WO2016144092A1 - 탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재 - Google Patents

탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재 Download PDF

Info

Publication number
WO2016144092A1
WO2016144092A1 PCT/KR2016/002342 KR2016002342W WO2016144092A1 WO 2016144092 A1 WO2016144092 A1 WO 2016144092A1 KR 2016002342 W KR2016002342 W KR 2016002342W WO 2016144092 A1 WO2016144092 A1 WO 2016144092A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
reactor
catalyst
gas
carbon nanostructure
Prior art date
Application number
PCT/KR2016/002342
Other languages
English (en)
French (fr)
Inventor
윤광우
김옥신
박현우
오유진
김욱영
손승용
조동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16761979.0A priority Critical patent/EP3269684B1/en
Priority to CN201680005272.8A priority patent/CN107108221B/zh
Priority to US15/522,984 priority patent/US10457556B2/en
Priority to JP2016562270A priority patent/JP6508602B2/ja
Publication of WO2016144092A1 publication Critical patent/WO2016144092A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00725Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/26Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Definitions

  • the present invention provides a method for producing a carbon nanostructure that enables a continuous manufacturing process of the carbon nanostructure using a portion of the carbon nanostructure manufactured as a flowable material, and the carbon nanostructure and a carbon nanostructure produced using the same Relates to a composite material.
  • Fluidized bed reactors are reactor apparatus that can be used to conduct various multiphase chemical reactions.
  • a fluid gas or liquid
  • the solid material is a catalyst having a small spherical shape
  • the fluid is solid by flowing at a speed sufficient to float the solid material.
  • the material behaves like a fluid.
  • carbon nanostructures refers to nano-sized carbon structures having various shapes such as nanotubes, nanofibers, fullerenes, nanocones, nanohorns, and nanorods. It is known to have high utility in various technical fields.
  • Representative carbon nanostructures is a material having a shape of a tube by adjoining carbon atoms adjacent to each other in a hexagonal honeycomb structure to form a carbon plane, and the carbon plane is rolled in a cylindrical shape.
  • Such carbon nanotubes may exhibit metal or semiconductor properties depending on the structure, that is, the orientation of hexagons in the tube, and may be widely applied in various technical fields.
  • the carbon nanotubes may be applied to electrodes of an electrochemical storage device such as a secondary battery, a fuel cell, or a super capacitor, an electromagnetic shield, a field emission display, or a gas sensor.
  • the carbon nanotubes may be manufactured through a process such as an arc discharge method, a laser evaporation method, or a chemical vapor deposition method.
  • a chemical vapor deposition method of the above-mentioned manufacturing method carbon nanostructures are generally produced by dispersing and reacting metal catalyst particles and hydrocarbon-based raw material gases in a high temperature fluidized bed reactor. That is, while the metal catalyst is suspended in the fluidized bed reactor by the source gas, the metal catalyst reacts with the source gas to grow the carbon nanostructure.
  • Methods for producing carbon nanostructures using the fluidized bed reactor are disclosed, for example, in Korean Patent Application Publication Nos. 10-2009-0073346 and 10-2009-0013503.
  • a gas is uniformly distributed in the reactor, and a dispersion plate is used so that powder such as a catalyst does not pass from the top to the bottom.
  • the dispersion plate is generally configured by using a perforated plate, a bubble cap, a sieve, or a nozzle.
  • the growth of carbon nanostructure is not smooth, resulting in long operation time or poor product yield, and also due to clogging phenomenon in which unreacted catalyst is deposited on the dispersion plate or blocks pores of the dispersion plate. Since uniform injection is disturbed and a pressure drop occurs, stable fluidized bed operation is difficult.
  • the problem to be solved by the present invention is to provide a method for producing a more homogeneous carbon nanostructure by inducing a smooth and uniform contact of the reactor body and the catalyst on the reactor and to provide a carbon nanostructure prepared by the above production method.
  • Another object of the present invention to provide a conductive composite comprising a carbon nanostructure produced by the above method.
  • the present invention to solve the above problems,
  • a portion of the carbon nanostructure is retained in the fluidized bed reactor and used as a fluid material.
  • the residual ratio of the carbon nanostructures according to the following equation 1 is 0.4 or more and 0.7 or less.
  • Residual rate of carbon nanostructure remaining carbon nanostructure volume / (initial residual carbon nanostructure volume + generated carbon nanostructure volume)
  • the residual ratio of the carbon nanostructures may be calculated by the pressure difference between the bottom of the reactor and the top of the reactor.
  • the conversion rate of the carbon source may be 50% or more.
  • Residual rate (y) and the conversion rate (x) of the carbon source may satisfy the following equation (2).
  • the amount of catalyst introduced into the reactor may satisfy the following Equation 3.
  • the process of recovering the synthesized carbon nanostructure and the catalyst supply process may be carried out in a continuous process.
  • the recovery cycle and the catalyst supply cycle of the synthesized carbon nanostructures may be determined based on the degree to which the synthesized carbon nanostructures are charged in the reactor.
  • the reaction gas may further include one or more of a reducing gas and an inert gas.
  • the synthesized carbon nano structure may be recovered by supplying and flowing the inert gas during the recovery process.
  • a reaction gas including a carbon source may be supplied to allow the carbon nanostructure synthesis reaction to continue.
  • the remaining carbon nanostructures can form a fluidized bed.
  • the reactor the catalyst supply pipe to which the catalyst is supplied; A reaction gas supply pipe to which a reaction gas including a carbon source is supplied; And located at the bottom of the reactor, it may be provided with a product discharge pipe that the generated carbon nanostructures are recovered.
  • the reactor may be a chemical vapor deposition reactor.
  • the carbon nanostructure may be carbon nanotubes.
  • the present invention also provides a carbon nanostructure prepared according to the above production method.
  • the bulk density of the prepared carbon nanostructures may be 10 to 300 kg / m 3 .
  • the present invention also provides a composite comprising a carbon nanostructure produced by the above method.
  • the sheet resistance of the composite material may be 10 8 ⁇ / sq or less.
  • the method for producing carbon nanostructures according to the present invention enables a continuous process by leaving a part of the manufactured carbon nanostructures as a flowable material, and by providing an optimum ratio of carbon nanostructures used as a flowable material, a carbon source and a catalyst Increasing contact time and optimizing the flow of fluid can improve the conversion efficiency of carbon source.
  • the separation process of the flowable material is not necessary in the future, so the efficiency of the process can be increased by shortening the time and the carbon nanostructure of high purity can be obtained. .
  • FIG. 1 is a schematic configuration diagram of an example of a fluidized bed reactor for manufacturing carbon nanostructures.
  • FIG. 2 is a schematic view showing a problem of a fluidized bed reactor according to the prior art.
  • FIG. 3 is a graph showing ethylene gas conversion rate according to change in residual rate according to an embodiment.
  • FIG. 4 is a graph showing the conductivity of the composite material including carbon nanotubes prepared according to an embodiment.
  • Singular expressions include plural expressions unless otherwise specified.
  • the catalyst In the fluidized bed reactor, the catalyst is distributed evenly inside, so that the contact between the catalyst and the reaction gas is excellent, the heat is easily diffused during the exothermic reaction, and the residence time of the carbon nano structure, which is the catalyst and the target product, can be secured in the reactor. Carbon nano structure production rate of carbon nano structure) can be produced. In addition, there is an excellent productivity compared to the reactor volume and the mass production of carbon nanostructures is easy.
  • the method for producing a carbon nanostructure according to the present invention is intended to provide a more efficient method for producing a carbon nanostructure by using it as a flow material for improving the fluidity of a fluidized bed reaction by remaining a certain amount of the synthesized carbon nanostructure without recovering the total amount.
  • a portion of the carbon nanostructure is retained in the fluidized bed reactor and used as a fluid material.
  • the residual ratio of the carbon nanostructure according to Equation 1 is 0.4 or more and 0.7 or less.
  • Residual rate of carbon nanostructure remaining carbon nanostructure volume / (initial residual carbon nanostructure volume + generated carbon nanostructure volume)
  • the residual ratio of the carbon nanostructure may be calculated by the pressure difference between the bottom of the reactor and the top of the reactor.
  • the bottom of the reactor refers to the lower point of the dispersion plate of the reactor
  • the top of the reactor refers to the upper point of the final height of the carbon nanostructures accumulated in the reactor, in which the pressure is proportional to the mass of the carbon nanostructures in the reactor. Therefore, a difference occurs, so the residual ratio can be obtained by calculating the pressure difference.
  • the process of recovering the synthesized carbon nanostructure and the catalyst supply process may be carried out in a continuous process.
  • a recovery process is followed by a cooling process to lower the temperature of the reactor, and then a flow material or a catalyst is added thereto.
  • some carbon nanostructures exist in the reactor even after the recovery process.
  • the carbon nanostructure as a flow material in the next step, it is possible to provide a method capable of a continuous manufacturing process without the cooling process by an empty reactor after the recovery of the carbon nanostructure. Therefore, it is possible to provide a manufacturing method which improves the temporal energy efficiency reduction portion due to the temperature rise after cooling the reactor, which is a disadvantage of the conventional batch process.
  • the fluidity inside the reactor increases, the contact time between the catalyst and the source gas increases, and the conversion rate of the carbon source can be increased.
  • the residence time distribution of the synthesized carbon nanostructure particles and the catalyst is increased, physical properties of the synthesized carbon nanostructure may be reduced.
  • the recovery point of the filling may be based on a time when the carbon nanostructures are filled in a predetermined amount, that is, when the carbon nanostructures in the reactor reach a certain filling volume, which may be determined based on the height of the carbon nanostructures filled in the reactor. . Based on the volume, the ratio of the amount of carbon nanostructures used as the flow material may be determined. That is, the carbon nanostructure satisfying Equation 1 on the basis of the final packed volume is recovered in the reactor.
  • the conversion rate of the carbon source may be 50% or more.
  • the residual rate (y) and the conversion rate (x) of the carbon source may satisfy the following Equation 2.
  • p is a constant from 0.4 to 0.7
  • q is a constant from 15 to 30.
  • P may be a constant of 0.4 to 0.6, or 0.5 to 0.7, or 0.5 to 0.6.
  • Q may be a constant of 15 to 25, or 20 to 30, or 20 to 25.
  • the amount of catalyst introduced into the reactor may be such that the catalyst feed rate defined as in Equation 3 below more than 0 to 0.1 or less.
  • Catalyst feed rate b / (a + b)
  • a is the mass (g) of carbon nanostructures remaining in the fluidized bed reactor
  • b is the mass (g) of catalyst supplied to the reactor.
  • the catalyst feed rate may be 0.08 or less, or 0.05 or less.
  • the amount of catalyst introduced into the reactor and the amount of flowing material remaining in the reactor can affect the circulation of the catalyst, which is an important factor in the contact time between the carbon source and the catalyst.
  • the catalyst feed rate exceeds 0.1, the fluidity of the fluidized bed may be lowered, which may result in a poor circulation of the catalyst, thereby reducing the contact time between the carbon source gas and the catalyst and thus reducing the conversion rate of the carbon source. Therefore, the catalyst feed rate represents a ratio in which the conversion rate of the carbon source according to the catalyst input can be optimized while securing the fluidity by the fluid.
  • the recovery cycle and the catalyst supply cycle of the synthesized carbon nanostructures may be determined based on the degree to which the synthesized carbon nanostructures are charged in the reactor.
  • the reaction is terminated, and the synthesized carbon nanostructure is recovered by opening a valve located at an outlet line, and partially leaving the carbon nanostructure. Thereafter, a continuous manufacturing process may be performed by adding a catalyst to the carbon nanostructures remaining in the reactor. At this time, the catalyst input amount depends on the catalyst feed rate of the equation (1).
  • the filling amount may be based on the height or weight of the carbon nanostructure inside the reactor, for example, controlled by a multipoint probe positioned at various heights of the reactor, and reaching a certain level It may be a determination method driven in such a manner that the reactor is considered to be sufficiently charged.
  • the recovery time of the carbon nanostructure may be determined by a method of detecting residual gas, or the like.
  • devices for detecting residual gases may be provided to detect a level of gases so that the level value is a predetermined value.
  • the recovery point can be determined in such a way that the end of the synthesis is determined each time.
  • the reaction gas supplied to the fluidized bed reactor may further include at least one of a reducing gas and an inert gas in addition to the carbon source gas.
  • the carbon nanostructure remaining in the reactor after the recovery process may be continuously forming a fluidized bed, the fluidity of the fluid can be formed by injecting an inert gas.
  • an inert gas By injecting a reaction gas containing a catalyst and a carbon source into the reactor in which the fluidized bed is previously formed, the synthesis reaction of the carbon nanostructure can be started.
  • a flow gas such as an inert gas may be continuously introduced for smooth recovery in the recovery process, or by reacting the reaction gas containing the carbon source together, even at the time when the recovery process is performed. Can be continued continuously.
  • the carbon nano structure recovery step and the catalyst and reaction gas input step may be performed sequentially, for example, the sequential carbon nano structure manufactured by the sequential opening of the valve installed in the outlet of the reactor Recovery can be made.
  • the recovery is performed, that is, when the valve is opened, the supply of the source gas is stopped, and when the valve is closed, the carbon nano structure synthesis reaction may be continuously performed at the same time as the recovery process.
  • the amount of carbon nanostructures recovered with respect to the total carbon nanostructures produced in the recovery process may be recovered from 10 to 90% by weight, preferably 30 to 60% by weight relative to the total produced weight. Can be recovered. That is, the carbon nanostructures remaining in the reactor may be 10 to 90% by weight, preferably 40 to 60% by weight.
  • the conversion rate of the carbon source by the carbon nanostructure manufacturing method of the above method may be 50% or more.
  • the carbon nanostructures produced in the reactor and used as the flow material in the post-process may have a bulk density of 10 to 300 kg / m 3 .
  • the carbon nanostructure has a predetermined size to suppress stagnation and deposition of the carbon nanostructure, and the size may exemplify an average particle diameter of about 200 to 500 ⁇ m or about 270 to 420 ⁇ m.
  • the average particle diameter refers to a volume average particle diameter measured under 90% in the absorption mode using a Microtrac particle size analyzer after leaving the carbon nanostructure in distilled water for 3 hours.
  • the fluidized bed reactor used for the production of carbon nanostructures can be used without limitation as long as it is commonly used in the production of carbon nanostructures, for example, a reactor for synthesizing carbon nanostructures; A catalyst supply pipe to which a catalyst is supplied; And located at the bottom of the reactor, it may be desirable to have a product discharge pipe that the carbon nanostructures are recovered.
  • having a recovery tube at the bottom of the reactor may be advantageous for the continuous process of carbon nanostructures using a fluidized bed reactor, in which the aggregates which have almost completed the reaction fall to the bottom by gravity, and thus the reactor It is possible to recover the finished product without stopping the heating of the product, and at the same time, a continuous synthesis process may be performed on the material of the upper layer in which the synthesis is not completed, and unlike the conventional batch process, cooling of the reactor It can be easily recovered even in a heated state without the need for a process, so that the process can be timely and economically efficient.
  • the fluidized bed reactor having an outlet located below the reactor may include a valve closing system for recovering carbon nanostructures, and the valve system may be a device for implementing a sequential recovery process.
  • the system is arranged at the outlet of the reactor and can sequentially recover the carbon nanostructures produced at the synthesis reaction temperature.
  • the closing system of the valve installed at the outlet may be selected from a mechanical valve equipped with a temperature control device or non-mechanical valves such as L-valve or J-valve.
  • non-mechanical valves such as L-valve or J-valve may be used.
  • FIG. 1 schematically shows a configuration of a conventional fluidized bed reactor, and this fluidized bed reactor may be used, for example, in the production of carbon nanostructures, but is not limited to the production of carbon nanostructures.
  • the fluidized bed reactor 1 has a reactor body 10, and the lower portion of the reactor body 10 is formed of a tapered region 10a. In order to heat the reactor body 10 to a high temperature, it is preferable that a heater 19 is provided outside the reactor body 10.
  • the bottom of the fluidized bed reactor 1 is provided with a source gas supply 12.
  • the source gas may be, for example, a hydrocarbon-based gas for producing a carbon nanostructure.
  • the source gas is supplied into the reactor body 10 through the source gas supply pipe 21 connected to the source gas supply unit 12.
  • the raw gas may be preheated in the preheater 17 before being fed into the reactor body 10.
