WO2016147878A1 - 車両用ホイール - Google Patents

車両用ホイール Download PDF

Info

Publication number
WO2016147878A1
WO2016147878A1 PCT/JP2016/056541 JP2016056541W WO2016147878A1 WO 2016147878 A1 WO2016147878 A1 WO 2016147878A1 JP 2016056541 W JP2016056541 W JP 2016056541W WO 2016147878 A1 WO2016147878 A1 WO 2016147878A1
Authority
WO
WIPO (PCT)
Prior art keywords
air chamber
helmholtz resonator
frequency
wheel
auxiliary air
Prior art date
Application number
PCT/JP2016/056541
Other languages
English (en)
French (fr)
Inventor
洋一 神山
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2017506197A priority Critical patent/JP6349027B2/ja
Priority to CN201680016578.3A priority patent/CN107405949B/zh
Priority to DE112016001293.4T priority patent/DE112016001293T5/de
Priority to US15/558,924 priority patent/US10504500B2/en
Publication of WO2016147878A1 publication Critical patent/WO2016147878A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/12Appurtenances, e.g. lining bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/02Rims characterised by transverse section
    • B60B21/023Rims characterised by transverse section the transverse section being non-symmetrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/02Rims characterised by transverse section
    • B60B21/026Rims characterised by transverse section the shape of rim well
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/133Noise

