WO2016147687A1 - Dispositif à onde élastique et son procédé de production - Google Patents

Dispositif à onde élastique et son procédé de production Download PDF

Info

Publication number
WO2016147687A1
WO2016147687A1 PCT/JP2016/051029 JP2016051029W WO2016147687A1 WO 2016147687 A1 WO2016147687 A1 WO 2016147687A1 JP 2016051029 W JP2016051029 W JP 2016051029W WO 2016147687 A1 WO2016147687 A1 WO 2016147687A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
piezoelectric substrate
wave device
main surface
film
Prior art date
Application number
PCT/JP2016/051029
Other languages
English (en)
Japanese (ja)
Inventor
諭卓 岸本
木村 哲也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017506116A priority Critical patent/JP6497435B2/ja
Publication of WO2016147687A1 publication Critical patent/WO2016147687A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device and a manufacturing method thereof.
  • Patent Document 1 discloses an elastic wave device using a plate wave.
  • Patent Document 1 describes an acoustic wave device in which a piezoelectric substrate is supported by a support.
  • a cavity is formed on the support side of the piezoelectric substrate.
  • An object of the present invention is to provide an elastic wave device in which a piezoelectric substrate is not easily broken in an elastic wave device having a hollow structure, and a method of manufacturing the elastic wave device.
  • An elastic wave device includes a support substrate having a concave portion on an upper surface, a thin film, a first main surface, and a first main surface facing the first main surface, disposed on the support substrate.
  • An IDT electrode provided on the second main surface of the piezoelectric substrate, the piezoelectric substrate being disposed on the thin film, and the first main surface side being disposed on the thin film
  • a cavity surrounded by the support substrate and at least the thin film of the thin film and the piezoelectric substrate is formed, and is a region on the first main surface of the piezoelectric substrate.
  • the thin film is disposed in a region bonded to the support substrate via the thin film and at least a portion of the region above the cavity.
  • the thin film may be disposed on the entire surface of the first main surface of the piezoelectric substrate. In this case, it is possible to further prevent the piezoelectric substrate from being broken.
  • the region at least a part of the region above the cavity is a region closer to the cavity than the region bonded to the support substrate via the thin film. is there. In this case, the piezoelectric substrate is more unlikely to break.
  • the region at least a part of the region above the cavity is a region where the IDT electrode is disposed when the elastic wave device is viewed in plan. is there. In this case, the heat dissipation is further improved.
  • the thin film is a dielectric film, a semiconductor film, or a metal film.
  • the temperature characteristics can be improved.
  • the thin film is a semiconductor film or a metal film, the heat dissipation can be further improved.
  • the thin film is a dielectric film, and the thickness of the dielectric film is not more than three times the thickness of the piezoelectric substrate. In this case, the spurious within the band can be suppressed, and the impedance ratio is hardly lowered.
  • the dielectric film is made of SiO 2 .
  • a through-hole penetrating the piezoelectric substrate and the thin film is provided.
  • a plate wave is used as the propagating elastic wave.
  • the method for manufacturing an acoustic wave device includes a step of forming a thin film on a first main surface of a piezoelectric substrate, and a second main surface facing the first main surface of the piezoelectric substrate, A step of forming an IDT electrode, a step of forming a sacrificial layer on the main surface of the thin film opposite to the side in contact with the piezoelectric substrate, and a support having a recess on the upper surface so as to cover the sacrificial layer A step of forming a substrate, a step of forming a through hole from the second main surface side of the piezoelectric substrate to the sacrificial layer in the piezoelectric substrate and the thin film, and etching using the through hole.
  • the thin film is a dielectric film, and the thickness of the dielectric film is not more than three times the thickness of the piezoelectric substrate. In this case, the spurious within the band can be suppressed, and the impedance ratio is hardly lowered.
  • the region on the first main surface of the piezoelectric substrate, the region bonded to the support substrate via the thin film, and the region above the cavity At least a part of the region is covered with a thin film.
  • the elastic wave device having a hollow structure it is possible to provide an elastic wave device in which the piezoelectric substrate is hardly broken.
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • 2A is a schematic front cross-sectional view taken along the line AA in FIG. 1
  • FIG. 2B is a schematic cross-sectional view taken along the line BB in FIG.
  • FIG. 3 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention.