  • the dispersing plate 13 is disposed below the reaction space formed inside the reactor body 10, so that the raw material gas is dispersed into the reaction space in the reactor body 10 through the dispersion plate 13.
  • the extension part 11 is provided in the upper part of the reactor main body 10.
  • the expander 11 may include, for example, a separator (not shown) for preventing the catalyst and the reaction product (for example, carbon nanostructure) from the reactor body 10 from being discharged to the outside.
  • the expansion unit 11 is connected to the filter 18, the component gas filtered in the filter 18 is transferred through the transfer pipe (23).
  • the recirculation pipe 22 is connected to the extension part 11, and recycles a part of the mixed gas discharged from the extension part 11 to the raw material gas supply pipe 21 through the recirculation pipe 22.
  • the separator 14 is connected to one upper portion of the reactor body 10 through a pipe 24.
  • the separator 14 is for separating the product from the mixed gas discharged from the reactor body 10, for example for separating the carbon nanostructure and the mixed gas.
  • One side of the separator 14 is connected to a recovery unit 15 for recovering a product such as a carbon nanostructure, the separator 14 is connected to the lower side of the reactor body 10 through a pipe (15).
  • the catalyst supplier 16 may be connected to the pipe 26 so that the catalyst may be supplied into the reactor body 10 through the pipe 26.
  • a pipe 26 is provided with a blower, so that the mixed gas separated from the separator 14 and the catalyst supplied from the catalyst feeder 16 can be pumped into the reactor body 10.
  • the reactor used in the present invention may be a chemical vapor deposition reactor, preferably a fluidized bed reactor.
  • the reaction time of a reaction gas and a catalyst is required for at least 10 minutes, and the residence time of carbon nanostructures and catalysts to be produced in the reactor is determined by the purity of the carbon nanostructures. And yields important effects.
  • the reactor 1 includes a carbon source, a reducing gas, an inert gas, and the like in a carbon reactor equipped with a carbon nanostructure. Through the reaction from the bottom of the reactor 10 to the top to proceed. As the reaction proceeds, the carbon nanostructure is separated from the separator 14 by discharging the product to the upper side of the reactor.
  • the reaction gas supply pipe 21 is not particularly limited in the case where the reaction gas supply pipe 21 can be generally used in the apparatus for producing a carbon nanostructure, and specifically, may be a gas distributor or the like.
  • the catalyst gas supply pipe 25 is not particularly limited as long as it can be generally used in the apparatus for producing carbon nanostructures, specifically, a hopper, a fixed feeder, a screw feeder, a rotary air Or a catalyst supply configured with a rotary airlock valve.
  • the operation of the fluidized bed reactor forms a fluidized bed in the reactor, in which the catalyst is brought into contact with the reaction gas, and as the reaction proceeds, carbon nanostructures grow on the active metal of the catalyst, thereby bulking the product. If the density (lower) is to be discharged out through the discharge pipe on the upper side of the reactor.
  • the flow rate of the fluidized bed formed in the fluidized bed reactor is preferably 0.03 to 100 cm / s, more preferably 0.1 to 70 cm / s.
  • the minimum fluidization velocity of the fluidized bed in the fluidized bed reactor is preferably 0.03 to 15 cm / s, more preferably 0.1 to 10 cm / s.
  • the fluidized bed reactor includes a catalyst supply pipe 25 through which the catalyst is supplied; A reaction gas supply pipe 21 through which a carbon source, a reducing gas, and an inert gas are supplied; And a product discharge pipe 24 through which the mixed gas containing the generated carbon nanostructures and the reaction by-product gas are discharged.
  • the catalyst may be a heterogeneous catalyst composed of a complex structure of an active metal and a support that can be commonly used in the production of carbon nanostructures, and more specifically, a supported catalyst, a coprecipitation catalyst, and the like.
  • the supported catalyst is used as the preferred catalyst type, the bulk density of the catalyst itself is higher than that of the co-precipitation catalyst, and unlike the co-precipitation catalyst, the fine powder of less than 10 microns is less than the co-catalyst, thereby causing the aggregation of fine particles. It can suppress, reduce the possibility of fine powder due to attrition that can occur during the fluidization process, and also excellent mechanical strength of the catalyst itself has an effect that can stabilize the reactor operation.
  • the method for preparing the catalyst is simple, and the metal salts are advantageous in terms of production cost due to the low price of the preferred metal salts, and the specific surface area has high catalytic activity.
  • the catalyst metal used in the present invention is not particularly limited as long as it is a substance that promotes the growth of carbon fibers.
  • a catalytic metal include at least one metal selected from the group consisting of Groups 3 to 12 of the Group 18 periodic table recommended by IUPAC in 1990.
  • at least one metal selected from the group consisting of Groups 3, 5, 6, 8, 9, and 10 is preferable, and iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), and molybdenum are preferred.
  • At least one metal selected from (Mo), tungsten (W), vanadium (V), titanium (Ti), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt) and rare earth elements Particularly preferred.
  • a catalyst metal precursor inorganic salts, such as nitrate, sulfate, and carbonate of a catalyst metal
  • organic salts such as acetate, organic complexes, such as an acetylacetone complex, an organometallic compound, etc. It will not specifically limit, if it is a compound containing a catalyst metal.
  • the catalyst used in the carbon nanostructure generation step is specifically a catalytically active metal precursor Co (NO 3 ) 2 -6H 2 O, (NH 4 ) 6Mo 7 O 24 -4H 2 O, Fe (NO 3 ) 2 -6H 2 O or (Ni (NO 3) 2 -6H 2 O) was dissolved in distilled water, etc., and then, this Al 2 O 3, by wet impregnation (wet impregnation) of the support, such as SiO 2 or MgO may be manufactured.
  • the catalyst may be prepared by ultrasonically treating a catalytically active metal precursor with a carrier such as Al (OH) 3 , Mg (NO 3 ) 2, or colloidal silica.
  • a carrier such as Al (OH) 3 , Mg (NO 3 ) 2, or colloidal silica.
  • the catalyst is prepared by the sol-gel method using a chelating agent such as citric acid (citric acid), tartaric acid (tartaric acid), so that the catalytically active metal precursor in water can be smoothly dissolved, or a catalyst that is well dissolved in water It may be prepared by co-precipitation of the active metal precursor.
  • a chelating agent such as citric acid (citric acid), tartaric acid (tartaric acid)
  • the catalyst metal precursor compound may be in an oxidized state, and thus, a process of reducing the catalyst metal precursor by contacting with a reducing gas prior to contacting the carbon-containing compound may be performed.
  • the carbon source is a carbon-containing gas that can be decomposed in a heated state
  • specific examples are aliphatic alkanes, aliphatic alkenes, aliphatic alkynes, aromatic compounds, and the like, and more specifically, methane, ethane, ethylene, acetylene, ethanol, methanol, Acetone, carbon monoxide, propane, butane, benzene, cyclohexane, propylene, butene, isobutene, toluene, xylene, cumene, ethylbenzene, naphthalene, phenanthrene, anthracene, acetylene, formaldehyde, acetaldehyde, etc., preferably methane (CH 4 ), ethane (C 2 H 6 ), carbon monoxide (CO), acetylene (C 2 H 2 ), ethylene (C 2 H 4 ), propylene (C 3 H 6 ),
  • the reducing gas it may be preferable to use a gas containing hydrogen gas.
  • the inert gas is used as a carrier gas, and nitrogen gas, carbon dioxide gas, helium gas, argon gas, krypton gas, or a mixed gas thereof may be used.
  • a gas containing oxygen molecules such as air (that is, molecular oxygen: O 2 ) is not suitable because it degrades the catalyst.
  • the above-mentioned carbon source is a liquid or a solid at room temperature to be vaporized by heating and introduced as a carbon-containing gas. Since the supply amount of these carbon source gases depends on the catalyst used, the carbon-containing compound, and the reaction conditions, it cannot be determined uniquely, but generally, the preferred range is (carbon-containing gas flow rate / carrier gas flow rate + carbon-containing gas flow rate). 10 to 90 vol%, more preferably 30 to 70 vol%.
  • the supported catalyst and the carbon-containing compound when the supported catalyst and the carbon-containing compound are brought into contact with each other under a heating zone, the supported catalyst and the carbon-containing compound are generally 400 to 1100 ° C., preferably 500 to 800 ° C. Even if the temperature is too low or too high, the production of carbon nanotubes may be significantly lowered.
  • the separator 14 is not particularly limited in the case of a means, a mechanism or a device capable of separating the carbon nanostructure and the mixed gas, but may preferably be a cyclone.
  • the mixed gas may be a byproduct gas generated in the reactor.
  • the filter separates the unreacted carbon source, the reducing gas and the inert gas from the mixed gas discharged from the separator connected with one or more of the reactor upper expanders, and selectively transfers the unreacted carbon source to the recirculation pipe as necessary. It may be a gas separation unit.
  • the reducing gas may be hydrogen.
  • the gas separation unit may be a metal membrane type to remove a certain amount of reducing gas from the mixed gas discharged from the separator connected to one or more of the reactor upper expander (expander), the filtered mixed gas to the recirculation pipe have.
  • the gas separation unit of the metal membrane type can selectively separate hydrogen at a temperature of less than 600 °C.
  • the metal membrane may be at least one selected from the group consisting of Pd, Ir, Rh, Pd-Ni alloys, Pd-Ag alloys and Pd-Cu alloys, among which Pd and Pd-based alloys are preferably used. It is not limited.
  • the metal membrane may be used more than one, it is necessary to secure a minimum area to obtain the separation efficiency of the gas to be separated. If a large-area metal membrane can be manufactured, the desired flux can be obtained with one membrane, but at present, densified thin-film membranes cannot be manufactured to be larger than 100 mm * 100 mm. It may be.
  • At least one metal membrane unit to selectively remove only hydrogen gas by-produced in the reaction has an advantageous effect such as continuous process, adsorption amount control and recycle feed composition control.
  • separation efficiency is high, such as Pd and Pd-based alloys
  • separation can be performed even in a single membrane, and pressure and supply control can be controlled through a separation unit.
  • Selective separation reaction of hydrogen gas using metal membrane is characterized by infinite selectivity of hydrogen for carbon source and inert gas used in the reaction, and hydrogen separation flux of metal membrane according to pressure and temperature (H 2 mol / M 2 .sec) Indicates a tendency to increase. If a large area membrane can be manufactured, it is not necessary to stack metal membranes.
  • the system can be configured by stacking or connecting in series.
  • the metal membrane can be used in various forms such as rod-shaped or sheet-like.
  • the carbon nanostructure particles and the mixed gas produced in the reactor by separating the carbon nanostructure particles and the mixed gas using a cyclone the carbon nanostructure particles are recovered through the carbon nanostructure discharge line on the upper side of the reactor,
  • the mixed gas was recycled after passing through the hydrogen separation unit, it was confirmed that 20 to 30% of ethylene input, 99% of hydrogen input, and 98% of nitrogen input were reduced compared to carbon nano structure production without installing a heat exchanger.
  • the gas separation unit is preferably composed of one or more metal membrane, and more preferably is formed in the form of securing the desired hydrogen permeate flux by stacking or connecting in parallel or in series a metal membrane of the largest size that can be manufactured, In this case, only the by-product hydrogen gas can be removed from the reaction by changing the membrane injection pressure, which is advantageous in controlling the recycle feed composition. However, if the separation efficiency is high, separation can be performed even with one membrane, and separation is performed by controlling the pressure and the feed amount in the separation unit.
  • the particular gas may be supplied, particularly when the filtered gas mixture lacking a particular gas, a portion thereof (e.g., some H 2) recycling line, if necessary.
  • the unreacted carbon source contained in the mixed gas is preferably adjusted to 2 to 30% of the carbon source supplied to the reactor, more preferably to 5 to 25%.
  • the carbon nanostructure manufacturing apparatus is characterized by the ideal process operation having only the catalyst and the carbon source consumed in the reactor is always the same reactant composition ratio and amount.
  • the carbon nanostructure manufacturing apparatus is a reducing gas by-produced in the production of carbon nanostructures a mixed gas containing an unreacted carbon source, an inert gas and a by-product gas, etc. which have been incinerated or released using a flare stack or an incinerator.
  • phosphorous hydrogen H 2
  • the carbon nanostructure manufacturing apparatus can reduce the size of the fluidized bed reactor compared to the capacity (capacity) as a low energy consumption device, it can significantly reduce the energy cost (cost) of the fluidized bed reactor operating at 600 to 1000 °C.
  • the carbon nanostructure manufacturing apparatus does not require a heat exchanger required for cooling the reaction gas when separating a mixed gas using a pressure swing adsorption (PSA) and a polymer membrane, thereby reducing facility investment costs and a reaction system.
  • PSA pressure swing adsorption
  • Compact carbon nano structure manufacturing process that can reduce the size of In addition, it is possible to reduce the required heat quantity and size of the preheater by recirculating the hot reaction gas through the recirculation pipe without cooling.
  • the meaning between the reactor and the separator includes the inside of the reactor, and a filter for separating the fine particles may also be disposed in an expander above the fluidized bed reactor.
  • the carbon nanostructure manufacturing apparatus preferably further includes a control means for controlling the amount of the reaction gas supplied to the reactor and the amount of the component gas removed from the filter.
  • the control means may be a control means for adjusting the amount of reducing gas supplied to the reactor and the amount of reducing gas passing through the filter.
  • the carbon nanostructure manufacturing apparatus preferably further includes a filter, a scrubber, or both between the separator and the filter.
  • the filter recovers carbon nanostructure particles remaining in the mixed gas separated by the separator, and the scrubber may remove harmful substances such as halides, etc. present in the mixed gas separated by the separator.
  • the carbon nanostructure manufacturing apparatus may further include a pre-heater for preheating the reaction gas before it is introduced into the reactor.
  • the carbon nanostructure manufacturing apparatus may not include waste gas incineration means such as a flare stack or an incinerator.
  • the carbon nanostructure manufacturing method may include the step of introducing a carbon source as much as the amount consumed in the synthesis reaction of the carbon nanostructure to the filtered mixed gas.
  • the carbon nanostructure manufacturing method may include the step of incineration of waste gas.
  • the carbon nanostructure refers to a carbon-size nanostructure having various shapes such as carbon nanotubes, nanofibers, fullerenes, nanocones, nanohorns, and nanorods.
  • Figure 1 depicts only the apparatus necessary to illustrate the invention, and other obvious apparatus necessary for carrying out the method, such as pumps, additional valves, piping, controls, boosting equipment for pressurization, etc., are omitted from the drawings. It became.
  • Citric acid was added to Flask A in which NH 4 VO 3 was dissolved in 20 ml water as Co (NO 3 ) 2 -6H 2 O and V as precursor materials.
  • the molar ratio of Co: V was set to 10: 1.
  • the prepared aqueous metal solution was observed as a clear solution without precipitation.
  • ATH400 obtained by calcining aluminum hydroxide (Aluminum-tri-hydroxide, Al (OH) 3 ; WH-50) for 4 hours at 400 ° C. was prepared in Flask B. XRD analysis showed that after firing the support contained at least 40% by weight of AlO (OH).
  • the flask A solution was added to Flask B, and the catalyst metal precursor was sufficiently loaded on ATH400, and then aged by stirring for 5 minutes in a 60 ° C thermostat. It was spun at 150 rpm while maintaining the temperature and dried for 30 minutes under vacuum drying. The dried catalyst was calcined at 120 ° C. for 1 hour to prepare a homogeneous supported catalyst.
  • CNT synthesis was tested in a pilot scale fluidized bed reactor using the prepared supported catalyst for CNT synthesis. Specifically, the CNT synthesis catalyst prepared in C was supplied to a 350 mm reactor in which 2 kg of CNT fluid at 670 ° C. was present in a nitrogen atmosphere. CNT aggregate was synthesized by synthesizing for 1 hour while flowing 10 m 3 .
  • a CNT aggregate was synthesized in the same manner as in Example 1 except that 34.6% by volume of the CNT synthesized in the Preparation Example was recovered.
  • a CNT aggregate was synthesized in the same manner as in Example 1 except that 30.5% by volume of the CNT synthesized in the above preparation was recovered.
  • CNT aggregates were synthesized in the same manner as in Example 1 except that 25.5 vol% of the total volume of CNTs synthesized in the preparation example was recovered.
  • a CNT aggregate was synthesized in the same manner as in Example 1 except that 20.7% by volume of the total volume of CNT synthesized in the preparation example was recovered.
  • the pressure difference between the top and bottom of the reactor was calculated and the residual ratio was calculated from the following correspondence.
  • Residual rate change and carbon nanotube conversion of ethylene gas in the Examples and Comparative Examples are shown in Figure 3 and Table 2.
  • the ethylene conversion exceeds 50% and the higher the residual rate, the higher the ethylene conversion.
  • the residual rate (x) and the ethylene conversion rate (y) satisfy the following relationship.
  • the method for producing carbon nanostructures according to the present invention enables a continuous process by leaving a part of the manufactured carbon nanostructures as a flowable material, and by providing an optimum ratio of carbon nanostructures used as a flowable material, a carbon source and a catalyst Increasing contact time and optimizing the flow of fluid can improve the conversion efficiency of carbon source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 유동층 반응기를 이용하는 탄소나노구조물 제조방법에 있어서, 합성된 탄소나노구조물의 일부를 잔류시켜 반응기내 유동성을 향상시키는 유동재료로서 이용하여 연속 제조공정이 가능하게 하고, 반응기내 촉매와 유동재료의 유동성을 최적화 시킴으로써 효율적으로 탄소나노구조물을 제조할 수 있는 방법을 제공한다.