Definitions

  • the present invention relates to a vehicle wheel.
  • a wheel in which a Helmholtz resonator (sub-air chamber member) that silences air column resonance in the tire air chamber is attached to the outer peripheral surface of the well portion (see, for example, Patent Document 1).
  • the Helmholtz resonator of this wheel has a sub air chamber inside, and four are arranged at equal intervals along the circumferential direction of the wheel.
  • the resonance frequencies of the four Helmholtz resonators arranged along the circumferential direction of the wheel are all set to the same single frequency, the frequency band that can be silenced is limited.
  • the capacity of each Helmholtz resonator is relatively large, the peak levels of two “bounce resonances” (see FIG. 11 to be described later) occurring before and after the antiresonance frequency (see FIG. 11 to be described later) become large. Two “bounce resonances” can cause an audible load on passengers in the passenger compartment.
  • FIG. 11 is a graph showing the silencing performance in the prior art in which the resonance frequencies of the Helmholtz resonators are all set at the same single frequency.
  • a thin solid line J indicates that the wheel has no Helmholtz resonator
  • a thick broken line L indicates that each Helmholtz resonator provided on the wheel has a small capacity
  • a thick solid line K indicates that each Helmholtz resonator provided on the wheel has a large capacity.
  • An object of the present invention is to provide a vehicle wheel capable of suppressing rebound resonance.
  • the present invention provides a vehicle wheel including a Helmholtz resonator having a sub air chamber communicating with a tire air chamber via a communication hole, wherein the resonance of air column resonance sound in the tire air chamber is achieved.
  • a first Helmholtz resonator set to have a silencing characteristic for a sound having a resonance frequency lower than the frequency by a first predetermined frequency, and a resonance frequency higher by a second predetermined frequency than the resonance frequency of the air column resonance sound
  • Two sets of second Helmholtz resonators set so as to have a silencing characteristic with respect to the sound of the first Helmholtz resonator, the communication hole of the first Helmholtz resonator, and the communication hole of the second Helmholtz resonator
  • the communication holes of one set of the first Helmholtz resonators and the second holes arranged at positions facing each other across the wheel rotation center, A line connecting the communication hole of the Helmholtz resonator and the line connecting the communication hole of the
  • the present invention by setting the second predetermined frequency to be higher than the first predetermined frequency, the number of rebound resonances (mountains) generated before and after the antiresonance frequency that is the valley is reduced. While increasing from two to three, the peak levels of the three peaks are balanced so as to be the same or substantially the same. Therefore, in the present invention, the peak level of rebound resonance can be suppressed and the noise reduction performance can be improved as compared with the conventional case. As a result, in the present invention, it is possible to preferably avoid the rebound resonance from causing an audible load on the passenger in the vehicle interior.
  • the first predetermined frequency is .delta.fa
  • the second predetermined frequency is .DELTA.FB
  • against the resonant frequency f MC of the tire air chamber of the air column resonance noise the first The resonance frequency f 0 of 1 Helmholtz resonator is set to f MC ⁇ fa [Hz] (where ⁇ fa is a positive number from 1 to 10)
  • the resonance frequency f 0 of the second Helmholtz resonator is f MC + ⁇ fb [Hz] (where ⁇ fb is a positive number from 5 to 20)
  • ⁇ fb is set to be larger than ⁇ fa ( ⁇ fa ⁇ fb).
  • the present invention it is possible to easily improve the silencing performance based on the shift amount ( ⁇ fa) of the lower limit frequency from the reference frequency and the shift amount ( ⁇ fb) of the upper limit frequency from the reference frequency.
  • a vehicle wheel capable of suppressing rebound resonance can be obtained.
  • FIG. 1 is a perspective view of a vehicle wheel according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view taken along line II-II in FIG. It is a whole perspective view of a sub air chamber member.
  • It is a sectional side view which shows typically the arrangement position of the 1st Helmholtz resonator and the 2nd Helmholtz resonator. It is a graph which shows the relationship between the difference of an upper limit frequency and a lower limit frequency, and the frequency to shift.
  • It is a sectional side view which shows typically the arrangement position of the 1st Helmholtz resonator in the wheel for vehicles concerning the example of the present invention, and the 2nd Helmholtz resonator.
  • FIG. 1 is a perspective view of a vehicle wheel according to an embodiment of the present invention.
  • the vehicle wheel 1 includes a plurality of auxiliary air chamber members 10 as Helmholtz resonators in the wheel circumferential direction X.
  • auxiliary air chamber members 10a, 10b, 10c, and 10d are provided.
  • auxiliary air chamber member 10a and the auxiliary air chamber member 10d in the present embodiment correspond to the “first Helmholtz resonator” in the claims, and the auxiliary air chamber member 10b and the auxiliary air chamber member 10c are claimed. This corresponds to the “second Helmholtz resonator”.
  • the vehicle wheel 1 has a resonance frequency that is lower than the resonance frequency of the air column resonance sound in the tire air chamber MC (see FIG. 2) by a first predetermined frequency ( ⁇ fa; see FIG. 5).
  • the first Helmholtz resonator has a resonance frequency higher than the resonance frequency of the air column resonance sound in the communication hole 18a of the tire air chamber MC (see FIG. 2) by a second predetermined frequency ( ⁇ fb described later; see FIG. 5).
  • Two sets of communication holes 18a of the second Helmholtz resonator are provided.
  • the second predetermined frequency is set higher than the first predetermined frequency ( ⁇ fa ⁇ fb described later; see FIG. 5).
  • the vehicle wheel 1 includes a line connecting a communication hole of one set of the first Helmholtz resonator and a communication hole of the second Helmholtz resonator and a communication of the other set of the first Helmholtz resonator.
  • the main feature is that the hole and the line connecting the communication hole of the second Helmholtz resonator are orthogonal to each other.
  • sub air chamber members 10a, 10b, 10c, and 10d are simply referred to as “sub air chamber members 10”.
  • the vehicle wheel 1 includes a rim 11 and a disk 12 for connecting the rim 11 to a hub (not shown).
  • reference numeral 11d denotes an outer peripheral surface of the well portion 11c
  • the auxiliary air chamber member 10 is fitted into the well portion 11c as will be described in detail later.
  • Reference numeral 18 denotes a tubular body in which the communication hole 18 a is formed
  • reference numeral 15 denotes an annular vertical wall that is erected on the outer peripheral surface 11 d of the well portion 11 c so as to extend in the circumferential direction of the rim 11.
  • the auxiliary air chamber member 10 is locked to the vertical wall 15 as described later.
  • Reference numeral 15 a denotes a notch portion of the vertical wall 15 into which the tubular body 18 is fitted when the auxiliary air chamber member 10 is locked to the vertical wall 15.
  • Reference symbol Y is an arrow indicating the wheel width direction.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the rim 11 is recessed toward the inner side (rotation center side) in the wheel radial direction between the bead seat portions (not shown) of the tire formed at both ends in the wheel width direction Y. It has a well portion 11c.
  • the well portion 11c is provided to drop a bead portion (not shown) of the tire when assembling a tire (not shown) to the rim 11.
  • the well portion 11c in the present embodiment is formed in a cylindrical shape having substantially the same diameter over the wheel width direction Y.
  • An annular vertical wall 15 is erected on the outer peripheral surface 11 d of the well portion 11 c so as to extend in the circumferential direction of the rim 11.
  • the vertical wall 15 is erected on the outer peripheral surface 11d so as to form a first vertical wall surface 16a that rises outward from the outer peripheral surface 11d of the well portion 11c in the wheel radial direction (upper side of the drawing in FIG. 2, the same applies hereinafter). . Further, a second vertical wall surface 16b is provided on the side surface portion 11e formed inside the wheel width direction Y of the well portion 11c (on the left side in FIG. 2) so as to face the first vertical wall surface 16a. Yes.
  • the vertical wall 15 in this embodiment is formed integrally with the well portion 11c when the rim 11 is cast.
  • the first vertical wall surface 16a and the second vertical wall surface 16b are respectively formed with a groove portion 17a and a groove portion 17b as viewed from the wheel radial direction. These groove portions 17a and 17b are formed along the circumferential direction of the outer peripheral surface 11d of the well portion 11c to form an annular peripheral groove.
  • the edge portions 14a and the edge portions 14b of the auxiliary air chamber member 10 are fitted into the groove portions 17a and 17b.
  • the groove parts 17a and 17b in this embodiment are formed by machining each of the vertical wall 15 and the side surface part 11e.
  • FIG. 3 is an overall perspective view of the auxiliary air chamber member 10.
  • the symbol X is an arrow indicating the wheel circumferential direction when the auxiliary air chamber member 10 is attached to the well portion 11c (see FIG. 1).