  • 4 (a) to 4 (d) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • 5 (a) to 5 (c) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 6 (a) to 6 (c) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the thickness of the SiO 2 film and the impedance ratio (Za / Zr) in the acoustic wave device produced in the experimental example.
  • FIG. 8 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is one time the thickness of the piezoelectric substrate in the acoustic wave device manufactured in the experimental example.
  • FIG. 9 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate in the acoustic wave device manufactured in the experimental example.
  • Figure 10 is a diagram showing a propagation state of acoustic waves S 0 mode.
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • 2A is a schematic front sectional view taken along the line AA in FIG. 1
  • FIG. 2B is a schematic sectional view taken along the line BB in FIG.
  • the broken line indicates the portion where the cavity 9 is provided, and the oblique line indicates the through hole 10.
  • the elastic wave device 1 is an elastic wave device that uses a plate wave as a propagating elastic wave.
  • the acoustic wave device 1 has a support substrate 2.
  • the support substrate 2 has an upper surface 2a and a lower surface 2b.
  • the upper surface 2a of the support substrate 2 is provided with a recess 2c that opens toward the upper surface 2a.
  • the reinforcing substrate 3 is laminated on the lower surface 2 b of the support substrate 2.
  • the reinforcing substrate 3 may not be provided if the strength of the supporting substrate 2 is sufficiently high. Therefore, the reinforcing substrate 3 is not an essential component.
  • the support substrate 2 and the reinforcing substrate 3 can be made of an appropriate dielectric material such as silicon oxide, aluminum oxide, or aluminum nitride, or a material such as a semiconductor such as Si. In addition, these materials may be used independently and may use multiple together. Moreover, the support substrate 2 and the reinforcement substrate 3 may be comprised with the same material, and may be comprised with the other material.
  • a thin film 6 is laminated on the upper surface 2 a of the support substrate 2. Although it does not specifically limit as the thin film 6, A dielectric film, a semiconductor film, or a metal film can be used. A plurality of thin films 6 may be provided.
  • silicon oxide aluminum nitride, silicon nitride, tantalum pentoxide, or the like can be used.
  • the material constituting the semiconductor film for example, a material such as silicon, silicon carbide or gallium nitride can be used.
  • the material constituting the metal film for example, a material such as titanium, aluminum, copper, platinum, or tungsten can be used.
  • a metal film is used as the thin film 6, the heat dissipation can be further improved.
  • the material which comprises the thin film 6 may be used independently, and may use multiple together.
  • the thin film 6 is provided so as to close the concave portion 2 c of the support substrate 2. Thereby, the concave portion 2 c constitutes a cavity 9 surrounded by the support substrate 2 and the thin film 6.
  • a piezoelectric substrate 4 is laminated on the thin film 6.
  • the piezoelectric substrate 4 is thin, for example, a thin film having a thickness of 1000 nm or less. As a result, the plate wave can be further excited.
  • the piezoelectric substrate 4 is a substrate made of LiTaO 3 .
  • a substrate made of another piezoelectric single crystal such as LiNbO 3 or a substrate made of piezoelectric ceramics may be used.
  • the piezoelectric substrate 4 has a first main surface 4a and a second main surface 4b facing each other.
  • the piezoelectric substrate 4 is laminated on the thin film 6 with the first main surface 4a facing down. That is, the first main surface 4a side of the piezoelectric substrate 4 is disposed on the support substrate 2 side.
  • an IDT electrode 5 is provided on the second main surface 4 b of the piezoelectric substrate 4. Therefore, when an alternating electric field is applied to the IDT electrode 5, the IDT electrode 5 is excited.
  • the elastic wave device 1 uses a plate wave as an elastic wave generated when the IDT electrode 5 is excited as described above.
  • an SiO 2 film as a temperature adjustment film may be provided so as to cover the IDT electrode 5.
  • the IDT electrode 5 includes first and second bus bars and a plurality of first and second electrode fingers.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other.
  • the plurality of first electrode fingers are connected to the first bus bar, and the plurality of second electrode fingers are connected to the second bus bar.
  • Electrode lands 7 a and 7 b are formed on the second main surface 4 b of the piezoelectric substrate 4.
  • the electrode lands 7 a and 7 b are provided so as to be electrically connected to the IDT electrode 5.