Description

탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재
본 출원은 2015.03.09.자 한국 특허출원 제10-2015-0032669호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 제조된 탄소나노구조물의 일부를 유동재료로서 이용하여 탄소나노구조물의 연속 제조공정을 가능하게 하는 탄소나노구조물의 제조방법 및 이를 이용하여 제조된 탄소나노구조물 및 상기 탄소나노구조물을 포함하는 복합재에 관한 것이다.
유동층 반응기는 다양한 다중상(multiphase) 화학 반응을 수행하도록 이용될 수 있는 반응기 장치이다. 이와 같은 유동층 반응기에서는 유체 (기체 또는 액체)가 미립자 상태의 고체 물질과 반응하게 되는데, 통상적으로 상기 고체 물질은 작은 구 형상을 가지는 촉매이고, 유체는 고체 물질을 부유시키기에 충분한 속도로 유동함으로써 고체 물질이 유체와 유사하게 거동하게 된다.
일반적으로 탄소나노구조물(carbon nanostructures, CNS)은 나노튜브, 나노파이버, 풀러렌, 나노콘, 나노호른, 나노로드 등 다양한 형상을 갖는 나노 크기의 탄소구조물을 지칭하며, 여러 가지 우수한 성질을 나타내기 때문에 다양한 기술분야에서 활용도가 높은 것으로 알려져 있다.
대표적인 탄소나노구조물인 탄소나노튜브(carbon nanotubes; CNT)는 서로 이웃하는 탄소 원자가 육각형의 벌집 구조로 결합되어 탄소 평면을 형성하고, 상기 탄소 평면이 원통형으로 말려서 튜브의 형상을 가지는 소재이다. 이와 같은 탄소 나노튜브는 구조에 따라서, 즉 튜브 내 육각형의 방향성에 따라 금속 성질을 나타내거나 반도체 성질을 나타내는 특성이 있으며, 다양한 기술 분야에서 광범위하게 응용될 수 있다. 예를 들어, 상기 탄소나노튜브는 이차 전지, 연료 전지 또는 슈퍼 커패시터(super capacitor)와 같은 전기 화학적 저장 장치의 전극, 전자파 차폐체, 전계 방출 디스플레이, 또는 기체 센서 등에 적용될 수 있다.
상기 탄소나노튜브는 아크 방전법, 레이저 증발법, 화학 기상 증착법 등의 공정을 통하여 제조할 수 있다. 상기 열거된 제조 방법 중 화학 기상 증착법에서는 통상적으로 고온의 유동층 반응기 안에서 금속 촉매 입자와 탄화수소 계열의 원료 기체를 분산 및 반응시킴으로써 탄소나노구조물이 생성된다. 즉, 금속 촉매는 원료 기체에 의해 유동층 반응기 안에서 부유하면서 원료 기체와 반응하여 탄소나노구조물을 성장시킨다.
상기 유동층 반응기를 이용한 탄소나노구조물의 제조 방법은 예를 들어 한국 특허출원공개 10-2009-0073346호 및 10-2009-0013503호 등에 개시되어 있다. 이와 같은 유동층 반응기를 이용하는 경우에는 반응기 내에서 기체를 일정하게 분포시키고, 촉매와 같은 분체가 상부에서 하부로 통과하지 못하도록 분산판을 이용한다. 분산판으로는 다공성 플레이트(perforated plate), 버블 캡(bubble cap), 씨브(sieve) 또는 노즐(nozzle)을 이용하여 구성하는 것이 일반적이다.
상기 유동층 반응기에서 기체는 분산판 하부로부터 상부의 방향으로 상향 유동하여 분산판 상의 입자층이 유동 상태로 부유하게 한다. 그러나 기체의 상승 유동만으로는 분체와 기체의 혼합이 잘 이루어지지 않거나, 입자의 반응기내 체류시간이 짧아지게 된다. 이 경우 탄소나노구조물 자체의 강한 반데르발스 인력으로 인해 탄소나노구조물 입자끼리 응집하여 분산판의 상면에 가라 앉게 되며, 가라 앉은 응집체들 위로 촉매가 지속적으로 퇴적하고 성장하면서 탄소나노구조물의 퇴적물의 크기가 점점 증가하여 반응기 전체의 유동성이 크게 저하된다는 문제가 있다. 그 결과 탄소나노구조물로의 성장이 원활하지 않아 조업시간이 길어지거나 제품 수율이 나빠지며, 또한 미반응 촉매가 분산판에 침적되거나 분산판의 세공을 막는 클로깅(clogging) 현상으로 인해 반응기체의 균일한 주입을 방해 받고, 압력 저하(pressure drop)가 발생하므로 안정적인 유동층 조업이 어렵다는 문제점이 있다.
또한 배치(batch) 타입의 생산방법에는 회수공정 이후 냉각공정을 거쳐 반응기의 온도를 낮춘 뒤 촉매를 투입하기 때문에 반응기 냉각 후 온도 상승에 의한 시간적 비용적 손실이 크며, 반응원료와 촉매의 접촉시간이 짧고, 유동 재료 부재로 인해 균일한 반응이 힘들다는 등의 문제점이 있다.
본 발명이 해결하고자 하는 과제는, 반응기 상에서 반응기체와 촉매의 원활하고 균일한 접촉을 유도하여 보다 균질한 탄소나노구조물을 제조하는 방법 및 상기 제조 방법으로 제조된 탄소나노구조물을 제공하는 것이다.
본 발명의 또 다른 과제는 상기한 방법으로 제조된 탄소나노구조물을 포함하는 전도성 복합재를 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명은,
유동층 반응기에서 탄소원을 포함하는 반응가스와 촉매를 유동시켜 탄소나노구조물을 합성하는 것을 포함하며,
합성된 탄소나노구조물을 회수함에 있어서 일부를 유동층 반응기에 잔류시켜 유동 재료로 사용하고,
하기 수학식 1에 따른 탄소나노구조물의 잔류율이 0.4 이상 0.7 이하인 것인 탄소나노구조물 제조방법을 제공한다.
[수학식 1]
탄소나노구조물 잔류율 = 잔류된 탄소나노구조물 체적/(초기 잔류 탄소 나노 구조물 체적 + 생성된 탄소 나노 구조물 체적)
일 구현예에 따르면, 상기 탄소나노구조물의 잔류율은 반응기 하단과 반응기 상단의 압력차이에 의해 산출되는 것일 수 있다.
일 구현예에 따르면, 상기 탄소원의 전환률이 50% 이상일 수 있다.
일 구현예에 따르면,
잔류율(y)과 탄소원의 전환율(x)이 하기 수학식 2 를 만족할 수 있다.
[수학식 2]
y = p x + q
상기 식에서 0.4 ~ 0.7의 상수이고, q는 15 ~ 30 의 상수임.
또한, 일 구현예에 따르면,
상기 반응기에 투입되는 촉매의 양은 하기 수학식 3을 만족하도록 할 수 있다.
[수학식 3]
b/(a+b) ≤ 0.1
상기 식에서, a 는 유동층 반응기에 잔류하는 탄소나노구조물의 질량(g)이고, b는 공급되는 촉매의 질량(g)이다.
일 구현예에 따르면, 합성된 탄소나노구조물의 회수 및 촉매 공급 공정이 연속공정으로 진행될 수 있다.
또한, 합성된 탄소나노구조물의 회수 주기 및 촉매 공급 주기는 합성된 탄소나노구조물이 상기 반응기 내부에 충전되는 정도를 기준으로 결정될 수 있다.
일 구현예에 따르면, 상기 반응 가스는 환원성 가스 및 불활성 가스 중 하나 이상을 더 포함하는 것일 수 있다.
일 구현예에 따르면, 상기 합성된 탄소나노구조물 회수공정시 불활성 가스를 공급하여 유동시킴으로써 회수하는 것일 수 있다.
일 구현예에 따르면, 상기 합성된 탄소나노구조물의 회수공정 중에도 탄소원을 포함하는 반응가스가 공급됨으로써 탄소나노구조물 합성 반응이 계속 진행되도록 할 수 있다.
일 구현예에 따르면, 상기 회수공정 이후에도 반응기에 지속적으로 불활성 가스를 주입함으로써, 잔류하는 탄소나노구조물이 유동상을 형성하도록 할 수 있다.
일 구현예에 따르면, 상기 반응기는, 촉매가 공급되는 촉매공급관; 탄소원을 포함하는 반응가스가 공급되는 반응가스 공급관; 및 상기 반응기의 하부에 위치하며, 생성된 탄소나노구조물이 회수되는 생성물 배출관을 구비할 수 있다.
일 구현예에 따르면, 상기 반응기는 화학기상증착 반응기일 수 있다.
또한, 상기 탄소나노구조물은 탄소 나노튜브일 수 있다.
본 발명 또한, 상기 제조방법에 따라 제조된 탄소나노구조물을 제공한다.
일 실시예에 따르면, 상기 제조된 탄소나노구조물의 벌크밀도는 10 내지 300 kg/m3일 수 있다.
본 발명은 또한, 상기 방법으로 제조된 탄소나노구조물을 포함하는 복합재를 제공한다.
일 실시예에 따르면, 상기 복합재의 면저항은 108 Ω/sq 이하일 수 있다.
본 발명에 따른 탄소나노구조물의 제조방법은 제조된 탄소나노구조물의 일부를 잔류시켜 유동재료로서 사용함으로써 연속공정이 가능하며, 유동재료로 사용되는 탄소나노구조물의 최적비율을 제공함으로써, 탄소원과 촉매의 접촉시간의 증대 및 유동물질의 흐름이 최적화 되어 탄소원의 전환효율을 향상시킬 수 있다. 생성물과 동일한 탄소나노구조물을 유동재료로 사용함으로 인해, 추후 유동재료의 분리공정이 별도로 필요하지 않아 시간 단축에 의한 공정상의 효율이 높아질 수 있음과 동시에 고순도의 탄소나노구조물을 얻을 수 있는 제조방법이다.
도 1은 탄소나노구조물 제조용 유동층 반응기의 일례에 대한 개략적인 구성도이다.
도 2는 종래기술에 따른 유동층 반응기의 문제점을 보여주는 개략도이다.
도 3은 일 실시예에 따른 잔류율 변화에 따른 에틸렌 가스 전환율을 나타낸 그래프이다.
도 4는 일 실시예에 따라 제조된 탄소나노튜브를 포함하는 복합재의 전도도를 나타낸 그래프이다.
이하, 본 발명을 첨부된 도면에 도시된 본 발명의 실시예들을 참조하여 보다 상세하게 설명하기로 한다. 그러나 이는 본 발명을 특정 실시 형태로 한정하려는 것이 아니며, 본 발명의 기술사상 및 범위에 포함되는 변형물, 균등물 또는 대체물을 모두 포함하는 것으로 이해되어야 한다.
각 도면에서 유사한 참조부호는 유사한 구성요소에 대하여 사용하였다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는 그 다른 구성요소에 직접적으로 연결 또는 접속되어 있거나 또는 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다.
단수의 표현은 달리 명시하지 않는 한 복수의 표현을 포함한다.
본 명세서에 기재된 "구비한다", "포함한다" 또는 "가진다" 등의 용어는 명세서상에 기재된 특징, 수치, 단계, 동작, 구성요소, 부품 또는 이들의 조합이 존재함을 지칭하는 것이고, 언급되지 않은 다른 특징, 수치, 단계, 동작, 구성요소, 부품 또는 이들의 조합이 존재하거나 부가될 수 있는 가능성을 배제하지 않는다.
유동층 반응기는 내부에서 촉매가 고르게 분포하여 촉매와 반응가스의 접촉이 우수하며 발열 반응시 열의 확산이 용이하고 반응기 내에서 촉매 및 목적 생산물인 탄소나노구조물의 체류시간 확보가 가능하여 고수율(촉매대비 탄소나노구조물 생성비율)의 탄소나노구조물 제조가 가능하다. 또한, 반응기 볼륨 대비 생산성이 뛰어나고 탄소나노구조물의 대량생산이 용이한 효과가 있다.
상기 유동층 반응기에서 기체는 분산판 하부로부터 상부의 방향으로 상향 유동하여 분산판 상의 입자층이 유동 상태로 부유하게 한다. 그러나, 도 2에 도시한 바와 같이 기체의 상승 유동만으로는 분체와 기체의 혼합이 잘 이루어지지 않거나, 입자의 반응기내 체류시간이 짧아지게 된다. 이 경우 탄소나노구조물 자체의 강한 반데르발스 인력으로 인해 탄소나노구조물 입자끼리 응집하여 분산판의 상면에 가라앉게 되며, 가라앉은 응집체들(31) 위로 촉매가 지속적으로 퇴적하고 성장하면서 탄소나노구조물의 퇴적물의 크기가 점점 증가하여 반응기 전체의 유동성이 크게 저하될 수 있다.
본 발명에 따른 탄소나노구조물의 제조방법은 합성된 탄소나노구조물을 전량 회수하지 않고 일정량 잔류시켜 유동층 반응의 유동성을 향상시키는 유동재료로서 사용함으로써 보다 효율적인 탄소나노구조물의 제조방법을 제공하고자 한다.
본 발명에 따른 탄소나노구조물의 제조방법은,
유동층 반응기에서 탄소원을 포함하는 반응가스와 촉매를 유동시켜 탄소나노구조물을 합성하는 것을 포함하며,
합성된 탄소나노구조물을 회수함에 있어서 일부를 유동층 반응기에 잔류시켜 유동 재료로 사용하고,
하기 수학식 1에 따른 탄소나노구조물의 잔류율이 0.4 이상 0.7 이하인 것이다.
[수학식 1]
탄소나노구조물 잔류율 = 잔류된 탄소나노구조물 체적/(초기 잔류 탄소 나노 구조물 체적 + 생성된 탄소 나노 구조물 체적)