  • Reference symbol Y is an arrow indicating the wheel width direction.
  • the vehicle wheel 1 includes the four auxiliary air chamber members 10a, 10b, 10c, and 10d (see FIG. 4), but the auxiliary air chamber members 10a and 10d (first).
  • the Helmholtz resonator) and the auxiliary air chamber members 10b and 10c (second Helmholtz resonator) have the same structure except that their resonance frequencies are set to be different. Therefore, the sub air chamber members 10 a, 10 b, 10 c, and 10 d will be described below as the sub air chamber member 10.
  • the auxiliary air chamber member 10 is a member that is long in the circumferential direction X of the wheel, and includes a main body portion 13, a tubular body 18 in which a communication hole 18 a is formed, and an edge portion 14. ing. And the longitudinal direction (wheel circumferential direction X) of the sub air chamber member 10 is curving so that the outer peripheral surface 11d (refer FIG. 1) of the well part 11c (refer FIG. 1) may be followed.
  • the main body 13 of the sub air chamber member 10 includes a bottom plate 25b and an upper plate 25a that forms a sub air chamber SC between the bottom plate 25b.
  • each of the upper board 25a and the bottom board 25b in this embodiment is the same thickness, these thicknesses may mutually differ.
  • the upper plate 25a is curved so as to bulge above the bottom plate 25b arranged along the outer peripheral surface 11d side of the well portion 11c, thereby forming a sub air chamber SC.
  • an upper coupling portion 33a is formed at a portion constituting the main body portion 13.
  • the upper coupling portion 33a is formed so that the upper plate 25a is recessed toward the auxiliary air chamber SC, and has a circular shape in plan view.
  • ten upper coupling portions 33a are formed so as to be aligned in a line on the center line of the main body portion 13 along the longitudinal direction (wheel circumferential direction X) of the auxiliary air chamber member 10.
  • Two tubes are formed so as to be aligned in the short direction (wheel width direction Y) of the auxiliary air chamber member 10 at the position of the tubular body 18.
  • the bottom plate 25b is formed with a bottom coupling portion 33b at a position corresponding to the upper coupling portion 33a.
  • These bottom side coupling portions 33b are formed such that the bottom plate 25b is recessed toward the sub air chamber SC, and have a circular shape when viewed from the bottom.
  • These bottom side coupling parts 33b are integrated with the top part of the upper coupling part 33a of the upper plate 25a so that the upper plate 25a and the bottom plate 25b are integrally coupled. In the present invention, such a structure that does not include the upper coupling portion 33a and the bottom coupling portion 33b can be employed.
  • the tube body 18 has a communication hole 18 a inside thereof.
  • the tubular body 18 is formed in the center of the auxiliary air chamber member 10 in the longitudinal direction (wheel circumferential direction X). Such a tubular body 18 protrudes from the main body 13 in the wheel width direction Y.
  • the communication hole 18a is formed between the tire air chamber MC (see FIG. 2) and the auxiliary air chamber SC (see FIG. 2) which are to be formed between the tire 11 (not shown) on the well portion 11c (see FIG. 2).
  • the Helmholtz resonator together with the auxiliary air chamber SC of the auxiliary air chamber member 10.
  • the cross-sectional shape of the communication hole 18a is not particularly limited and is elliptical (see FIG. 3) in the present embodiment, but may be any shape such as a circle or a polygon.
  • interval of the communicating holes 18a demonstrated in detail later is prescribed
  • the tubular body 18 in the present embodiment having such a communication hole 18a is fitted into the cutout portion 15a (see FIG. 1) of the vertical wall 15, so that the wheel circumferential direction X (FIG. 1) of the auxiliary air chamber member 10 is obtained. It also has a function as an anti-rotation to the reference).
  • the edge portion 14 couples the bottom plate 25b and the top plate 25a. Further, as shown in FIG. 3, the edge 14c and edge 14d extending from the main body 13 in the wheel circumferential direction X and the main body 13 extending in the direction orthogonal to the wheel circumferential direction X (wheel width direction Y).
  • the edge 14 is constituted by the protruding edge 14a and edge 14b.
  • the edge portion 14 (14a, 14b, 14c, 14d) is formed of a plate-like body extending from the main body portion 13 so as to surround the main body portion 13.
  • tip part of the edge part 14b fit into the groove part 17a of the 1st vertical wall surface 16a, and the groove part 17b of the 2nd vertical wall surface 16b. It is crowded.
  • the edge portion 14a and the edge portion 14b extending toward the first vertical wall surface 16a and the second vertical wall surface 16b are integrated with the curved bottom plate 25b, as described above, and the outer peripheral surface of the well portion 11c. A curved surface that is convex toward the 11d side is formed.
  • the thickness of the edge 14 is set to be substantially the same as the thickness of the bottom plate 25b and the top plate 25a.
  • the edge part 14 has spring elasticity by selecting the thickness and material suitably.
  • the auxiliary air chamber member 10 according to the present embodiment as described above is assumed to be a resin molded product, but is not limited to this, and can be formed of other materials such as metal.
  • a resin a lightweight and highly rigid resin that can be blow-molded is desirable in view of weight reduction, improvement in mass productivity, reduction in manufacturing cost, securing airtightness of the sub air chamber SC, and the like.
  • polypropylene that is resistant to repeated bending fatigue is particularly desirable.
  • FIG. 4 is a side sectional view schematically showing the arrangement positions of the auxiliary air chamber members 10a and 10d as the first Helmholtz resonator and the auxiliary air chamber members 10b and 10c as the second Helmholtz resonator.
  • FIG. 4 schematically shows a cross section of the auxiliary air chamber members 10a, 10b, 10c, and 10d cut along a curved surface that follows the curvature in the longitudinal direction, and the formation position of the communication hole 18a is schematically indicated by a circle. .
  • Vehicle wheel 1 of the present embodiment the sub air chamber member 10a, the resonant frequency f 0 of 10d (first Helmholtz resonator), the additional air chamber member 10b, the resonance frequency f 0 of 10c (second Helmholtz resonator) are provided with a desired difference (upper limit frequency ⁇ lower limit frequency) (see FIG. 5 described later). Incidentally, this difference corresponds to ( ⁇ fa + ⁇ fb) described later.
  • the resonance frequency f 0 of the auxiliary air chamber members 10a and 10d (first Helmholtz resonator) is set lower by a first predetermined frequency ( ⁇ fa) than the resonance frequency f MC of the air column resonance sound in the tire air chamber MC.
  • ⁇ fa f 0 ⁇ f MC
  • the resonance frequency f 0 of the auxiliary air chamber members 10b and 10c (second Helmholtz resonator) is set higher by a second predetermined frequency ( ⁇ fb) than the resonance frequency f MC of the air column resonance sound in the tire air chamber MC.
  • the second predetermined frequency ( ⁇ fb) is set to be larger than the first predetermined frequency ( ⁇ fa) ( ⁇ fa ⁇ fb).
  • the optimal ratio between ⁇ fa and ⁇ fb ( ⁇ fb / ⁇ fa) is influenced by the capacity of the Helmholtz resonator.
  • the setting of the resonance frequency f 0 of the sub air chamber member 10 according to the resonance frequency f MC of the air column resonance sound of the tire is the following (Formula 1) volume (V) of the sub air chamber SC, communication hole 18a.
  • the length (L) and the opening cross-sectional area (S) of the communication hole 18a can be adjusted by appropriately adjusting several elements.
  • f 0 C / 2 ⁇ ⁇ ⁇ (S / V (L + ⁇ ⁇ ⁇ S)) (Expression 1)
  • C (m / s): sound velocity inside the sub-air chamber SC ( sound velocity inside the tire air chamber MC)
  • S (m 2 ) sectional area of the opening of the communication hole 18a ⁇ : correction coefficient
  • the vehicle wheel 1 has a sub air chamber member 10 a (first Helmholtz resonator) and a sub air chamber member 10 b (second Helmholtz resonator) in the wheel circumferential direction X.
  • the auxiliary air chamber member 10c (second Helmholtz resonator) and the auxiliary air chamber member 10d (first Helmholtz resonator) are arranged in this order.
  • the communication holes 18a of the auxiliary air chamber member 10a and the auxiliary air chamber member 10c constituting one set of the first Helmholtz resonator and the auxiliary air chamber member 10c are opposed to each other across the wheel rotation center Ax.
  • the communication holes 18a of the auxiliary air chamber member 10d and the auxiliary air chamber member 10b constituting the other set of the first Helmholtz resonator and the auxiliary air chamber member 10b are opposed to each other across the wheel rotation center Ax. Has been placed.
  • a line L2 connecting L1 and the communication hole 18a of the auxiliary air chamber member 10d (first Helmholtz resonator) and the communication hole 18a of the auxiliary air chamber member 10b (second Helmholtz resonator) is orthogonal to each other.
  • “orthogonal” in the present embodiment means that the line L1 and the line L2 intersect at an angle of 90 degrees within a range including an error (deviation angle). This error (shift angle) is preferably within ⁇ 10 degrees.
  • the vehicle wheel 1 as described above can exhibit excellent silencing performance by reducing the peak level of rebound resonance as shown in the examples described later.
  • auxiliary air chamber members 10a, 10b, 10c, and 10d are four separate members.
  • the present invention starts with the auxiliary air chamber members 10a, 10b, 10c, and 10d.