  • the IDT electrode 5 and the electrode lands 7a and 7b are made of an appropriate metal or alloy such as Cu, Ni, NiCr, AlCu alloy, Ti, Al, or Pt. Further, the IDT electrode 5 and the electrode lands 7a and 7b may be constituted by a laminated metal film formed by laminating a plurality of metal films.
  • Second-layer wirings 8a and 8b are provided on the electrode lands 7a and 7b.
  • the second layer wirings 8a and 8b are electrically connected to the electrode lands 7a and 7b. Therefore, metal bumps or the like may be bonded onto the second layer wirings 8a and 8b.
  • the second layer wirings 8a and 8b can be made of an appropriate metal or alloy such as Cu, Ni, NiCr, AlCu alloy, Ti, Al, and Pt. Second-layer wirings 8a and 8b may be formed of a laminated metal film formed by laminating a plurality of metal films.
  • a through hole 10 is provided in the piezoelectric substrate 4 and the thin film 6.
  • the through hole 10 penetrates from the second main surface 4 b of the piezoelectric substrate 4 toward the cavity 9.
  • the through hole 10 is used as an etching hole in a manufacturing process described later.
  • the through hole 10 connects the cavity 9 formed by the recess 2c and the outside air.
  • the thin film 6 is provided so as to cover the entire surface of the first main surface 4a of the piezoelectric substrate 4, and the mechanical strength of the piezoelectric substrate 4 is increased. Therefore, in the acoustic wave device having a hollow structure, the piezoelectric substrate 4 is hardly broken. In addition, since the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, it is possible to improve the heat dissipation when a voltage is applied.
  • the heat dissipation can be further improved.
  • the temperature characteristics can be improved.
  • the thickness of the dielectric film is preferably 3 times or less the thickness of the piezoelectric substrate 4.
  • the film thickness of the dielectric film is more preferably smaller than three times the thickness of the piezoelectric substrate 4.
  • the acoustic wave device 1 was manufactured under the following conditions.
  • is the wavelength of the elastic wave.
  • IDT electrode 5 composed of Al, duty: 0.5, film thickness: 0.07 ⁇ Piezoelectric substrate 4 ... LiNbO 3 ⁇ Euler angle (90, 90, 40) ⁇ , film thickness: 0.1 ⁇ Thin film 6 ... Dielectric film (SiO 2 film), film thickness: 0 to 0.34 ⁇
  • a mode with a speed of sound of 5000 to 6000 m / sec (a wave having a frequency in the vicinity of 5 to 6 GHz) was used.
  • the mode mainly excited here is an acoustic wave of S 0 mode having the displacement shown in FIG. 10 in the piezoelectric substrate 4 of LiNbO 3 .
  • 1 ⁇ m.
  • FIG. 7 is a diagram showing the relationship between the thickness of the SiO 2 film and the impedance ratio (Za / Zr) in the fabricated acoustic wave device. Note that in Figure 7 the value obtained by dividing the film thickness of the SiO 2 film at the thickness of the piezoelectric substrate (SiO 2 film having a thickness / piezoelectric substrate thickness) and the horizontal axis.
  • FIG. 7 shows that when the thickness of the SiO 2 film is larger than three times the thickness of the piezoelectric substrate 4, the impedance ratio (Za / Zr) rapidly decreases.
  • FIG. 8 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 1 times the thickness of the piezoelectric substrate in the fabricated acoustic wave device.
  • FIG. 9 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate in the manufactured acoustic wave device.
  • the impedance ratio and the resonance waveform (log
  • FIG. 9 shows that when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate, spurious is mixed in the vicinity of the frequency of 5 to 6 GHz.
  • the film thickness of the SiO 2 film is one times the thickness of the piezoelectric substrate, no spurious is mixed in the vicinity of the frequency of 5 to 6 GHz. From these results, it was confirmed that when the film thickness of the SiO 2 film is 3 times or less than the thickness of the piezoelectric substrate, spurious in the band can be further suppressed, and the impedance ratio is hardly further reduced. .
  • the thickness of the SiO 2 film is more preferably smaller than three times the thickness of the piezoelectric substrate.