일 구현예에 따르면, 상기 탄소나노구조물의 잔류율은 반응기 하단과 반응기 상단의 압력차이에 의해 산출될 수 있다. 구체적으로 반응기 하단은 반응기의 분산판 하부 지점을 의미하며, 반응기 상단은 반응기 내부에 쌓인 탄소나노구조물의 최종 높이의 상부 지점을 의미하는데, 양 지점에서 압력은 반응기 내부의 탄소나노구조물 질량과 비례하기 때문에 차이가 발생하므로, 그 압력 차이를 구하면 잔류율을 구할 수 있다.
일 구현예에 따르면, 합성된 탄소나노구조물의 회수 및 촉매 공급 공정이 연속공정으로 진행될 수 있다.
배치(batch) 타입의 생산방법에는 회수공정이 후 냉각공정을 거쳐 반응기의 온도를 낮춘 뒤 유동재료 또는 촉매를 투입하는 방법인데 반해, 본 발명은, 반응기 내에 회수 공정 이후에도 일부 탄소나노구조물이 존재하고 상기 탄소나노구조물을 다음 공정에 유동물질로서 사용함으로써, 따라서, 탄소나노구조물의 회수 후 공(空) 반응기에 의한 냉각공정 없이 연속적인 제조공정이 가능한 방법을 제공할 수 있다. 따라서, 종래의 배치공정의 단점이었던 반응기 냉각 후 온도상승에 의한 시간적 에너지 효율성 저하 부분을 개선시킨 제조방법을 제공할 수 있다.
이때, 상기 유동재료로 사용되는 탄소나노구조물의 양이 증가하게 되면 반응기 내부의 유동성이 상승하게 되면서 촉매와 원료가스의 접촉시간이 증가하게 되고 탄소원의 전환률이 상승 되는 효과를 얻을 수 있는 반면, 상기 합성된 탄소나노구조물 입자 및 촉매의 체류시간 분포가 증가하게 되어 합성된 탄소나노구조물의 물성은 저하될 수 있다.
또한, 일정 비율 이하의 유동재료가 이용될 경우에는 촉매의 충분한 유동성이 확보되지 못할 수 있으며, 이는 촉매와 탄소원의 접촉시간을 감소 시킴으로써, 충분한 탄소원의 전환률을 얻을 수 없으므로, 공정의 수율 및 순도가 저하될 수 있다. 따라서, 상기 수학식 1로서 상기 반응기내 잔류하여 유동재료로서 사용되는 탄소나노구조물의 체적과 생성된 탄소나노구조물의 충전체적의 비율을 최적화 시킴으로써, 탄소원의 전환률 및 물성을 모두 만족할 수 있는 방법을 제공하여 탄소나노구조물을 효율적으로 제조할 수 있다. 이때, 충전물의 회수 시점은 탄소나노구조물이 일정 충전량, 즉 반응기 내부의 탄소나노구조물이 일정 충전체적에 도달하는 시점 기준일 수 있으며, 이는 반응기 내부에 탄소나노구조물이 충전된 높이를 기준으로 결정될 수 있다. 상기 체적을 기준으로 유동재료로서 사용되는 탄소나노구조물의 양의 비율이 결정될 수 있다. 즉, 최종 충전 체적을 기준으로 상기 수학식 1에 만족하는 탄소나노구조물을 반응기 내부에 남기고 회수하는 방법이다.
일 구현예에 따르면, 상기 탄소원의 전환율이 50% 이상일 수 있다.
구체적으로, 잔류율(y)과 탄소원의 전환율(x)이 하기 수학식 2를 만족할 수 있다.
[수학식 2]
y = p x + q
상기 식에서 p는 0.4 ~ 0.7의 상수이고, q는 15 ~ 30의 상수임.
상기 p는 0.4 ~ 0.6, 또는 0.5 ~ 0.7, 또는 0.5 ~ 0.6의 상수일 수 있다.
상기 q는 15 ~ 25, 또는 20 ~ 30, 또는 20 ~ 25 의 상수일 수 있다.
본 발명자들의 연구에 따르면 잔류율과 탄소원의 전환율은 선형적 비례 관계에 있음을 알 수 있다.
또한, 일 구현예에 따르면, 상기 반응기에 투입되는 촉매의 양은 하기 수학식 3과 같이 정의되는 촉매공급율이 0 초과 0.1 이하가 되도록 할 수 있다.
[수학식 3]
촉매공급율 = b/(a+b)
여기서, a 는 유동층 반응기에 잔류하는 탄소나노구조물의 질량(g)이고, b는 반응기에 공급되는 촉매의 질량(g)이다.
바람직하게는, 상기 촉매 공급율이 0.08 이하, 또는 0.05 이하일 수 있다.
반응기에 투입되는 촉매의 양 및 반응기에 잔류하는 유동재료의 양은 촉매의 순환에 영향을 줄 수 있으며, 이는 탄소원과 촉매의 접촉시간에 중요한 인자로 작용한다. 촉매 공급율이 0.1을 초과하면 유동층의 유동성이 저하될 수 있으며, 이로 인해 촉매의 순환이 원활하지 못하여 탄소원 가스와 촉매의 접촉시간이 감소되고 따라서 탄소원의 전환율이 감소할 수 있다. 따라서, 상기 촉매 공급율은 유동물질에 의한 유동성을 확보하면서 촉매 투입량에 따른 탄소원의 전환율이 최적화 될 수 있는 비율을 나타낸다.
또한, 최적화된 촉매 공급율로부터 촉매와 원료가스간의 순환이 원활히 이루어짐으로써, 촉매의 쏠림 현상 또는 촉매와 탄소원 가스의 급격한 반응에 의한 부피팽창과 같은 불균일한 반응을 감소시킬 수 있어, 보다 균일한 탄소나노구조물을 생산할 수 있다.
또한, 합성된 탄소나노구조물의 회수 주기 및 촉매 공급 주기는 합성된 탄소나노구조물이 상기 반응기 내부에 충전되는 정도를 기준으로 결정될 수 있다.
예를 들면, 생성된 탄소나노구조물이 목표로 하는 일정 충전량을 만족하게 되면 반응이 종료되고, 상기 합성된 탄소나노구조물은 배출구 라인에 위치된 밸브를 개방함으로써 회수되며, 상기 탄소나노구조물을 일부 남긴 후 상기 반응기에 잔류하는 탄소나노구조물에 촉매를 투입하는 방법으로 연속적인 제조공정이 진행될 수 있다. 이때 촉매 투입량은 수학식 1의 촉매 공급율에 따른다.
상기 충전량의 기준은 반응기 내부의 탄소나노구조물의 높이 또는 중량을 기준으로 할 수 있으며, 예를 들면, 반응로의 여러 높이들에 위치되는 멀티포인트 프로브에 의해 제어되고, 일정 레벨의 위치에 도달하면 반응로가 충분히 충전된 것으로 간주하는 방식으로 구동되는 결정방법일 수 있다.
또한, 상기 탄소나노구조물의 회수시점은 잔여가스 검출 등에 의한 방법으로도 결정될 수 있으며, 예를 들면, 잔여 가스들을 검출하기 위한 디바이스들이 구비되어 가스들의 레벨을 검출함으로써, 상기 레벨 값이 소정의 값에 도달할 때마다 합성의 종료가 결정되는 방법으로 회수시점이 결정될 수 있다.
일 구현예에 따르면, 상기 유동층 반응기에 공급되는 반응 가스는 탄소원 가스 이외에도 환원성 가스 및 불활성 가스 중 하나 이상을 더 포함하는 것일 수 있다.
회수공정 이후 반응기 내부에 잔류하는 탄소나노구조물은 지속적으로 유동상을 형성하고 있을 수 있으며, 상기 유동물질의 유동성은 불활성 가스를 주입함으로써 형성될 수 있다. 유동상이 미리 형성된 반응기 내부에 촉매 및 탄소원을 포함하는 반응가스를 주입함으로써, 탄소나노구조물의 합성 반응이 시작될 수 있다.
본 발명에 따르면, 상기 회수 공정시 원활한 회수를 위해 불활성 가스와 같은 유동가스가 지속적으로 유입될 수 있으며, 또는, 상기 탄소원을 포함하는 반응가스를 함께 투입함으로써, 상기 회수공정이 진행되는 시점에도 반응을 지속적으로 진행될 수 있다.
일 구현예에 따르면, 탄소나노구조물 회수 단계와 촉매 및 반응가스의 투입 단계는 순차적으로 이루어질 수 있으며, 예를 들면, 반응기의 배출구에 설치된 밸브의 순차적인 개방에 의해 제조된 탄소나노구조물의 순차적인 회수가 이루어질 수 있다. 회수가 이루어지는 시점 즉, 밸브가 개방되는 시점에는 원료가스의 공급이 중단되고, 밸브가 폐쇄되는 시점에는 다시 공급되는 방식으로 회수공정과 동시에 탄소나노구조물 합성 반응이 지속적으로 진행될 수 있다.
일 실시예에 따르면, 상기 회수 공정에서 총 생산된 탄소나노구조물에 대해서 회수되는 탄소나노구조물의 양은 총 생산된 중량에 대해 10 내지 90 중량%로 회수될 수 있고, 바람직하게는 30 내지 60 중량%로 회수될 수 있다. 즉, 반응기에 잔류하는 탄소나노구조물은 10 내지 90 중량%, 바람직하게는 40 내지 60 중량%일 수 있다.
일 실시예에 따르면, 상기와 같은 방법의 탄소나노구조물 제조방법에 의한 탄소원의 전환율은 50% 이상일 수 있다.
일구현예에 따르면, 상기 반응기에서 생성되고 후 공정시 유동재료로 사용되는 탄소나노구조물은 10 내지 300 kg/m3 의 벌크밀도를 가질 수 있다.
상기 탄소나노구조물은 상기 탄소나노구조물의 정체 및 퇴적을 억제하기 위해 소정 크기를 갖는 것이 보다 바람직하며, 이때의 크기는 약 200 내지 500㎛ 또는 약 270 내지 420㎛의 평균입경을 예시할 수 있다. 상기 평균입경은 상기 탄소나노구조물을 증류수에 넣고 3시간 방치 후 Microtrac 입도 분석기를 이용하여 흡광 모드에서 90% 기준하에 측정한 부피 평균 입경을 의미한다.
상기 탄소나노구조물의 제조에 사용되는 유동층 반응기는 탄소나노구조물의 제조에 통상적으로 사용되는 것이라면 제한 없이 사용할 수 있으나, 예를 들어, 탄소나노구조물이 합성되는 반응기; 촉매가 공급되는 촉매공급관; 및 상기 반응기의 하부에 위치하며, 생성된 탄소나노구조물이 회수되는 생성물 배출관을 구비하는 것이 바람직할 수 있다.
본 발명에 따르면, 반응로의 최하부에 회수관이 있는 것은 유동상 반응기를 이용한 탄소나노구조물의 연속공정에 유리할 수 있는데, 반응이 거의 종료된 응집물들은 중력에 의해 맨아래로 떨어지게 되며, 따라서 반응로의 가열을 중지하지 않으면서 합성이 종료된 생성물을 회수할 수 있으며, 동시에 합성이 종료되지 않은 상층의 물질에 대해서는 계속적인 합성공정이 진행될 수 있으며, 통상의 배치(batch)공정과 달리 반응기의 냉각공정 필요 없이 가열된 상태에서도 쉽게 회수할 수 있어 시간적 경제적으로 효율적인 공정을 진행할 수 있다.
즉, 반응로 하부에 위치하는 배출구를 구비하는 유동층 반응로는 탄소나노구조물을 회수하기 위한 밸브 폐쇄 시스템을 포함할 수 있으며, 상기 밸브 시스템은 순차적인 회수 공정을 구현하기 위한 장치일 수 있다. 상기 시스템은 반응로의 배출구에 배치되고 생성된 탄소나노구조물을 합성 반응 온도에서도 순차적으로 회수할 수 있다.
상기 배출구에 설치되는 밸브의 폐쇄 시스템은 온도 조절용 장치가 설치된 기계적 밸브 또는 L-밸브들 또는 J-밸브들과 같은 비기계적 밸브들에서 선택될 수 있다. 바람직하게는 L-밸브들 또는 J-밸브들과 같은 비기계적 밸브가 이용될 수 있다.
도 1 에는 통상적인 유동층 반응기의 구성이 개략적으로 도시되어 있으며, 이러한 유동층 반응기는 예를 들어 탄소나노구조물의 제조에 이용될 수 있지만, 탄소나노구조물의 제조에만 한정된 것은 아니다.
도면을 참조하면, 유동층 반응기(1)는 반응기 본체(10)를 구비하며, 반응기 본체(10)의 하부는 테이퍼 영역(10a)으로 형성되어 있다. 반응기 본체(10)를 고온으로 가열하기 위해, 가열기(19)가 반응기 본체(10)의 외부에 구비되는 것이 바람직스럽다.
유동층 반응기(1)의 저부에 원료 기체 공급부(12)가 구비된다. 원료 기체는 예를 들어 탄소나노구조물을 제조하기 위한 탄화 수소 계열의 기체일 수 있다. 원료 기체는 원료 기체 공급부(12)에 연결된 원료 기체 공급관(21)을 통해 반응기 본체(10)의 내부로 공급된다. 원료 기체는 반응기 본체(10)의 내부로 공급되기 전에 예열기(17)에서 예열될 수 있다. 반응기 본체(10)의 내부에 형성된 반응 공간의 하측에 분산판(13)이 배치됨으로써, 분산판(13)을 통하여 반응기 본체(10)내의 반응 공간으로 원료 기체가 분산된다.
반응기 본체(10)의 상부에는 신장부(11)가 구비된다. 신장부(expander, 11)에는 예를 들어 반응기 본체(10)로부터의 촉매와 반응 생성물(예를 들어, 탄소나노구조물)이 외부로 배출되는 것을 막기 위한 분리기(미도시)등이 구비될 수 있다. 신장부(11)에는 여과기(18)가 연결되며, 상기 여과기(18)에서 여과된 성분 기체는 이송관(23)을 통해 이송된다. 한편, 신장부(11)에는 재순환 배관(22)이 연결되어, 신장부(11)에서 배출된 혼합 기체의 일부를 재순환 배관(22)을 통해 원료 기체 공급관(21)으로 재순환시킨다.