  • a combination of several selected sub air chamber members 10 may be employed.
  • the Helmholtz resonator is configured by the auxiliary air chamber member 10 that can be attached to the well portion 11c.
  • the auxiliary air chamber SC and the communication hole 18a are provided with a cavity or the like in the rim 11. 11 can be directly built.
  • the communication hole 18a of the sub air chamber member 10 is provided in the central portion in the longitudinal direction of the sub air chamber member 10, but the present invention is not limited to this. Therefore, the communication hole 18a may be configured to be formed at an end portion in the longitudinal direction (wheel circumferential direction X) of the auxiliary air chamber member 10 on the assumption that the lines L1 and L2 are orthogonal to each other.
  • the communication air holes 18a of the auxiliary air chamber members 10a, 10b, 10c, and 10d are described as being deviated on the disk 12 side in the wheel width direction Y.
  • the position of the hole 18a is not limited to this. Accordingly, the communication holes 18a of the auxiliary air chamber members 10a, 10b, 10c, and 10d can be disposed at any position in the wheel width direction Y. In this case, the said line L1 and line L2 should just be orthogonally seen seeing from the direction in alignment with a wheel rotating shaft.
  • each communicating hole 18a has illustrated what is located in the center part of the wheel circumferential direction X of the sub air chamber member 10, it is not limited to this,
  • the air chamber member 10 may be positioned at an end portion in the wheel circumferential direction X or may be positioned at another portion.
  • the said line L1 and the line L2 should just be orthogonally crossed seeing from the direction in alignment with a wheel rotating shaft.
  • FIG. 5 is a graph showing the relationship between the difference between the upper limit frequency and the lower limit frequency and the frequency to be shifted.
  • the horizontal axis of FIG. 5 represents the upper limit frequency and the lower limit frequency set for the auxiliary air chamber members 10b and 10c (second Helmholtz resonator) and the auxiliary air chamber members 10a and 10d (first Helmholtz resonator), respectively. Difference (upper limit frequency ⁇ lower limit frequency).
  • FIG. 5 shows four Helmholtz resonators, each composed of the auxiliary air chamber members 10a and 10d (first Helmholtz resonator) and the auxiliary air chamber members 10b and 10c (second Helmholtz resonator), all at the same single frequency.
  • the reference frequency (median value, resonance frequency f MC of the air column resonance sound) when optimally tuned is set to “0”, and the shift amount (deviation amount) from the reference frequency “0” is indicated by positive and negative frequencies. ing.
  • the lower (negative) shift amount from the reference frequency “0” of the lower limit frequency is “ ⁇ fa” (first predetermined frequency)
  • the upper (positive) shift amount from the reference frequency “0” of the upper limit frequency is “ ⁇ fb” (second predetermined frequency).
  • FIG. 6 schematically shows arrangement positions of the auxiliary air chamber members 10a and 10d (first Helmholtz resonator) and the auxiliary air chamber members 10b and 10c (second Helmholtz resonator) in the vehicle wheel 1 of the embodiment. It is a sectional side view.
  • FIG. 7 is a graph showing the silencing performance of the vehicle wheel 1 shown in FIG.
  • the resonance frequency f 0 of the auxiliary air chamber members 10b and 10c (second Helmholtz resonators) of the present embodiment is 18 [Hz] higher than the resonance frequency f MC of the air column resonance sound in the tire air chamber MC.
  • a line L1 connecting the communication hole 18a of the auxiliary air chamber member 10a (first Helmholtz resonator) and the communication hole 18a of the auxiliary air chamber member 10c (second Helmholtz resonator), and the auxiliary air chamber member 10d (first A line L2 connecting the communication hole 18a of the (Helmholtz resonator) and the communication hole 18a of the auxiliary air chamber member 10b (second Helmholtz resonator) is orthogonal.
  • reference numeral 20 denotes a tire tread.
  • FIG. 7 represents the magnitude [(m / s 2 ) / N] of vibration acceleration per 1 N of vibration input when the impact load is input converted into [dB] units.
  • the horizontal axis in FIG. 7 represents the resonance frequency f MC [Hz] of the air column resonance sound in the tire air chamber MC.
  • the thin solid line A indicates that the wheel does not have a Helmholtz resonator
  • the thick broken line B indicates that the resonance frequency f 0 of each Helmholtz resonator arranged on the wheel is all set at the same single frequency.
  • C shows the case of the vehicle wheel 1 of the embodiment shown in FIG.
  • the alternate long and short dash line P indicates a level that is balanced by aligning the peak levels of the three peaks.
  • the number of rebound resonances (peaks) generated before and after the antiresonance frequency that is a valley is three from the conventional two (see FIG. 11).
  • the peak levels of the three peaks are balanced so as to be the same or substantially the same.
  • the peak level of rebound resonance can be suppressed and the noise reduction performance can be improved as compared with the conventional example.
  • the depths of the three valley portions of the thick solid line C shown in FIG. 7 are not uniform, but these valley portions do not cause an audible load on the passenger in the vehicle interior. .
  • FIG. 8 is a graph showing a comparison of the silencing performance between the present example and Comparative Example 1.
  • a thin solid line D is a characteristic curve when the wheel does not have a Helmholtz resonator, and a thick one-dot chain line E has a ratio of the upper limit frequency shift amount ⁇ fb and the lower limit frequency shift amount ⁇ fa to 2.0-2.
  • the characteristic curve ( ⁇ fb / ⁇ fa ⁇ (2.0 to 2.6)) of Comparative Example 1 set to be smaller than 6 (out of the range of 2.0 to 2.6)
  • FIG. 7 shows characteristic curves of the vehicle wheel 1 of the embodiment shown in FIG. As shown by the thick dashed-dotted line E in FIG.
  • the comparative example 1 is the same as the present embodiment in that the rebound resonance is constituted by three peaks.
  • the peak levels of the three peak portions are different from each other and are uneven.
  • the peak level of the peaks gradually increases as the peak moves from the left peak toward the right peak M1 through the central peak.
  • the peak level of the rebound resonance is not balanced as compared with the present example, and the peak level of the peak M1 on the right side in the drawing matches the peak levels of the three peaks. Since the auditory load is exerted beyond the level of the alternate long and short dash line P in this embodiment, it is difficult to improve the silencing performance.
  • FIG. 9 is a graph showing a comparison of the silencing performance between the present example and the comparative example 2.
  • a thin solid line G is a characteristic curve when the wheel does not have a Helmholtz resonator, and a thick one-dot chain line H has a ratio of the upper limit frequency shift amount ⁇ fb and the lower limit frequency shift amount ⁇ fa to 2.0-2.
  • the characteristic curve ( ⁇ fb / ⁇ fa> (2.0 to 2.6)) of Comparative Example 2 set so as to be larger than 6 (out of the range of 2.0 to 2.6)
  • FIG. 7 shows characteristic curves of the vehicle wheel 1 of the embodiment shown in FIG. As shown by the thick dashed-dotted line H in FIG.
  • the comparative example 2 is the same as the present embodiment in that the rebound resonance is constituted by three peaks.
  • the peak level of the central mountain portion M2 is the highest among the three mountain portions, and is uneven as compared with the left and right mountain portions.
  • the peak level of the rebound resonance is not balanced as compared with the present example, and the peak level of the central peak M2 is equal to the peak level of the three peaks. Since the auditory load is applied beyond the level of the alternate long and short dash line P, it is difficult to improve the silencing performance.
  • FIG. 10 is a graph showing the silencing performance of a vehicle wheel according to another embodiment of the present invention.
  • the auxiliary air chamber members 10a and 10d first Helmholtz resonators
  • the auxiliary air chamber members 10b and 10c second second
  • the difference is that the capacity of each of the four Helmholtz resonators is small.
  • the thin solid line A ′ indicates that there is no Helmholtz resonator on the wheel
  • the thick broken line B ′ indicates that the resonance frequency f 0 of each Helmholtz resonator disposed on the wheel is set at the same single frequency.
  • a thick solid line C ′ indicates the case of the vehicle wheel 1 of another embodiment.
  • the peak levels of the three peaks are the same or substantially the same. In comparison with Comparative Example 1 and Comparative Example 2, it was possible to suppress the peak level of rebound resonance and improve the silencing performance.
  • the auxiliary air chamber members 10a, 10d (first frequency) are based on the shift amount ( ⁇ fa) of the lower limit frequency from the reference frequency “0” and the shift amount ( ⁇ fb) of the upper limit frequency from the reference frequency “0”.
  • resonance frequency f 0 of the Helmholtz resonator), and the sub air chamber member 10b, 10c (method second embodiment and other embodiments of the resonant frequency f 0 is set each Helmholtz resonator) is, for example, silencing target
  • the present invention can be applied to various Helmholtz resonators without being affected by the silencing event, the silencing frequency, the structure of the Helmholtz resonator, and the material of the Helmholtz resonator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Tires In General (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