  • the present invention not the entire surface of the first main surface 4a of the piezoelectric substrate 4, but the region bonded to the support substrate 2 and the thin film 6 which is the most easily broken portion in the piezoelectric substrate 4, and
  • the thin film 6 may be formed only in the region closer to the cavity 9 than the region bonded to the support substrate 2 via the thin film 6. In this case, it is possible to efficiently protect the piezoelectric substrate 4 from the viewpoint of cost effectiveness.
  • FIG. 3 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention.
  • the IDT electrode 5 is disposed on the first main surface 4 a of the piezoelectric substrate 4 when the elastic wave device 21 is viewed in a plan view and the region bonded to the support substrate 2 through the thin film 6.
  • a thin film 6 is provided in the region where the film is formed. Therefore, the recess 2 c forms a cavity 9 surrounded by the support substrate 2, the thin film 6 and the piezoelectric substrate 4.
  • Other points are the same as in the first embodiment.
  • the thin film 6 may be provided so as to cover the entire surface of the first main surface 4 a of the piezoelectric substrate 4.
  • a region on the first main surface 4a of the piezoelectric substrate 4 that is bonded to the support substrate 2 via the thin film 6 and the acoustic wave device 21 are viewed in plan view.
  • a thin film 6 is provided in the region where the IDT electrode 5 is disposed, and the mechanical strength of the piezoelectric substrate 4 is increased. Therefore, the piezoelectric substrate 4 is not easily broken. Furthermore, since the thin film 6 is provided, it is possible to improve heat dissipation during voltage application.
  • the elastic wave device 21 when the elastic wave device 21 is viewed in plan, the region where the IDT electrode 5 is arranged, the portion that is most easily broken in the piezoelectric substrate 4, the support substrate 2 and the thin film 6 are interposed.
  • the thin film 6 may be formed in a region closer to the cavity 9 than the region bonded and the region bonded to the support substrate 2 via the thin film 6. In this case, a structure having both protection of the piezoelectric substrate 4 and heat dissipation can be provided.
  • a method for manufacturing the acoustic wave device 1 is not particularly limited, but an example will be described with reference to FIGS.
  • a thin film 6 is formed on the entire main surface of one side of the piezoelectric plate 4A for obtaining the piezoelectric substrate 4.
  • a plate made of LiTaO 3 is used as the piezoelectric plate 4A.
  • a plate made of another piezoelectric single crystal such as LiNbO 3 may be used, or a plate made of piezoelectric ceramics may be used.
  • the method for forming the thin film 6 is not particularly limited, but can be formed by sputtering, for example.
  • a sacrificial layer 11 is formed on the thin film 6.
  • the sacrificial layer 11 is made of an appropriate material that can be removed by etching, which will be described later. Examples of such a material include ZnO and Cu.
  • the sacrificial layer 11 may be formed by other methods.
  • a planarization film 2 ⁇ / b> A for obtaining the support substrate 2 is formed so as to cover the sacrificial layer 11.
  • an SiO 2 film is formed as the planarizing film 2A.
  • the planarizing film 2A can be formed by, for example, a sputtering method.
  • the film thickness of the planarizing film 2A is preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the planarization film 2A is planarized by CMP (Chemical Mechanical Polishing). Thereby, the support substrate 2 having a recess was obtained.
  • CMP Chemical Mechanical Polishing
  • the reinforcing substrate 3 is bonded to the lower surface of the support substrate 2.
  • the support substrate 2 and the reinforcing substrate 3 can be bonded by, for example, a resin adhesive.
  • the reinforcing substrate 3 may not be provided. However, by providing the reinforcing substrate 3, the piezoelectric plate 4A can be easily smoothed.
  • the laminate includes a reinforcing substrate 3, a support substrate 2 having a recess 2c on the upper surface, a sacrificial layer 11, a thin film 6 and a piezoelectric substrate 4 filled in the recess 2c.
  • the piezoelectric substrate 4 is laminated on the thin film 6 from the first main surface 4a side.
  • the thinning of the piezoelectric plate 4A can be performed by a smart cut method or polishing.
  • the thickness of the piezoelectric substrate 4 obtained by thinning the piezoelectric plate 4A is preferably 10 nm or more and 1000 nm or less. From the viewpoint of more effectively increasing the excitation efficiency of the plate wave, the thickness of the piezoelectric substrate 4 is more preferably 100 nm or more and 500 nm or less.