반응기 본체(10)의 상부 일측에는 배관(24)을 통하여 분리기(14)가 연결되어 있다. 상기 분리기(14)는 반응기 본체(10)로부터 배출된 혼합 기체로부터 생성물을 분리하기 위한 것으로서, 예를 들어 탄소나노구조물과 혼합 기체를 분리하기 위한 것이다. 분리기(14)의 일측에는 탄소나노구조물과 같은 생성물을 회수하기 위한 회수기(15)가 연결되며, 분리기(14)는 배관(15)을 통해 반응기 본체(10)의 하부 일측에 연결된다. 한편, 촉매 공급기(16)는 배관(26)에 연결됨으로써 촉매가 배관(26)을 통해 반응기 본체(10)의 내부로 공급될 수 있다. 도면에 도시되지 않았으나, 배관(26)에는 송풍기(blower)가 구비됨으로써, 분리기(14)에서 분리된 혼합 기체와 촉매 공급기(16)에서 공급되는 촉매를 반응기 본체(10) 안으로 압송시킬 수 있다.
본 발명에서 사용되는 반응기는 화학기상증착 반응기(chemical vapor deposition reactor)일 수 있고, 바람직하게는 유동층 반응기이다.
화학기상증착(CVD) 방식에 의해 탄소나노구조물을 합성하기 위해서는 반응가스와 촉매의 반응 시간이 최소 10분 이상 필요하여 반응기 내에서 생산하고자 하는 탄소나노구조물과 촉매의 체류시간이 탄소나노구조물의 순도 및 수율에 중요한 영향을 미친다.
본 발명에 따르면, 상기 반응기(1)에는 탄소나노구조물이 구비된 탄소 반응기 내부에 카본원(carbon source), 환원성 가스(reducing gas), 불활성 가스(inert gas) 등을 반응가스 공급관(21)을 통해 반응기(10) 하부에서 상부로 공급하여 반응을 진행시키게 된다. 반응이 진행되면 반응기 상부 측면으로 생성물을 배출시켜 분리기(14)에서 탄소나노구조물을 분리하게 된다.
상기 반응가스 공급관(21)은 통상적으로 탄소나노구조물의 제조장치에 사용될 수 있는 것인 경우 특별히 제한되지 않고, 구체적으로 가스 분배기(gas distributor) 등일 수 있다.
상기 촉매가스 공급관(25)은 통상적으로 탄소나노구조물의 제조장치에 사용될 수 있는 것인 경우 특별히 제한되지 않고, 구체적으로 호퍼(hopper), 정량 공급관(feeder), 스크류 공급관(screw feeder), 로타리 에어락 밸브(Rotary airlock valve)로 구성된 촉매 공급장치 등일 수 있다.
상기 유동층 반응기의 운전방식은 반응기 내에 유동층을 형성시키고, 이 유동층 안에서 촉매가 반응가스와 접촉하여 반응이 일어나며, 반응이 진행됨에 따라 촉매의 활성금속상에서 탄소나노구조물이 성장하여 생성물의 벌크밀도(bulk density)가 낮아지게 되면 반응기의 상부 측면의 배출관을 통해 밖으로 방출되는 것일 수 있다.
상기 유동층 반응기 내에서 형성되는 유동층의 유동속도는 0.03 내지 100 ㎝/s가 바람직하고, 보다 바람직하게는 0.1 내지 70 ㎝/s이다.
상기 유동층 반응기 내의 유동층의 최소 유동속도(minimum fluidization velocity)는 0.03 내지 15 ㎝/s가 바람직하고, 보다 바람직하게는 0.1 내지 10 ㎝/s이다.
상기 유동층 반응기는 촉매가 공급되는 촉매공급관(25); 카본원(carbon source), 환원성 가스 및 불활성 가스가 공급되는 반응가스 공급관(21); 및 생성된 탄소나노구조물과 반응 부산물 가스가 포함된 혼합가스가 배출되는 생성물 배출관(24);이 연결될 수 있다.
상기 촉매는 탄소나노구조물 제조에 통상적으로 사용될 수 있는 활성금속과 담지체의 복합구조로 이루어진 불균일계(heterogeneous) 촉매일 수 있고, 보다 구체적으로는 담지촉매, 공침촉매 등일 수 있다. 바람직한 촉매 형태로서 담지촉매가 사용되는 경우 촉매 자체의 부피밀도(bulk density)가 공침촉매에 비해 높고, 공침촉매와 달리 10 미크론(micron) 이하의 미분이 적어 미세 입자의 뭉침(agglomeration) 현상 발생을 억제할 수 있고, 유동화 과정에서 발생할 수 있는 마모(attrition)에 의한 미분 발생 가능성을 줄일 수 있으며, 촉매 자체의 기계적 강도도 우수하여 반응기 운전을 안정하게 할 수 있는 효과가 있다.
바람직한 촉매 형태로서 공침촉매를 사용하는 경우, 촉매의 제조 방법이 간단하고, 촉매 원료로 바람직한 금속염들의 가격이 낮아 제조원가상 유리한 측면이 있으며, 비표면적이 넓어 촉매활성이 높은 장점이 있다.
본 발명에서 사용하는 촉매 금속은 탄소 섬유의 성장을 촉진시키는 물질이면 특별히 제한되지 않는다. 이러한 촉매 금속으로서는 예를 들면, IUPAC이 1990년에 권고한 18족형 원소 주기율표의 3 내지 12족으로 이루어지 군으로부터 선택되는 적어도 1종의 금속을 들 수 있다. 그 중에서도 3, 5, 6, 8, 9, 10족으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속이 바람직하며, 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 티타늄(Ti), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 백금(Pt) 및 희토류 원소로부터 선택되는 적어도 1종의 금속이 특히 바람직하다. 또한, 이들 촉매로서 작용하는 금속 원소를 함유하는 화합물, 즉 촉매 금속 전구체로서는 촉매 금속의 질산염, 황산염, 탄산염 등의 무기염류, 초산염 등의 유기염, 아세틸아세톤 착체 등의 유기 착체, 유기 금속 화합물 등 촉매 금속을 함유하는 화합물이면 특별히 한정되지 않는다.
이들 촉매 금속 및 촉매 금속 전구체 화합물을 2종 이상 사용함으로써 반응 활성을 조절하는 것은 널리 알려져 있다. 예를 들어, 철(Fe), 코발트(Co) 및 니켈(Ni)로부터 선택되는 원소와 티타늄(Ti), 바나듐(V) 및 크롬(Cr)으로부터 선택되는 원소와 몰리브덴(Mo) 및 텅스텐(W)으로부터 선택되는 원소를 조합한 것을 예시할 수 있다.
상기 탄소나노구조물 생성 단계에서 사용되는 촉매는 구체적으로 촉매활성금속 전구체인 Co(NO3)2-6H2O, (NH4)6Mo7O24-4H2O, Fe(NO3)2-6H2O 또는 (Ni(NO3)2-6H2O) 등을 증류수에 용해시킨 다음, 이를 Al2O3, SiO2 또는 MgO 등의 담체에 습식 함침(wet impregnation)시켜 제조한 것일 수 있다.
또한, 상기 촉매는 구체적인 예로 촉매활성금속 전구체와 Al(OH)3, Mg(NO3)2 또는 콜로이달 실리카(colloidal silica) 등의 담체를 함께 초음파로 처리하여 제조된 것일 수 있다.
또한, 상기 촉매는 물에 촉매활성금속 전구체가 원활하게 용해될 수 있도록 시트르산(citric acid), 타르타르산(tartaric acid) 등의 킬레이트 에이전트를 사용하여 졸겔법으로 제조된 것이거나, 물에 잘 용해되는 촉매활성금속 전구체를 공침(co-precipitation)시켜 제조된 것일 수 있다.
일반적으로 촉매 금속 전구체 화합물은 산화 상태에 있는 경우가 있기 때문에 탄소 함유 화합물과 접촉시키기 전에 환원성의 가스와 접촉시킴으로써 촉매 금속으로 환원하는 공정을 수행할 수 있다.
상기 카본원은 가열 상태에서 분해될 수 있는 탄소 함유 가스이고, 구체적인 예로 지방족 알칸, 지방족 알켄, 지방족 알킨(alkyne), 방향족 화합물 등이며, 보다 구체적인 예로 메탄, 에탄, 에틸렌, 아세틸렌, 에탄올, 메탄올, 아세톤, 일산화탄소, 프로판, 부탄, 벤젠, 시클로헥산, 프로필렌, 부텐, 이소부텐, 톨루엔, 자일렌, 쿠멘, 에틸벤젠, 나프탈렌, 페난트렌, 안트라센, 아세틸렌, 포름알데히드, 아세트알데히드 등이고, 바람직하게는 메탄(CH4), 에탄(C2H6), 일산화탄소(CO), 아세틸렌(C2H2), 에틸렌(C2H4), 프로필렌(C3H6), 프로판(C3H8), 부탄(C4H10) 및 혼합물인 액화석유가스(LPG) 등일 수 있다.
상기 환원성 가스는 수소 가스를 함유하는 가스를 사용하는 것이 바람직할 수 있다.
상기 불활성 가스는 캐리어 가스로 이용되며, 질소 가스, 이산화탄소 가스, 헬륨 가스, 아르곤 가스, 크립톤 가스 또는 이들의 혼합 가스를 사용할 수 있다. 그러나 공기 등의 산소 분자(즉, 분자 상태의 산소: O2)를 함유하는 가스는 촉매를 열화시키기 때문에 적합하지 않다.
상술한 탄소원은 상온에서 액체 또는 고체인 것은 가열하여 기화시켜 탄소 함유 가스로서 도입하는 것이 바람직하다. 이들 탄소원 가스의 공급량은 사용하는 촉매, 탄소 함유 화합물, 반응 조건에 따라 다르기 때문에 일의적으로는 결정할 수 없지만 일반적으로 바람직한 범위는 (탄소 함유 가스 유량)/(캐리어 가스 유량 + 탄소 함유 가스 유량)이 10 내지 90vol%이며, 30 내지 70vol%가 더욱 바람직하다.
본 발명의 방법에 있어서 상기 담지 촉매와 탄소 함유 화합물을 가열영역하에 접촉시키는 바, 사용하는 탄소 함유 화합물 등에 따라 다르지만 일반적으로 400 내지 1100℃이며, 바람직하게는 500 내지 800℃이다. 온도는 너무 낮아도 너무 높아도 카본나노튜브의 생성량이 현저하게 낮아질 수 있다.
상기 분리기(14)는 탄소나노구조물과 혼합가스를 분리할 수 있는 수단, 기구 또는 장치인 경우 특별히 제한되지 않으나, 바람직하게는 싸이클론 (cyclone)일 수 있다. 상기 혼합가스는 상기 반응기에서 생성된 부산물 가스인 것일 수 있다.
상기 여과기는 상기 반응기 상부 신장부(expander)의 하나 또는 둘 이상이 연결된 분리기로부터 배출된 혼합가스에서 미반응 카본원, 환원성 가스 및 불활성 가스를 각각 분리하여 선택적으로 필요한 양 만큼 상기 재순환배관으로 이송시키는 가스분리유닛일 수 있다.
상기 환원성 가스는 수소일 수 있다.
상기 가스분리유닛은 상기 반응기 상부 신장부(expander)의 하나 또는 둘 이상이 연결된 분리기로부터 배출된 혼합가스에서 일정량의 환원성 가스를 제거시키고, 여과된 혼합가스는 재순환배관으로 이송시키는 금속 멤브레인 타입일 수 있다.
상기 금속 멤브레인 타입의 가스분리유닛은 600℃ 미만의 온도에서 수소를 선택적으로 분리할 수 있다.
상기 금속 멤브레인은 Pd, Ir, Rh, Pd-Ni 합금, Pd-Ag 합금 및 Pd-Cu 합금으로 이루어진 군으로부터 1종 이상 선택될 수 있으며, 그 중에서 Pd와 Pd계 합금이 바람직하게 사용되나, 이에 한정되는 것은 아니다.
상기 금속 멤브레인은 1 이상 사용될 수 있고, 분리하고자 하는 기체의 분리효율을 얻기 위해 최소한의 면적 확보가 필요하다. 대면적의 금속 멤브레인의 제조가 가능할 경우 하나의 멤브레인으로 원하는 플럭스(flux)를 얻을 수 있으나 현재 치밀화 박막 멤브레인을 100㎜*100㎜ 이상으로 제조할 수 없어 최대 크기의 멤브레인을 적층하여 표면적을 확보할 수도 있다.
상기 금속 멤브레인 유닛을 하나 이상 사용하여 반응에서 부생되는 수소가스만을 선택적으로 제거하여 연속 공정, 흡착량 조절 및 재순환 공급 조성 제어 등에 유리한 효과를 갖는다. 그러나 Pd와 Pd계 합금과 같이 분리 효율이 높은 경우에는 단일 멤브레인에서도 분리가 가능하며, 분리 유닛을 통하여 압력 및 공급량 제어가 가능하다. 금속 멤브레인을 이용한 수소가스의 선택적 분리 반응은 반응에 사용된 탄소원, 불활성 가스에 대한 수소의 선택도가 무한대에 가까우며 압력과 온도에 따라 금속 멤브레인의 수소분리 flux (H2 mol/M2.sec)가 증가하는 경향을 나타낸다. 대면적의 멤브레인(membrane)의 제조가 가능할 경우 금속 멤브레인을 적층할 필요가 없으나, 현재 기술로 100㎜*100㎜를 초과하는 고효율의 금속 멤브레인의 제조에는 한계가 있어, 최대의 크기를 지니는 멤브레인을 적층하거나 시리즈로 연결하여 시스템을 구성할 수 있다. 금속 멤브레인은 봉 형상, 시트 형상 등 다양한 형태를 사용 가능하다.
참고로, 상기 반응기에서 제조된 탄소나노구조물 입자와 혼합가스를 싸이클론을 이용하여 탄소나노구조물 입자와 혼합가스를 분리함으로써 탄소나노구조물 입자는 반응기 상부 측면의 탄소나노구조물 배출라인을 통해 회수하고, 혼합가스는 수소분리유닛을 통과시킨 다음 재순환시킨 경우 열교환기의 장착 없이 탄소나노구조물 생산량 대비 에틸렌 투입량을 20 내지 30 %, 수소 투입량을 99 %, 질소 투입량을 98 % 절감되는 것을 확인하였다.