車両用ホイール(1)は、タイヤの気柱共鳴音の共鳴周波数よりも第1の所定周波数(Δfa)だけ低い共鳴周波数の第1のヘルムホルツレゾネータ(副気室部材10a、10d)の連通孔(18a)と、タイヤの気柱共鳴音の共鳴周波数よりも第2の所定周波数(Δfb)だけ高い共鳴周波数の第2のヘルムホルツレゾネータ(副気室部材10b、10c)の連通孔(18a)とが、ホイール回転中心(A)を挟んで対向する位置に配置され、第2の所定周波数(Δfb)は、第1の所定周波数(Δfa)よりも大きく設定されている。

Description

車両用ホイール
 本発明は、車両用ホイールに関する。
 従来、タイヤ空気室内での気柱共鳴音を消音するヘルムホルツレゾネータ(副気室部材)をウェル部の外周面に取り付けたホイールが知られている(例えば、特許文献1参照)。このホイールのヘルムホルツレゾネータは、内側に副気室を有し、ホイール周方向に沿って等間隔に4つ配置されている。
 そして、各ヘルムホルツレゾネータの共鳴周波数は、タイヤ空気室の共鳴周波数に合わせて設定されている(各ヘルムホルツレゾネータの共鳴周波数=タイヤ空気室の共鳴周波数)。
特許第4551422号公報
 しかしながら、ホイールの周方向に沿って4つ配置された各ヘルムホルツレゾネータの共鳴周波数を全て同じ単一の周波数に設定すると、消音可能な周波数帯域が限定される。特に、各ヘルムホルツレゾネータの容量が比較的大きい場合、反共鳴周波数(後記する図11参照)の前後に発生する2つの「跳ね返り共鳴」(後記する図11参照)のピークレベルが大きくなり、この2つの「跳ね返り共鳴」が車室内の乗員に対して聴覚上の負荷を及ぼす場合がある。
 図11は、各ヘルムホルツレゾネータの共鳴周波数が全て同じ単一の周波数で設定された従来技術における消音性能を示すグラフである。図11において、細線実線Jは、ホイールにヘルムホルツレゾネータが無い場合、太線破線Lは、ホイールに設けられる各ヘルムホルツレゾネータが小容量の場合、太線実線Kは、ホイールに設けられる各ヘルムホルツレゾネータが大容量の場合をそれぞれ示している。例えば、大容量の各ヘルムホルツレゾネータの太線実線Kに着目すると、太線実線Kの谷部である「反共鳴周波数」の前後の位置に、2つの山部からなる「跳ね返り共鳴」が発生していることがわかる。
 本発明の目的は、跳ね返り共鳴を抑制することが可能な車両用ホイールを提供することにある。
 前記の目的を達成するために、本発明は、タイヤ空気室と連通孔を介して連通する副気室を有するヘルムホルツレゾネータを備える車両用ホイールであって、タイヤ空気室内の気柱共鳴音の共鳴周波数よりも第1の所定周波数だけ低い共鳴周波数の音に対する消音特性を有するように設定された第1のヘルムホルツレゾネータと、前記気柱共鳴音の共鳴周波数よりも第2の所定周波数だけ高い共鳴周波数の音に対する消音特性を有するように設定された第2のヘルムホルツレゾネータと、の組を2組備え、前記第1のヘルムホルツレゾネータの前記連通孔と、前記第2のヘルムホルツレゾネータの前記連通孔とが、ホイール回転中心を挟んで対向する位置に配置され、一方の組の前記第1のヘルムホルツレゾネータの前記連通孔と、前記第2のヘルムホルツレゾネータの前記連通孔とを結ぶ線と、他方の組の前記第1のヘルムホルツレゾネータの前記連通孔と、前記第2のヘルムホルツレゾネータの前記連通孔とを結ぶ線とが互いに直交し、前記第2の所定周波数は、前記第1の所定周波数よりも大きく設定されていることを特徴とする。
 本発明によれば、第2の所定周波数を、第1の所定周波数よりも大きく設定することで、谷部である反共鳴周波数の前後に発生する跳ね返り共鳴(山部)の数を、従来の2つから3つに増大させると共に、この3つ山部のピークレベルをそれぞれ同じ又は略同じで揃うようにバランスさせている。従って、本発明では、従来と比較して、跳ね返り共鳴のピークレベルを抑制して、消音性能を向上させることができる。この結果、本発明では、跳ね返り共鳴が車室内の乗員に対して聴覚上の負荷を及ぼすことを好適に回避することができる。
 さらに、本発明は、前記第1の所定周波数は、Δfaであり、前記第2の所定周波数は、Δfbであり、前記タイヤ空気室内の気柱共鳴音の共鳴周波数fMCに対して、前記第1のヘルムホルツレゾネータの共鳴周波数fは、fMC-Δfa[Hz](但し、Δfaは1から10の正数)に設定され、前記第2のヘルムホルツレゾネータの共鳴周波数fは、fMC+Δfb[Hz](但し、Δfbは5から20の正数)で、且つ、前記Δfbは、前記Δfaよりも大きく設定されている(Δfa<Δfb)ことを特徴とする。
 本発明によれば、基準周波数からの下限周波数のシフト量(Δfa)と、基準周波数からの上限周波数とのシフト量(Δfb)に基づいて、容易に消音性能を向上させることができる。
 本発明では、跳ね返り共鳴を抑制することが可能な車両用ホイールを得ることができる。
本発明の実施形態に係る車両用ホイールの斜視図である。 図1のII-II線に沿った拡大断面図である。 副気室部材の全体斜視図である。 第1のヘルムホルツレゾネータと第2のヘルムホルツレゾネータの配置位置を模式的に示す側断面図である。 上限周波数と下限周波数との差分と、シフトさせる周波数との関係を示すグラフである。 本発明の実施例に係る車両用ホイールにおける第1のヘルムホルツレゾネータと第2のヘルムホルツレゾネータの配置位置を模式的に示す側断面図である。 本発明の実施例に係る車両用ホイールにおける消音性能を示すグラフである。 本実施例と比較例1との消音性能の比較を示すグラフである。 本実施例と比較例2との消音性能の比較を示すグラフである。 本発明の他の実施例に係る車両用ホイールにおける消音性能を示すグラフである。 従来技術における消音性能を示すグラフである。
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1は、本発明の実施形態に係る車両用ホイールの斜視図である。
 図1に示すように、本実施形態に係る車両用ホイール1は、ヘルムホルツレゾネータとしての副気室部材10をホイール周方向Xに複数備えている。図1においては、作図の便宜上、副気室部材10a及び副気室部材10bの2つのみを描出しているが、後に詳しく説明するように、車両用ホイール1は、ホイール周方向Xに4つの副気室部材10a、10b、10c、10d(図4参照)を備えている。ちなみに、本実施形態での副気室部材10a及び副気室部材10dは、請求の範囲にいう「第1のヘルムホルツレゾネータ」に相当し、副気室部材10b及び副気室部材10cは、請求の範囲にいう「第2のヘルムホルツレゾネータ」に相当する。
 本実施形態に係る車両用ホイール1は、タイヤ空気室MC(図2参照)内の気柱共鳴音の共鳴周波数よりも第1の所定周波数(後記するΔfa;図5参照)だけ低い共鳴周波数の第1のヘルムホルツレゾネータの連通孔18aと、タイヤ空気室MC(図2参照)内の気柱共鳴音の共鳴周波数よりも第2の所定周波数(後記するΔfb;図5参照)だけ高い共鳴周波数の第2のヘルムホルツレゾネータの連通孔18aとを2組備えている。但し、第2の所定周波数は、第1の所定周波数よりも大きく設定されている(後記するΔfa<Δfb;図5参照)。
 本実施形態に係る車両用ホイール1は、一方の組の第1のヘルムホルツレゾネータの連通孔と、第2のヘルムホルツレゾネータの連通孔とを結ぶ線と、他方の組の第1のヘルムホルツレゾネータの連通孔と、第2のヘルムホルツレゾネータの連通孔とを結ぶ線とが互いに直交していることを主な特徴とする。
 なお、以下の説明において、前記の副気室部材10a、10b、10c、10dを互いに区別しない場合には、単に「副気室部材10」と称する。
 図1に示すように、本実施形態に係る車両用ホイール1は、リム11と、このリム11をハブ(図示省略)に連結するためのディスク12とを備えている。図1中において、符号11dは、ウェル部11cの外周面であり、副気室部材10は、後に詳しく説明するように、このウェル部11cに嵌め込まれる。また、符号18は、連通孔18aが形成される管体であり、符号15は、リム11の周方向に延びるようにウェル部11cの外周面11dに立設された環状の縦壁である。ちなみに、副気室部材10は、後記するように、縦壁15に係止される。符号15aは、副気室部材10が縦壁15に係止される際に管体18が嵌入される縦壁15の切欠き部である。符号Yは、ホイール幅方向を示す矢印である。
 図2は、図1のII-II線に沿った断面図である。
 リム11は、図2に示すように、ホイール幅方向Yの両端部に形成されるタイヤのビードシート部(図示省略)同士の間で、ホイール径方向の内側(回転中心側)に向かって凹んだウェル部11cを有している。
 ウェル部11cは、図示しないタイヤをリム11に組み付けるリム組み時に、タイヤのビード部(図示省略)を落とし込むために設けられている。ちなみに、本実施形態でのウェル部11cは、ホイール幅方向Yに亘って略同径となる円筒形状に形成されている。
 このウェル部11cの外周面11dには、リム11の周方向に延びるように環状の縦壁15が立設されている。
 縦壁15は、ウェル部11cの外周面11dからホイール径方向の外側(図2の紙面上側、以下同じ)に立ち上がる第1の縦壁面16aを形成するように外周面11dに立設されている。
 また、ウェル部11cのホイール幅方向Yの内側(図2の紙面左側)に形成される側面部11eには、第1の縦壁面16aと対向するように第2の縦壁面16bが設けられている。なお、本実施形態での縦壁15は、リム11を鋳造する際にウェル部11cと一体に成形される。
 そして、これらの第1の縦壁面16a及び第2の縦壁面16bには、ホイール径方向から見て、それぞれ溝部17a及び溝部17bが形成されている。これらの溝部17a、17bは、ウェル部11cの外周面11dの周方向に沿って形成されて環状の周溝を形成している。これらの溝部17a、17bには、副気室部材10の縁部14a及び縁部14bが嵌め込まれることとなる。なお、本実施形態での溝部17a、17bは、縦壁15及び側面部11eのそれぞれに機械加工を施して形成される。
