent Document 1 describes an ROADM device using a wavelength selective switch (wavelength selective switch, WSS).
  • WSS wavelength selective switch
  • the WSS has three functions: a demultiplexing function for separating an input optical signal in units of wavelengths, a switching function for selecting the demultiplexed optical signal, and a multiplexing function for the selected optical signal.
  • the WSS may further comprise adjustment of the optical signal level of each wavelength.
  • Patent Document 2 describes an optical cross-connect device having a redundant configuration. In a general ROADM device, WSSs are arranged on each of an uplink (Up line) and a downlink (Down line), and an optical signal having a predetermined wavelength is distributed to a trunk station and a branch station.
  • FIG. 10 is a block diagram showing a configuration of a general optical submarine cable system 90.
  • the optical submarine cable system 90 includes a ROADM device 900 and landing stations 101-103.
  • the ROADM device 900 is a branch device installed on the seabed, and is connected to the landing stations 101 to 103 installed on the land.
  • Landing stations 101 to 103 are terminal stations that terminate optical submarine cables.
  • transmission of a wavelength division (WDM) optical signal (hereinafter referred to as “WDM signal”) is performed using an optical submarine cable.
  • WDM signal wavelength division
  • the optical signals of some wavelengths of the WDM signals transmitted and received by the landing station 101 and the landing station 102 are used for communication with the landing station 103.
  • Landing stations 101 and 102 are also called trunk stations.
  • the landing station 103 is a terminal station that terminates a line (branch line) branched from a line (trunk line) between trunk stations, and is also called a branch station.
  • the directions and lines from the landing stations 101 and 103 to the landing station 102 are respectively referred to as “Up direction” and “Up line”, and the directions from the landing stations 102 and 103 to the landing station 101 and Lines are described as “Down direction” and “Down line”.
  • FIG. 11 is a diagram illustrating an example of a wavelength band of a WDM signal input / output by the ROADM apparatus 900.
  • Signal A and signal B are transmission signals of the landing station 101
  • signal D and signal E are transmission signals of the landing station 102.
  • Signal A is an optical signal transmitted from the landing station 101 to the landing station 102
  • signal B is an optical signal transmitted from the landing station 101 to the landing station 103.
  • Signal D is an optical signal transmitted from landing station 102 to landing station 101
  • signal E is an optical signal transmitted from landing station 102 to landing station 103.
  • Signal A 'and signal B' are transmission signals to the Up line of the landing station 103
  • signals D 'and signal E' are transmission signals to the Down line of the landing station 103
  • the signal B ′ is an optical signal transmitted from the landing station 103 to the landing station 102
  • the signal E ′ is an optical signal transmitted from the landing station 103 to the landing station 101.
  • the signal A ′ and the signal D ′ are dummy signals.
  • the dummy signal is added at the landing station 103 in order to keep the optical power of the WDM signal input to the optical submarine repeater installed in the middle of the submarine cable within a certain range in the system.
  • the dummy signal has no information to be transmitted.
  • each of the signals A, A ′, B, B ′, D, D ′, E, and E ′ may be an optical signal of one carrier (carrier wave), or may include optical signals of a plurality of carriers.
  • a WDM signal composed of signal A and signal B is referred to as signal AB.
  • WDM signals composed of other optical signals such as the signal D and the signal E are also simply described using symbols such as D and E.
  • the signal A is described as (A) and the signal AB ′ is described as (AB ′).
  • a signal AB transmitted from the landing station 101 is branched by a coupler (CPL) 111 into the direction of the landing station 102 and the direction of the landing station 103.
  • CPL coupler
  • the signal A′B ′ transmitted from the landing station 103 and having the same wavelength band as the signal AB is input to the WSS 112.
  • the WSS 112 combines and demultiplexes the input signal AB and signal A′B ′ to generate a signal AB ′.
  • the generated signal AB ′ is transmitted to the landing station 102.
  • the ROADM apparatus 900 includes a control circuit 950 for controlling the WSSs 112 and 122.
  • a control circuit 950 for controlling the WSSs 112 and 122.
  • the WSS 112 By controlling the WSS 112 and changing the wavelength bandwidth of the signals A, B, A ′ and B ′, the transmission capacity from the landing station 101 to the landing station 102 and the landing station 101 to the landing station 103 are changed.
  • the ratio with the transmission capacity can be changed.
  • the ratio between the transmission capacity from the landing station 102 to the landing station 101 and the transmission capacity from the landing station 102 to the landing station 103 can be changed using the coupler 121 and the WSS 122.
  • FIG. 12 is a block diagram showing the configuration of another general optical submarine cable system 91.
  • the optical submarine cable system 91 includes a ROADM device 901 and landing stations 101-103.
  • the ROADM device 901 is installed on the seabed, and is connected to the landing stations 101 to 103 installed on land by optical submarine cables.
  • the ROADM device 901 includes WSSs 131 and 132 and couplers 133 and 134 on the Up line.
  • the ROADM device 901 includes WSSs 141 and 142 and couplers 143 and 144 on the Down line.
  • the ROADM device 901 includes a control circuit 951 for controlling the WSSs 131 and 132 and the WSSs 141 and 142.
  • WSS 131 separates signal AB received from landing station 101 into signal A and signal B, and outputs them.
  • Signal A is output to coupler 133
  • signal B is output to coupler 134.
  • the WSS 132 separates the signal A′B ′ received from the landing station 103 into a signal A ′ and a signal B ′ and outputs the signal A ′.
  • the signal B ′ is output to the coupler 133
  • the signal A ′ is output to the coupler 134.
  • the coupler 133 outputs a signal AB ′ obtained by combining the signal A and the signal B ′ to the landing station 102.
  • the coupler 134 outputs a signal A′B obtained by combining the signal A ′ and the signal B to the landing station 103.
  • the operation of the ROADM device 901 for the optical signal in the Down direction is the same. That is, the WSS 141 separates the signal DE received from the landing station 102 into a signal D and a signal E, and outputs them.
  • the WSS 142 separates the signal D′ E ′ received from the landing station 103 into a signal D ′ and a signal E ′, and outputs them.
  • the coupler 143 outputs a signal DE ′ obtained by combining the signal D and the signal E ′ to the landing station 101.
  • the coupler 144 outputs a signal D′ E obtained by combining the signal D ′ and the signal E to the landing station 103. In this manner, the ROADM device 901 transmits the signal A′B and the signal D′ E to the landing station 103.
  • FIG. 13 is a diagram illustrating an example of wavelength bands of optical signals input and output by the ROADM device 901.
  • the signal A addressed to the landing station 102 and the signal D addressed to the landing station 101 were also transmitted to the landing station 103.
  • the received signals from the Up line and the Down line of the landing station 103 are the signal A'B and the signal D'E, respectively.
  • These WDM signals do not include signal A destined for landing station 102 and signal D destined for landing station 101. For this reason, the ROADM device 901 can prevent the signal A and the signal D from being intercepted by the landing station 103.
  • JP 2010-098545 A [0019] paragraph, FIG. 2) Japanese Patent Laying-Open No. 2011-109173 (paragraph [0016], FIG. 4)
  • a wavelength selection device such as WSS is composed of a plurality of optical components, and is used with a control circuit and a power supply connected.
  • optical components include MEMS (micro electro mechanical systems), LCOS (liquid crystal on silicon, liquid crystal formed on silicon), optical filters and lenses.
  • MEMS and LCOS are wavelength selection elements that switch optical paths and wavelengths.
  • the optical filter transmits or blocks an optical signal having a specific wavelength.
  • the lens optically couples between the wavelength selection element and the optical filter and the fiber.
  • the wavelength selection element is controlled by an electrical signal from the control circuit.
  • the WSS device is composed of such various types of components, high reliability is required for application to a backbone communication system. In an optical submarine cable system, for example, reliability that can be stably operated over a long period of 25 years is required. Therefore, a ROADM device using WSS is particularly required to have high reliability.
  • Patent Documents 1 and 2 do not describe a specific configuration for improving the reliability when WSS is used in the ROADM device.
  • An object of this invention is to provide the technique for implement
  • the optical multiplexing / demultiplexing device of the present invention includes a first wavelength selective switch that multiplexes and outputs an optical signal included in the first wavelength multiplexed optical signal for each wavelength, and light included in the second wavelength multiplexed optical signal.
  • a second wavelength selective switch that multiplexes and outputs a signal for each wavelength, and a first wavelength multiplexed signal and a second wavelength based on the states of the first wavelength selective switch and the second wavelength selective switch.
  • An optical switch that outputs a wavelength-multiplexed signal to the first wavelength selective switch or the second wavelength selective switch, a first that couples the output of the first wavelength selective switch and the output of the second wavelength selective switch. 1 coupler.
  • An optical multiplexing / demultiplexing device demultiplexes an optical signal included in a first wavelength-division-multiplexed signal for each wavelength, and the first coupler and the second coupler that combine and output optical signals.
  • a first wavelength selective switch that outputs to the first and second couplers, and a second wavelength that demultiplexes the optical signal included in the second wavelength multiplexed signal for each wavelength and outputs the demultiplexed signals to the first and second couplers.
  • a wavelength selective switch a third wavelength selective switch that demultiplexes an optical signal included in the third wavelength multiplexed signal for each wavelength and outputs the demultiplexed optical signal to the first and second couplers; and the first and second Based on the state of the wavelength selective switch, the first wavelength multiplexed signal is input to the first wavelength selective switch, or is input to the third wavelength selective switch as the third wavelength multiplexed signal, and the second Wavelength-division multiplexed signal is input to the second wavelength selective switch or the second wavelength selective switch Comprising an optical switch for inputting as said third wavelength-multiplexed signal to the wavelength selective switch is controlled as a.
  • the optical signal included in the first wavelength multiplexed optical signal is multiplexed and output for each wavelength by the first wavelength selective switch, and the second wavelength multiplexed optical signal is output.
  • the included optical signal is multiplexed and output for each wavelength by the second wavelength selective switch, and based on the state of the first wavelength selective switch and the second wavelength selective switch, the first wavelength multiplexed signal and Outputting a second wavelength multiplexed signal to the first wavelength selective switch or the second wavelength selective switch, and combining the output of the first wavelength selective switch and the output of the second wavelength selective switch; It is characterized by that.
  • the present invention has the effect of realizing a highly reliable ROADM device.
  • FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when both of the WSSs 131 and 132 are operating normally.
  • FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 131 is out of order and the WSS 132 is operating normally.
  • FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 132 is out of order and the WSS 131 is operating normally.
  • FIG. It is a flowchart which shows the example of the operation
  • movement procedure of the ROADM apparatus 200 of 2nd Embodiment. 1 is a block diagram showing a configuration of a general optical submarine cable system 90.
  • FIG. 1 is a block diagram showing a configuration of a general optical submarine cable system 90.
  • FIG. 5 is a diagram illustrating an example of a wavelength band of an optical signal input / output by the ROADM device 900.
  • FIG. It is a block diagram which shows the structure of the other general optical submarine cable system 91.
  • FIG. 6 is a diagram illustrating an example of a wavelength band of an optical signal input / output by the ROADM device 901.
  • FIG. 6 is a diagram illustrating an example of a wavelength band of an optical signal input / output by the ROADM device 901.
  • ROADM reconfigurable optical add / drop multiplexing
  • the ROADM device uses an optical switch to switch the path of the optical signal input to the failed WSS to be input to the standby WSS. After switching, the WDM signal transmitted to the trunk station and the branch station is generated using the spare WSS and the coupler.
  • the control circuit stops supplying power to the WSS that is not used (that is, the optical signal is not input).
  • FIG. 1 is a block diagram showing a configuration example of an optical submarine cable system 10 according to the first embodiment of the present invention.
  • the optical submarine cable system 10 includes a ROADM device 100 and landing stations 101-103. Landing stations 101-103 and ROADM device 100 are connected by an optical submarine cable. Landing stations 101 to 103 are terminal stations that terminate optical submarine cables. Landing stations 101 and 102 are also called trunk stations. The landing station 103 is also called a branch station. Between the landing stations 101 to 103 and the ROADM device 100, transmission of a WDM (wavelength division multiplexing) signal is performed using an optical submarine cable.
  • WDM wavelength division multiplexing
  • the ROADM apparatus 100 further includes couplers 113 and 123, optical switches 114, 115, 124 and 125, and WSSs 116 and 126, as compared with the ROADM apparatus 900 described with reference to FIG.
  • the optical switches 114 and 115, the WSS 116, and the coupler 113 are provided in the Up line.
  • Optical switches 124 and 125, WSS 126 and coupler 123 are provided in the Down line.
  • Each optical switch is a 1 ⁇ 2 optical switch and outputs an input optical signal from one of two outputs.
  • the configuration and operation of the ROADM device 100 in the Up direction will be described.
  • the configurations and operations of the Down direction couplers 121 and 123, the WSSs 122 and 126, and the optical switches 124 and 125 can be considered in the same manner as the Up direction couplers 111 and 113, the WSSs 112 and 116, and the optical switches 114 and 115. Therefore, the description about the Down direction is omitted.
  • the coupler 111 splits the WDM signal input from the landing station 101 into two, outputs one to the optical switch 114, and outputs the other to the landing station 103.
  • the optical switch 114 outputs the WDM signal input from the coupler 111 to the WSS 112 or WSS 116.
  • the optical switch 115 outputs the WDM signal input from the landing station 103 to the WSS 112 or WSS 116.
  • One of the outputs of the optical switch 114 and one of the outputs of the optical switch 115 are input to the WSS 112.
  • the other output of the optical switch 114 and the other output of the optical switch 115 are input to the WSS 116.
  • FIG. 2 is a diagram illustrating an example of wavelength bands of optical signals input / output by the ROADM apparatus 100.
  • An example of the wavelength band of the optical signal in FIG. 2 is the same as that in FIG. That is, the signal A and the signal B are transmission signals of the landing station 101, and the signal D and the signal E are transmission signals of the landing station 102.
  • Signal A is an optical signal transmitted from the landing station 101 to the landing station 102
  • signal B is an optical signal transmitted from the landing station 101 to the landing station 103
  • Signal D is an optical signal transmitted from landing station 102 to landing station 101
  • signal E is an optical signal transmitted from landing station 102 to landing station 103.
  • Signal A 'and signal B' are transmission signals to the Up line of the landing station 103