상기 가스분리유닛은 금속 멤브레인이 1개 이상 포함되어 이루어지는 것이 바람직하고, 보다 바람직하게는 제작 가능한 최대 크기의 금속멤브레인을 적층하거나 병렬 또는 직렬로 연결하여 원하는 수소 투과 플럭스를 확보하는 형태로 이루어지는 것인데, 이 경우 멤브레인 주입 압력을 변화시켜 반응에서 부생된 수소가스만을 제거할 수 있어 재순환 피드(recycle feed) 조성 제어 등에 유리한 효과가 있다. 그러나 분리 효율이 높은 경우 하나의 멤브레인에서도 분리가 가능하며 분리 유닛에서 압력 및 피드량 제어를 통해 분리가 이루어진다.
상기 특정가스는 필요에 따라, 특히 여과된 혼합가스에 특정가스가 부족한 경우, 그 일부(예를 들면 일부 H2)가 재순환배관으로 공급될 수 있다.
상기 혼합가스에 포함된 미반응 카본원은 반응기로 공급된 카본원의 2 내지 30 %로 조절되는 것이 바람직하고, 보다 바람직하게는 5 내지 25 %로 조절되는 것이다.
상기 탄소나노구조물 제조장치는 촉매와 상기 반응기에서 소모된 카본원만을 투입하는 것으로 항상 거의 동일한 반응물 조성비와 양을 갖는 이상적인 공정 운전이 가능한 특징이 있다.
상기 탄소나노구조물 제조장치는 종래 플레어 스택(flare stack) 또는 소각로 등을 이용하여 소각 또는 방출시켰던 미반응 카본원, 불활성 가스 및 부산물 가스 등을 포함하는 혼합가스를 탄소나노구조물 생성에서 부생된 환원성 가스인 수소(H2)만을 선택적으로 제거 후 재순환시켜 불활성 가스의 추가 주입 없이 98 % 이상의 카본원 전환율을 확보할 수 있어 탄소나노구조물의 생산원가를 획기적으로 절감시키고, 소각처리가 필요 없어 이산화탄소의 대기 방출 문제가 없는 친환경 공정이다.
또한, 상기 탄소나노구조물 제조장치는 저에너지 소비 장치로 용량(capacity) 대비 유동층 반응기의 크기를 줄일 수 있어, 600 내지 1000 ℃에서 운전되는 유동층 반응기의 에너지 비용(cost)을 크게 절감시킬 수 있다.
상기 탄소나노구조물 제조장치는 PSA(Pressure swing adsorption), 고분자 분리막을 사용하여 혼합가스를 분리 시 반응가스의 냉각을 위해 필수적으로 요구되는 열교환기(heat exchanger)가 필요 없어 설비 투자비의 절감 및 반응 시스템의 크기도 줄일 수 있는 compact한 탄소나노구조물 제조 공정이다. 또한 냉각 없이 고온의 반응가스를 재순환 배관을 통해 재순환시킴으로써 예열기의 필요열량 절감 및 크기를 줄일 수 있다.
상기 반응기와 상기 분리기 사이의 의미는 상기 반응기의 내부도 포함하고, 미세입자를 분리하는 필터도 유동층 반응기 상부의 신장부(expander)에 배치될 수 있다.
상기 탄소나노구조물 제조장치는 상기 반응기에 공급되는 반응가스의 양과 상기 여과기에서 제거되는 성분가스의 양을 조절하는 제어수단을 더 포함하는 것이 바람직하다.
상기 제어수단은 상기 반응기에 공급되는 환원성 가스의 양과 상기 여과기를 통과하는 환원성 가스의 양을 조절하는 제어수단일 수 있다.
상기 탄소나노구조물 제조장치는 상기 분리기와 상기 여과기 사이에 필터, 스크러버(scrubber) 또는 이들 모두를 더 포함하는 것이 바람직하다.
상기 필터는 분리기에 의해 분리된 혼합가스에 남아 있는 탄소나노구조물 입자를 회수하고, 상기 스크러버는 분리기에 의해 분리된 혼합가스에 존재하는 할로겐화물 등과 같은 유해물질을 제거할 수 있다.
상기 탄소나노구조물 제조장치는 반응가스를 반응기에 투입하기 전에 예열시키는 예열기(pre-heater)를 더 포함하는 것이 바람직할 수 있다.
상기 탄소나노구조물 제조장치는 상기 반응기 사이즈가 커질수록, 많은 양의 불활성 가스가 필요하고, 또한 카본원과 동일 또는 그 이상의 양으로 환원성 가스가 주입되어야 하므로, 생산비용이 절감되는 효과가 현저히 상승한다.
상기 탄소나노구조물 제조장치는 플레어 스택(flare stack) 또는 소각로 등과 같은 폐가스 소각수단을 포함하지 않을 수 있다.
상기 탄소나노구조물의 제조방법은 상기 여과된 혼합가스에 상기 탄소나노구조물의 합성 반응에서 소비된 양 만큼의 탄소원(carbon source)을 투입하는 단계를 포함할 수 있다.
상기 탄소나노구조물 제조방법은 폐가스를 소각하는 단계가 제외될 수 있다.
본 발명에서 탄소나노구조물은 탄소 나노튜브, 나노파이버, 풀러렌, 나노콘, 나노호른, 나노로드 등 다양한 형상을 갖는 나노 크기의 탄소구조물을 지칭한다.
도 1 에서는 본 발명을 설명하기 위해 필요한 장치만을 묘사하였으며, 방법을 수행하기 위해 필요한 다른 자명한 장치, 예를 들면 펌프, 부가적인 밸브, 배관, 제어장치, 가압을 위한 boosting 장비 등은 도면에서 생략되었다.
이하, 본 발명의 실시예를 이용하여 구체적으로 설명하지만, 본 발명은, 이들 실시예에 의해 전혀 한정되지 않는다.
<제조예 >
A. 금속촉매 전구체 수용액 제조
Co의 전구체 물질로서 Co(NO3)2-6H2O 및 V의 전구체 물질로서 NH4VO3를 20ml 물에 용해시킨 플라스크 A에 시트르산을 투입하였다. Co:V의 몰비가 10:1이 되도록 하였다. 제조된 금속 수용액은 침전 없이 맑은 용액 상태로 관찰되었다.
B. 지지체 준비
알루미늄계 지지체로서 수산화알루미늄(Aluminum-tri-hydroxide, Al(OH)3; WH-50)을 400℃에서 4시간 소성하여 얻어진 ATH400 2.5g을 플라스크 B에 준비하였다. XRD 분석에 의하면 소성 후 지지체는 AlO(OH)를 40 중량% 이상 함유하는 것으로 나타났다.
C. 담지촉매 제조
플라스크 B에 상기 플라스크 A 용액을 첨가하여, 촉매 금속 전구체를 충분히 ATH400에 담지시킨 후, 60℃ 항온조에서 5분간 교반하여 숙성시켰다. 이를 상기 온도를 유지하면서 150 rpm으로 회전시키며, 진공 건조하에 30 분간 건조시켰다. 건조된 촉매를 120℃에서 1시간 동안 소성시켜 균질한 담지 촉매를 제조하였다.
D. CNT 합성
상기 제조된 CNT 합성용 담지 촉매를 이용하여 파일롯(Pilot) 규모의 유동층 반응기에서 CNT 합성을 시험하였다. 구체적으로 상기 C에서 제조된 CNT 합성용 촉매를 질소 분위기에서 670 ℃의 CNT 유동물 2kg이 존재하는 350 mm 반응기에 공급하고, 촉매 주입 후 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 시간당 10 m3 흘리면서 1시간 동안 합성하여 CNT 집합체를 합성하였다.
실시예 1
상기 제조예에서 합성된 CNT의 총 중량에 대해 55부피% 회수하고 반응기의 온도는 상기 670℃를 유지했다. 반응기에 남은 CNT를 비활성기체를 주입시켜 유동층을 형성한 뒤 담지 촉매 70g을 투입하고 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 시간당 10 m3 흘리면서 1시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.
실시예 2
상기 제조예에서 합성된 CNT의 총 체적에 대해 50 부피% 회수하고 반응기의 온도는 상기 670℃를 유지했다. 반응기에 남은 CNT를 비활성기체를 주입시켜 유동층을 형성한 뒤 담지 촉매 70g을 투입하고 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 시간당 10 m3 흘리면서 1시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.
실시예 3
상기 제조예에서 합성된 CNT의 총 체적에 대해 39.7 부피% 회수하고 반응기의 온도는 상기 670℃를 유지했다. 반응기에 남은 CNT를 비활성기체를 주입시켜 유동층을 형성한 뒤 담지 촉매 70g을 투입하고 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 시간당 10 m3 흘리면서 1시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.
실시예 4
상기 제조예에서 합성된 CNT의 총 체적에 대해 37.1 부피% 회수하고 반응기의 온도는 상기 670℃를 유지했다. 반응기에 남은 CNT를 비활성기체를 주입시켜 유동층을 형성한 뒤 담지 촉매 70g을 투입하고 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 시간당 10 m3 흘리면서 1시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.
실시예 5
상기 제조예에서 합성된 CNT의 총 체적에 대해 36.8 부피% 회수하고 반응기의 온도는 상기 670℃를 유지했다. 반응기에 남은 CNT를 비활성기체를 주입시켜 유동층을 형성한 뒤 담지 촉매 70g을 투입하고 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 시간당 10 m3 흘리면서 1시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.
실시예 6
상기 제조예에서 합성된 CNT의 총 체적에 대해 34.6 부피% 회수한 것을 제외하고는 실시예 1과 동일한 방법으로 CNT 집합체를 합성하였다.
실시예 7
상기 제조예에서 합성된 CNT의 총 체적에 대해 30.5 부피% 회수한 것을 제외하고는 실시예 1과 동일한 방법으로 CNT 집합체를 합성하였다.
비교예 1
상기 제조예에서 합성된 CNT의 총 체적에 대해 25.5 부피% 회수한 것을 제외하고는 실시예 1과 동일한 방법으로 CNT 집합체를 합성하였다.
비교예 2
상기 제조예에서 합성된 CNT의 총 체적에 대해 20.7 부피% 회수한 것을 제외하고는 실시예 1과 동일한 방법으로 CNT 집합체를 합성하였다.
잔류율 및 전환율
반응기 상단과 하단의 압력차를 구하여 다음과 같은 대응관계로부터 잔류율을 산출하였다.
압력차 (kPa) 잔류율
0.326 0.4
0.273 0.45
0.24 0.5
0.17 0.6
0.138 0.65
0.124 0.7
0.108 0.75
0.0915 0.8
상기 실시예 및 비교예에서 잔류율 변화 및 에틸렌가스의 카본나노튜브 전환율을 도 3 및 표 2에 나타내었다.
구 분 잔류율x100(%) 전환율(%)
실시예 1 45.0 50.0
실시예 2 50.0 52.0
실시예 3 60.3 54.7
실시예 4 62.9 55.8
실시예 5 63.2 57.9
실시예 6 65.4 58.4
실시예 7 69.5 61.8
비교예 1 74.5 66.0
비교예 2 79.3 70.0
도 3으로부터 에틸렌 전환율이 50%를 초과하였고 잔류율이 높아질수록 에틸렌 전환율이 높아지는 것을 알 수 있다. 구체적으로 잔류율(x)과 에틸렌 전환율(y)은 하기 관계식을 만족함을 알 수 있다.
y = 0.57 x + 22.66
이로부터 유동층 반응기에서 합성된 CNT의 일부를 잔류시켜 유동재료로 사용하는 경우 안정적인 연속 공정이 가능함을 확인할 수 있다.
복합재 제조 및 전도도 평가
실시예 및 비교예에서 얻은 카본나노튜브 3중량%를 폴리카보네이트 수지(LUCON PC 1300-22) 97중량%와 함께 혼합한 후 압출기를 사용하여 다음과 같이 압출하였다. 상기 혼합물을 주 피더(main feeder)를 통해 투입 및 용융시켰다. 상기 복합물이 다이를 통해 가닥으로 뽑아져 나오고, 이를 냉각시킨 후 펠렛타이저를 통해 잘게 잘라줌으로써 펠렛 형태의 복합재를 얻었다.
복합재의 면저항 특성을 측정한 결과를 도 4에 나타내었다. 실시예 1 내지 7의 경우 면저항이 108 Ω/sq 이하로 나타나는 반면, 비교예 1 및 2에서는 면저항 값이 현저히 증가한 수치를 나타냄을 알 수 있다.
본 발명에 따른 탄소나노구조물의 제조방법은 제조된 탄소나노구조물의 일부를 잔류시켜 유동재료로서 사용함으로써 연속공정이 가능하며, 유동재료로 사용되는 탄소나노구조물의 최적비율을 제공함으로써, 탄소원과 촉매의 접촉시간의 증대 및 유동물질의 흐름이 최적화 되어 탄소원의 전환효율을 향상시킬 수 있다.