  • the IDT electrode 5 and the electrode lands 7a and 7b were formed on the second main surface 4b of the piezoelectric substrate 4.
  • the IDT electrode 5 and the electrode lands 7a and 7b can be formed by, for example, a vapor deposition lift-off method.
  • the thickness of the IDT electrode 5 and the electrode lands 7a and 7b is not particularly limited, but is preferably 10 nm or more and 1000 nm or less.
  • the IDT electrode 5 is formed of a laminated metal film in which Ti and Al are laminated in this order.
  • the IDT electrode 5 can be made of an appropriate metal or alloy such as Ti, Cu, Al, Pt, an AlCu alloy, NiCr, or Ni.
  • second-layer wirings 8 a and 8 b were formed on the second main surface 4 b of the piezoelectric substrate 4.
  • the second layer wirings 8a and 8b can also be formed by a vapor deposition lift-off method.
  • the thickness of the second layer wirings 8a and 8b is preferably 100 nm or more and 2000 nm or less.
  • the second-layer wirings 8a and 8b are composed of a laminated metal film in which Ti and Al are laminated in this order.
  • the second layer wirings 8a and 8b may be formed of other appropriate metals or alloys.
  • through holes 10 are formed in the piezoelectric substrate 4 and the thin film 6.
  • the through hole 10 is provided so as to reach the sacrificial layer 11.
  • the through hole 10 can be formed by, for example, a dry etching method (ICP-RIE (Inductive Coupled Plasma-Reactive Ion Etching)).
  • the sacrificial layer 11 is removed using the through hole 10 to obtain the acoustic wave device 1 (sacrificial layer type membrane plate wave resonator) shown in FIG.
  • the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, sticking hardly occurs after the sacrificial layer 11 is etched and dried.
  • the manufacturing method of the elastic wave device 21 is not particularly limited. For example, it can be manufactured by a method similar to the method of manufacturing the acoustic wave device 1 except for the position where the thin film 6 is formed.
  • the thin film 6 is formed in a region bonded via the support substrate 2 and the thin film 6 and a region where the IDT electrode 5 is disposed when the elastic wave device 21 is viewed in plan.
  • the thin film pattern shown in FIG. 3 is formed by a dry etching method or a wet etching method.
  • the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, sticking hardly occurs after the sacrificial layer 11 is etched and dried.
  • the method for manufacturing an acoustic wave device according to the present invention does not require complicated patterning or etching. Therefore, the elastic wave device of the present invention can be easily manufactured.
  • the present invention at least a region sandwiched between the piezoelectric substrate and the support substrate and a region below the IDT electrode on the first main surface of the piezoelectric substrate are covered with the thin film, so that the mechanical strength is increased. . For this reason, it is possible to suppress breakage of the piezoelectric substrate and increase the strength at the boundary between the piezoelectric substrate and the support substrate. In addition, since the thin film is provided on the first main surface of the piezoelectric substrate, it is possible to improve heat dissipation when a voltage is applied.
  • the elastic wave device of the present invention is widely used in various electronic devices and communication devices.
  • the electronic device include a sensor.
  • a duplexer including the elastic wave device of the present invention a communication module device including the elastic wave device of the present invention and PA (Power Amplifier) and / or LNA (Low Noise Amplifier) and / or SW (Switch).
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • SW SW
  • mobile communication devices and healthcare communication devices including the communication module devices. Examples of mobile communication devices include mobile phones, smartphones, car navigation systems, and the like. Examples of health care communication devices include a weight scale and a body fat scale. Health care communication devices and mobile communication devices include an antenna, an RF module, an LSI, a display, an input unit, a power source, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

L'invention concerne un dispositif à onde élastique qui a une structure creuse et qui a un substrat piézoélectrique qui ne se casse pas facilement. Un dispositif à onde élastique 1 est pourvu : d'un substrat de support 2 qui a une partie évidée 2c dans une surface supérieure 2a de celui-ci ; d'un film mince 6 qui est disposé sur le substrat de support 2 ; d'un substrat piézoélectrique 4 qui a une première surface principale 4a et une seconde surface principale 4b qui est sur le côté inverse par rapport à la première surface principale 4a, laquelle première surface principale 4a est disposée sur le film mince 6 ; et d'une électrode IDT 5 qui est disposée sur la seconde surface principale 4b. Une cavité 9 est formée de façon à être entourée par le substrat de support 2 et, parmi le film mince 6 et le substrat piézoélectrique 4, par au moins le film mince 6. En ce qui concerne les régions de la première surface principale 4a du substrat piézoélectrique 4, le film mince 6 est agencé dans au moins une partie d'une région qui est au-dessus de la cavité 9 et dans une région qui est connectée au substrat de support 2 par l'intermédiaire du film mince 6.