 図3は、副気室部材10の全体斜視図である。図3中において、符号Xは、この副気室部材10がウェル部11c(図1参照)に取り付けられた際のホイール周方向を示す矢印である。符号Yは、ホイール幅方向を示す矢印である。
 前記したように、本実施形態に係る車両用ホイール1は、4つの副気室部材10a、10b、10c、10d(図4参照)を備えているが、副気室部材10a、10d(第1のヘルムホルツレゾネータ)と副気室部材10b、10c(第2のヘルムホルツレゾネータ)とは、その共鳴周波数が異なるように設定されている以外は同じ構造を有している。したがって、以下では、副気室部材10a、10b、10c、10dは、副気室部材10としてその構造について説明する。
 副気室部材10は、図3に示すように、ホイール周方向Xに長尺な部材であって、本体部13と、連通孔18aが形成される管体18と、縁部14とを備えている。そして、副気室部材10の長手方向(ホイール周方向X)は、ウェル部11c(図1参照)の外周面11d(図1参照)に沿うように湾曲している。
 図2に戻って、副気室部材10の本体部13は、底板25bと、この底板25bとの間に副気室SCを形成する上板25aとを備えている。なお、本実施形態での上板25a及び底板25bのそれぞれは、同じ厚さとなっているが、これらの厚さは相互に異なっていてもよい。
 上板25aは、ウェル部11cの外周面11d側に沿うように配置された底板25bの上方で膨らみをもつように湾曲することで、副気室SCを形成している。
 上板25aには、本体部13を構成する部分に、上側結合部33aが形成されている。この上側結合部33aは、上板25aが副気室SC側に向かって窪むように形成されたものであり、平面視で円形を呈している。
 図3に示すように、この上側結合部33aは、副気室部材10の長手方向(ホイール周方向X)に沿って本体部13の中央線上で1列に並ぶように10個形成されると共に、管体18の位置で副気室部材10の短手方向(ホイール幅方向Y)に並ぶように2個形成されている。
 図2に示すように、底板25bには、上側結合部33aと対応する位置に、底側結合部33bが形成されている。
 これらの底側結合部33bは、底板25bが副気室SC側に向かって窪むように形成されたものであり、底面視で円形を呈している。これらの底側結合部33bは、その先端部が、上板25aの上側結合部33aの先端部と一体になって、上板25aと底板25bとを一体的に結合している。
 なお、本発明においては、このような上側結合部33a及び底側結合部33bを有しない構造とすることもできる。
 図3に示すように、管体18は、その内側に連通孔18aを有している。管体18は、副気室部材10の長手方向(ホイール周方向X)の中央に形成されている。
 このような管体18は、ホイール幅方向Yに本体部13から突出している。
 連通孔18aは、ウェル部11c(図2参照)上で、図示しないタイヤとの間に形成されることとなるタイヤ空気室MC(図2参照)と、副気室SC(図2参照)とを連通させており、副気室部材10の副気室SCと共にヘルムホルツレゾネータを構成している。
 連通孔18aの断面形状は、特に制限はなく、本実施形態では楕円形(図3参照)となっているが、円形、多角形等のいずれであってもよい。
 なお、後に詳しく説明する連通孔18a同士の間隔は、連通孔18aの開口部の中心同士で規定される。
 このような連通孔18aを有する本実施形態での管体18は、縦壁15の切欠き部15a(図1参照)に嵌り込むことで、副気室部材10のホイール周方向X(図1参照)への回り止めとしての機能をも有する。
 図2に示すように、縁部14は、底板25bと上板25aとを結合している。
 また、図3に示すように、ホイール周方向Xに本体部13から延出する縁部14c及び縁部14dと、ホイール周方向Xと直交する方向(ホイール幅方向Y)に本体部13から延出する縁部14a及び縁部14bとによって縁部14は構成されている。つまり、縁部14(14a、14b、14c、14d)は、本体部13を囲むように本体部13から周囲に延出している板状体で形成されている。
 そして、図2に示すように、ホイール幅方向Yに延出する縁部14a及び縁部14bの先端部は、第1の縦壁面16aの溝部17a及び第2の縦壁面16bの溝部17bに嵌り込んでいる。
 第1の縦壁面16a及び第2の縦壁面16bのそれぞれに向かって延出する縁部14a及び縁部14bは、前記したように、湾曲する底板25bと一体になってウェル部11cの外周面11d側に凸となる湾曲面を形成している。
 このような本実施形態での縁部14の厚さは、底板25b及び上板25aの厚さと略同じ厚さに設定されている。そして、縁部14は、その厚さや材料を適宜に選択することでバネ弾性を有している。
 以上のような本実施形態に係る副気室部材10は、樹脂成形品を想定しているがこれに限定されるものではなく金属等の他の材料で形成することもできる。なお、樹脂製の場合は、その軽量化や量産性の向上、製造コストの削減、副気室SCの気密性の確保等を考慮すると、軽量で高剛性のブロー成形可能な樹脂が望ましい。中でも、繰り返しの曲げ疲労にも強いポリプロピレンが特に望ましい。
 次に、本実施形態の車両用ホイール1における副気室部材10(ヘルムホルツレゾネータ)の位置について説明する。
 図4は、第1のヘルムホルツレゾネータとしての副気室部材10a、10dと、第2のヘルムホルツレゾネータとしての副気室部材10b、10cの配置位置を模式的に示す側断面図である。図4は、副気室部材10a、10b、10c、10dを長手方向の曲率に沿う曲面で切断した断面を模式的に示すとともに、連通孔18aの形成位置を○印で模式的に示している。
 本実施形態の車両用ホイール1は、副気室部材10a、10d(第1のヘルムホルツレゾネータ)の共鳴周波数fと、副気室部材10b、10c(第2のヘルムホルツレゾネータ)の共鳴周波数fとに所望の差分(上限周波数-下限周波数)が設けられている(後記する図5参照)。ちなみに、この差分は、後記する(Δfa+Δfb)に相当する。
 副気室部材10a、10d(第1のヘルムホルツレゾネータ)の共鳴周波数fは、タイヤ空気室MC内の気柱共鳴音の共鳴周波数fMCよりも第1の所定周波数(Δfa)だけ低く設定される。望ましくは共鳴周波数fと共鳴周波数fMCとの差Δfa(Δfa=f-fMC)が-1~-10[Hz]となるように設定される。
 副気室部材10b、10c(第2のヘルムホルツレゾネータ)の共鳴周波数fは、タイヤ空気室MC内の気柱共鳴音の共鳴周波数fMCよりも第2の所定周波数(Δfb)だけ高く設定される。第2の所定周波数(Δfb)は、第1の所定周波数(Δfa)よりも大きく設定されている(Δfa<Δfb)。また、望ましくは共鳴周波数fと共鳴周波数fMCとの差Δfb(Δfb=f-fMC)が5~20[Hz]となるように設定される。
 なお、好ましくは、第1の所定周波数(Δfa)及び第2の所定周波数(Δfb)は、Δfa:Δfb=1:(2.0~2.6)の比例式を充足する値に設定されるとよい。但し、最適なΔfaとΔfbとの割合(Δfb/Δfa)は、ヘルムホルツレゾネータの容量に影響される。
 ちなみに、タイヤの気柱共鳴音の共鳴周波数fMCに応じた副気室部材10の共鳴周波数fの設定は、次の(式1)の副気室SCの容積(V)、連通孔18aの長さ(L)、及び連通孔18aの開口部断面積(S)から選択されるいくつかの要素を適宜に調節することにより行うことができる。
=C/2π×√(S/V(L+α×√S))・・・(式1)
 f(Hz):共鳴周波数
 C(m/s):副気室SC内部の音速(=タイヤ空気室MC内部の音速)
 V(m):副気室SCの容積
 L(m):連通孔18aの長さ
 S(m):連通孔18aの開口部断面積
 α:補正係数
 そして、本実施形態の車両用ホイール1は、図4に示すように、ホイール周方向Xに、副気室部材10a(第1のヘルムホルツレゾネータ)、副気室部材10b(第2のヘルムホルツレゾネータ)、副気室部材10c(第2のヘルムホルツレゾネータ)、及び副気室部材10d(第1のヘルムホルツレゾネータ)がこの順番に並ぶように配置されている。
 また、第1のヘルムホルツレゾネータと第2のヘルムホルツレゾネータとの一方の組を構成する副気室部材10aと副気室部材10cのそれぞれ連通孔18a同士がホイール回転中心Axを挟んで対向する位置に配置されている。
 また、第1のヘルムホルツレゾネータと第2のヘルムホルツレゾネータとの他方の組を構成する副気室部材10dと副気室部材10bのそれぞれ連通孔18a同士がホイール回転中心Axを挟んで対向する位置に配置されている。
 また、本実施形態の車両用ホイール1は、副気室部材10a(第1のヘルムホルツレゾネータ)の連通孔18aと、副気室部材10c(第2のヘルムホルツレゾネータ)の連通孔18aとを結ぶ線L1と、副気室部材10d(第1のヘルムホルツレゾネータ)の連通孔18aと、副気室部材10b(第2のヘルムホルツレゾネータ)の連通孔18aとを結ぶ線L2とが直交している。なお、本実施形態での「直交」とは、線L1と線L2とが誤差(ずれ角)を含む範囲で90度をなして交差していることを意味する。この誤差(ずれ角)は、±10度以内が望ましい。
 以上のような車両用ホイール1は、後記する実施例で示されるように、跳ね返り共鳴のピークレベルを低減することで、優れた消音性能を発揮することができる。
 以上、本実施形態について説明したが、本発明は前記実施形態に限定されず、種々の形態で実施することができる。
 前記実施形態では、副気室部材10a、10b、10c、10dは、4つ別体のものを使用することを想定しているが、本発明は副気室部材10a、10b、10c、10dから選択されるいくつかの副気室部材10を組み合わせて一体としたものを採用することもできる。
 また、前記実施形態では、ウェル部11cに取り付け可能な副気室部材10でヘルムホルツレゾネータを構成しているが、副気室SCと連通孔18aとをリム11内に空洞等を設けることによってリム11に直に造りこむ構成とすることもできる。