  • signals D 'and signal E' are transmission signals to the Down line of the landing station 103
  • the signal B ′ is an optical signal transmitted from the landing station 103 to the landing station 102
  • the signal E ′ is an optical signal transmitted from the landing station 103 to the landing station 101.
  • the signal A ′ and the signal D ′ are dummy signals.
  • the dummy signal is added at the landing station 103 in order to keep the optical power of the WDM signal input to the optical submarine repeater installed in the middle of the submarine cable within a certain range in the system.
  • the dummy signal has no information to be transmitted.
  • Each of the signals A, A ′, B, B ′, D, D ′, E, and E ′ may be an optical signal of one carrier (carrier wave), or may include optical signals of a plurality of carriers.
  • the coupler 111 receives the signal AB from the landing station 101.
  • One of the signals AB branched into two by the coupler 111 is input to the optical switch 114.
  • the optical switch 114 outputs the input signal AB to the WSS 112 when the WSS 112 is operating normally.
  • the optical switch 114 outputs the input signal AB to the WSS 116 when the WSS 112 fails.
  • the signal A′B ′ output from the landing station 103 is input to the optical switch 115.
  • the optical switch 115 outputs the input signal A′B ′ to the WSS 112 when the WSS 112 is operating normally.
  • the optical switch 115 outputs the input signal A′B ′ to the WSS 116 when the WSS 112 fails.
  • the WSS 112 demultiplexes and multiplexes the signal A and the signal B ′, and outputs the result to the coupler 113 as the signal AB ′.
  • the WSS 116 also demultiplexes and combines the signal A and the signal B ′, and outputs the demultiplexed signal to the coupler 113 as the signal AB ′.
  • the control circuit 500 is an electric circuit that monitors and controls the optical switches 114 and 115 and the WSSs 112 and 116.
  • the control circuit 500 collects and holds the states of the WSSs 112 and 116, and controls the WSSs 112 and 116 and the optical switches 114 and 115 based on the states of the WSSs 112 and 116.
  • the control circuit 500 performs the same control for the down direction optical switch and WSS. Note that the ROADM device 100 may be controlled by remote control from the outside.
  • the control circuit 500 supplies power to the WSS 112 and stops supplying power to the WSS 116.
  • the control circuit 500 supplies power to the WSS 116 and stops supplying power to the WSS 112.
  • the control circuit 500 performs similar power control for the WSS 122 and WSS 126 used in the Down line. That is, the control circuit 500 supplies power only to the WSS that is operating upon receiving the WDM signal.
  • the control circuit 500 changes the transmission bandwidth to the landing station 102 and the transmission capacity to the landing station 103 by changing the ratio of the wavelength bandwidth of the signals AB and A′B ′ in the WSS 112 and the WSS 116. Can change.
  • the couplers 111, 113, 121 and 123 are, for example, optical directional couplers.
  • the coupler 113 combines the optical signals input from the WSS 112 and the WSS 116 and outputs them to the landing station 102.
  • the signal AB ′ is input to the coupler 113 from only one of the WSS 112 and the WSS 116 by the operation of the optical switches 114 and 115 described above.
  • FIG. 3 is a flowchart illustrating an example of an operation procedure of the ROADM apparatus 100 according to the first embodiment.
  • the signal AB received from the landing station 101 is branched into two by the coupler 111 (step S01 in FIG. 3). It is determined whether the WSS 112 is operating normally (S02). When the WSS 112 is normal (S02: Yes), the signal AB is output from the optical switch 114 to the WSS 112 (S03), and the signal A'B 'is output from the optical switch 115 to the WSS 112 (S04). A signal AB 'is generated in the WSS 112, and the generated signal AB' is output to the CPL 113 (S05). The signal AB ′ passes through the coupler 113 and is output to the landing station 102 (S06).
  • the signal AB is output from the optical switch 114 to the WSS 116 (S07), and the signal A'B 'is output from the optical switch 115 to the WSS 116 (S08). In this case, it is assumed that the WSS 116 is normal. Then, the signal AB ′ is generated in the WSS 116, and the generated signal AB ′ is output to the CPL 113 (S09). The signal AB 'passes through the coupler 113 and is output to the landing station 102 (S06), and then steps S01 to S09 are repeatedly executed. Note that the description of FIG. 3 does not mean that only one of steps S01 to S09 is executed at the same time. In the flow of FIG. 3, a plurality of steps may be executed simultaneously.
  • the ROADM device 100 outputs the signal AB ′ to the landing station 102 regardless of whether the WSS 112 is normal or malfunctioning.
  • the operation of the ROADM device 100 for the WDM signal in the Down direction can be considered in the same manner as the operation in the Up direction described above. That is, the signal DE ′ is output to the landing station 101 regardless of whether the WSS 122 is normal or malfunctioning by the same procedure as in FIG. 3.
  • the control circuit 500 changes the transmission capacity to the landing station 101 and the transmission capacity to the landing station 103 by changing the ratio of the wavelength bandwidths of the signals DE and D′ E ′ in the WSS 122 and the WSS 126. it can.
  • the ROADM apparatus 100 continues communication using the WSS 116 or WSS 126 that is a spare WSS even when the WSS 112 of the Up line or the WSS 122 of the Down line fails.
  • WSS 112 of the Up line or the WSS 122 of the Down line fails.
  • the ROADM function is not impaired by using the WSS 116 or WSS 126 which is a spare WSS.
  • the ROADM device 100 can improve the reliability of the ROADM device using WSS, and further improve the reliability of the optical submarine cable system.
  • the control circuit 500 does not supply power to an unused WSS. For this reason, the power consumption of the ROADM device 100 does not increase before and after the WSS failure. That is, the ROADM device 100 of this embodiment can suppress an increase in power consumption of the ROADM device.
  • the ROADM device 100 of the first embodiment is also described as an optical multiplexing / demultiplexing device having the following configuration. Elements corresponding to FIG. 1 are shown in parentheses. That is, the optical multiplexer / demultiplexer includes a first wavelength selective switch (WSS 112), a second wavelength selective switch (WSS 116), optical switches (optical switches 114 and 115), and a first coupler (coupler 113). .
  • WSS 112 first wavelength selective switch
  • WSS 116 second wavelength selective switch
  • optical switches optical switches
  • optical switches 114 and 115 optical switches
  • a first coupler coupled 113
  • the first wavelength selective switch (WSS 112) combines the optical signals included in the first wavelength multiplexed optical signal (signal AB) for each wavelength and outputs them.
  • the second wavelength selective switch (WSS 116) combines the optical signals included in the second wavelength-multiplexed optical signal (signal A′B ′) for each wavelength and outputs them.
  • the optical switches Based on the state of the first wavelength selective switch (WSS 112) and the second wavelength selective switch (WSS 116), the optical switches (optical switches 114 and 115) are connected to the first wavelength multiplexed signal (signal AB) and the second wavelength selective switch (WS).
  • the wavelength multiplexed signal (signal A′B ′) is output to the first wavelength selective switch (WSS 112) or the second wavelength selective switch (WSS 116).
  • the first coupler (coupler 113) couples the output of the first wavelength selective switch (WSS112) and the output of the second wavelength selective switch (WSS116).
  • the optical multiplexing / demultiplexing device is also an optical multiplexing / demultiplexing device using WSS by substituting the function of WSS 112 using WSS 116 when WSS 112 fails.
  • the reliability of the system can be improved.
  • FIG. 4 is a block diagram showing a configuration example of the optical submarine cable system 20 according to the second embodiment of the present invention.
  • the optical submarine cable system 20 includes a ROADM device 200 and landing stations 101-103. Landing stations 101-103 and ROADM device 200 are connected by an optical submarine cable.
  • the ROADM apparatus 200 further includes optical switches 135 to 137, optical switches 145 to 147, WSSs 138 and 148, and couplers 139, 140, 149, and 150, as compared with the ROADM apparatus 901 described with reference to FIG.
  • Optical switches 135 to 137, WSS 138, and couplers 139 and 140 are provided in the Up line.
  • Optical switches 145 to 147, WSS 148, and couplers 149 and 150 are provided in the Down line.
  • each optical component in the Down direction is symmetrical to the Up direction, and only the wavelength band is different. That is, the operation of the ROADM apparatus 200 for the optical signal in the Down direction can be considered in the same manner as in the Up direction, and thus the description of the Down direction is omitted.
  • the optical switch 135 outputs the input WDM signal to the WSS 131 or the optical switch 137.
  • the WSS 131 separates the WDM signal input from the optical switch 135 for each wavelength and outputs it to the coupler 134 and the coupler 139.
  • the optical switch 136 outputs the input WDM signal to the WSS 132 or the optical switch 137.
  • the WSS 132 separates the WDM signal input from the optical switch 136 for each wavelength and outputs it to the coupler 133 and the coupler 140.
  • the optical switch 137 selects one of the WDM signal input from the optical switch 135 and the WDM signal input from 136 and outputs the selected WDM signal to the WSS 138.
  • the WSS 138 separates and combines the WDM signals input from the optical switch 137 for each wavelength, and outputs the combined optical signals to the coupler 139 and the coupler 140.
  • the couplers 133 and 139 shown in FIG. 4 can be described as one three-input one-output coupler 161.
  • the couplers 134 and 140 can be described as one coupler 162
  • the couplers 143 and 149 can be described as one coupler 171
  • the couplers 144 and 150 can be described as one coupler 172.
  • the coupler 161 combines the optical signals input from the WSSs 131, 132, and 138 and outputs the combined optical signals to the landing station 102.
  • the coupler 162 combines the optical signals input from the WSSs 131, 132, and 138 and outputs the combined signals to the landing station 103. That is, two adjacent couplers such as couplers 133 and 139 may be combined into one star coupler.
  • the control circuit 600 is an electric circuit that monitors and controls the WSSs 131, 132, 138, 141, 142, and 148 and the optical switches 135 to 137 and 145 to 147.
  • the control circuit 600 collects and holds the states of these WSSs, and controls the WSSs and optical switches included in the ROADM device 200 based on these WSS states. Note that the ROADM device 200 may be controlled by remote control from the outside.
  • the control circuit 600 supplies power only to the WSS being used. That is, the control circuit 600 does not supply power to an unused WSS and a failed WSS. Therefore, even if the WSS used is switched, the power consumption of the ROADM device 200 does not increase before and after that.
  • FIG. 5 is a diagram illustrating an example of wavelength bands of optical signals input / output by the ROADM device 200.
  • the configurations of the transmission signals of the landing stations 101 and 102 shown in FIG. 5 and the transmission signals of the landing station 103 to the Up line and the Down line are the same as those in FIG.
  • the signal A addressed to the landing station 102 and the signal D addressed to the landing station 101 were also transmitted to the landing station 103.
  • the received signals from the Up line and the Down line of the landing station 103 are a signal A'B and a signal D'E, respectively, as shown in FIG.
  • These WDM signals do not include signal A destined for landing station 102 and signal D destined for landing station 101.
  • the ROADM device 200 can prevent the signal A and the signal D from being intercepted by the landing station 103.
  • a specific operation of the ROADM apparatus 200 in the Up direction will be described.
  • FIG. 6 is a block diagram for explaining the operation of the ROADM device 200 when both of the WSSs 131 and 132 are operating normally. 6 to 8, optical paths that are not used for transmission of optical signals are indicated by broken lines.
  • the optical switch 135 outputs the signal AB received from the landing station 101 to the WSS 131.
  • the WSS 131 separates the signal AB input from the optical switch 135 for each wavelength, outputs the signal B to the coupler 134, and outputs the signal A to the coupler 139.
  • the optical switch 136 outputs the signal A′B ′ received from the landing station 103 to the WSS 132.
  • the WSS 132 separates the signal A′B ′ input from the optical switch 136 for each wavelength, outputs the signal B ′ to the coupler 133, and outputs the signal A ′ to the coupler 140.
  • the WDM signal is not input to the WSS 138, so the WSS 138 does not output an optical signal. Therefore, the signal A output from the WSS 131 passes through the coupler 139 and is input to the coupler 133 as it is.
  • the coupler 133 combines the signal A output from the WSS 131 and the signal B ′ output from the WSS 132 and outputs the combined signal AB ′ to the landing station 102.
  • the signal A ′ output from the WSS 132 passes through the coupler 140 and is input to the coupler 134 as it is.
  • the coupler 134 combines the signal B output from the WSS 131 and the signal A ′ output from the WSS 132 and outputs the combined signal A′B to the landing station 103.
  • FIG. 7 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 131 is out of order and the WSS 132 is operating normally.
  • the optical switch 135 outputs the signal AB received from the landing station 101 to the optical switch 137.
  • the optical switch 137 outputs the signal AB input from the optical switch 135 to the WSS 138.
  • WSS 138 generates signal A and signal B by separating signal AB.
  • WSS 138 outputs signal A to coupler 139 and outputs signal B to coupler 140.
  • the optical switch 136 outputs the signal A′B ′ received from the landing station 103 to the WSS 132 as in FIG. 6.
  • the WSS 132 separates the signal A′B ′ input from the optical switch 136 for each wavelength, outputs the signal B ′ to the coupler 133, and outputs the signal A ′ to the coupler 140.
  • the coupler 139 inputs the signal A output from the WSS 138 to the coupler 133.
  • the coupler 133 combines the signal A input from the coupler 139 and the signal B ′ output from the WSS 132 to generate a signal AB ′ and outputs it to the landing station 102.
  • the signal A ′ output from the WSS 132 is input to the coupler 140.
  • the coupler 140 combines the signal B output from the WSS 138 and the signal A ′ output from the WSS 132, generates a signal A′B, and outputs the signal A′B to the coupler 134. Since the WSS 131 does not output an optical signal, the coupler 134 outputs the signal A′B input from the coupler 140 to the landing station 103.
  • FIG. 8 is a block diagram for explaining the operation of the ROADM device 200 when the WSS 132 is out of order and the WSS 131 is operating normally.
  • the optical switch 136 outputs the signal A′B ′ received from the landing station 103 to the optical switch 137.
  • the optical switch 137 outputs the signal A′B ′ input from the optical switch 136 to the WSS 138.
  • WSS 138 separates signal A'B 'to generate signal A' and signal B '.
  • WSS 138 outputs signal B ′ to coupler 139 and signal A ′ to coupler 140.
  • the optical switch 135 outputs the signal AB received from the landing station 101 to the WSS 131 as in FIG.
  • the WSS 131 separates the signal AB input from the optical switch 135 for each wavelength, outputs the signal B to the coupler 134, and outputs the signal A to the coupler 139.
  • the coupler 140 inputs the signal A ′ output from the WSS 138 to the coupler 134.
  • the coupler 134 combines the signal A ′ input from the coupler 140 and the signal B output from the WSS 131 to generate a signal A′B and outputs the signal A′B to the landing station 103.
  • the signal A output from the WSS 131 is input to the coupler 139.
  • the coupler 139 combines the signal B ′ output from the WSS 138 and the signal A output from the WSS 131 to generate a signal AB ′, and outputs the signal AB ′ to the coupler 133. Since the WSS 132 does not output an optical signal, the coupler 133 outputs the signal AB ′ input from the coupler 139 to the landing station 102.
  • the propagation of the WDM signal in the Up direction when one of the WSSs 131 and 132 has failed has been described above with reference to FIGS.
  • the ROADM device 200 substitutes the function of the failed WSS with the WSS 138.
  • the ROADM device 200 can transmit the same optical signal in the Up direction as when both WSSs 131 and 132 are operating normally.
  • the optical signal transmitted to the landing station 103 does not include the signal A destined for the landing station 102. That is, in the ROADM apparatus 200 of the second embodiment, the signal A destined for the landing station 102 is concealed even when one of the WSSs 131 and 132 fails.
  • FIG. 9 is a flowchart illustrating an example of an operation procedure of the ROADM apparatus 200 according to the second embodiment.
  • the couplers 133 and 139 are described as an integrated coupler 161
  • the couplers 134 and 140 are described as an integrated coupler 162.
  • step S21 in FIG. 9 the states of the WSSs 131 and 132 are confirmed (step S21 in FIG. 9). If both WSSs 131 and 132 are normal, the flow branches to step S22.
  • the signal AB received from the landing station 101 is output from the optical switch 135 to the WSS 131 (S22).
  • the signal A is output from the WSS 131 to the coupler 161
  • the signal B is output from the WSS 131 to the coupler 162 (S23).
  • the signal A'B 'received from the landing station 103 is output from the optical switch 136 to the WSS 132 (S24).
  • the signal A ' is output from the WSS 132 to the coupler 162, and the signal B' is output from the WSS 132 to the coupler 161 (S25).
  • the signal AB ′ combined with the signal A and the signal B ′ is output from the coupler 161 to the landing station 102 (S26), and the signal A′B combined with the signal B and the signal A ′ is output from the coupler 162. It is output to the landing station 103 (S27).
  • the signal AB received from the landing station 101 is output from the optical switch 135 to the optical switch 137 (S28).
  • the signal AB is output from the optical switch 137 to the WSS 138 (S29).
  • the signal A is output from the WSS 138 to the coupler 161
  • the signal B is output from the WSS 138 to the coupler 162 (S30).
  • the signal A'B 'received from the landing station 103 is output from the optical switch 136 to the WSS 132 (S31).
  • the signal A ' is output from the WSS 132 to the coupler 162, and the signal B' is output from the WSS 132 to the coupler 161 (S32).
  • the signal AB ′ combined with the signal A and the signal B ′ is output from the coupler 161 to the landing station 102 (S26), and the signal A′B combined with the signal B and the signal A ′ is output from the coupler 162. It is output to the landing station 103 (S27).
  • step S33 If the WSS 131 is normal and the WSS 132 is out of order, the flow branches to step S33.
  • the signal A'B 'received from the landing station 102 is output from the optical switch 135 to the optical switch 137 (S33).
  • the signal AB received from the landing station 101 is output from the optical switch 135 to the WSS 131 (S36).
  • the signal A is output from the WSS 131 to the coupler 161, and the signal B is output from the WSS 131 to the coupler 162 (S37).
  • the signal AB ′ combined with the signal A and the signal B ′ is output from the coupler 161 to the landing station 102 (S26), and the signal A′B combined with the signal B and the signal A ′ is output from the coupler 162.
  • the data is output to the landing station 103 (S27), and then steps S21 to S37 are repeated. Note that the description in FIG. 9 does not mean that only one step S21 to S37 is executed at a time. In the flow of FIG. 9, a plurality of steps may be executed simultaneously.
  • the optical switches 135 and 136 may output WDM signals (that is, the signal AB and the signal A′B ′) to the optical switch 137.
  • the optical switch 137 may select one of the predetermined WDM signals from the signal AB and the signal A′B ′ and output the selected WDM signal to the WSS 138.
  • the WSS 138 separates the signal AB into the signal A and the signal B, or separates the signal A'B 'into the signal A' and the signal B '.
  • the signal A ′ is a dummy signal.
  • the configuration and operation of the ROADM device 200 are the same in the Down direction. Therefore, the ROADM device 200 replaces the function of the failed WSS with the WSS 148 even when one of the WSSs 141 or 142 fails, so that the same optical signal as when both of the WSSs 141 and 142 are operating normally. Are transmitted in the Down direction. That is, the same effect as the Up direction WDM signal can be obtained for the Down direction WDM signal of the ROADM device 200.
  • the ROADM apparatus 200 continues communication using the WSS 138 that is a spare WSS even when one of the WSSs 131 and 132 of the Up line fails. Even in the down line, even if one of the WSSs 141 and 142 fails, communication is continued using the WSS 148 that is a spare WSS. As a result, communication line disconnection and signal quality deterioration between the landing stations 101 to 103 due to the failure of the WSS 131 or WSS 132 and the failure of the WSS 141 or 142 are prevented. At this time, the ROADM function is not impaired by using the WSS 138 and WSS 148 which are spare WSSs.
  • the ROADM device 200 of the present embodiment can improve the reliability of the ROADM device using WSS, and hence the reliability of the optical submarine cable system.
  • the spare WSS of the ROADM device 200 of the second embodiment is made redundant in a standby state. For this reason, the power consumption of the ROADM device 200 does not increase before and after the WSS failure. That is, the ROADM device 200 of this embodiment can also suppress an increase in power consumption of the ROADM device.
  • the ROADM apparatus 200 of the second embodiment is also described as an optical multiplexing / demultiplexing apparatus having the following configuration. Elements corresponding to FIG. 4 are shown in parentheses. That is, the optical multiplexer / demultiplexer includes first and second couplers (couplers 161 and 162), first to third wavelength selective switches (WSS 131, 132, and 138), and optical switches (optical switches 135 to 137). And comprising.
  • the first wavelength selective switch (WSS 131) demultiplexes the optical signal included in the first wavelength multiplexed signal (signal AB) for each wavelength and outputs the demultiplexed optical signal to the first and second couplers (couplers 161 and 162). .
  • the second wavelength selective switch (WSS 132) demultiplexes the optical signal included in the second wavelength multiplexed signal (signal A′B ′) for each wavelength, and first and second couplers (couplers 161 and 162). Output to.
  • the third wavelength selective switch (WSS 138) demultiplexes the optical signal included in the third wavelength multiplexed signal (signal AB or signal A′B ′) for each wavelength, and first and second couplers (coupler 161). , 162).
  • the first and second couplers (couplers 161 and 162) combine the inputted optical signals and output them.
  • the optical switches Based on the states of the first and second wavelength selective switches (WSS 131 and 132), the optical switches (optical switches 135 to 137) send the first wavelength multiplexed signal (signal AB) to the first wavelength selective switch (WSS 131). ) Or the third wavelength selective switch (WSS 138) as a third wavelength multiplexed signal (signal AB or signal A′B ′).
  • the optical switches (optical switches 135 to 137) input the second wavelength multiplexed signal (signal A′B ′) to the second wavelength selective switch (WSS132) or to the third wavelength selective switch (WSS138).
  • a third wavelength multiplexed signal (signal AB or signal A′B ′) is input.
  • the optical multiplexing / demultiplexing device of the modification of the second embodiment having such a configuration also uses WSS by substituting the function of the failed WSS using WSS 138 when WSS 131 or WSS 132 fails.
  • the reliability of the optical multiplexing / demultiplexing device can be improved.
  • the control circuits 500 and 600 described in the first and second embodiments may include a CPU (central processing unit) and a memory.
  • the memory is, for example, a semiconductor memory or a magnetic disk device, and records a CPU program.
  • the CPU implements the functions of the ROADM devices 100 and 200 including the WSS and the optical switch by executing a program stored in the memory.
  • Embodiments of the present invention can also be described as in the following supplementary notes, but are not limited thereto.
  • a first wavelength selective switch that multiplexes and outputs an optical signal included in the first wavelength-multiplexed optical signal for each wavelength
  • a second wavelength selective switch that multiplexes and outputs an optical signal included in the second wavelength multiplexed optical signal for each wavelength
  • the first wavelength selective switch and the second wavelength selective switch are used as the first wavelength selective signal and the second wavelength selective signal.
  • An optical switch that outputs to A first coupler for coupling the output of the first wavelength selective switch and the output of the second wavelength selective switch;
  • An optical multiplexing / demultiplexing device An optical multiplexing / demultiplexing device.
  • the optical switch is If the first wavelength selective switch is normal, the first and second wavelength multiplexed signals are output to the first wavelength selective switch; When the first wavelength selective switch is out of order and the second wavelength selective switch is normal, the first and second wavelength multiplexed signals are output to the second wavelength selective switch.
  • the optical multiplexing / demultiplexing device according to appendix 1.
  • the first wavelength multiplexed optical signal includes a first optical signal having a first wavelength and a second optical signal having a second wavelength;
  • the second wavelength-multiplexed optical signal includes a third optical signal having the first wavelength and a fourth optical signal having the second wavelength,
  • the first and second wavelength selective switches output an optical signal obtained by combining the first optical signal and the fourth optical signal;
  • the optical multiplexing / demultiplexing device according to appendix 1 or 2.
  • Appendix 4 A control circuit for supplying power only to the first wavelength selective switch or the second wavelength selective switch to which the first and second wavelength division multiplexed signals are input; The optical multiplexer / demultiplexer according to any one of appendices 1 to 3.
  • Appendix 6 An optical multiplexing / demultiplexing device according to appendix 5, and first to third terminal stations connected to be communicable with the optical multiplexing / demultiplexing device, A first wavelength multiplexed signal transmitted from the first terminal is input to the second coupler; The other first wavelength multiplexed signal branched by the second coupler is output to the third terminal station; The output of the first coupler is received at the second terminal station; An optical communication system configured as described above.
  • Appendix 7 Two optical multiplexing / demultiplexing devices described in Appendix 5 are provided as a first optical multiplexing / demultiplexing device and a second optical multiplexing / demultiplexing device, and are further connected to be communicable with the first and second optical multiplexing / demultiplexing devices.
  • the first wavelength multiplexed signal transmitted from the first terminal station is input to the second coupler of the first optical multiplexer / demultiplexer, and the first wavelength multiplexed signal transmitted from the second terminal station is Input to the second coupler of the second optical multiplexer / demultiplexer;
  • the other first wavelength multiplexed signal branched by the second coupler of the first optical multiplexing / demultiplexing device is output to the third terminal station, and the second coupler of the second optical multiplexing / demultiplexing device
  • the other first wavelength division multiplexed signal branched in the step is output to the third terminal station,
  • the output of the first coupler of the first optical multiplexer / demultiplexer is received by the second terminal station, and the output of the first coupler of the second optical multiplexer / demultiplexer is received by the first terminal station.
  • the first wavelength multiplexed optical signal includes a first optical signal having a first wavelength and a second optical signal having a second wavelength;
  • the second wavelength-multiplexed optical signal includes a third optical signal having the first wavelength and a fourth optical signal having the second wavelength,
  • the first wavelength selective switch outputs the first optical signal to the first coupler and outputs the second optical signal to the second coupler;
  • the second wavelength selective switch outputs the third optical signal to the second coupler and outputs the fourth optical signal to the first coupler;
  • the third wavelength selective switch outputs the first optical signal or the fourth optical signal to the first coupler, and outputs the second optical signal or the third optical signal to the second optical signal.
  • Output to the coupler The optical multiplexing / demultiplexing device according to appendix 8 or 9.
  • Appendix 11 A control circuit that supplies power only to the first to third wavelength selective switches to which the first wavelength multiplexed signal or the second wavelength multiplexed signal is input;
  • the optical multiplexing / demultiplexing device according to any one of appendices 8 to 10.
  • Appendix 12 An optical multiplexing / demultiplexing device according to any one of appendixes 8 to 11, and first to third terminal stations connected to be communicable with the optical multiplexing / demultiplexing device,
  • the first terminal transmits a first wavelength multiplexed signal to the optical switch;
  • the second terminal receives the output of the first coupler;
  • the third terminal transmits a second wavelength multiplexed signal to the optical switch and receives an output of the second coupler;
  • An optical communication system configured as described above.
  • the optical multiplexing / demultiplexing device described in any one of Appendices 8 to 11 is provided as two first optical multiplexing / demultiplexing devices and a second optical multiplexing / demultiplexing device, and the first and second optical multiplexing / demultiplexing devices; First to third terminals connected to be communicable, The first terminal transmits a first wavelength multiplexed signal to the optical switch of the first optical multiplexer / demultiplexer, and the second terminal transmits the first wavelength multiplexed signal to the second optical multiplexed signal.
  • the second terminal station receives an output of the first coupler of the first optical multiplexer / demultiplexer, and the first terminal station outputs an output of the first coupler of the second optical multiplexer / demultiplexer.
  • Receive The third terminal station transmits a second wavelength multiplexed signal to the optical switch of the first optical multiplexing / demultiplexing device, and transmits another second wavelength multiplexed signal to the optical of the second optical multiplexing / demultiplexing device. Transmitting to the switch and receiving the output of the second coupler of the first optical multiplexer / demultiplexer and the output of the second coupler of the second optical multiplexer / demultiplexer; An optical communication system configured as described above.
  • An optical signal included in the first wavelength-multiplexed optical signal is multiplexed and output for each wavelength by the first wavelength selective switch;
  • the optical signal included in the second wavelength-multiplexed optical signal is output by being combined for each wavelength by the second wavelength selective switch, Based on the state of the first wavelength selective switch and the second wavelength selective switch, the first wavelength selective switch and the second wavelength selective switch are used as the first wavelength selective signal and the second wavelength selective signal.
  • the optical signal included in the first wavelength division multiplexed signal is demultiplexed for each wavelength by the first wavelength selective switch, and is output to the first coupler and the second coupler, An optical signal included in the second wavelength multiplexed signal is demultiplexed for each wavelength by the second wavelength selective switch, and is output to the first and second couplers; An optical signal included in the third wavelength division multiplexed signal is demultiplexed for each wavelength by a third wavelength selective switch, and is output to the first and second couplers; Based on the states of the first and second wavelength selective switches, the first wavelength multiplexed signal is input to the first wavelength selective switch or the third wavelength selective switch, and the second wavelength multiplexed signal is input. To be input to the second wavelength selective switch or the third wavelength selective switch, In the first and second couplers, input optical signals are combined and output. Control method of optical multiplexer / demultiplexer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