Claims (14)

  1. 유동층 반응기에서 탄소원을 포함하는 반응가스와 촉매를 유동시켜 탄소나노구조물을 합성하는 것을 포함하며,
    합성된 탄소나노구조물을 회수함에 있어서 일부를 유동층 반응기에 잔류시켜 유동 재료로 사용하고,
    하기 수학식 1에 따른 탄소나노구조물의 잔류율이 0.4 이상 0.7 이하인 것인 탄소나노구조물 제조방법:
    [수학식 1]
    탄소나노구조물 잔류율 = 잔류된 탄소나노구조물 체적/(초기 잔류 탄소 나노 구조물 체적 + 생성된 탄소 나노 구조물 체적).
  2. 제1항에 있어서,
    상기 탄소나노구조물의 잔류율은 반응기 하단과 반응기 상단의 압력차이에 의해 산출되는 것인 탄소나노구조물 제조 방법.
  3. 제1항에 있어서,
    잔류율(y)과 탄소원의 전환율(x)이 하기 수학식 2를 만족하는 것을 특징으로 하는 탄소나노구조물 제조 방법:
    y = p x + q
    상기 식에서 p는 0.4 ~ 0.7의 상수이고, q는 15 ~ 30 의 상수임.
  4. 제1항에 있어서,
    상기 반응기에 공급되는 촉매의 양은 하기 수학식 3을 만족하도록 하는 것인 탄소나노구조물 제조방법:
    [수학식 3]
    촉매공급율 = b/(a+b) ≤ 0.1
    상기 식에서, a 는 유동층 반응기에 잔류하는 탄소나노구조물의 질량(g)이고, b는 반응기에 공급되는 촉매의 질량(g)이다.
  5. 제1항에 있어서,
    합성된 탄소나노구조물의 회수 및 촉매 공급 공정이 연속공정으로 진행되는 것인 탄소나노구조물의 제조방법.
  6. 제1항에 있어서,
    합성된 탄소나노구조물의 회수 주기 및 촉매 공급 주기는 합성된 탄소나노구조물이 상기 반응기 내부에 충전되는 정도를 기준으로 결정되는 것을 특징으로 하는 탄소나노구조물의 제조방법.
  7. 제1항에 있어서,
    상기 반응 가스는 환원성 가스 및 불활성 가스 중 하나 이상을 더 포함하는 것을 특징으로 하는 탄소나노구조물의 제조방법.
  8. 제1항에 있어서,
    상기 합성된 탄소나노구조물 회수공정시 불활성 가스를 공급하여 유동시킴으로써 회수하는 것을 특징으로 하는 탄소나노구조물의 제조방법.
  9. 제1항에 있어서,
    상기 합성된 탄소나노구조물의 회수공정 중에도 탄소원을 포함하는 반응가스가 공급됨으로써 탄소나노구조물 합성 반응이 계속 진행되도록 하는 것을 특징으로 하는 탄소나노구조물의 제조방법.
  10. 제1항에 있어서,
    상기 회수공정 이후에도 반응기에 지속적으로 불활성 가스를 주입함으로써, 잔류하는 탄소나노구조물이 유동상을 형성하도록 하는 것을 특징으로 하는 탄소나노구조물의 제조방법.
  11. 제1항에 있어서,
    상기 탄소원의 전환률이 50% 이상인 탄소나노구조물의 제조방법.
  12. 제1항에 있어서,
    상기 반응기가,
    촉매가 공급되는 촉매공급관;
    탄소원을 포함하는 반응가스가 공급되는 반응가스 공급관; 및
    상기 반응기의 하부에 위치하며, 생성된 탄소나노구조물이 회수되는 생성물 배출관을 구비하는 것을 특징으로 하는 탄소나노구조물의 제조방법.
  13. 제1항에 있어서,
    상기 반응기가 화학기상증착 반응기인 것을 특징으로 하는 탄소나노구조물의 제조방법.
  14. 제1항에 있어서,
    상기 탄소나노구조물이 탄소나노튜브인 탄소나노구조물의 제조방법.
PCT/KR2016/002342 2015-03-09 2016-03-09 탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재 WO2016144092A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16761979.0A EP3269684B1 (en) 2015-03-09 2016-03-09 Carbon nanostructure preparation method
CN201680005272.8A CN107108221B (zh) 2015-03-09 2016-03-09 碳纳米结构体的制备方法,由该方法制备的碳纳米结构体及包含该碳纳米结构体的复合材料
US15/522,984 US10457556B2 (en) 2015-03-09 2016-03-09 Carbon nanostructure preparation method, carbon nanostructure prepared by means of same, and composite material comprising same
JP2016562270A JP6508602B2 (ja) 2015-03-09 2016-03-09 カーボンナノ構造物の製造方法、これによって製造されたカーボンナノ構造物及びこれを含む複合材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0032669 2015-03-09
KR1020150032669A KR101797809B1 (ko) 2015-03-09 2015-03-09 탄소 나노구조물의 제조방법, 이에 의해 제조된 탄소 나노구조물 및 이를 포함하는 복합재