 また、前記実施形態では、副気室部材10の連通孔18aが、副気室部材10の長手方向の中央部に設けられるものについて説明したが、本発明はこれに限定されない。したがって、連通孔18aは、前記の線L1及び線L2が直交することを前提に、副気室部材10の長手方向(ホイール周方向X)の端部に形成される構成であってもよい。
 また、前記実施形態では、副気室部材10a、10b、10c、10dの各連通孔18aが、ホイール幅方向Yのディスク12側に偏位して配置されるものについて説明しているが、連通孔18aの位置はこれに限定されない。したがって、副気室部材10a、10b、10c、10dの各連通孔18aは、ホイール幅方向Yのいずれの位置にでも配置することができる。この場合、前記の線L1及び線L2は、ホイール回転軸に沿う方向から見て直交していればよい。
 なお、前記実施形態では、各連通孔18aが副気室部材10のホイール周方向Xの中央部に位置しているものを例示しているが、これに限定されるものではなく、例えば、副気室部材10のホイール周方向Xの端部に位置してもよいし、その他の部位に位置してもよい。この場合も、前記の線L1及び線L2は、ホイール回転軸に沿う方向から見て直交していればよい。
 次に、本発明の実施例及び比較例を示しながら本発明を更に具体的に説明する。
(実施例)
 図5は、上限周波数と下限周波数との差分と、シフトさせる周波数との関係を示すグラフである。図5の横軸は、副気室部材10b、10c(第2のヘルムホルツレゾネータ)と、副気室部材10a、10d(第1のヘルムホルツレゾネータ)に対してそれぞれ設定される上限周波数と下限周波数との差分(上限周波数-下限周波数)を示している。
 図5の縦軸は、副気室部材10a、10d(第1のヘルムホルツレゾネータ)及び副気室部材10b、10c(第2のヘルムホルツレゾネータ)からなる4つのヘルムホルツレゾネータを全て同じ単一の周波数で最適にチューニングしたときの基準周波数(中央値、気柱共鳴音の共鳴周波数fMC)を「0」とし、この基準周波数「0」からのシフト量(偏位量)をそれぞれ正負の周波数で示している。この場合、下限周波数の基準周波数「0」から下方(負)のシフト量が「Δfa」(第1の所定周波数)であり、上限周波数の基準周波数「0」から上方(正)のシフト量が「Δfb」(第2の所定周波数)である。
 図6は、実施例の車両用ホイール1における副気室部材10a、10d(第1のヘルムホルツレゾネータ)と、副気室部材10b、10c(第2のヘルムホルツレゾネータ)の配置位置を模式的に示す側断面図である。図7は、図6に示す車両用ホイール1における消音性能を示すグラフである。
 図6に示すように、本実施例の副気室部材10a、10d(第1のヘルムホルツレゾネータ)の共鳴周波数fは、タイヤ空気室MC内の気柱共鳴音の共鳴周波数fMCよりも7[Hz]低くなるように設定されている(f-fMC=-7[Hz];Δfa=7)。
 また、本実施例の副気室部材10b、10c(第2のヘルムホルツレゾネータ)の共鳴周波数fは、タイヤ空気室MC内の気柱共鳴音の共鳴周波数fMCよりも18[Hz]高くなるように設定されている(f-fMC=18[Hz];Δfb=18)。
 実施例の車両用ホイール1は、Δfb/Δfa=18÷7≒2.6に設定されている。
 副気室部材10a(第1のヘルムホルツレゾネータ)の連通孔18aと、副気室部材10c(第2のヘルムホルツレゾネータ)の連通孔18aとを結ぶ線L1と、副気室部材10d(第1のヘルムホルツレゾネータ)の連通孔18aと、副気室部材10b(第2のヘルムホルツレゾネータ)の連通孔18aとを結ぶ線L2とは直交している。
 図6中、符号20は、タイヤトレッドである。
 次に、この車両用ホイール1の消音特性を評価した。
 タイヤが装着された車両用ホイール1のタイヤトレッド20に、ハンマ殴打による打撃荷重が入力された。そして、ホイール回転中心Axの振動加速度の大きさが測定された。その結果を図7に示す。
 図7の縦軸は、打撃荷重が入力された際の加振入力1N当りの振動加速度の大きさ[(m/s)/N]を[dB]単位に換算して表したものである。図7の横軸は、タイヤ空気室MC内の気柱共鳴音の共鳴周波数fMC[Hz]である。
 図7において、細線実線Aは、ホイールにヘルムホルツレゾネータが無い場合、太線破線Bは、ホイールに配置される各ヘルムホルツレゾネータの共鳴周波数fが全て同じ単一の周波数で設定された場合、太線実線Cは、図6に示す実施例の車両用ホイール1の場合をそれぞれ示している。また、一点鎖線Pは、3つの山部のピークレベルを揃えてバランスしたレベルを示している。
 本実施例では、図7の太線実線Cに示すように、谷部である反共鳴周波数の前後に発生する跳ね返り共鳴(山部)の数を、従来の2つ(図11参照)から3つに増大させると共に、この3つ山部のピークレベルをそれぞれ同じ又は略同じで揃うようにバランスさせている。従って、本実施例では、従来と比較して、跳ね返り共鳴のピークレベルを抑制して、消音性能を向上させることができた。この結果、本実施例では、跳ね返り共鳴が車室内の乗員に対して聴覚上の負荷を及ぼすことを好適に回避することができた。
 なお、本実施例では、図7に示す太線実線Cの3つ谷部の深さが不揃いとなっているが、この谷部は、車室内の乗員に対して聴覚上の負荷を及ぼすものでない。
(比較例1)
 図8は、本実施例と比較例1との消音性能の比較を示すグラフである。
 図8において、細線実線Dは、ホイールにヘルムホルツレゾネータが無い場合の特性曲線、太線一点鎖線Eは、上限周波数のシフト量Δfbと下限周波数のシフト量Δfaとの割合が、2.0~2.6より小さくなるように(2.0~2.6の範囲から外れるように)設定された比較例1の特性曲線(Δfb/Δfa<(2.0~2.6))、太線実線Cは、図6に示す実施例の車両用ホイール1の特性曲線をそれぞれ示している。
 図8の太線一点鎖線Eに示すように、比較例1では、跳ね返り共鳴が3つの山部によって構成されている点は、本実施例と同じである。しかしながら、比較例1では、3つの山部のピークレベルがそれぞれ異なって不揃いとなっている。例えば、3つの山部の内、図面に向かって左側の山部から中央の山部を経て右側の山部M1に移行するにつれて、山部のピークレベルが徐々に増加している。この結果、比較例1では、本実施例と比較して、跳ね返り共鳴のピークレベルがバランスせず、図面に向かって右側の山部M1のピークレベルが、3つの山部のピークレベルを揃えた本実施例の一点鎖線Pのレベルを超えて聴覚上の負荷を及ぼしていることから、消音性能を向上させることが困難である。
(比較例2)
 図9は、本実施例と比較例2との消音性能の比較を示すグラフである。
 図9において、細線実線Gは、ホイールにヘルムホルツレゾネータが無い場合の特性曲線、太線一点鎖線Hは、上限周波数のシフト量Δfbと下限周波数のシフト量Δfaとの割合が、2.0~2.6より大きくなるように(2.0~2.6の範囲から外れるように)設定された比較例2の特性曲線(Δfb/Δfa>(2.0~2.6))、太線実線Cは、図6に示す実施例の車両用ホイール1の特性曲線をそれぞれ示している。
 図9の太線一点鎖線Hに示すように、比較例2では、跳ね返り共鳴が3つの山部によって構成されている点は、本実施例と同じである。しかしながら、比較例2では、3つの山部の中、左右の山部よりも中央の山部M2のピークレベルが最も高くなって不揃いとなっている。この結果、比較例2では、本実施例と比較して、跳ね返り共鳴のピークレベルがバランスせず、中央の山部M2のピークレベルが、3つの山部のピークレベルを揃えた本実施例の一点鎖線Pのレベルを超えて聴覚上の負荷を及ぼしていることから、消音性能を向上させることが困難である。
 以上の結果から、本実施例(太線実線C)では、跳ね返り共鳴(山部)の数を、従来の2つ(図11参照)から3つに増大させると共に、この3つ山部のピークレベルをそれぞれ同じ又は略同じで揃うようにバランスさせている。この結果、本実施例では、比較例1及び比較例2と比較して、跳ね返り共鳴のピークレベルを抑制して、消音性能を向上させることができた。
 図10は、本発明の他の実施例に係る車両用ホイールにおける消音性能を示すグラフである。この他の実施例に係る車両ホイール1では、図6に示す車両ホイール1と比較して、副気室部材10a、10d(第1のヘルムホルツレゾネータ)及び副気室部材10b、10c(第2のヘルムホルツレゾネータ)からなる4つの各ヘルムホルツレゾネータの容量を小容量としている点で相違している。
 図10において、細線実線A´は、ホイールにヘルムホルツレゾネータが無い場合、太線破線B´は、ホイールに配置される各ヘルムホルツレゾネータの共鳴周波数fが全て同じ単一の周波数で設定された場合、太線実線C´は、他の実施例の車両用ホイール1の場合をそれぞれ示している。
 図10の太線実線C´に示すように、他の実施例では、各ヘルムホルツレゾネータの容量を小容量とした場合であっても、3つ山部のピークレベルをそれぞれ同じ又は略同じで揃うようにバランスさせ、比較例1及び比較例2と比較して、跳ね返り共鳴のピークレベルを抑制して、消音性能を向上させることができた。
 なお、基準周波数「0」からの下限周波数のシフト量(Δfa)と、基準周波数「0」からの上限周波数とのシフト量(Δfb)に基づいて、副気室部材10a、10d(第1のヘルムホルツレゾネータ)の共鳴周波数f、及び、副気室部材10b、10c(第2のヘルムホルツレゾネータ)の共鳴周波数fをそれぞれ設定する本実施例及び他の実施例の手法は、例えば、消音対象、消音事象、消音周波数、ヘルムホルツレゾネータの構造、ヘルムホルツレゾネータの材料に影響されることがなく、種々のヘルムホルツレゾネータに適用することができる。
 1   車両用ホイール
 10  副気室部材
 10a 副気室部材(第1のヘルムホルツレゾネータ)
 10b 副気室部材(第2のヘルムホルツレゾネータ)
 10c 副気室部材(第2のヘルムホルツレゾネータ)
 10d 副気室部材(第1のヘルムホルツレゾネータ)
 18a 連通孔
 Δfa 第1の所定周波数
 Δfb 第2の所定周波数
 SC  副気室
 MC  タイヤ空気室
 Ax  ホイール回転中心