PCT/JP2016/051029 2015-03-13 2016-01-14 Dispositif à onde élastique et son procédé de production WO2016147687A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506116A JP6497435B2 (ja) 2015-03-13 2016-01-14 弾性波装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015050893 2015-03-13
JP2015-050893 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147687A1 true WO2016147687A1 (fr) 2016-09-22

Family

ID=56920251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051029 WO2016147687A1 (fr) 2015-03-13 2016-01-14 Dispositif à onde élastique et son procédé de production

Country Status (2)

Country Link
JP (1) JP6497435B2 (fr)
WO (1) WO2016147687A1 (fr)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097016A1 (fr) * 2016-11-25 2018-05-31 国立大学法人東北大学 Dispositif à ondes élastiques
JP2018093487A (ja) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 段状断面の圧電基板を備えたsawフィルタ
CN110100387A (zh) * 2016-12-16 2019-08-06 株式会社村田制作所 弹性波装置、高频前端电路以及通信装置
CN111030629A (zh) * 2019-12-31 2020-04-17 武汉衍熙微器件有限公司 声波器件的制作方法及声波器件
WO2022014493A1 (fr) * 2020-07-15 2022-01-20 株式会社村田製作所 Dispositif à ondes élastiques
WO2022071605A1 (fr) * 2020-10-02 2022-04-07 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
JP7055499B1 (ja) 2021-05-24 2022-04-18 三安ジャパンテクノロジー株式会社 弾性波デバイスおよびその弾性波デバイスを備えるモジュール
WO2022085581A1 (fr) * 2020-10-23 2022-04-28 株式会社村田製作所 Dispositif à ondes acoustiques
WO2022102720A1 (fr) * 2020-11-13 2022-05-19 株式会社村田製作所 Dispositif à ondes élastiques
WO2022102719A1 (fr) * 2020-11-13 2022-05-19 株式会社村田製作所 Dispositif à ondes élastiques
WO2022124391A1 (fr) * 2020-12-11 2022-06-16 株式会社村田製作所 Dispositif à ondes élastiques
WO2022131309A1 (fr) * 2020-12-17 2022-06-23 株式会社村田製作所 Dispositif à ondes élastiques
WO2022138552A1 (fr) * 2020-12-22 2022-06-30 株式会社村田製作所 Dispositif à ondes élastiques
WO2022163865A1 (fr) * 2021-02-01 2022-08-04 株式会社村田製作所 Dispositif à ondes élastiques
WO2022168937A1 (fr) * 2021-02-05 2022-08-11 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022186201A1 (fr) * 2021-03-01 2022-09-09 株式会社村田製作所 Dispositif à ondes élastiques
WO2022209525A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022210809A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022210293A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022211055A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022210683A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022210941A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022211103A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022224972A1 (fr) * 2021-04-19 2022-10-27 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2023140327A1 (fr) * 2022-01-19 2023-07-27 株式会社村田製作所 Dispositif à ondes élastiques
WO2023159091A1 (fr) * 2022-02-16 2023-08-24 Murata Manufacturing Co., Ltd. Accord de résonateurs acoustiques avec revêtement côté arrière
WO2023191089A1 (fr) * 2022-04-01 2023-10-05 株式会社村田製作所 Dispositif à ondes élastiques
WO2023190721A1 (fr) * 2022-03-31 2023-10-05 株式会社村田製作所 Dispositif à ondes élastiques
WO2023195409A1 (fr) * 2022-04-06 2023-10-12 株式会社村田製作所 Dispositif à ondes élastiques et procédé de production de dispositif à ondes élastiques
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11881835B2 (en) 2020-11-11 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901874B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11916540B2 (en) 2018-06-15 2024-02-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12003226B2 (en) 2021-05-12 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152007A (ja) * 2000-11-15 2002-05-24 Hitachi Ltd ラム波型弾性波共振器
JP2006186900A (ja) * 2004-12-28 2006-07-13 Seiko Epson Corp 弾性表面波素子複合装置
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2010154315A (ja) * 2008-12-25 2010-07-08 Ngk Insulators Ltd 複合基板、弾性波素子の製造方法及び弾性波素子
JP2011066590A (ja) * 2009-09-16 2011-03-31 Seiko Epson Corp ラム波型デバイスおよびその製造方法
WO2012073871A1 (fr) * 2010-11-30 2012-06-07 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
JP2012165132A (ja) * 2011-02-04 2012-08-30 Taiyo Yuden Co Ltd 弾性波デバイスの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319284B2 (en) * 2005-09-02 2008-01-15 Precision Instrument Development Center National Applied Research Laboratories Surface acoustic wave device and method for fabricating the same
US8689426B2 (en) * 2008-12-17 2014-04-08 Sand 9, Inc. Method of manufacturing a resonating structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152007A (ja) * 2000-11-15 2002-05-24 Hitachi Ltd ラム波型弾性波共振器
JP2006186900A (ja) * 2004-12-28 2006-07-13 Seiko Epson Corp 弾性表面波素子複合装置
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2010154315A (ja) * 2008-12-25 2010-07-08 Ngk Insulators Ltd 複合基板、弾性波素子の製造方法及び弾性波素子
JP2011066590A (ja) * 2009-09-16 2011-03-31 Seiko Epson Corp ラム波型デバイスおよびその製造方法
WO2012073871A1 (fr) * 2010-11-30 2012-06-07 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
JP2012165132A (ja) * 2011-02-04 2012-08-30 Taiyo Yuden Co Ltd 弾性波デバイスの製造方法

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018097016A1 (ja) * 2016-11-25 2019-10-17 国立大学法人東北大学 弾性波デバイス
WO2018097016A1 (fr) * 2016-11-25 2018-05-31 国立大学法人東北大学 Dispositif à ondes élastiques
US11258427B2 (en) 2016-11-25 2022-02-22 Tohoku University Acoustic wave devices
GB2572099B (en) * 2016-11-25 2022-03-23 Univ Tohoku Acoustic wave devices
JP2018093487A (ja) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 段状断面の圧電基板を備えたsawフィルタ
CN110100387B (zh) * 2016-12-16 2023-06-06 株式会社村田制作所 弹性波装置、高频前端电路以及通信装置
CN110100387A (zh) * 2016-12-16 2019-08-06 株式会社村田制作所 弹性波装置、高频前端电路以及通信装置
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11942922B2 (en) 2018-06-15 2024-03-26 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11929727B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11929735B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11923821B2 (en) 2018-06-15 2024-03-05 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11916540B2 (en) 2018-06-15 2024-02-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11901874B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11881834B2 (en) 2018-06-15 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
CN111030629B (zh) * 2019-12-31 2024-04-05 武汉衍熙微器件有限公司 声波器件的制作方法及声波器件
CN111030629A (zh) * 2019-12-31 2020-04-17 武汉衍熙微器件有限公司 声波器件的制作方法及声波器件
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11996826B2 (en) 2020-02-18 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with thermally conductive etch-stop layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11967943B2 (en) 2020-05-04 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
WO2022014493A1 (fr) * 2020-07-15 2022-01-20 株式会社村田製作所 Dispositif à ondes élastiques
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
WO2022071605A1 (fr) * 2020-10-02 2022-04-07 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022085581A1 (fr) * 2020-10-23 2022-04-28 株式会社村田製作所 Dispositif à ondes acoustiques
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11881835B2 (en) 2020-11-11 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
WO2022102719A1 (fr) * 2020-11-13 2022-05-19 株式会社村田製作所 Dispositif à ondes élastiques