 信頼性が高いROADM装置を実現するために、光合分波装置は、第1の波長多重光信号に含まれる光信号を波長毎に合波して出力する第1の波長選択スイッチと、第2の波長多重光信号に含まれる光信号を波長毎に合波して出力する第2の波長選択スイッチと、第1の波長選択スイッチ及び第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を第1の波長選択スイッチ又は第2の波長選択スイッチに出力する光スイッチと、第1の波長選択スイッチの出力と第2の波長選択スイッチの出力とを結合させる第1のカプラと、を備える。

Description

光合分波装置及び光合分波装置の制御方法
 本発明は、光合分波装置及び光合分波装置の制御方法に関し、特に、WSS(wavelength selective switch)を備えたOADM(optical add/drop multiplexing)装置及びその制御方法に関する。
 陸上の光通信ネットワークに導入されているOADM(optical add/drop multiplexing)装置の、光海底ケーブルシステムへの適用が始まっている。その結果、光海底ケーブルシステムにおいても、多様なネットワーク構成に柔軟に対応することが可能となった。しかし、一般的な光海底ケーブルシステムにおいては、OADM機能は海底に敷設される分岐装置に設けられる。このため、光海底ケーブルシステムの運用開始後にOADM機能を変更する場合、分岐装置を海底から陸上に引き上げて、変更後のネットワーク構成に合わせて光フィルタを交換するなどの作業が必要であった。
 一方、陸上に設置された光通信ネットワークでは、ROADM(reconfigurable optical add/drop multiplexing)装置が広く用いられるようになった。ROADM装置は、OADM装置を交換することなく、運用開始後のネットワーク構成の変更(再構成)を可能とする。例えば、特許文献1には、波長選択スイッチ(wavelength selective switch、WSS)を用いたROADM装置が記載されている。WSSは、入力される光信号を波長単位で分離する分波機能、分波した光信号を選択するためのスイッチング機能、及び、選択された光信号の合波機能の3つの機能を備える。WSSは、さらに、各波長の光信号レベルの調整を備えることもある。特許文献2には、冗長構成を備えた光クロスコネクト装置が記載されている。一般的なROADM装置では、上り回線(Up回線)及び下り回線(Down回線)のそれぞれにWSSが配置され、所定の波長の光信号がトランク局とブランチ局に分配される。
 図10は、一般的な光海底ケーブルシステム90の構成を示すブロック図である。光海底ケーブルシステム90は、ROADM装置900及び陸揚局101~103を備える。ROADM装置900は海底に設置される分岐装置であり、陸上に設置された陸揚局101~103と接続される。陸揚局101~103は、光海底ケーブルを終端する端局である。陸揚局101~103とROADM装置900との間では、光海底ケーブルを用いて波長多重(wavelength division multiplexing、WDM)光信号(以下、「WDM信号」という。)の伝送が行われる。
 陸揚局101及び陸揚局102が送受信するWDM信号の一部の波長の光信号は、陸揚局103との通信に使用される。陸揚局101及び102はトランク局とも呼ばれる。陸揚局103はトランク局間の回線(トランク回線)から分岐した回線(ブランチ回線)を終端する端局であり、ブランチ局とも呼ばれる。本願の各図面では、陸揚局101、103から陸揚局102の方向及び回線をそれぞれ「Up方向」及び「Up回線」と記載し、陸揚局102、103から陸揚局101の方向及び回線を「Down方向」及び「Down回線」と記載する。
 図11は、ROADM装置900で入出力されるWDM信号の波長帯域の例を示す図である。信号A及び信号Bは、陸揚局101の送信信号であり、信号D及び信号Eは陸揚局102の送信信号である。信号Aは陸揚局101から陸揚局102へ伝送される光信号であり、信号Bは陸揚局101から陸揚局103へ伝送される光信号である。信号Dは陸揚局102から陸揚局101へ伝送される光信号であり、信号Eは陸揚局102から陸揚局103へ伝送される光信号である。
 信号A’及び信号B’は陸揚局103のUp回線への送信信号であり、信号D’及び信号E’は陸揚局103のDown回線への送信信号である。信号B’は陸揚局103から陸揚局102へ伝送される光信号であり、信号E’は陸揚局103から陸揚局101へ伝送される光信号である。信号A’及び信号D’はダミー信号である。ダミー信号は、海底ケーブルの中途に設置される光海底中継器に入力されるWDM信号の光パワーをシステム内で一定の範囲内に収めるために、陸揚局103において付加される。ダミー信号は伝送される情報を持たない。
 信号A、信号A’、信号D及び信号D’が属する波長帯は同一であり、信号B、信号B’、信号E及び信号E’が属する波長帯も同一である。また、信号Aが属する波長帯と信号Bが属する波長帯とは重複しない。信号A、A’、B、B’、D、D’、E及びE’は、それぞれ、1個のキャリア(搬送波)の光信号でもよく、あるいは複数のキャリアの光信号を含んでもよい。以下の説明では、例えば、信号A及び信号Bで構成されたWDM信号を信号ABと記載する。信号D、信号E等の他の光信号で構成されたWDM信号についても同様に、D、E等の記号を用いて簡略に記載する。また、各ブロック図では、例えば、信号Aを(A)、信号AB’を(AB’)と記載する。
 図10のUp方向のWDM信号の伝搬について説明する。陸揚局101から送信された信号ABは、カプラ(coupler、CPL)111において、陸揚局102の方向と陸揚局103の方向とに分岐される。一方、陸揚局103から送信された、信号ABと同様の波長帯域を持つ信号A’B’が、WSS112に入力される。WSS112は、入力された信号AB及び信号A’B’を合波及び分波して信号AB’を生成する。生成された信号AB’は、陸揚局102へ送信される。
 ROADM装置900は、WSS112及び122を制御するための制御回路950を備える。WSS112を制御して信号A、B、A’及びB’の波長帯域幅を変更することで、陸揚局101から陸揚局102への伝送容量と陸揚局101から陸揚局103への伝送容量との比率を変更できる。Down方向についても、カプラ121及びWSS122を用いて、陸揚局102から陸揚局101への伝送容量と陸揚局102から陸揚局103への伝送容量との比率を変更できる。
 図12は他の一般的な光海底ケーブルシステム91の構成を示すブロック図である。光海底ケーブルシステム91は、ROADM装置901及び陸揚局101~103を備える。ROADM装置901は海底に設置され、陸上に設置された陸揚局101~103と光海底ケーブルで接続される。ROADM装置901は、Up回線にWSS131及び132、カプラ133及び134を備える。ROADM装置901は、Down回線にWSS141及び142、カプラ143及び144を備える。ROADM装置901は、WSS131及び132、WSS141及び142を制御するための制御回路951を備える。
 図12を参照して、ROADM装置901の動作を説明する。WSS131は、陸揚局101から受信した信号ABを信号Aと信号Bとに分離して出力する。信号Aはカプラ133へ出力され、信号Bはカプラ134へ出力される。WSS132は、陸揚局103から受信した信号A’B’を信号A’と信号B’とに分離して出力する。信号B’はカプラ133へ出力され、信号A’はカプラ134へ出力される。
 カプラ133は、信号Aと信号B’とを結合した信号AB’を陸揚局102へ出力する。カプラ134は、信号A’と信号Bとを結合した信号A’Bを陸揚局103へ出力する。
 ROADM装置901の、Down方向の光信号に対する動作も同様である。すなわち、WSS141は、陸揚局102から受信した信号DEを信号Dと信号Eとに分離して出力する。WSS142は、陸揚局103から受信した信号D’E’を信号D’と信号E’とに分離して出力する。カプラ143は、信号Dと信号E’とを結合した信号DE’を陸揚局101へ出力する。カプラ144は、信号D’と信号Eとを結合した信号D’Eを陸揚局103へ出力する。このようにして、ROADM装置901では、信号A’Bと信号D’Eとが陸揚局103に送信される。
 図13は、ROADM装置901で入出力される光信号の波長帯域の例を示す図である。ROADM装置901では、陸揚局103へも、陸揚局102宛の信号A及び陸揚局101宛の信号Dが伝送された。ROADM装置901では、陸揚局103の、Up回線及びDown回線からの受信信号は、それぞれ、信号A’B及び信号D’Eである。これらのWDM信号は、陸揚局102を宛先とする信号A及び陸揚局101を宛先とする信号Dを含まない。このため、ROADM装置901は、信号A及び信号Dが陸揚局103で傍受されることを防止できる。
特開2010-098545号公報([0019]段落、図2) 特開2011-109173号公報([0016]段落、図4)
 WSSのような波長選択デバイスは複数の光学部品により構成され、制御回路及び電源が接続されて使用される。光学部品の例として、MEMS(micro electro mechanical systems、微小電気機械システム)、LCOS(liquid crystal on silicon、シリコン上に形成された液晶)、光フィルタ及びレンズがある。MEMSやLCOSは、光路や波長の切り替えを行う波長選択素子である。光フィルタは、特定の波長の光信号を透過させあるいは阻止する。レンズは、波長選択素子及び光フィルタとファイバとの間を光学的に結合する。波長選択素子は、制御回路からの電気信号により制御される。WSSデバイスはこれらのような多種類の部品で構成されている一方で、基幹通信システムへの適用のためには高い信頼性が必要とされる。光海底ケーブルシステムでは、例えば25年という長期にわたって安定して動作できる信頼性が要求されるため、WSSを使用したROADM装置には、特に高い信頼性が求められる。しかしながら、特許文献1及び2には、ROADM装置において、WSSが使用された場合の信頼性を改善するための具体的な構成については記載されていない。
 (発明の目的)
 本発明は、信頼性が高いROADM装置を実現するための技術を提供することを目的とする。
 本発明の光合分波装置は、第1の波長多重光信号に含まれる光信号を波長毎に合波して出力する第1の波長選択スイッチと、第2の波長多重光信号に含まれる光信号を波長毎に合波して出力する第2の波長選択スイッチと、前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力する光スイッチと、前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる第1のカプラと、を備える。
 本発明の光合分波装置は、光信号を結合して出力する、第1のカプラ及び第2のカプラと、第1の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第1の波長選択スイッチと、第2の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第2の波長選択スイッチと、第3の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第3の波長選択スイッチと、前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチに入力し又は前記第3の波長選択スイッチに前記第3の波長多重信号として入力し、前記第2の波長多重信号を前記第2の波長選択スイッチに入力し又は前記第3の波長選択スイッチに前記第3の波長多重信号として入力する、ように制御する光スイッチと、を備える。
 本発明の光合分波装置の制御方法は、第1の波長多重光信号に含まれる光信号を第1の波長選択スイッチによって波長毎に合波して出力し、第2の波長多重光信号に含まれる光信号を第2の波長選択スイッチによって波長毎に合波して出力し、前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力し、前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる、ことを特徴とする。
 本発明は、信頼性が高いROADM装置を実現できるという効果を奏する。
第1の実施形態の光海底ケーブルシステム10の構成例を示すブロック図である。 第1の実施形態のROADM装置100で入出力される光信号の波長帯域の例を示す図である。 第1の実施形態のROADM装置100の動作手順の例を示すフローチャートである。 第2の実施形態の光海底ケーブルシステム20の構成例を示すブロック図である。 第2の実施形態のROADM装置200で入出力される光信号の波長帯域の例を示す図である。 WSS131及び132のいずれもが正常に動作している場合の、ROADM装置200の動作を説明するブロック図である。 WSS131が故障しており、WSS132が正常に動作している場合の、ROADM装置200の動作を説明するブロック図である。 WSS132が故障しており、WSS131が正常に動作している場合の、ROADM装置200の動作を説明するブロック図である。 第2の実施形態のROADM装置200の動作手順の例を示すフローチャートである。 一般的な光海底ケーブルシステム90の構成を示すブロック図である。 ROADM装置900で入出力される光信号の波長帯域の例を示す図である。 他の一般的な光海底ケーブルシステム91の構成を示すブロック図である。 ROADM装置901で入出力される光信号の波長帯域の例を示す図である。
 (実施形態の概要)
 以下に説明する実施形態では、WSS(wavelength selective switch、波長選択スイッチ)を備える、光海底ケーブルシステムで用いられるROADM(reconfigurable optical add/drop multiplexing)装置に本発明を適用した形態について説明する。各実施形態のROADM装置は、予備WSSを備える。ROADM装置は、使用中のWSSが故障した場合に予備WSSを用いることにより、陸揚局との間の通信を維持する。
 現用WSSが故障した場合には、ROADM装置は、光スイッチを用いて、故障したWSSへ入力されていた光信号の経路を予備WSSに入力されるように切り替える。切り替え後は、トランク局及びブランチ局へそれぞれ送信されるWDM信号が、予備WSS及びカプラを用いて生成される。制御回路は、使用されていない(すなわち、光信号が入力されていない)WSSへの電力供給を停止する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の光海底ケーブルシステム10の構成例を示すブロック図である。光海底ケーブルシステム10は、ROADM装置100及び陸揚局101~103を備える。陸揚局101~103とROADM装置100とは、光海底ケーブルによって接続される。陸揚局101~103は、光海底ケーブルを終端する端局である。陸揚局101及び102はトランク局とも呼ばれる。陸揚局103はブランチ局とも呼ばれる。陸揚局101~103とROADM装置100との間では、光海底ケーブルを用いてWDM(wavelength division multiplexing)信号の伝送が行われる。以降の図面の説明では、既出の構成要素には同一の名称及び参照符号を付して、重複する説明は省略する。
 ROADM装置100は、図10で説明したROADM装置900と比較して、さらに、カプラ113及び123、光スイッチ114、115、124及び125、WSS116及び126を備える。光スイッチ114及び115、WSS116及びカプラ113はUp回線に備えられる。光スイッチ124及び125、WSS126及びカプラ123はDown回線に備えられる。各光スイッチは1×2光スイッチであり、入力された光信号を、2つの出力の一方から出力する。
 以下の説明では、ROADM装置100のUp方向の構成及び動作について説明する。Down方向のカプラ121及び123、WSS122及び126、光スイッチ124及び125の構成及び動作は、Up方向のカプラ111及び113、WSS112及び116、光スイッチ114及び115と同様に考えることができる。従って、Down方向についての説明は省略する。
 カプラ111は、陸揚局101から入力されたWDM信号を2分岐して、一方を光スイッチ114へ出力し、他方を陸揚局103へ出力する。光スイッチ114は、カプラ111から入力されたWDM信号をWSS112又はWSS116へ出力する。光スイッチ115は、陸揚局103から入力されたWDM信号をWSS112又はWSS116へ出力する。WSS112には、光スイッチ114の出力の一方と光スイッチ115の出力の一方とが入力される。WSS116には、光スイッチ114の出力の他方と光スイッチ115の出力の他方とが入力される。
 図2は、ROADM装置100で入出力される光信号の波長帯域の例を示す図である。図2の光信号の波長帯域の例は、図11と同様である。すなわち、信号A及び信号Bは、陸揚局101の送信信号であり、信号D及び信号Eは陸揚局102の送信信号である。信号Aは陸揚局101から陸揚局102へ伝送される光信号であり、信号Bは陸揚局101から陸揚局103へ伝送される光信号である。信号Dは陸揚局102から陸揚局101へ伝送される光信号であり、信号Eは陸揚局102から陸揚局103へ伝送される光信号である。
 信号A’及び信号B’は陸揚局103のUp回線への送信信号であり、信号D’及び信号E’は陸揚局103のDown回線への送信信号である。信号B’は陸揚局103から陸揚局102へ伝送される光信号であり、信号E’は陸揚局103から陸揚局101へ伝送される光信号である。信号A’及び信号D’はダミー信号である。ダミー信号は、海底ケーブルの中途に設置される光海底中継器に入力されるWDM信号の光パワーをシステム内で一定の範囲内に収めるために、陸揚局103において付加される。ダミー信号は伝送されるべき情報を持たない。
 信号A、信号A’、信号D及び信号D’が属する波長帯は同一であり、信号B、信号B’、信号E及び信号E’が属する波長帯も同一である。また、信号Aが属する波長帯と信号Bが属する波長帯とは重複しない。信号A、A’、B、B’、D、D’、E及びE’は、それぞれ、1個のキャリア(搬送波)の光信号でもよく、あるいは複数のキャリアの光信号を含んでもよい。
 続いて、ROADM装置100におけるUp方向のWDM信号の伝搬について図1を参照して説明する。カプラ111には、陸揚局101から信号ABが入力される。カプラ111で2分岐された信号ABの一方は、光スイッチ114に入力される。光スイッチ114は、WSS112が正常に動作している場合には、入力された信号ABをWSS112へ出力する。光スイッチ114は、WSS112が故障した場合には、入力された信号ABをWSS116へ出力する。
 陸揚局103から出力された信号A’B’は、光スイッチ115に入力される。光スイッチ115は、WSS112が正常に動作している場合には、入力された信号A’B’をWSS112へ出力する。光スイッチ115は、WSS112が故障した場合には、入力された信号A’B’をWSS116へ出力する。
 WSS112は、信号AB及び信号A’B’が入力された場合には、信号A及び信号B’を分波及び合波して、信号AB’としてカプラ113へ出力する。WSS116も、信号AB及び信号A’B’が入力された場合には、信号A及び信号B’を分波及び合波して、信号AB’としてカプラ113へ出力する。
 制御回路500は、光スイッチ114及び115、WSS112及び116の監視及び制御を行う、電気回路である。制御回路500は、WSS112及び116の状態を収集して保持するとともに、WSS112及び116の状態に基づいてWSS112及び116並びに光スイッチ114及び115を制御する。制御回路500は、Down方向の光スイッチ及びWSSについても同様の制御を行う。なお、ROADM装置100は、外部からの遠隔制御によって制御されてもよい。光スイッチ114及び115がWSS112へWDM信号を出力する場合には、制御回路500はWSS112に電力を供給し、WSS116への電力供給を停止する。光スイッチ114及び115がWSS116へWDM信号を出力する場合には、制御回路500はWSS116に電力を供給し、WSS112への電力供給を停止する。Down回線で用いられるWSS122及びWSS126に対しても、制御回路500は同様の電力制御を行う。すなわち、制御回路500は、WDM信号が入力されて動作中のWSSに対してのみ電力を供給する。さらに、制御回路500は、WSS112及びWSS116において、信号AB及びA’B’の波長帯域幅の割合を変更することで、陸揚局102への伝送容量と陸揚局103への伝送容量とを変更できる。
 カプラ111、113、121及び123は、例えば光方向性結合器である。カプラ113は、WSS112及びWSS116から入力された光信号を結合して、陸揚局102へ出力する。実際には、上述の光スイッチ114及び115の動作により、カプラ113には、WSS112又はWSS116の一方のみから信号AB’が入力される。
 図3は、第1の実施形態のROADM装置100の動作手順の例を示すフローチャートである。陸揚局101から受信した信号ABがカプラ111で2分岐される(図3のステップS01)。WSS112が正常に動作しているかが判断される(S02)。WSS112が正常である場合には(S02:Yes)、信号ABが光スイッチ114からWSS112へ出力され(S03)、信号A’B’が光スイッチ115からWSS112へ出力される(S04)。WSS112において信号AB’が生成され、生成された信号AB’は、CPL113へ出力される(S05)。信号AB’は、カプラ113を通過して陸揚局102へ出力される(S06)。
 WSS112が故障している場合には(S02:No)、信号ABは光スイッチ114からWSS116へ出力され(S07)、信号A’B’は光スイッチ115からWSS116へ出力される(S08)。なお、この場合、WSS116は正常であるとする。そして、WSS116において信号AB’が生成され、生成された信号AB’は、CPL113へ出力される(S09)。信号AB’は、カプラ113を通過して陸揚局102へ出力され(S06)、その後ステップS01~S09は繰り返し実行される。なお、図3の記載はステップS01~S09が同時には1つのみ実行されることを意味しない。図3のフローでは、同時に複数のステップが実行されてもよい。
 このように、ROADM装置100は、WSS112が正常であるか故障しているかにかかわらず、信号AB’を陸揚局102へ出力する。また、ROADM装置100のDown方向のWDM信号に対する動作は、上述のUp方向の動作と同様に考えることができる。すなわち、図3と同様の手順により、WSS122が正常であるか故障しているかにかかわらず、信号DE’が陸揚局101へ出力される。そして、制御回路500は、WSS122及びWSS126における信号DE及びD’E’の波長帯域幅の割合を変更することで、陸揚局101への伝送容量と陸揚局103への伝送容量とを変更できる。
 以上説明したように、第1の実施形態のROADM装置100は、Up回線のWSS112又はDown回線のWSS122が故障した場合でも、予備のWSSであるWSS116又はWSS126を用いて通信を継続する。その結果、WSS112又はWSS122の故障に起因する、陸揚局101と陸揚局102との間の通信及び陸揚局101、102と陸揚局103との間の通信の、回線断や信号品質の劣化が防止される。この際、予備のWSSであるWSS116又はWSS126を用いることで、ROADM機能も損なわれない。
 従って、本実施形態のROADM装置100は、WSSが用いられたROADM装置の信頼性の向上、ひいては光海底ケーブルシステムの信頼性の向上を可能とする。また、制御回路500は、使用されないWSSには電力を供給しない。このため、WSSの故障の前後で、ROADM装置100の消費電力は増加しない。すなわち、本実施形態のROADM装置100は、ROADM装置の消費電力の増加を抑制できる。
 (第1の実施形態の変形例)
 第1の実施形態のROADM装置100は、以下の構成を備える光合分波装置としても記述される。図1に対応する要素は括弧内に示される。すなわち、光合分波装置は、第1の波長選択スイッチ(WSS112)と、第2の波長選択スイッチ(WSS116)と、光スイッチ(光スイッチ114及び115)と、第1のカプラ(カプラ113)と、を備える。
 第1の波長選択スイッチ(WSS112)は、第1の波長多重光信号(信号AB)に含まれる光信号を波長毎に合波して出力する。第2の波長選択スイッチ(WSS116)は、第2の波長多重光信号(信号A’B’)に含まれる光信号を波長毎に合波して出力する。
 光スイッチ(光スイッチ114及び115)は、第1の波長選択スイッチ(WSS112)及び第2の波長選択スイッチ(WSS116)の状態に基づいて、第1の波長多重信号(信号AB)及び第2の波長多重信号(信号A’B’)を第1の波長選択スイッチ(WSS112)又は第2の波長選択スイッチ(WSS116)に出力する。第1のカプラ(カプラ113)は、第1の波長選択スイッチ(WSS112)の出力と前記第2の波長選択スイッチ(WSS116)の出力とを結合させる。
 このような構成を備える第1の実施形態の変形例の光合分波装置も、WSS112が故障した場合にはWSS116を用いてWSS112の機能を代替させることで、WSSが用いられた光合分波装置の信頼性の向上を可能とする。
 (第2の実施形態)
 次に、第2の実施形態について図面を参照して説明する。
 図4は、本発明の第2の実施形態の光海底ケーブルシステム20の構成例を示すブロック図である。光海底ケーブルシステム20は、ROADM装置200及び陸揚局101~103を備える。陸揚局101~103とROADM装置200とは、光海底ケーブルによって接続される。ROADM装置200は、図12で説明したROADM装置901と比較して、さらに、光スイッチ135~137、光スイッチ145~147、WSS138及び148、カプラ139、140、149及び150、を備える。光スイッチ135~137、WSS138、カプラ139及び140はUp回線に備えられる。光スイッチ145~147、WSS148、カプラ149及び150はDown回線に備えられる。
 以下の説明では、ROADM装置200のUp方向の構成及び動作について説明する。Down方向の各光部品の配置はUp方向と対称であり波長帯のみ異なる。すなわち、Down方向の光信号に対するROADM装置200の動作は、Up方向と同様に考えることができるため、Down方向についての説明は省略する。
 光スイッチ135は、入力されたWDM信号をWSS131又は光スイッチ137へ出力する。WSS131は、光スイッチ135から入力されたWDM信号を波長毎に分離してカプラ134及びカプラ139へ出力する。
 光スイッチ136は、入力されたWDM信号をWSS132又は光スイッチ137へ出力する。WSS132は、光スイッチ136から入力されたWDM信号を波長毎に分離してカプラ133及びカプラ140へ出力する。
 光スイッチ137は、光スイッチ135から入力されたWDM信号及び136から入力されたWDM信号の一方を選択してWSS138に出力する。WSS138は、光スイッチ137から入力されたWDM信号を波長毎に分離して合波し、合波された光信号をカプラ139及びカプラ140へ出力する。
 図4に示したカプラ133及び139は、1個の3入力1出力のカプラ161と記載できる。同様に、カプラ134及び140を1個のカプラ162と記載し、カプラ143及び149を1個のカプラ171と記載し、カプラ144及び150を1個のカプラ172と記載できる。カプラ161は、WSS131、132及び138から入力される光信号を結合して陸揚局102へ出力する。カプラ162は、WSS131、132及び138から入力される光信号を結合して陸揚局103へ出力する。すなわち、カプラ133及び139のような、隣接する2個のカプラは、1個のスターカプラに集約されてもよい。
 制御回路600は、WSS131、132,138、141、142,148及び光スイッチ135~137、145~147の監視及び制御を行う、電気回路である。制御回路600は、これらのWSSの状態を収集して保持するとともに、これらのWSSの状態に基づいてROADM装置200が備えるWSS及び光スイッチを制御する。なお、ROADM装置200は、外部からの遠隔制御によって制御されてもよい。制御回路600は、使用されているWSSにのみ電力を供給する。すなわち、制御回路600は、使用されていないWSS及び故障したWSSには電力を供給しない。従って、使用されるWSSが切り替わっても、その前後でROADM装置200の消費電力は増加しない。
 図5は、ROADM装置200で入出力される光信号の波長帯域の例を示す図である。図5に示される陸揚局101及び102の送信信号、並びに、陸揚局103のUp回線及びDown回線への送信信号のそれぞれの構成は、図13と同様である。
 第1の実施形態のROADM装置100では、陸揚局103へも、陸揚局102宛の信号A及び陸揚局101宛の信号Dが伝送された。ROADM装置200では、陸揚局103の、Up回線及びDown回線からの受信信号は、図5に示すように、それぞれ信号A’B及び信号D’Eである。これらのWDM信号は、陸揚局102を宛先とする信号A及び陸揚局101を宛先とする信号Dを含まない。このため、ROADM装置200は、信号A及び信号Dが陸揚局103で傍受されることを防止できる。以下に、ROADM装置200のUp方向の具体的な動作について説明する。
 図6は、WSS131及び132のいずれもが正常に動作している場合の、ROADM装置200の動作を説明するブロック図である。図6~図8において、光信号の伝送に用いられない光路は破線で示される。図6において、光スイッチ135は、陸揚局101から受信した信号ABをWSS131へ出力する。WSS131は、光スイッチ135から入力された信号ABを波長毎に分離して、信号Bをカプラ134へ出力し、信号Aをカプラ139へ出力する。光スイッチ136は、陸揚局103から受信した信号A’B’をWSS132へ出力する。WSS132は、光スイッチ136から入力された信号A’B’を波長毎に分離して、信号B’をカプラ133へ出力し、信号A’をカプラ140へ出力する。
 WSS131及び132が正常である場合には、WSS138にはWDM信号が入力されないため、WSS138は光信号を出力しない。従って、WSS131から出力された信号Aはそのままカプラ139を通過してカプラ133に入力される。カプラ133は、WSS131から出力された信号AとWSS132から出力された信号B’とを結合して信号AB’として陸揚局102へ出力する。また、WSS132から出力された信号A’はそのままカプラ140を通過してカプラ134に入力される。カプラ134は、WSS131から出力された信号BとWSS132から出力された信号A’とを結合して、信号A’Bとして陸揚局103へ出力する。
 図7は、WSS131が故障しており、WSS132が正常に動作している場合の、ROADM装置200の動作を説明するブロック図である。図7において、光スイッチ135は、陸揚局101から受信した信号ABを光スイッチ137へ出力する。光スイッチ137は、光スイッチ135から入力される信号ABをWSS138へ出力する。WSS138は信号ABを分離して信号A及び信号Bを生成する。WSS138は信号Aをカプラ139へ出力し、信号Bをカプラ140へ出力する。
 光スイッチ136は、図6と同様に、陸揚局103から受信した信号A’B’を、WSS132へ出力する。WSS132は、光スイッチ136から入力された信号A’B’を波長毎に分離して、信号B’をカプラ133へ出力し、信号A’をカプラ140へ出力する。
 光スイッチ135の出力は光スイッチ137に接続されるため、故障しているWSS131は光信号を出力しない。従って、カプラ139はWSS138から出力された信号Aをカプラ133に入力する。カプラ133は、カプラ139から入力された信号AとWSS132から出力された信号B’とを結合して信号AB’を生成して陸揚局102へ出力する。
 WSS132から出力された信号A’はカプラ140に入力される。カプラ140は、WSS138から出力された信号BとWSS132から出力された信号A’とを結合して、信号A’Bを生成して、カプラ134へ出力する。WSS131は光信号を出力しないため、カプラ134は、カプラ140から入力された信号A’Bを陸揚局103へ出力する。
 図8は、WSS132が故障しており、WSS131が正常に動作している場合の、ROADM装置200の動作を説明するブロック図である。図8において、光スイッチ136は、陸揚局103から受信した信号A’B’を光スイッチ137へ出力する。光スイッチ137は、光スイッチ136から入力される信号A’B’をWSS138へ出力する。WSS138は信号A’B’を分離して信号A’及び信号B’を生成する。WSS138は信号B’をカプラ139へ出力し、信号A’をカプラ140へ出力する。
 光スイッチ135は、図6と同様に、陸揚局101から受信した信号ABを、WSS131へ出力する。WSS131は、光スイッチ135から入力された信号ABを波長毎に分離して、信号Bをカプラ134へ出力し、信号Aをカプラ139へ出力する。
 光スイッチ136の出力は光スイッチ137に接続されるため、故障しているWSS132は光信号を出力しない。従って、カプラ140はWSS138から出力された信号A’をカプラ134に入力する。カプラ134は、カプラ140から入力された信号A’とWSS131から出力された信号Bとを結合して信号A’Bを生成して陸揚局103へ出力する。
 WSS131から出力された信号Aはカプラ139に入力される。カプラ139は、WSS138から出力された信号B’とWSS131から出力された信号Aとを結合して、信号AB’を生成して、カプラ133へ出力する。WSS132は光信号を出力しないため、カプラ133は、カプラ139から入力された信号AB’を陸揚局102へ出力する。
 以上、図6~図8を用いて、WSS131及び132のいずれか一方が故障した場合のUp方向のWDM信号の伝搬について説明した。このような構成により、ROADM装置200は、WSS131又は132の一方が故障しても、故障したWSSの機能をWSS138に代替させる。その結果、ROADM装置200は、WSS131及び132のいずれか一方が故障した場合でも、WSS131及び132のいずれもが正常に動作している場合と同様の光信号をUp方向に伝送できる。そして、陸揚局103に送信される光信号は陸揚局102を宛先とする信号Aを含まない。すなわち、第2の実施形態のROADM装置200においては、WSS131及び132のいずれかが故障した場合も、陸揚局102を宛先とする信号Aは秘匿される。
 図9は、第2の実施形態のROADM装置200の動作手順の例を示すフローチャートである。図9では、カプラ133及び139は一体化されたカプラ161、カプラ134及び140は一体化されたカプラ162として記載される。
 まず、WSS131及び132の状態が確認される(図9のステップS21)。WSS131及び132がいずれも正常である場合は、フローはステップS22へ分岐する。陸揚局101から受信した信号ABは、光スイッチ135からWSS131へ出力される(S22)。信号AがWSS131からカプラ161へ出力され、信号BがWSS131からカプラ162へ出力される(S23)。一方、陸揚局103から受信した信号A’B’は、光スイッチ136からWSS132へ出力される(S24)。信号A’はWSS132からカプラ162へ出力され、信号B’はWSS132からカプラ161へ出力される(S25)。信号Aと信号B’とが結合された信号AB’は、カプラ161から陸揚局102へ出力され(S26)、信号Bと信号A’とが結合された信号A’Bは、カプラ162から陸揚局103へ出力される(S27)。
 WSS131が故障しており、WSS132が正常である場合には、フローはS28へ分岐する。陸揚局101から受信した信号ABは、光スイッチ135から光スイッチ137へ出力される(S28)。信号ABは、光スイッチ137からWSS138へ出力される(S29)。信号AはWSS138からカプラ161へ出力され、信号BはWSS138からカプラ162へ出力される(S30)。一方、陸揚局103から受信した信号A’B’は、光スイッチ136からWSS132へ出力される(S31)。信号A’はWSS132からカプラ162へ出力され、信号B’はWSS132からカプラ161へ出力される(S32)。信号Aと信号B’とが結合された信号AB’は、カプラ161から陸揚局102へ出力され(S26)、信号Bと信号A’とが結合された信号A’Bは、カプラ162から陸揚局103へ出力される(S27)。
 WSS131が正常であり、WSS132が故障している場合には、フローはステップS33へ分岐する。陸揚局102から受信した信号A’B’は、光スイッチ135から光スイッチ137へ出力される(S33)。信号A’B’は、光スイッチ137からWSS138へ出力される(S34)。信号B’はWSS138からカプラ161へ出力され、信号A’はWSS138からカプラ162へ出力される(S35)。一方、陸揚局101から受信した信号ABは、光スイッチ135からWSS131へ出力される(S36)。信号AはWSS131からカプラ161へ出力され、信号BはWSS131からカプラ162へ出力される(S37)。信号Aと信号B’とが結合された信号AB’は、カプラ161から陸揚局102へ出力され(S26)、信号Bと信号A’とが結合された信号A’Bは、カプラ162から陸揚局103へ出力される(S27)、その後ステップS21~S37が繰り返される。なお、図9の記載はステップS21~S37が同時には1つのみ実行されることを意味しない。図9のフローでは、同時に複数のステップが実行されてもよい。
 なお、WSS131及び132の両方が故障した場合には、光スイッチ135及び136はいずれも光スイッチ137へWDM信号(すなわち、信号AB及び信号A’B’)を出力してもよい。この場合、光スイッチ137は、信号AB及び信号A’B’のうち、予め定められたいずれか一方のWDM信号を選択してWSS138に出力してもよい。WSS138は、信号ABを信号Aと信号Bとに分離し、あるいは、信号A’B’を信号A’と信号B’とに分離する。ただし、信号A’はダミー信号である。このような動作により、WSS131及び132の両方が故障した場合でも、信号A、信号B、信号B’の少なくとも1つをWSS138から陸揚局102又は103へ伝送できる。
 ROADM装置200の構成及び動作はDown方向も同様である。従って、ROADM装置200は、WSS141又は142の一方が故障しても、故障したWSSの機能をWSS148において代替することにより、WSS141及び142のいずれもが正常に動作している場合と同様の光信号がDown方向に伝送される。すなわち、ROADM装置200のDown方向のWDM信号に対しても、Up方向のWDM信号と同様の効果が得られる。
 以上説明したように、第2の実施形態のROADM装置200は、Up回線のWSS131及び132の一方が故障した場合でも、予備のWSSであるWSS138を用いて通信を継続する。Down回線においても、WSS141及び142の一方が故障した場合でも、予備のWSSであるWSS148を用いて通信を継続される。その結果、WSS131又はWSS132の故障、及び、WSS141又は142の故障に起因する、陸揚局101~103の間の通信の回線断や信号品質の劣化が防止される。この際、予備のWSSであるWSS138及びWSS148を用いることで、ROADM機能も損なわれない。
 従って、本実施形態のROADM装置200は、WSSが用いられたROADM装置の信頼性の向上、ひいては光海底ケーブルシステムの信頼性の向上を可能とする。
 また、第1の実施形態と同様に、第2の実施形態のROADM装置200の予備のWSSは、待機状態で冗長化されている。このため、WSSの故障の前後で、ROADM装置200の消費電力は増加しない。すなわち、本実施形態のROADM装置200も、ROADM装置の消費電力の増加を抑制できる。
 (第2の実施形態の変形例)
 第2の実施形態のROADM装置200は、以下の構成を備える光合分波装置としても記述される。図4に対応する要素は括弧内に示される。すなわち、光合分波装置は、第1及び第2のカプラ(カプラ161、162)と、第1乃至第3の波長選択スイッチ(WSS131、132、138)と、光スイッチ(光スイッチ135~137)と、を備える。
 第1の波長選択スイッチ(WSS131)は、第1の波長多重信号(信号AB)に含まれる光信号を波長毎に分波して第1及び第2のカプラ(カプラ161、162)に出力する。第2の波長選択スイッチ(WSS132)は、第2の波長多重信号(信号A’B’)に含まれる光信号を波長毎に分波して第1及び第2のカプラ(カプラ161、162)に出力する。第3の波長選択スイッチ(WSS138)は、第3の波長多重信号(信号AB又は信号A’B’)に含まれる光信号を波長毎に分波して第1及び第2のカプラ(カプラ161、162)に出力する。第1及び第2のカプラ(カプラ161、162)は、入力された光信号を結合して出力する。
 光スイッチ(光スイッチ135~137)は、第1及び第2の波長選択スイッチ(WSS131及び132)の状態に基づいて、第1の波長多重信号(信号AB)を第1の波長選択スイッチ(WSS131)に入力し又は第3の波長選択スイッチ(WSS138)に第3の波長多重信号(信号AB又は信号A’B’)として入力する。また、光スイッチ(光スイッチ135~137)は、第2の波長多重信号(信号A’B’)を第2の波長選択スイッチ(WSS132)に入力し又は第3の波長選択スイッチ(WSS138)に第3の波長多重信号(信号AB又は信号A’B’)として入力する。
 このような構成を備える第2の実施形態の変形例の光合分波装置も、WSS131又はWSS132が故障した場合にはWSS138を用いて故障したWSSの機能を代替させることで、WSSが用いられた光合分波装置の信頼性の向上を可能とする。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 第1及び第2の実施形態で説明した制御回路500及び600は、CPU(central processing unit、中央処理装置)及びメモリを備えてもよい。メモリは例えば半導体メモリや磁気ディスク装置であり、CPUのプログラムを記録する。CPUは、メモリに記憶されたプログラムを実行することにより、WSS及び光スイッチを含むROADM装置100及び200の機能を実現する。
 本発明の実施形態は、以下の付記のようにも記載されうるが、これらには限定されない。
 (付記1)
 第1の波長多重光信号に含まれる光信号を波長毎に合波して出力する第1の波長選択スイッチと、
 第2の波長多重光信号に含まれる光信号を波長毎に合波して出力する第2の波長選択スイッチと、
 前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力する光スイッチと、
 前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる第1のカプラと、
を備える光合分波装置。
 (付記2)
 前記光スイッチは、
 前記第1の波長選択スイッチが正常である場合には、前記第1及び第2の波長多重信号を前記第1の波長選択スイッチへ出力し、
 前記第1の波長選択スイッチが故障しており、前記第2の波長選択スイッチが正常である場合には、前記第1及び第2の波長多重信号を前記第2の波長選択スイッチへ出力する、
付記1に記載された光合分波装置。
 (付記3)
 第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
 第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
 前記第1及び第2の波長選択スイッチは、前記第1の光信号と前記第4の光信号とを合波した光信号を出力する、
付記1又は2に記載された光合分波装置。
 (付記4)
 前記第1及び第2の波長多重信号が入力される前記第1の波長選択スイッチ又は前記第2の波長選択スイッチにのみ電力を供給する制御回路をさらに備える、
付記1乃至3のいずれかに記載された光合分波装置。
 (付記5)
 入力された前記第1の波長多重信号を2分岐する第2のカプラをさらに備え、
 前記第2のカプラは、分岐された一方の前記第1の波長多重信号を前記光スイッチに入力し、分岐された他方の前記第1の波長多重信号を出力する、付記1乃至4のいずれかに記載された光合分波装置。
 (付記6)
 付記5に記載された光合分波装置と、前記光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
 前記第1の端局が送信した第1の波長多重信号が前記第2のカプラに入力され、
 前記第2のカプラで分岐された前記他方の第1の波長多重信号が前記第3の端局に出力され、
 前記第1のカプラの出力が前記第2の端局で受信される、
ように構成された光通信システム。
 (付記7)
 付記5に記載された光合分波装置を第1の光合分波装置及び第2の光合分波装置として2台備え、さらに、前記第1及び第2の光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
 前記第1の端局が送信した第1の波長多重信号が前記第1の光合分波装置の前記第2のカプラに入力され、前記第2の端局が送信した第1の波長多重信号が前記第2の光合分波装置の前記第2のカプラに入力され、
 前記第1の光合分波装置の第2のカプラで分岐された前記他方の第1の波長多重信号が前記第3の端局に出力され、前記第2の光合分波装置の第2のカプラで分岐された前記他方の第1の波長多重信号が前記第3の端局に出力され、
 前記第1の光合分波装置の第1のカプラの出力が前記第2の端局で受信され、前記第2の光合分波装置の第1のカプラの出力が前記第1の端局で受信される、
ように構成された光通信システム。
 (付記8)
 光信号を結合して出力する、第1のカプラ及び第2のカプラと、
 第1の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第1の波長選択スイッチと、
 第2の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第2の波長選択スイッチと、
 第3の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2のカプラに出力する第3の波長選択スイッチと、
 前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチに入力し又は前記第3の波長選択スイッチに前記第3の波長多重信号として入力し、前記第2の波長多重信号を前記第2の波長選択スイッチに入力し又は前記第3の波長選択スイッチに前記第3の波長多重信号として入力する、ように制御する光スイッチと、
を備える光合分波装置。
 (付記9)
 記光スイッチは、
 前記第1の波長選択スイッチ及び前記第2の波長選択スイッチがいずれも正常である場合には、前記第1の波長多重信号を前記第1の波長選択スイッチへ出力するとともに前記第2の波長多重信号を前記第2の波長選択スイッチへ出力し、
 前記第1の波長選択スイッチが故障しており、前記第2の波長選択スイッチが正常である場合には、前記第1の波長多重信号を前記第3の波長選択スイッチへ出力するとともに前記第2の波長多重信号を前記第2の波長選択スイッチへ出力し、
 前記第2の波長選択スイッチが故障しており、前記第1の波長選択スイッチが正常である場合には、前記第2の波長多重信号を前記第3の波長選択スイッチへ出力するとともに前記第1の波長多重信号を前記第1の波長選択スイッチへ出力する、
付記8に記載された光合分波装置。
 (付記10)
 第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
 第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
 前記第1の波長選択スイッチは、前記第1の光信号を前記第1のカプラに出力するとともに前記第2の光信号を前記第2のカプラに出力し、
 前記第2の波長選択スイッチは、前記第3の光信号を前記第2のカプラに出力するとともに前記第4の光信号を前記第1のカプラに出力し、
 前記第3の波長選択スイッチは、前記第1の光信号又は前記第4の光信号を前記第1のカプラに出力するとともに前記第2の光信号又は前記第3の光信号を前記第2のカプラに出力する、
付記8又は9に記載された光合分波装置。
 (付記11)
 前記第1の波長多重信号又は第2の波長多重信号が入力される前記第1乃至第3の波長選択スイッチにのみ電力を供給する制御回路を備える、
付記8乃至10のいずれかに記載された光合分波装置。
 (付記12)
 付記8乃至11のいずれかに記載された光合分波装置と、前記光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
 前記第1の端局は第1の波長多重信号を前記光スイッチへ送信し、
 前記第2の端局は前記第1のカプラの出力を受信し、
 前記第3の端局は第2の波長多重信号を前記光スイッチへ送信するとともに前記第2のカプラの出力を受信する、
ように構成された光通信システム。
 (付記13)
 付記8乃至11のいずれかに記載された光合分波装置を第1の光合分波装置及び第2の光合分波装置として2台備え、さらに、前記第1及び第2の光合分波装置と通信可能に接続された第1乃至第3の端局と、を備え、
 前記第1の端局は第1の波長多重信号を前記第1の光合分波装置の前記光スイッチへ送信し、前記第2の端局は第1の波長多重信号を前記第2の光合分波装置の前記光スイッチへ送信し、
 前記第2の端局は前記第1の光合分波装置の前記第1のカプラの出力を受信し、前記第1の端局は前記第2の光合分波装置の前記第1のカプラの出力を受信し、
 前記第3の端局は第2の波長多重信号を前記第1の光合分波装置の前記光スイッチへ送信し、他の第2の波長多重信号を前記第2の光合分波装置の前記光スイッチへ送信し、前記第1の光合分波装置の前記第2のカプラの出力及び前記第2の光合分波装置の前記第2のカプラの出力を受信する、
ように構成された光通信システム。
 (付記14)
 第1の波長多重光信号に含まれる光信号を第1の波長選択スイッチによって波長毎に合波して出力し、
 第2の波長多重光信号に含まれる光信号を第2の波長選択スイッチによって波長毎に合波して出力し、
 前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力し、
 前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる、
光合分波装置の制御方法。
 (付記15)
 第1の波長多重信号に含まれる光信号を第1の波長選択スイッチによって波長毎に分波して第1のカプラ及び第2のカプラに出力し、
 第2の波長多重信号に含まれる光信号を第2の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力し、
 第3の波長多重信号に含まれる光信号を第3の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力し、
 前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチ又は前記第3の波長選択スイッチに入力し、前記第2の波長多重信号を前記第2の波長選択スイッチ又は前記第3の波長選択スイッチに入力するように制御し、
前記第1及び第2のカプラにおいて、入力される光信号を結合して出力する、
光合分波装置の制御方法。
 (付記16)
 光合分波装置のコンピュータに、
 第1の波長多重光信号に含まれる光信号を第1の波長選択スイッチによって波長毎に合波して出力する手順、
 第2の波長多重光信号に含まれる光信号を第2の波長選択スイッチによって波長毎に合波して出力する手順、
 前記第1の波長選択スイッチ及び前記第2の波長選択スイッチの状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択スイッチ又は前記第2の波長選択スイッチに出力する手順、
 前記第1の波長選択スイッチの出力と前記第2の波長選択スイッチの出力とを結合させる手順、
を実行させるための光合分波装置の制御プログラム。
 (付記17)
 光合分波装置のコンピュータに、
 第1の波長多重信号に含まれる光信号を第1の波長選択スイッチによって波長毎に分波して第1のカプラ及び第2のカプラに出力する手順、
 第2の波長多重信号に含まれる光信号を第2の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力する手順、
 第3の波長多重信号に含まれる光信号を第3の波長選択スイッチによって波長毎に分波して前記第1及び第2のカプラに出力する手順、
 前記第1及び第2の波長選択スイッチの状態に基づいて、前記第1の波長多重信号を前記第1の波長選択スイッチ又は前記第3の波長選択スイッチに入力し、前記第2の波長多重信号を前記第2の波長選択スイッチ又は前記第3の波長選択スイッチに入力するように制御する手順、
 前記第1及び第2のカプラにおいて、入力される光信号を結合して出力する手順、
を実行させるための光合分波装置の制御プログラム。
 この出願は、2015年3月23日に出願された日本出願特願2015-059061を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10、20、90、91  光海底ケーブルシステム
 100、200、900、901  ROADM装置
 101、102、103  陸揚局
 111、113、121、123、133、134、139、140、143、144、149、150、161、162、171、172  カプラ
 114、115、124、125、135~137、145~147  光スイッチ
 112、116、122、126、131、132、138、141、142、148  WSS
 500、600、950、951  制御回路

Claims (10)

  1.  第1の波長多重光信号に含まれる光信号を波長毎に合波して出力する第1の波長選択手段と、
     第2の波長多重光信号に含まれる光信号を波長毎に合波して出力する第2の波長選択手段と、
     前記第1の波長選択手段及び前記第2の波長選択手段の状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択手段又は前記第2の波長選択手段に出力する光切替手段と、
     前記第1の波長選択手段の出力と前記第2の波長選択手段の出力とを結合させる第1の分岐結合手段と、
    を備える光合分波装置。
  2.  前記光切替手段は、
     前記第1の波長選択手段が正常である場合には、前記第1及び第2の波長多重信号を前記第1の波長選択手段へ出力し、
     前記第1の波長選択手段が故障しており、前記第2の波長選択手段が正常である場合には、前記第1及び第2の波長多重信号を前記第2の波長選択手段へ出力する、
    請求項1に記載された光合分波装置。
  3.  第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
     第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
     前記第1及び第2の波長選択手段は、前記第1の光信号と前記第4の光信号とを合波した光信号を出力する、
    請求項1又は2に記載された光合分波装置。
  4.  前記第1及び第2の波長多重信号が入力される前記第1の波長選択手段又は前記第2の波長選択手段にのみ電力を供給する制御回路をさらに備える、
    請求項1乃至3のいずれかに記載された光合分波装置。
  5.  入力された前記第1の波長多重信号を2分岐する第2の分岐結合手段をさらに備え、
     前記第2の分岐結合手段は、分岐された一方の前記第1の波長多重信号を前記光切替手段に入力し、分岐された他方の前記第1の波長多重信号を出力する、請求項1乃至4のいずれかに記載された光合分波装置。
  6.  光信号を結合して出力する、第1の分岐結合手段及び第2の分岐結合手段と、
     第1の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2の分岐結合手段に出力する第1の波長選択手段と、
     第2の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2の分岐結合手段に出力する第2の波長選択手段と、
     第3の波長多重信号に含まれる光信号を波長毎に分波して前記第1及び第2の分岐結合手段に出力する第3の波長選択手段と、
     前記第1及び第2の波長選択手段の状態に基づいて、前記第1の波長多重信号を前記第1の波長選択手段に入力し又は前記第3の波長選択手段に前記第3の波長多重信号として入力し、前記第2の波長多重信号を前記第2の波長選択手段に入力し又は前記第3の波長選択手段に前記第3の波長多重信号として入力する、ように制御する光切替手段と、
    を備える光合分波装置。
  7.  記光切替手段は、
     前記第1の波長選択手段及び前記第2の波長選択手段がいずれも正常である場合には、前記第1の波長多重信号を前記第1の波長選択手段へ出力するとともに前記第2の波長多重信号を前記第2の波長選択手段へ出力し、
     前記第1の波長選択手段が故障しており、前記第2の波長選択手段が正常である場合には、前記第1の波長多重信号を前記第3の波長選択手段へ出力するとともに前記第2の波長多重信号を前記第2の波長選択手段へ出力し、
     前記第2の波長選択手段が故障しており、前記第1の波長選択手段が正常である場合には、前記第2の波長多重信号を前記第3の波長選択手段へ出力するとともに前記第1の波長多重信号を前記第1の波長選択手段へ出力する、
    請求項6に記載された光合分波装置。
  8.  第1の波長多重光信号は第1の波長の第1の光信号と第2の波長の第2の光信号とを含み、
     第2の波長多重光信号は前記第1の波長の第3の光信号と前記第2の波長の第4の光信号とを含み、
     前記第1の波長選択手段は、前記第1の光信号を前記第1の分岐結合手段に出力するとともに前記第2の光信号を前記第2の分岐結合手段に出力し、
     前記第2の波長選択手段は、前記第3の光信号を前記第2の分岐結合手段に出力するとともに前記第4の光信号を前記第1の分岐結合手段に出力し、
     前記第3の波長選択手段は、前記第1の光信号又は前記第4の光信号を前記第1の分岐結合手段に出力するとともに前記第2の光信号又は前記第3の光信号を前記第2の分岐結合手段に出力する、
    請求項6又は7に記載された光合分波装置。
  9.  前記第1の波長多重信号又は第2の波長多重信号が入力される前記第1乃至第3の波長選択手段にのみ電力を供給する制御回路を備える、
    請求項6乃至8のいずれかに記載された光合分波装置。
  10.  第1の波長多重光信号に含まれる光信号を第1の波長選択手段によって波長毎に合波して出力し、
     第2の波長多重光信号に含まれる光信号を第2の波長選択手段によって波長毎に合波して出力し、
     前記第1の波長選択手段及び前記第2の波長選択手段の状態に基づいて、第1の波長多重信号及び第2の波長多重信号を前記第1の波長選択手段又は前記第2の波長選択手段に出力し、
     前記第1の波長選択手段の出力と前記第2の波長選択手段の出力とを結合させる、
    光合分波装置の制御方法。
PCT/JP2016/001549 2015-03-23 2016-03-17 光合分波装置及び光合分波装置の制御方法 WO2016152115A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017507489A JP6500978B2 (ja) 2015-03-23 2016-03-17 光合分波装置及び光合分波装置の制御方法
EP16768022.2A EP3276854A4 (en) 2015-03-23 2016-03-17 Optical multiplexing and demultiplexing device, and method of controlling optical multiplexing and demultiplexing device
US15/558,353 US10349153B2 (en) 2015-03-23 2016-03-17 Optical multiplexing and demultiplexing device, and method of controlling optical multiplexing and demultiplexing device
CN201680017657.6A CN107408981B (zh) 2015-03-23 2016-03-17 光学复用和解复用设备以及控制光学复用和解复用设备的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-059061 2015-03-23
JP2015059061 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152115A1 true WO2016152115A1 (ja) 2016-09-29

Family

ID=56978307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001549 WO2016152115A1 (ja) 2015-03-23 2016-03-17 光合分波装置及び光合分波装置の制御方法

Country Status (5)

Country Link
US (1) US10349153B2 (ja)
EP (1) EP3276854A4 (ja)
JP (1) JP6500978B2 (ja)
CN (1) CN107408981B (ja)
WO (1) WO2016152115A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079445A1 (ja) * 2016-10-25 2018-05-03 日本電気株式会社 光分岐結合装置及び光分岐結合方法
WO2018105506A1 (ja) * 2016-12-05 2018-06-14 日本電気株式会社 光伝送装置および光伝送方法
JP2020036312A (ja) * 2018-07-30 2020-03-05 サブコム,エルエルシー ファイバ対切替を有する海中ケーブル分岐ユニット
WO2020194842A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体
WO2020195737A1 (ja) * 2019-03-25 2020-10-01 日本電気株式会社 光分岐挿入装置および光伝送方法
JPWO2020255466A1 (ja) * 2019-06-19 2020-12-24

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056367A1 (fr) * 2016-09-16 2018-03-23 Orange Procede et dispositif de controle de charge d'une ligne de transmission optique a multiplexage en longueurs d'onde
JP6525294B1 (ja) * 2018-02-27 2019-06-05 Necプラットフォームズ株式会社 光分岐挿入装置、光通信システム及び光分岐挿入装置の制御方法
CN111903074B (zh) * 2018-03-26 2023-09-15 日本电气株式会社 海底分支设备、光学海底缆线系统和光学通信方法
US11336375B2 (en) * 2018-09-07 2022-05-17 Nec Corporation Optical transmission apparatus, optical communication system, and optical signal transmission method
US11089391B1 (en) * 2020-04-29 2021-08-10 Cisco Technology, Inc. Process margin relaxation
US11388491B2 (en) 2020-10-23 2022-07-12 Huawei Technologies Co., Ltd. Systems and methods for fast wavelength selection in an optical network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109173A (ja) * 2009-11-12 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置
JP2012004800A (ja) * 2010-06-16 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> 光ネットワークシステムのノード装置および冗長切替方法
JP2013541301A (ja) * 2010-10-12 2013-11-07 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー 波長選択スイッチのバンド・アグリゲータおよびバンド・デアグリゲータ、ならびにそれを使用するシステムおよび方法
JP2014220575A (ja) * 2013-05-01 2014-11-20 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027732B2 (en) * 2002-01-18 2006-04-11 Pts Corporation WDM cross-connects for core optical networks
JP4638754B2 (ja) 2005-03-18 2011-02-23 富士通株式会社 光装置および光クロスコネクト装置
WO2008031452A1 (en) 2006-09-11 2008-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Communications network
JP4937983B2 (ja) 2008-10-16 2012-05-23 日本電信電話株式会社 光伝送装置
US8948592B2 (en) * 2009-02-27 2015-02-03 Jds Uniphase Corporation Method for auto-configuration of a wavelength selective switch in an optical network
JP5633281B2 (ja) * 2010-09-29 2014-12-03 富士通株式会社 光通信システム、光ネットワーク管理装置および光ネットワーク管理方法
US9462358B2 (en) 2011-08-25 2016-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for an optical network
ES2684771T3 (es) 2013-04-16 2018-10-04 Huawei Technologies Co., Ltd. Dispositivo de nodo
US9008514B2 (en) * 2013-06-22 2015-04-14 Mark E. Boduch Method and apparatus for construction of compact optical nodes using wavelength equalizing arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109173A (ja) * 2009-11-12 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置
JP2012004800A (ja) * 2010-06-16 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> 光ネットワークシステムのノード装置および冗長切替方法
JP2013541301A (ja) * 2010-10-12 2013-11-07 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー 波長選択スイッチのバンド・アグリゲータおよびバンド・デアグリゲータ、ならびにそれを使用するシステムおよび方法
JP2014220575A (ja) * 2013-05-01 2014-11-20 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276854A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438087B2 (en) 2016-10-25 2022-09-06 Nec Corporation Optical branching/coupling device and optical branching/coupling method
US11082145B2 (en) 2016-10-25 2021-08-03 Nec Corporation Optical branching/coupling device and optical branching/coupling method
JP2021073784A (ja) * 2016-10-25 2021-05-13 日本電気株式会社 光分岐結合装置及び光分岐結合方法
JPWO2018079445A1 (ja) * 2016-10-25 2019-07-18 日本電気株式会社 光分岐結合装置及び光分岐結合方法
WO2018079445A1 (ja) * 2016-10-25 2018-05-03 日本電気株式会社 光分岐結合装置及び光分岐結合方法
EP3534552A4 (en) * 2016-10-25 2019-10-30 Nec Corporation OPTICAL BRANCH / COUPLING DEVICE AND OPTICAL BRANCH / COUPLING METHOD
EP3790206A1 (en) * 2016-10-25 2021-03-10 NEC Corporation Optical branching/coupling device and optical branching/coupling method
US10715270B2 (en) 2016-10-25 2020-07-14 Nec Corporation Optical branching/coupling device and optical branching/coupling method
JP7095762B2 (ja) 2016-10-25 2022-07-05 日本電気株式会社 光分岐結合装置及び光分岐結合方法
JPWO2018105506A1 (ja) * 2016-12-05 2019-10-24 日本電気株式会社 光伝送装置および光伝送方法
EP3550744A4 (en) * 2016-12-05 2020-09-02 Nec Corporation OPTICAL TRANSMISSION DEVICE AND OPTICAL TRANSFER METHOD
CN110024312A (zh) * 2016-12-05 2019-07-16 日本电气株式会社 光传输设备和光传输方法
WO2018105506A1 (ja) * 2016-12-05 2018-06-14 日本電気株式会社 光伝送装置および光伝送方法
JP7402585B2 (ja) 2018-07-30 2023-12-21 サブコム,エルエルシー ファイバ対切替を有する海中ケーブル分岐ユニット及び光通信システム
US12085771B2 (en) 2018-07-30 2024-09-10 Subcom, Llc Submarine cable branching units with fiber pair switching
JP2020036312A (ja) * 2018-07-30 2020-03-05 サブコム,エルエルシー ファイバ対切替を有する海中ケーブル分岐ユニット
JPWO2020195737A1 (ja) * 2019-03-25 2021-12-16 日本電気株式会社 光分岐挿入装置および光伝送方法
CN113475019A (zh) * 2019-03-25 2021-10-01 日本电气株式会社 光学分插复用器和光学传输方法
WO2020195737A1 (ja) * 2019-03-25 2020-10-01 日本電気株式会社 光分岐挿入装置および光伝送方法
JPWO2020194842A1 (ja) * 2019-03-27 2021-12-09 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム
JP7264233B2 (ja) 2019-03-27 2023-04-25 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム
US11942991B2 (en) 2019-03-27 2024-03-26 Nec Corporation Optical submarine branching apparatus, optical submarine cable system, switching method, non-transitory computer-readable medium
WO2020194842A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体
WO2020255466A1 (ja) * 2019-06-19 2020-12-24 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体
JPWO2020255466A1 (ja) * 2019-06-19 2020-12-24
JP7338684B2 (ja) 2019-06-19 2023-09-05 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム
US11832032B2 (en) 2019-06-19 2023-11-28 Nec Corporation Optical submarine branching apparatus, optical submarine cable system, switching method, and non-transitory computer readable medium

Also Published As

Publication number Publication date
US10349153B2 (en) 2019-07-09
US20180070156A1 (en) 2018-03-08
JPWO2016152115A1 (ja) 2018-01-11
JP6500978B2 (ja) 2019-04-17
CN107408981A (zh) 2017-11-28
EP3276854A1 (en) 2018-01-31
CN107408981B (zh) 2020-09-18
EP3276854A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6500978B2 (ja) 光合分波装置及び光合分波装置の制御方法
EP3334062B1 (en) Optical add/drop multiplexing device and optical add/drop multiplexing method
JP6265266B2 (ja) 光通信装置、光通信システム、及び光通信方法
US11251895B2 (en) Seabed branching device, optical seabed cable system, and optical communication method
WO2018079445A1 (ja) 光分岐結合装置及び光分岐結合方法
JP2012124772A (ja) 光伝送装置及び光伝送システム
JPWO2009060522A1 (ja) 光送受信モジュールおよびその管理制御方法,光送受信装置ならびに波長多重光送受信装置
JPWO2019065383A1 (ja) 海底分岐装置、光海底ケーブルシステム、光通信方法
JP4730145B2 (ja) 光信号切替え装置および光信号切替え方法
US20030185566A1 (en) Optical cross-connect device
JP7136317B2 (ja) 光分岐結合装置及び光分岐結合方法
JP6954307B2 (ja) 光伝送装置および光伝送方法
JP5764989B2 (ja) 光信号分岐装置、光信号分岐システム、および光信号分岐方法
CN115967465A (zh) 一种波分复用设备及光信号处理方法
US20230353912A1 (en) Optical branching/coupling device and method for controlling same
JP2013070280A (ja) 光通信装置、光通信システム、および経路制御方法
CN113475019A (zh) 光学分插复用器和光学传输方法
JP2009088606A (ja) 光分岐システムおよび光分岐方法
JP2005136994A (ja) 光ネットワークのネットワーク容量を増加させるための方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507489

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558353

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016768022

Country of ref document: EP