Claims (2)

  1.  タイヤ空気室と連通孔を介して連通する副気室を有するヘルムホルツレゾネータを備える車両用ホイールであって、
     タイヤ空気室内の気柱共鳴音の共鳴周波数よりも第1の所定周波数だけ低い共鳴周波数の音に対する消音特性を有するように設定された第1のヘルムホルツレゾネータと、
     前記気柱共鳴音の共鳴周波数よりも第2の所定周波数だけ高い共鳴周波数の音に対する消音特性を有するように設定された第2のヘルムホルツレゾネータと、
     の組を2組備え、
     前記第1のヘルムホルツレゾネータの前記連通孔と、前記第2のヘルムホルツレゾネータの前記連通孔とが、ホイール回転中心を挟んで対向する位置に配置され、
     一方の組の前記第1のヘルムホルツレゾネータの前記連通孔と、前記第2のヘルムホルツレゾネータの前記連通孔とを結ぶ線と、他方の組の前記第1のヘルムホルツレゾネータの前記連通孔と、前記第2のヘルムホルツレゾネータの前記連通孔とを結ぶ線とが互いに直交し、
     前記第2の所定周波数は、前記第1の所定周波数よりも大きく設定されていることを特徴とする車両用ホイール。
  2.  請求項1記載の車両用ホイールにおいて、
     前記第1の所定周波数は、Δfaであり、
     前記第2の所定周波数は、Δfbであり、
     前記タイヤ空気室内の気柱共鳴音の共鳴周波数fMCに対して、前記第1のヘルムホルツレゾネータの共鳴周波数fは、fMC-Δfa[Hz](但し、Δfaは1から10の正数)に設定され、前記第2のヘルムホルツレゾネータの共鳴周波数fは、fMC+Δfb[Hz](但し、Δfbは5から20の正数)で、且つ、前記Δfbは、前記Δfaよりも大きく設定されている(Δfa<Δfb)ことを特徴とする車両用ホイール。
PCT/JP2016/056541 2015-03-19 2016-03-03 車両用ホイール WO2016147878A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017506197A JP6349027B2 (ja) 2015-03-19 2016-03-03 車両用ホイール
CN201680016578.3A CN107405949B (zh) 2015-03-19 2016-03-03 车辆用车轮
DE112016001293.4T DE112016001293T5 (de) 2015-03-19 2016-03-03 Fahrzeugrad
US15/558,924 US10504500B2 (en) 2015-03-19 2016-03-03 Vehicle wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055585 2015-03-19
JP2015055585 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147878A1 true WO2016147878A1 (ja) 2016-09-22

Family

ID=56919802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056541 WO2016147878A1 (ja) 2015-03-19 2016-03-03 車両用ホイール

Country Status (5)

Country Link
US (1) US10504500B2 (ja)
JP (1) JP6349027B2 (ja)
CN (1) CN107405949B (ja)
DE (1) DE112016001293T5 (ja)
WO (1) WO2016147878A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127147A (ko) * 2018-05-03 2019-11-13 주식회사 대유글로벌 소음감쇠 기능을 갖는 차량용 휠
KR102057103B1 (ko) 2018-05-03 2019-12-30 주식회사 대유글로벌 공명기 부착 자동차용 휠

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD818928S1 (en) * 2016-11-22 2018-05-29 Volvo Car Corporation Rim for vehicle wheel
JP7028693B2 (ja) * 2018-04-02 2022-03-02 本田技研工業株式会社 車両用ホイール
USD888643S1 (en) * 2018-10-23 2020-06-30 Sinfonia Automotive Ag Vehicle wheel rim
CN112976959B (zh) * 2021-05-11 2022-11-08 合肥工业大学 一种充气轮胎宽频噪音抑制构造
JP7488790B2 (ja) * 2021-05-18 2024-05-22 中央精機株式会社 車両用ホイール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219739A (ja) * 2000-06-29 2005-08-18 Bridgestone Corp リムホイール、及びタイヤ・リムホイール組立体
JP2006341674A (ja) * 2005-06-08 2006-12-21 Honda Motor Co Ltd 車両用ホイール
JP2015081034A (ja) * 2013-10-23 2015-04-27 トピー工業株式会社 車両用ホイール
WO2015137370A1 (ja) * 2014-03-13 2015-09-17 本田技研工業株式会社 車両用ホイール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508526C2 (sv) * 1997-02-12 1998-10-12 Saab Automobile Förfarande och anordning för ljuddämpning i hjul
JP4551422B2 (ja) 2007-05-10 2010-09-29 本田技研工業株式会社 車両用ホイール
JP4460593B2 (ja) * 2007-09-19 2010-05-12 本田技研工業株式会社 車両用ホイール
US7896044B2 (en) * 2007-10-26 2011-03-01 Honda Motor Co., Ltd. Vehicle wheel having a sub air chamber
JP2010095104A (ja) * 2008-10-15 2010-04-30 Honda Motor Co Ltd 車両用ホイール
JP2010095147A (ja) 2008-10-16 2010-04-30 Honda Motor Co Ltd 車両用ホイール
JP4834715B2 (ja) * 2008-10-21 2011-12-14 本田技研工業株式会社 車両用ホイール
JP4830014B2 (ja) * 2009-09-08 2011-12-07 本田技研工業株式会社 車両用ホイール
EP2933119B1 (en) * 2012-12-17 2019-03-20 Honda Motor Co., Ltd. Vehicle wheel
CN104981360B (zh) * 2013-02-28 2018-10-02 本田技研工业株式会社 车辆用车轮
JP5819340B2 (ja) * 2013-03-29 2015-11-24 本田技研工業株式会社 車両用ホイール
JP6069097B2 (ja) * 2013-05-21 2017-01-25 本田技研工業株式会社 車両用ホイール
US9175648B2 (en) * 2013-10-17 2015-11-03 Ford Global Technologies, Llc Intake system having a silencer device
CN204013282U (zh) 2014-06-19 2014-12-10 华南农业大学 一种基于火车的噪声能量利用装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219739A (ja) * 2000-06-29 2005-08-18 Bridgestone Corp リムホイール、及びタイヤ・リムホイール組立体
JP2006341674A (ja) * 2005-06-08 2006-12-21 Honda Motor Co Ltd 車両用ホイール
JP2015081034A (ja) * 2013-10-23 2015-04-27 トピー工業株式会社 車両用ホイール
WO2015137370A1 (ja) * 2014-03-13 2015-09-17 本田技研工業株式会社 車両用ホイール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127147A (ko) * 2018-05-03 2019-11-13 주식회사 대유글로벌 소음감쇠 기능을 갖는 차량용 휠
KR102057103B1 (ko) 2018-05-03 2019-12-30 주식회사 대유글로벌 공명기 부착 자동차용 휠
KR102110032B1 (ko) 2018-05-03 2020-05-12 주식회사 대유글로벌 소음감쇠 기능을 갖는 차량용 휠

Also Published As

Publication number Publication date
CN107405949A (zh) 2017-11-28
US20180082670A1 (en) 2018-03-22
JPWO2016147878A1 (ja) 2017-10-19
CN107405949B (zh) 2019-11-05
US10504500B2 (en) 2019-12-10
DE112016001293T5 (de) 2017-12-14
JP6349027B2 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6349027B2 (ja) 車両用ホイール
JP6154064B2 (ja) 車両用ホイール
JP5970718B2 (ja) 車両用ホイール
JP5819340B2 (ja) 車両用ホイール
JP4834715B2 (ja) 車両用ホイール
JP5411819B2 (ja) 副気室部材及びこれを備える車両用ホイール
JP6069097B2 (ja) 車両用ホイール
JP4551422B2 (ja) 車両用ホイール
JP5091749B2 (ja) 車両用ホイール
JP6053924B2 (ja) 車両用ホイール
JP4834711B2 (ja) 車両用ホイール
JP5810129B2 (ja) 車両用ホイール
JP6541769B2 (ja) 車両用ホイール
JP6498841B2 (ja) 車両用ホイール
JP2010095147A (ja) 車両用ホイール
JP5719396B2 (ja) ヘルムホルツレゾネータ型消音器
JP6031425B2 (ja) 車両用ホイール
JPWO2017159830A1 (ja) 車両用ホイール
JP5091828B2 (ja) 車両用ホイール
JP5091748B2 (ja) 車両用ホイール
JP7074211B2 (ja) 中空構造体および共鳴音低減体
JP6181241B2 (ja) 車両用ホイール
JP5978166B2 (ja) 車両用ホイール
JP2022105571A (ja) 中空構造体および共鳴音低減体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506197

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558924

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001293

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764708

Country of ref document: EP

Kind code of ref document: A1