WO2022102720A1 (fr) * 2020-11-13 2022-05-19 株式会社村田製作所 Dispositif à ondes élastiques
WO2022124391A1 (fr) * 2020-12-11 2022-06-16 株式会社村田製作所 Dispositif à ondes élastiques
WO2022131309A1 (fr) * 2020-12-17 2022-06-23 株式会社村田製作所 Dispositif à ondes élastiques
WO2022138552A1 (fr) * 2020-12-22 2022-06-30 株式会社村田製作所 Dispositif à ondes élastiques
WO2022163865A1 (fr) * 2021-02-01 2022-08-04 株式会社村田製作所 Dispositif à ondes élastiques
WO2022168937A1 (fr) * 2021-02-05 2022-08-11 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022186201A1 (fr) * 2021-03-01 2022-09-09 株式会社村田製作所 Dispositif à ondes élastiques
WO2022211103A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022210941A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022210293A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022209525A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022210809A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022211055A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques
WO2022210683A1 (fr) * 2021-03-31 2022-10-06 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
WO2022224972A1 (fr) * 2021-04-19 2022-10-27 株式会社村田製作所 Dispositif à ondes élastiques et son procédé de fabrication
US12003226B2 (en) 2021-05-12 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
JP7055499B1 (ja) 2021-05-24 2022-04-18 三安ジャパンテクノロジー株式会社 弾性波デバイスおよびその弾性波デバイスを備えるモジュール
JP2022179858A (ja) * 2021-05-24 2022-12-06 三安ジャパンテクノロジー株式会社 弾性波デバイスおよびその弾性波デバイスを備えるモジュール
US12009804B2 (en) 2021-08-30 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
WO2023140327A1 (fr) * 2022-01-19 2023-07-27 株式会社村田製作所 Dispositif à ondes élastiques
WO2023159091A1 (fr) * 2022-02-16 2023-08-24 Murata Manufacturing Co., Ltd. Accord de résonateurs acoustiques avec revêtement côté arrière
WO2023190721A1 (fr) * 2022-03-31 2023-10-05 株式会社村田製作所 Dispositif à ondes élastiques
WO2023191089A1 (fr) * 2022-04-01 2023-10-05 株式会社村田製作所 Dispositif à ondes élastiques
WO2023195409A1 (fr) * 2022-04-06 2023-10-12 株式会社村田製作所 Dispositif à ondes élastiques et procédé de production de dispositif à ondes élastiques

Also Published As

Publication number Publication date
JP6497435B2 (ja) 2019-04-10
JPWO2016147687A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6497435B2 (ja) 弾性波装置及びその製造方法
WO2016103925A1 (fr) Dispositif à ondes élastiques et son procédé de fabrication
WO2017212774A1 (fr) Dispositif à ondes élastiques et son procédé de fabrication
JP6464735B2 (ja) 弾性波装置及びその製造方法
US10469053B2 (en) Elastic wave device and manufacturing method for the same
CN110392978B (zh) 弹性波装置、高频前端电路以及通信装置
JP5319491B2 (ja) 圧電薄膜共振子
US8531087B2 (en) Piezoelectric thin-film resonator with distributed concave or convex patterns
JP5147932B2 (ja) 圧電薄膜共振器、フィルタ、通信モジュール、および通信装置
CN108028637B (zh) 弹性波装置
JP5100849B2 (ja) 弾性波デバイス、およびその製造方法
JP2017224890A (ja) 弾性波装置
JP2013214954A (ja) 共振子、周波数フィルタ、デュプレクサ、電子機器及び共振子の製造方法
JPWO2009013938A1 (ja) 圧電共振子及び圧電フィルタ装置
JP5716833B2 (ja) 圧電バルク波装置及びその製造方法
US11770111B2 (en) Elastic wave device
JP2015119249A (ja) 圧電薄膜共振器およびその製造方法、フィルタ並びにデュプレクサ
JP2007208728A (ja) 圧電薄膜共振器、フィルタおよびその製造方法
JP2019021997A (ja) 弾性波素子、分波器および通信装置
WO2004088840A1 (fr) Dispositif a film mince piezo-electrique et procede de production de ce dernier
JP5579429B2 (ja) 弾性波素子、通信モジュール、通信装置
JP5862368B2 (ja) 圧電デバイスの製造方法
WO2020098484A1 (fr) Résonateur à ondes acoustiques de volume ayant une structure de fracture et son procédé de fabrication, filtre et dispositif électronique
JP5027534B2 (ja) 圧電薄膜デバイス
JP2007067624A (ja) 圧電薄膜振動子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764518

Country of ref document: EP

Kind code of ref document: A1