Publications (1)

Publication Number Publication Date
WO2016144092A1 true WO2016144092A1 (ko) 2016-09-15

Family

ID=56879223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002342 WO2016144092A1 (ko) 2015-03-09 2016-03-09 탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재

Country Status (6)

Country Link
US (1) US10457556B2 (ko)
EP (1) EP3269684B1 (ko)
JP (1) JP6508602B2 (ko)
KR (1) KR101797809B1 (ko)
CN (1) CN107108221B (ko)
WO (1) WO2016144092A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024574A (ja) * 2016-08-04 2018-02-15 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. カーボンナノチューブの製造方法
US20190002285A1 (en) * 2017-07-03 2019-01-03 Sk Innovation Co., Ltd. Method of Producing Carbon Nanotubes in Fluidized Bed Reactor
US11993516B2 (en) 2019-12-06 2024-05-28 Lg Chem, Ltd. System and method for producing carbon nanotubes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614395B2 (en) 2017-10-16 2023-03-28 The Royal Institution For The Advancement Of Learning/Mcgill University Miniaturized flow cell and system for single-molecule nanoconfinement and imaging
KR102422089B1 (ko) * 2019-02-28 2022-07-18 주식회사 엘지화학 유동층 반응기
KR102517481B1 (ko) * 2019-08-09 2023-04-05 주식회사 엘지화학 탄소나노튜브의 제조방법 및 제조 시스템
WO2024054162A1 (en) * 2022-06-03 2024-03-14 Bursa Uludağ Üni̇versi̇tesi̇ A nano tube production chamber and production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040030718A (ko) * 2001-06-28 2004-04-09 엥스띠뛰 나씨오날 뽈리떼끄니끄 드 뚤루즈 유동상에서의 규칙 탄소 나노튜브의 선택적 제조 방법
US20040151654A1 (en) * 2001-05-25 2004-08-05 Fei Wei Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
KR20110027715A (ko) * 2008-06-30 2011-03-16 쇼와 덴코 가부시키가이샤 탄소 나노재료의 제조방법 및 탄소 나노재료의 제조 시스템

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284676A (en) 1990-08-17 1994-02-08 Carbon Implants, Inc. Pyrolytic deposition in a fluidized bed
EP0643619B1 (en) * 1991-11-18 1996-04-17 Carbon Implants, Inc. Pyrolytic deposition in a fluidized bed
DE102007062421A1 (de) * 2007-12-20 2009-06-25 Bayer Technology Services Gmbh Verfahren zur Herstellung von Stickstoff-dotierten Kohlenstoffnanoröhrchen
JP2011016701A (ja) * 2009-07-10 2011-01-27 Showa Denko Kk カーボンナノチューブの製造装置
JP5256166B2 (ja) * 2009-10-27 2013-08-07 日本ポリエチレン株式会社 オレフィン重合用触媒及びオレフィン重合体の製造方法
FR2972942B1 (fr) * 2011-03-21 2017-11-24 Arkema France Procede de fabrication de nanotubes de carbone et appareil pour la mise en oeuvre du procede.
TWI627130B (zh) 2012-04-18 2018-06-21 美商艾克頌美孚上游研究公司 由連續反應器流出物移出碳奈米管之方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040151654A1 (en) * 2001-05-25 2004-08-05 Fei Wei Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
KR20040030718A (ko) * 2001-06-28 2004-04-09 엥스띠뛰 나씨오날 뽈리떼끄니끄 드 뚤루즈 유동상에서의 규칙 탄소 나노튜브의 선택적 제조 방법
KR20110027715A (ko) * 2008-06-30 2011-03-16 쇼와 덴코 가부시키가이샤 탄소 나노재료의 제조방법 및 탄소 나노재료의 제조 시스템

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, YAO ET AL.: "Agglomerated Carbon Nanotubes and Its Mass Production in a Fluidized-bed Reactor", PHYSICA B: CONDENSED MATTER, vol. 323, no. 1-4, 2002, pages 327 - 329, XP002254672 *
YU , HAO ET AL.: "Growth of Branch Carbon Nanotubes on Carbon Nanotubes as Support", DIAMOND AND RELATED MATERIALS, vol. 15, no. 9, 2006, pages 1447 - 1451, XP028000687 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024574A (ja) * 2016-08-04 2018-02-15 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. カーボンナノチューブの製造方法
JP7100965B2 (ja) 2016-08-04 2022-07-14 エスケー イノベーション カンパニー リミテッド カーボンナノチューブの製造方法
US20190002285A1 (en) * 2017-07-03 2019-01-03 Sk Innovation Co., Ltd. Method of Producing Carbon Nanotubes in Fluidized Bed Reactor
CN109205592A (zh) * 2017-07-03 2019-01-15 Sk新技术株式会社 在流化床反应器中制造碳纳米管的方法
JP2019014645A (ja) * 2017-07-03 2019-01-31 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 流動床反応器におけるカーボンナノチューブの製造方法
US11053123B2 (en) * 2017-07-03 2021-07-06 Sk Innovation Co., Ltd. Method of producing carbon nanotubes in fluidized bed reactor
JP7433752B2 (ja) 2017-07-03 2024-02-20 エスケー イノベーション カンパニー リミテッド 流動床反応器におけるカーボンナノチューブの製造方法
US11993516B2 (en) 2019-12-06 2024-05-28 Lg Chem, Ltd. System and method for producing carbon nanotubes

Also Published As

Publication number Publication date
CN107108221B (zh) 2020-05-01
EP3269684A1 (en) 2018-01-17
US20180002178A1 (en) 2018-01-04
EP3269684A4 (en) 2018-09-19
KR20160109039A (ko) 2016-09-21
US10457556B2 (en) 2019-10-29
CN107108221A (zh) 2017-08-29
EP3269684B1 (en) 2020-06-03
JP6508602B2 (ja) 2019-05-08
JP2018511544A (ja) 2018-04-26
KR101797809B1 (ko) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2016144092A1 (ko) 탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재
KR101460373B1 (ko) 유동층에서 탄소 나노튜브를 제조하는 방법
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
KR100376202B1 (ko) 탄소나노튜브 또는 탄소나노섬유 합성용 기상합성 장치 및이를 사용한 합성방법
WO2016144104A1 (ko) 탄소 나노구조물의 제조방법, 이에 의해 제조된 탄소 나노구조물
KR101486821B1 (ko) 메탈 멤브레인을 이용한 연속식 카본나노튜브 제조장치 및 제조방법
KR101329384B1 (ko) 가스 분리 유닛을 갖는 카본나노튜브의 연속 제조장치 및 이를 이용한 연속 제조방법
KR102095517B1 (ko) 온도조절 수단이 구비된 유동층 반응기 및 이를 이용한 탄소나노구조물의 제조방법
KR101800309B1 (ko) 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법
KR101771290B1 (ko) 탄소 나노구조물의 제조장치 및 제조방법
KR101487975B1 (ko) 연속식 카본나노튜브 제조장치 및 제조방법
KR101784043B1 (ko) 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법
KR101783512B1 (ko) 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법
KR20240126027A (ko) 촉매 화학 증착을 통한 탄소 나노튜브 및 하이브리드 물질 합성 시스템 및 방법
WO2021029579A1 (ko) 탄소나노튜브의 제조방법 및 제조 시스템
WO2017052349A1 (ko) 탄소나노튜브 선택도를 조절할 수 있는 탄소나노튜브 제조방법, 이로부터 제조된 탄소나노튜브를 포함하는 복합재
KR101773653B1 (ko) 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법
KR101735154B1 (ko) 유동층 반응기 및 이를 이용한 탄소나노 구조물 제조방법
KR101741298B1 (ko) 탄소 나노구조물의 제조방법
WO2021112511A1 (ko) 탄소나노튜브 제조 시스템 및 제조방법
WO2003066521A1 (fr) Procede et appareil de production d&#39;une fine matiere carbonee
KR20150120615A (ko) 촉매 공급 장치, 이를 구비한 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법
WO1990010496A1 (en) Apparatus
KR100881878B1 (ko) 원료 분무식 고효율 카본 나노 구조물 제조 방법 및 장치
JP2024538074A (ja) カーボンナノチューブ合成装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016562270

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761979

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016761979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15522984

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE