WO2016143801A1 - セパレータ及び非水系電池 - Google Patents

セパレータ及び非水系電池 Download PDF

Info

Publication number
WO2016143801A1
WO2016143801A1 PCT/JP2016/057251 JP2016057251W WO2016143801A1 WO 2016143801 A1 WO2016143801 A1 WO 2016143801A1 JP 2016057251 W JP2016057251 W JP 2016057251W WO 2016143801 A1 WO2016143801 A1 WO 2016143801A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
battery
fiber length
thickness
raw material
Prior art date
Application number
PCT/JP2016/057251
Other languages
English (en)
French (fr)
Inventor
福永 了一
昌彦 上田
Original Assignee
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッポン高度紙工業株式会社 filed Critical ニッポン高度紙工業株式会社
Priority to JP2017505361A priority Critical patent/JPWO2016143801A1/ja
Priority to EP16761769.5A priority patent/EP3270441A4/en
Priority to CN201680013839.6A priority patent/CN107431168A/zh
Priority to KR1020177027250A priority patent/KR20170127480A/ko
Publication of WO2016143801A1 publication Critical patent/WO2016143801A1/ja
Priority to US15/696,703 priority patent/US20170373294A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator that can be suitably used for a non-aqueous battery.
  • Lithium ion secondary batteries have attracted attention as secondary batteries that meet this requirement.
  • a lithium ion secondary battery has a high energy density because an average voltage of about 3.7 V is obtained.
  • an aqueous electrolyte solution used in an alkaline secondary battery cannot be used, it is resistant to oxidation.
  • a highly reducing non-aqueous electrolyte is used.
  • a porous film mainly made of polyolefin such as polyethylene is often used as a separator used for a lithium ion secondary battery.
  • troubles such as overcharge progress and the temperature exceeds the melting temperature of polyolefin. If it rises, it may be short-circuited, causing thermal runaway and leading to ignition.
  • lithium ion secondary batteries often use graphite close to the lithium metal deposition potential as the negative electrode material.
  • the charging voltage is 4.2 V or more
  • lithium metal is likely to be deposited. If the overcharge state continues further, lithium dendrite is generated, breaks through the separator, causes a short circuit, and as a result, thermal runaway may occur, leading to ignition.
  • Patent Document 3 a separator in which a heat-resistant porous layer made of a heat-resistant polymer such as aromatic polyamide is laminated on at least one surface of a polyolefin microporous film has been proposed.
  • Patent Document 3 a separator in which a heat-resistant porous layer made of a heat-resistant polymer such as aromatic polyamide is laminated on at least one surface of a polyolefin microporous film.
  • Patent Document 4 a separator having a surface coated with a heat-resistant filler has also been proposed (Patent Document 4).
  • the heat-resistant filler is bonded to the surface of the substrate using an organic binder and has a high possibility of falling off. Under high temperature conditions, the binder may be deteriorated.
  • the present invention has been made for the purpose of solving the above problems, and provides a separator that has high safety and contributes to heat resistance and high output, and a nonaqueous battery including the separator. Let it be an issue.
  • the following configuration is provided. That is, using a raw material obtained by fibrillating a regenerated cellulose fiber having a fiber diameter of 2.0 dtex or less and a fiber length of 8 mm or less, the thickness is 5 to 60 ⁇ m, the porosity is 30 to 80%, and the average pore diameter of the through holes is 0.
  • a porous sheet having a thickness of 0.03 ⁇ m to 1.0 ⁇ m is included. For example, 30% or more of the total number of through holes is distributed within a range of ⁇ 50% of the average hole diameter.
  • the raw material contains 60 to 100% of regenerated cellulose fiber.
  • the porous sheet is pressed.
  • a non-aqueous battery using any of the separators described above is used.
  • the present invention it is possible to provide an optimum separator for a non-aqueous battery having high output characteristics, high reliability, and heat resistance. Furthermore, by using a battery using the separator according to the present embodiment, it is possible to provide a battery that is most suitable for power supply for electric vehicles where safety is important.
  • the separator of this embodiment has a regenerated cellulose fiber having a fiber diameter of 2.0 dtex or less and a fiber length of 8 mm or less as an essential component, and the average fiber length of the regenerated cellulose is 0.3 to 1 by beating (fibrillation treatment).
  • a porous sheet obtained by using 60% by mass or more of a raw material having a fibril ratio (Kayani fines ratio) of 2 to 50% in a range of 0.5 mm, and incorporating the separator in a non-aqueous battery.
  • fibrillation refers to a state in which at least a part of fibers mainly having a portion finely divided in a direction parallel to the fiber axis is 1 ⁇ m or less.
  • a method using a refiner or a beater is particularly preferable.
  • any of natural fibers such as Manila hemp, sisal pulp, and softwood kraft pulp, and synthetic fibers such as PET fiber, PP fiber, and PPS fiber can be used. Good.
  • the degree of beating may be beaten according to the degree of beating of the regenerated cellulose fiber. And the mixing ratio of the regenerated cellulose fiber beaten and other fibers is determined by the amount of the regenerated cellulose fiber beating raw material.
  • the separator of the present embodiment is a wet paper machine using a combination paper machine in which the same or different kinds of paper machines are combined from a circular paper machine, a long paper machine, a short paper machine, and an inclined paper machine. It can be manufactured by a so-called wet method.
  • the raw material slurry is appropriately added with a dispersant, a thickener, an inorganic filler, an organic filler, an antifoaming agent, and the like as necessary.
  • the raw slurry used in this embodiment is prepared to a solid content concentration of about 10 to 0.0005 mass%. In actual use, the raw material slurry is further diluted to a predetermined concentration to make paper.
  • the separator of the present embodiment obtained by papermaking can be used as a separator for a lithium ion secondary battery, and performs press processing such as calendering and thermal calendering to control the porosity and pore diameter. It is possible.
  • porous sheets containing regenerated cellulose fibers that have been beaten are subjected to a press treatment with a linear pressure of 50 kg / cm to 750 kg / cm. Retain sex.
  • a conventional polyolefin microporous film if the press treatment is performed, the pores are closed and cannot function as a separator.
  • the “average fiber length” of the regenerated cellulose fiber used in this embodiment means the “length-weighted average fiber length” calculated as the continuous fiber length L (l) according to the above.
  • the “fibrillation rate” means fineness (l) calculated simultaneously.
  • the separator in this embodiment will be described in more detail.
  • the regenerated cellulose fiber is used as the main raw material, and the raw material of the solvent-spun cellulose fiber is used in 60% by mass to 100% by mass. It is obtained.
  • the beating degree indicating the degree of beating is CSF (Canadian Standard Freeness), and the range of about 600 mL to 0 mL is a standard.
  • the separator according to the present embodiment preferably has a thickness of 5 ⁇ m to 60 ⁇ m and a density of 0.25 g / cm 3 to 1.1 g / cm 3 . More preferably, the thickness is 10 to 25 ⁇ m and the density is 0.3 to 0.60 g / cm 3 .
  • the thickness of the porous sheet is less than 5 ⁇ m, the uniformity may be lost and the separator function may be impaired.
  • the thickness exceeds 25 ⁇ m, there is a concern that the resistance value derived from the separator when incorporated in a non-aqueous battery increases.
  • the uniformity may be lacking. If the density exceeds 1.1 g / cm 3 , the resistance when incorporated in a non-aqueous battery increases. There is a concern.
  • the thickness is preferably 10 ⁇ m to 25 ⁇ m from the viewpoint of short circuit prevention, electrolytic solution retention characteristics, and separator resistance.
  • a separator thinner than 10 ⁇ m may deteriorate short-circuit prevention and electrolyte retention.
  • the thickness exceeds 25 ⁇ m, the distance between the electrodes becomes long, the resistance of the separator itself increases, and the battery performance deteriorates.
  • Examples of the positive electrode active material in the non-aqueous battery using the separator of this embodiment include metal chalcogen compounds such as TiS 2 , MoS 2 , and NbSe, metals such as organic sulfur, V 2 O 5 , MnO 2 , and Nb 2 O 5.
  • a mixture of any one of the above polymers and carbon fluoride is used.
  • a lithium ion may only dedoping One dope, the general formula Li x M y N 2 O 2 (M represents at least one kind of fiber metal, N represents represents at least one non-transition metals. M is not particularly limited, and examples thereof include Co, Ni, Fe, Mn, V, and Mo. Similarly, N is not particularly limited, but includes Al, In, and Sn). Alkali and alkaline earth metal-containing composite oxides are preferred.
  • alkali such as Li, Na, Mg metal and LiAl
  • alkaline earth metal alloy carbon-based material, silicon or silicide, tin-based material, polyacene, poly Any one of conductive polymer materials such as p-phenylene and metal oxides such as Li x Fe 2 O 2 and Li x WO 2 is used.
  • a negative electrode active material capable of dedoping and doping lithium ions is desirable, and calcined products of graphite, pyrolytic carbon, pitch coke, needle coke, petroleum coke, organic polymer (phenol resin, furan resin, polyacrylonitrile, etc.) Or the like, or lithium such as lithium titanate or sodium titanate, or an insertable negative electrode such as sodium or magnesium is preferable.
  • LiClO 4 LiPF 6 , LiAsF 6 , LiBF 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2
  • LiPF 6 LiPF 6
  • LiAsF 6 LiBF 4
  • CH 3 SO 3 Li LiPF 6
  • CF 3 SO 3 Li LiPF 6
  • CF 3 SO 3 Li LiPF 6
  • CF 3 SO 3 Li LiPF 6
  • CF 3 SO 3 Li LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2
  • What mixed any 1 type or 2 types or more of lithium salts, such as NLi can be used.
  • Examples of the solvent for the electrolyte used in the non-aqueous battery of this embodiment include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate, glyme, etc. Use a mixture of more than seeds.
  • examples of the positive electrode active material, the negative electrode active material, the electrolyte of the electrolytic solution, and the solvent that can be used in the non-aqueous battery according to the present embodiment are exemplified, but the present invention is not limited to the above.
  • the above-mentioned standard is obtained by using a predetermined beater such as a refiner to beat beaten regenerated cellulose fibers cut to 2 to 8 mm. Beat until you have a moderate CSF number.
  • a predetermined beater such as a refiner to beat beaten regenerated cellulose fibers cut to 2 to 8 mm. Beat until you have a moderate CSF number.
  • natural fibers that are mixed raw materials are similarly subjected to appropriate beating, and then these beating raw materials are mixed as appropriate to produce a porous sheet having a predetermined thickness.
  • the porous sheet is subjected to a press treatment at a linear pressure of 50 kg / cm to 750 kg / cm under conditions of normal temperature to 170 ° C. Using the separator thus obtained, a non-aqueous battery of this embodiment is manufactured.
  • the basis weight for estimating the porosity was measured in accordance with JIS P8124.
  • the thickness was measured by the method defined in JIS C 2300-2.
  • the pore diameter measurement was based on JIS K3832, ASTM F316-03, and ASTM E1294-89 using a capillary flow meter CFP-1200 (manufactured by PMI). From the frequency distribution of each pore diameter, the percentage of the total number of through-holes existing within a range of ⁇ 50% of the average pore diameter was tabulated as the degree of pore concentration.
  • Separator resistance was measured using an assembly-type cell and cut into 16 mm ⁇ impregnated with a 1: 1 (volume ratio) electrolyte of diethylene carbonate / ethylene carbonate using LiPF 6 (1M concentration) as an electrolyte between SUS304 electrodes of 15.5 mm ⁇ . Further, an AC impedance of 0.5 Hz to 1 MHz was measured using an impedance meter with the separator interposed therebetween, and the intersection value when impedance was plotted with the real axis as the horizontal axis and the imaginary axis as the vertical axis was defined as the separator resistance.
  • a coin-type non-coating cell having a 2032 type coin cell shape by impregnating the positive electrode, negative electrode and separator with a 1: 1 (volume ratio) electrolytic solution of diethylene carbonate / ethylene carbonate using LiPF 6 (1M concentration) as an electrolyte.
  • a water-based battery is used.
  • the high temperature storage test is performed by charging the prepared non-aqueous battery at a constant current of up to 4.2 V at a rate of 0.5 C at 30 ° C. and then leaving it at 200 ° C. for 10 minutes and then checking for short-circuit failure.
  • Example 1 100% raw material beaten to an average fiber length of about 0.4 mm and a fibrillation rate of 3.55% of a regenerated cellulose having a fiber diameter of 1.0 dtex and a fiber length of 5 mm is made as a porous sheet having a thickness of about 20 ⁇ m, This is the separator of Example 1. Regarding the battery using this separator, the battery capacity, the initial short-circuit defect rate, the short-circuit defect rate after 10 minutes at 200 ° C. indicating heat resistance, and the short-circuit defect rate at 5 V charge were measured. The measurement results of Example 1 are shown in Table 1.
  • Example 2 Using an average fiber length of regenerated cellulose having a fiber diameter of 2.0 dtex and a fiber length of 5 mm of 0.90 mm and using 100% of a raw material beaten to a fibrillation rate of 5.51%, a porous sheet having a thickness of about 20 ⁇ m is made. This is the separator of Example 2. A battery using this separator was measured in the same manner. The measurement results of Example 2 are shown in Table 1.
  • Comparative Example 1 Using a raw material 100% beaten to an average fiber length of regenerated cellulose having a fiber diameter of 2.5 dtex and a fiber length of 5 mm to 1.45 mm and a fibrillation rate of 2.1%, a porous sheet having a thickness of about 20 ⁇ m is made. This is the separator of Comparative Example 1. A battery using this separator was measured in the same manner. The results are shown in Table 1 above.
  • Example 3 A porous sheet having a thickness of about 20 ⁇ m was made using 100% of a raw material beaten to a fiber diameter of 1.5 dtex and a fiber length of 2 mm, and the average fiber length of the regenerated cellulose was 0.80 mm. And A battery using this separator was measured in the same manner. The results are shown in Table 2 above.
  • Example 4 Using a raw material 100% beaten to a fiber diameter of 1.5 dtex, a fiber length of 8 mm, an average fiber length of 1.2 mm, and a fibrillation rate of 3.29%, a porous sheet having a thickness of about 20 ⁇ m is made. This is the separator of Example 4. A battery using this separator was measured in the same manner. The results are shown in Table 2.
  • Comparative Example 2 A porous sheet having a thickness of about 20 ⁇ m was made using 100% of a raw material obtained by beating the average fiber length of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 10 mm to a fibrilization rate of 1.2%. Is the separator of Comparative Example 2. A battery using this separator was measured in the same manner. The results are shown in Table 2.
  • Comparative Example 3 Using a raw material 100% beaten to an average fiber length of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm to 0.21 mm and a fibrillation rate of 52.1%, a porous sheet having a thickness of about 20 ⁇ m is made. This is the separator of Comparative Example 3. A battery using this separator was measured in the same manner. The results are shown in Table 3.
  • Example 5 Using a raw material 100% beating the average fiber length of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm to a fibrillation rate of 4.2%, a porous sheet having a thickness of about 20 ⁇ m was made. This is the separator of Example 5. A battery using this separator was measured in the same manner. The results are shown in Table 3.
  • Comparative Example 4 Using a raw material 100% beaten to a fiber diameter of 1.5 dtex, a fiber length of 5 mm and an average fiber length of 1.65 mm and a fibrillation rate of 2.0%, a porous sheet having a thickness of about 20 ⁇ m is made. This is the separator of Comparative Example 4. A battery using this separator was measured in the same manner. The results are shown in Table 3.
  • Comparative Example 5 A porous sheet having a thickness of about 20 ⁇ m is made using 100% raw material beaten to an average fiber length of 1.2 mm and a fiber length of 1.2 mm and a fibrillation rate of less than 0.9%. This is the separator of Comparative Example 5. A battery using this separator was measured in the same manner. The results are shown in Table 4.
  • Example 6 Using a raw material 100% beaten to a fiber diameter of 1.5 dtex, a fiber length of 5 mm, an average fiber length of 1.3 mm, and a fibrillation rate of 4.9%, a porous sheet having a thickness of about 20 ⁇ m is made. This is the separator of Example 6. A battery using this separator was measured in the same manner. The results are shown in Table 4.
  • Example 7 A porous sheet having a thickness of about 20 ⁇ m was made using 100% raw material beaten to an average fiber length of 1.12 mm and a fibrillation rate of about 32.1% of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm. This is the separator of Example 7. A battery using this separator was measured in the same manner. The results are shown in Table 4.
  • Comparative Example 7 Using a raw material 100% beaten to a fiber diameter of 1.5 dtex, a fiber length of 5 mm, an average fiber length of regenerated cellulose of 1.3 mm, and a fibrillation rate of 5.44%, a porous sheet having a thickness of about 3 ⁇ m is made. This is the separator of Comparative Example 7. A battery using this separator was measured in the same manner. The results are shown in Table 5.
  • Example 8 Using a raw material 100% beaten to an average fiber length of 0.76 mm and a fibrillation rate of 6.0% with a fiber diameter of 1.5 dtex and a fiber length of 5 mm, a porous sheet having a thickness of about 5 ⁇ m is made. This is the separator of Example 8. A battery using this separator was measured in the same manner. The results are shown in Table 5.
  • Example 9 Using an average fiber length of 0.95 mm of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm, using a raw material 100% beaten to a fibrillation rate of 7.21%, a porous sheet having a thickness of about 25 ⁇ m is made. This is the separator of Example 9. A battery using this separator was measured in the same manner. The results are shown in Table 5.
  • Example 10 Using an average fiber length of 1.1 mm of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm, and using 100% raw material beaten to a fibrillation rate of 6.11%, a porous sheet having a thickness of about 40 ⁇ m is made. This is the separator of Example 10. A battery using this separator was measured in the same manner. The results are shown in Table 5.
  • Comparative Example 8 Using an average fiber length of 1.05 mm of regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm, using a raw material 100% beaten to a fibrillation rate of 5.63%, a porous sheet having a thickness of about 65 ⁇ m is made. This is the separator of Comparative Example 8. A battery using this separator was measured in the same manner. The results are shown in Table 5.
  • Example 11 Using an average fiber length of 0.95 mm of regenerated cellulose with a fiber diameter of 1 dtex and a fiber length of 5 mm, and using 100% raw material beaten to a fibrillation rate of 25%, the porous material has a thickness of about 20 ⁇ m and a porosity of about 65%. A sheet is made and this is used as the separator of Example 11. A battery using this separator was measured in the same manner. The results are shown in Table 6.
  • Example 12 Using 100% raw material beaten to a fiber diameter of 1.0 dtex, fiber length of 5 mm, average fiber length of regenerated cellulose of 0.5 mm, fibrillation rate of about 28%, thickness of about 20 ⁇ m, average pore diameter of about 0.03 ⁇ m A porous sheet was made so that the separator of Example 12 was obtained. A battery using this separator was measured in the same manner. The results are shown in Table 7.
  • Example 13 Using 100% raw material beaten to a fiber diameter of 1.5 dtex, an average fiber length of 0.85 mm of regenerated cellulose having a fiber length of 5 mm, and a fibrillation rate of 10.5%, the thickness is about 20 ⁇ m, and the average pore diameter is about 0.00. A porous sheet is made to have a thickness of 4 ⁇ m, and this is used as the separator of Example 13. A battery using this separator was measured in the same manner. The results are shown in Table 7.
  • Example 14 Using an average fiber length of 1.1 mm of regenerated cellulose having a fiber diameter of 2.0 dtex, a fiber length of 5 mm, and a raw material 100% beaten to a fibrillation rate of 3.2%, a thickness of about 20 ⁇ m and an average pore diameter of about 0 A porous sheet was made to have a thickness of 9 ⁇ m, and this was used as the separator of Example 14. A battery using this separator was measured in the same manner. The results are shown in Table 7.
  • Comparative Example 12 100% raw material beaten to 1.51tex fiber diameter, 5mm fiber length, regenerated cellulose average fiber length of 1.81mm, fibrillation rate of 0.8%, thickness of about 20 ⁇ m, average pore diameter of about 1 ⁇ m A porous sheet is made so that the degree of pore concentration is about 5%, and this is used as the separator of Comparative Example 12. A battery using this separator was measured in the same manner. The results are shown in Table 8.
  • Comparative Example 13 Using an average fiber length of 1.46 mm of regenerated cellulose having a fiber diameter of 1.5 dtex, a fiber length of 5 mm, and 100% of a raw material beaten to a fibrillation rate of 1.2%, a thickness of about 20 ⁇ m and an average pore diameter of about 0.1 mm. A porous sheet is made so that the pore concentration is about 25% at 8 ⁇ m, and this is used as the separator of Comparative Example 13. A battery using this separator was measured in the same manner. The results are shown in Table 8.
  • Comparative Example 14 Using a raw material mixed with 50% regenerated cellulose (fiber diameter 1.5dtex, fiber length 5mm) and manila hemp 50% and beaten to an average fiber length of 1.4mm and fibrillation rate of 18.1%, the thickness is about 20 ⁇ m. Thus, a porous sheet is made, and this is used as the separator of Comparative Example 14. A battery using this separator was measured in the same manner. The results are shown in Table 9.
  • Example 15 A raw material obtained by mixing 65% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm and 35% Manila hemp and beating the fiber to an average fiber length of 1.15 mm and a fibrillation rate of 12.1% is about 20 ⁇ m in thickness. Thus, a porous sheet is made and this is used as the separator of Example 15. A battery using this separator was measured in the same manner. The results are shown in Table 9.
  • Example 16 Using a raw material mixed with 80% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm and 20% Manila hemp and beaten to an average fiber length of 1.11 mm and a fibrillation rate of 8.5%, the thickness is about 20 ⁇ m. Thus, a porous sheet is made and this is used as the separator of Example 16. A battery using this separator was measured in the same manner. The results are shown in Table 9.
  • Comparative Example 15 50% regenerated cellulose with a fiber diameter of 1.5 dtex and fiber length of 5 mm and 50% PET fine fibers with a fiber diameter of 0.2 dtex fiber length of 5 mm are mixed and beaten to an average fiber length of 1.35 mm and a fibrillation rate of 4.6%.
  • a porous sheet is made to have a thickness of about 20 ⁇ m, and this is used as the separator of Comparative Example 15.
  • a battery using this separator was measured in the same manner. The results are shown in Table 10.
  • Example 17 Mix 65% regenerated cellulose (fiber diameter 1.5dtex, fiber length 5mm) and 35% PET fine fiber (fiber diameter 0.2dtex fiber length 5mm) and beat to average fiber length 1.20mm, fibrillation rate 8.2% Using the prepared raw material, a porous sheet is made to have a thickness of about 20 ⁇ m, and this is used as the separator of Example 17. A battery using this separator was measured in the same manner. The results are shown in Table 10.
  • Example 18 Mixing 65% regenerated cellulose with a fiber diameter of 1.5 dtex and fiber length of 5 mm and 35% PET fine fiber with a fiber diameter of 0.2 dtex fiber length of 5 mm and beat to an average fiber length of 1.02 mm and a fibrillation rate of 4.9% Using the prepared raw material, a porous sheet is made to have a thickness of about 20 ⁇ m, and this is used as the separator of Example 18. A battery using this separator was measured in the same manner. The results are shown in Table 10.
  • Example 19 Using a raw material of 100% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm, beaten to a mean fiber length of 0.92 mm and a fibrillation rate of 8.8%, a porous sheet having a thickness of about 10 ⁇ m is made. Further, a sheet subjected to calendering at 25 ° C. and a linear pressure of 750 kg / cm is used as the separator of Example 19. A battery using this separator was measured in the same manner. The results are shown in Table 11.
  • Example 20 A porous sheet with a thickness of about 25 ⁇ m is made using a raw material made by beating a raw material of 100% regenerated cellulose having a fiber diameter of 2.0 dtex and a fiber length of 8 mm to an average fiber length of 0.80 mm and a fibrillation rate of 10.5%. Further, a sheet subjected to calendering with a linear pressure of 400 kg / cm under the condition of 25 ° C. is used as the separator of Example 20. A battery using this separator was measured in the same manner. The results are shown in Table 11.
  • Example 21 A 25 ⁇ m thick porous sheet was made using a raw material obtained by beating a raw material of 100% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm to an average fiber length of 0.92 mm and a fibrillation rate of 8.8%. Further, a sheet subjected to calendering at 25 ° C. and a linear pressure of 30 kg / cm is used as the separator of Example 21. A battery using this separator was measured in the same manner. The results are shown in Table 11.
  • Example 23 Using a raw material of 100% regenerated cellulose with a fiber diameter of 1.5 dtex and a fiber length of 5 mm, beaten to a mean fiber length of 0.92 mm and a fibrillation rate of 8.8%, a porous sheet having a thickness of about 25 ⁇ m is made. Further, a sheet subjected to calendar treatment under a condition of 25 ° C. and a linear pressure of 400 kg / cm is used as the separator of Example 23. A battery using this separator was measured in the same manner. The results are shown in Table 11.
  • Example 24 Using a raw material obtained by beating a raw material of 100% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm to an average fiber length of 0.80 mm and a fibrillation rate of 10.5%, a porous sheet is made, The sheet which was calendered at a linear pressure of 400 kg / cm under the condition of 60 ° C. is used as the separator of Example 24. A battery using this separator was measured in the same manner. The results are shown in Table 11.
  • Example 25 Using a raw material obtained by beating a raw material of 100% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm to an average fiber length of 0.80 mm and a fibrillation rate of 10.5%, a porous sheet is made, A sheet which is calendered at a linear pressure of 400 kg / cm under the condition of 160 ° C. is used as the separator of Example 25. A battery using this separator was measured in the same manner. The results are shown in Table 11.
  • Comparative Example 16 Using a raw material of 100% regenerated cellulose having a fiber diameter of 1.5 dtex and a fiber length of 5 mm, a porous sheet was made with a raw material beaten to an average fiber length of 0.80 mm and a fibrillation rate of 10.5%. A comparative example 16 was performed by calendering at a linear pressure of 400 kg / cm at 200 ° C. In Comparative Example 16, when a calendar treatment was performed, cellulose was decomposed and a sheet was not obtained.
  • Example 1 and Example 2 shown in Table 1 are the cases where the raw fiber diameter was 1.0 dtex and 2.0 dtex, and the fibrillation was good, but as shown in Comparative Example 1, 2.5 dtex and As a result, the fibrillation rate did not increase, the average pore diameter was 1.8 ⁇ m, and the pore concentration was 21%.
  • Comparative Example 1 although the initial short-circuit did not occur, short-circuit defects frequently occurred after 5 V charge, and it can be seen that the effect of the present embodiment can be obtained when the raw fiber diameter is 2 dtex or less.
  • Example 3 and Example 4 shown in Table 2 were cases where the raw fiber length was 2 mm and 8 mm, and the separator characteristics were good. However, when the raw fiber length is 10 mm as in Comparative Example 2, the fibers are entangled, resulting in a non-uniform sheet, resulting in a pore concentration degree of 25%, resulting in a short circuit failure at 5 V charge. Seems to have occurred frequently. From this, it is understood that the effect of the present embodiment can be obtained when the raw fiber is 8 mm or less.
  • Example 2 and Examples 2 and 4 shown in Tables 1 and 2 good battery characteristics are obtained, so that the fibrillated raw fiber length is preferably in the range of about 0.3 mm to 1.5 mm. It can be said.
  • Example 7 shown in Table 5, as a result of reducing the thickness of the separator to 3.1 ⁇ m, the shielding property was poor and initial short-circuit defects occurred frequently. If the thickness is 5.1 ⁇ m as in Example 8, the shielding property can be secured. However, the pore diameter becomes large at 0.9 ⁇ m. In Example 9 and Example 10, the battery characteristics are good and the separator resistance is low and good.
  • the separator thickness is preferably in the range of 5 ⁇ m to 60 ⁇ m.
  • Example 11 shows good battery characteristics. Referring to Example 20 and the like, it can be seen that good results can be obtained with certainty if the porosity of the separator is in the range of 35 to 80%.
  • Example 17 and Example 18 in which the PET fibers shown in Table 10 were blended good battery characteristics were shown. However, in Comparative Example 15, a short defect occurred due to an increase in the average pore diameter. From the results of Tables 9 and 10, it can be seen that the blending ratio of regenerated cellulose is preferably 60% or more.
  • Example 19 In Examples 19 to 25 in which the effects of the calendar process shown in Table 11 were evaluated, all the battery characteristics were satisfied. However, when the press line pressure is increased to 750 kg / cm as in Example 19, the separator resistance is 1.15 ⁇ , which is higher than the other levels. Conversely, as shown in Example 21, when the press linear pressure is lowered to 30 kg / cm, the thickness is hardly reduced and the press effect is small. Therefore, it can be seen that the press linear pressure is more preferably 50 kg / cm to 750 kg / cm.
  • Example 20 when Example 20 is compared with Examples 23 to 25, the press effect is stronger as the temperature is applied even if the press linear pressure is the same. This is considered to be an effect of the thermal calendar.
  • the calendar process in this embodiment the calendar process can be performed at a temperature at which cellulose does not decompose.
  • the separator resistance becomes infinite by performing calendering at a relatively mild condition of 25 ° C. and a linear pressure of 100 kg / cm. Can be judged. Therefore, the calendar treatment does not become a separator in a polyolefin microporous film, but is effective as a separator in the regenerated cellulose fiber, and can be used for thickness and porosity control.
  • a general film-based microporous membrane separator has a porosity of about 40 to 50%, but according to the separator of this embodiment, it can have a porosity of 30 to 80% or more. Become.
  • the separator of this embodiment shows excellent heat resistance, and can maintain the separator shape and maintain the separator function even at a temperature of 180 ° C. at which a normal polyolefin microporous membrane separator melts down. . Therefore, by incorporating the separator, it is possible to increase the output, and it is possible to obtain a highly safe non-aqueous battery that does not short-circuit internally even at high temperatures.
  • the separator has an average pore diameter of 1 ⁇ m or less, which is difficult with conventional nonwoven fabrics, and has a sharp distribution, the short circuit resistance and dendrite resistance can be improved and the safety of non-aqueous batteries can be greatly improved.
  • a porous sheet separator in which the thickness, porosity, and average pore diameter of the through holes are controlled can be obtained.
  • the separator and non-aqueous battery according to an embodiment of the present invention having high output characteristics and excellent safety and heat resistance are most suitable for electric vehicle power supply applications where safety is important.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)

Abstract

 本発明は、高安全性を有しつつ耐熱性でかつ高出力性寄与できるセパレータ、及びそれを備えた非水系電池を提供することを課題とする。 本発明は、繊維径2.0dtex 以下、繊維長8mm以下の再生セルロース繊維をフィブリル化処理した原料を用いて、厚さを5~60μm、空隙率を30~80%でかつ貫通孔の平均孔径が0.03μm以上乃至1.0μm以下の多孔質シートを含むセパレータであることに係るものである。

Description

セパレータ及び非水系電池
 本発明は、非水系電池に好適に使用できるセパレータに関する。
 近年の携帯電子機器の高性能化や電気自動車の普及に伴い、高エネルギー密度を有する二次電池が要求されている。この要求に答える二次電池としてリチウムイオン二次電池が注目されてきた。
 リチウムイオン二次電池は、平均電圧として約3.7Vが得られることから高エネルギー密度となるが、アルカリ二次電池で使用されているような水系の電解液を用いることができないため、耐酸化還元性の高い非水系電解液を用いている。
 このため、リチウムイオン二次電池に用いるセパレータとしては、主にポリエチレン等のポリオレフィンからなる多孔質フィルムが多く使用されているが、過充電等のトラブルが進行してポリオレフィンの溶融温度以上に温度が上昇した場合には短絡し、熱暴走が起こり発火に至る可能性がある。
 またリチウムイオン二次電池は負極材料としてリチウム金属析出電位に近いグラファイトを使用する場合が多い。この場合、充電電圧を4.2V以上とするとリチウム金属が析出しやすい。さらに過充電状態が続くとリチウムデンドライトが生成しセパレータを突き破って短絡を起こし、ひいては熱暴走が起こり発火に至る可能性がある。
 そこで、現在、200℃近くの温度でも溶融及び収縮しない耐熱性セパレータが多数提案されている。また耐熱性繊維を用いた不織布をセパレータとして実用化することも検討されている。しかし不織布セパレータの場合、一般的に従来の多孔質フィルムに対して平均孔径が数倍以上大きくかつその分布幅も大きいため上記のような充電時の耐ショート性の向上が必要であった。
 これまで不織布や多孔質フィルムでは耐熱性や内部ショート不良を改善するため以下に示すようなセパレータが提案されている。
 例えば、高空隙率を有することによりレート特性に優れかつ耐熱性に優れる紙セパレータを使用した非水系電池が提案されており、組立初期の耐ショート性を実施例で確認している(特許文献1)。
 しかし孔径の微細化規定については触れておらず、上記のような過充電状態でのデンドライト耐性を有するかは明確でない。
 また、セルロース繊維を使用したリチウムイオン二次電池用セパレータが提案されており、機械強度が強く、内部抵抗、内部ショート不良率、特に、高レートでの放電特性及びそのバラツキ、サイクル特性に優れている(特許文献2)。しかし孔径の微細化規定については触れられておらず上記のような過充電状態等での安全性を有するかは明確でない。
 さらに、ポリオレフィン系微多孔膜の少なくとも片面に、芳香族ポリアミド等の耐熱性高分子からなる耐熱性多孔質層を積層したセパレータが提案されている(特許文献3)。しかしながら、基材であるポリオレフィン系微多孔膜は高温時に溶融し強度が大きく低下する可能性がある。
 さらに、耐熱性フィラーを表面に塗工したセパレータも提案されている(特許文献4)。しかし耐熱性フィラーは有機バインダーを用いて基材表面に接着されており脱落の可能性が高く、高温条件ではバインダーの劣化も考えられる。
特開平8-306352号公報 特再公表2012-008559号 特開2002-355938号公報 特許第4151852号
 本発明は、上記した課題を解決することを目的としてなされたもので、高安全性を有しつつ耐熱性でかつ高出力性寄与できるセパレータ、及びそれを備えた非水系電池を提供することを課題とする。
 上記の課題を解決するために例えば以下の構成を備える。
 即ち、繊維径2.0dtex以下、繊維長8mm以下の再生セルロース繊維をフィブリル化処理した原料を用いて、厚さを5~60μm、空隙率を30~80%でかつ貫通孔の平均孔径が0.03μm以上乃至1.0μm以下の多孔質シートを含むことを特徴とする。
 そして例えば、前記平均孔径の±50%以内の範囲に全貫通孔数の30%以上が分布していることを特徴とする。或いは、前記原料は再生セルロース繊維を60~100%含有することを特徴とする。
 さらに例えば、前記多孔質シートをプレス処理したことを特徴とする。
 または、上記いずれかに記載のセパレータを用いてなる非水系電池とする。
 本発明によれば、高出力特性を備え、かつ高信頼性を有し、且つ耐熱性を有する非水系電池に最適なセパレータを提供できる。さらに、本実施の形態例のセパレータを用いた電池とすることにより、安全性が重視される電気自動車用電源用途に最適な電池が提供できる。
発明の実施形態
 以下、本発明にかかる一発明の実施の形態例を詳細に説明する。
 本実施の形態例のセパレータは、繊維径2.0dtex以下、繊維長8mm以下である再生セルロース繊維を必須成分とし、叩解(フィブリル化処理)によって前記再生セルロースの平均繊維長が0.3~1.5mmの範囲でかつフィブリル比率(カヤーニfines率)が2~50%である原料60質量%以上を使用して得た多孔質シートであり、該セパレータを非水系電池に組み込んだものである。
 ここでフィブリル化とは、主に繊維軸に平行方向に細かく分割された部分を有する繊維の少なくとも一部が1μm以下になっている状態を指す。
 原料繊維をフィブリル化処理(=叩解)する方法としては、リファイナー、ビーター、ミル、摩砕装置、ホモジナイザー、超音波破砕機器、高圧ホモジナイザー等を用いる方法が挙げられる。この中でも、特にリファイナーあるいはビーターを用いる方法が好ましい。
 叩解された再生セルロース繊維に配合する他の繊維については特に限定はなく、マニラ麻、サイザルパルプ、針葉樹クラフトパルプ等の天然パルプ、PET繊維、PP繊維、PPS繊維などの合成繊維の何れであってもよい。
 また、その叩解の程度は、前記再生セルロース繊維の叩解の程度に応じて叩解すればよい。そして、叩解された再生セルロース繊維と他の繊維の混合比は、再生セルロース繊維の叩解原料の分量によって決定される。
 本実施の形態例のセパレータは、円網抄紙機、長網抄紙機、短網抄紙機、傾斜型抄紙機の中から同種又は異種の抄紙機を組み合わせてなるコンビネーション抄紙機などを用いて湿式抄紙する、いわゆる湿式法によって製造できる。原料スラリーは、繊維原料の他に、必要に応じて、分散剤、増粘剤、無機填料、有機填料、消泡剤などを適宜添加する。この本実施の形態例で用いる原料スラリーは、10~0.0005質量%程度の固形分濃度に調製する。実際に用いる場合には、この原料スラリーをさらに所定濃度に希釈して抄紙する。
 抄紙して得られた本実施の形態例のセパレータは、リチウムイオン二次電池用のセパレータとすることができ、カレンダー処理、熱カレンダー処理等のプレス処理を行ない空隙率と細孔径の制御をすることが可能である。特に叩解された再生セルロース繊維を配合した多孔質シートは、線圧50kg/cm~750kg/cmプレス処理を行った場合、繊維間の密着による結合が少なく細孔は閉孔せずセパレータとして微多孔性を保持する。これに対して従来のポリオレフィン微多孔フィルムを用いた場合には、プレス処理を施すと細孔が閉孔しセパレータとして機能できなくなる。
(繊維長、繊維径の測定)
 本実施の形態例の溶剤紡糸セルロース繊維の長さ、平均繊維長は、JISP8226-2「パルプ-光学的自動分析法による繊維長測定方法-第2部:非偏光法」(ISO16065-2)に準じて、Kajaani FiberLab(メッッツォ オートメーション社製)にて測定した。
 本実施の形態例で用いる再生セルロース繊維の「平均繊維長」とは、上記に従ってコンティニアス繊維長L(l)として算出される「長さ加重平均繊維長」を意味する。また「フィブリル化率」は同時に算出されるファインネス(l)を意味する。
(セパレータ)
 本実施の形態例におけるセパレータをさらに詳細に説明する。本実施の形態例では、上記したように再生セルロース繊維を主原料とし、特に溶剤紡糸セルロース繊維の原料を60質量%~100質量%使用してフィブリル化(叩解)後、抄紙法で抄紙して得られたものである。この時、叩解の程度を示す叩解度はCSF(Canadian Standard Freeness)で、600mL~0mL程度の範囲を目安とする。
 本実施の形態例のセパレータは、厚さが5μm~60μmで、密度が0.25g/cm3~1.1g/cm3であることが好ましい。さらに好ましくは、厚さが10~25μm、密度が0.3~0.60g/cm3の範囲である。
 多孔質シートの厚さが5μmを下回ると均一性に欠けるおそれがあり、セパレータ機能が損なわれる可能性がある。一方、厚さが25μmを超過すると、非水系電池に組み込んだ際のセパレータに由来する抵抗値が高くなるという懸念がある。
 また、多孔質シートの密度が0.25g/cm3を下回ると、均一性に欠ける可能性があり、密度が1.1g/cm3を超過すると非水系電池に組み込んだ際の抵抗が高くなるという懸念がある。
 本実施の形態例のセパレータを非水系電池セパレータとして用いる場合には、短絡防止性、電解液の保持特性、及びセパレータ抵抗の観点から、厚さは10μm~25μmであることが好ましい。10μmより薄いセパレータはショート防止性及び電解液の保持性が悪くなる可能性がある。また25μmを超える厚さでは、極間距離が長くなり、また、セパレータ自体の抵抗が大きくなり、電池性能が低下するため好ましくない。
(非水系電池への適用)
 本実施の形態例のセパレータを用いる非水系電池における正極活物質としては、TiS2、MoS2、NbSe等の金属カルコゲン化合物、有機イオウ、V25、MnO2、Nb25等の金属酸化物、LiCoO2、LiNiO2、LixMn22、リン酸鉄等ポリアニオン系酸化物やいわゆるニッケルコバルトマンガン、ニッケルコバルトアルミ系といわれる三元系リチウム含有複合金属酸化物、ポリアニリン、ポリピロール等のポリマー、フッ化カーボンのいずれか1種が混合したものを用いる。
 特にリチウムイオンを脱ドープしかつドープし得る正極活物質で、一般式Lixy22(Mは繊維金属の少なくとも1種類を表わし、Nは非遷移金属の少なくとも1種を表わす。Mは特に限定されないが、Co、Ni、Fe、Mn、V、Mo等が挙げられ、同じくNも特に限定されないが、Al、In、Snが挙げられる)で示されるリチウム、ナトリウムあるいはマグネシウム等のアルカリ、アルカリ土類金属含有複合酸化物が好ましい。
 具体例としては、Liイオンを含有した状態での化学式で示すと、以下の酸化物を用いることができる。
リチウムコバルト酸化物、例えばLixCoyz2(NはAl、In、Snの中から選ばれた少なくとも1種の金属、0<x≦1.1、0.5<y≦1、z≦0.1)、LixCoO2(0<x≦1)、LixCoyNiz2(0<x≦1、y+z=1)
リチウムニッケル酸化物、例えばLixNiO2(0<x≦1)
リチウムマンガン酸化物、例えばLixMnO2、LixMn24(0<x≦1)、LiCoxMn2-x4(0<x≦0.5)
リチウムクロム酸化物、例えばLixCr38(0<x≦1)、LixCrO2
リチウムバナジウム酸化物、例えばLix25(0<x≦1)、Lix613、Li1+x38
リチウムモリブデン酸化物、例えばLixMoO2
リチウムモリブデン二硫化物、例えばLixMoS2
リチウムチタン酸化物、例えばLixTi24
リチウムチタン硫化物、例えばLixTi22
リチウム鉄酸化物、例えばLixFeO2(0<x≦1)、LixFey2z(Nは、Co、Ni、Ti、Mnの中から選ばれた少なくとも1種の金属、0<x≦1、0.8<y≦0.99、0.01<z≦0.2)
等が挙げられる。
 以上のうち、特に好ましくはリチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リチウム鉄酸化物である。
 本実施の形態例の非水系電池における負極活物質としては、Li、Na、Mg金属及びLiAl等のアルカリ、或いはアルカリ土類金属合金、炭素系材料、シリコンやシリサイド、スズ系材料あるいはポリアセン、ポリ-p-フェニレン等の導電性高分子材料、LixFe22、LixWO2等の金属酸化物のいずれか1種が用いられる。
 特にリチウムイオンを脱ドープしかつドープし得る負極活物質が望ましく、グラファイト、熱分解炭素、ピッチコークス、ニードルコークス、石油コークス、有機高分子の焼成体(フェノール樹脂、フラン樹脂、ポリアクリロニトリル等の焼成体)等の炭素質材料あるいはチタン酸リチウム、チタン酸ナトリウム等のリチウムあるいはナトリウム、マグネシウム等のインサーション可能な負極が好ましい。
 本実施の形態例の非水系電池に用いられる電解液の電解質としては、LiClO4、LiPF6、LiAsF6、LiBF4、CH3SO3Li、CF3SO3Li、(CF3SO22NLi等のリチウム塩のいずれか1種又は2種以上を混合したものを使用することができる。
 本実施の形態例の非水系電池に用いられる電解液の溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、グライム系等のいずれか1種又は2種以上を混合したものを使用する。
 以上、本実施の形態例の非水系電池で使用できる正極活物質、負極活物質、電解液の電解質及び溶媒の例を例示したが、上記に限定されるものではない。
 以下、本発明に係る一発明の実施例を説明する。以上に説明した発明の実施の形態例として説明した製造方法によって製造したセパレータに対して、後述する各種の特性評価を実施した。
 本発明にかかる一発明の実施の形態例の非水系電池におけるセパレータの原料として、以下の実施例では、2~8mmに裁断した叩解可能な再生セルロース繊維をリファイナーなど所定の叩解機により前記の目安である適度なCSFの数値になるまで叩解する。他方、混合原料となる天然繊維も同様にして適度な叩解を施した後、これらの叩解原料を適宜混合して所定の厚さの多孔質シートを抄造する。
 さらに所望の厚さにするため上記多孔質シートに対して常温から170℃の条件で線圧50kg/cm~750kg/cmでプレス処理を行なう。このようにして得られたセパレータを用いて本実施の形態例の非水系電池を製作する。
(セパレータの空隙率、厚さ、ポア径測定)
 空隙率を見積もるための坪量は、JIS P8124に準拠して測定した。また、厚さはJIS C 2300-2に規定された方法により、測定した。さらに、ポア径測定は、キャピラリーフローメーターCFP-1200(PMI社製)を用いて、JIS K3832、ASTM F316-03、ASTM E1294-89に準拠した。各孔径の頻度分布から平均孔径の±50%以内の範囲に存在する貫通孔の全貫通孔数に対する百分率を細孔集中度として集計した。
(セパレータ抵抗測定)
 セパレータ抵抗測定は組立式セルを用いて15.5mmφのSUS304電極間にLiPF6(1M濃度)を電解質としたジエチレンカーボネート/エチレンカーボネートの1:1(体積比)電解液を含浸させた16mmφに切り抜いた前記セパレータを挟み、インピーダンスメータを用いて0.5Hz~1MHzの交流インピーダンスを測定し、実軸を横軸、虚軸を縦軸としてインピーダンスをプロットした時の交点値をセパレータ抵抗とした。
(正極の作製方法)
 LiCoO290重量部と導電材としてアセチレンブラック5重量部、結着材としてPVDF5重量部をN-メチルピロリドンと混合し、塗工スラリーを得た。そして、この塗工液を用いて幅100mm、厚さ15μmのAl箔集電体の片面にドクターブレード法にて塗工する。この塗工品をロールプレス処理し規定の大きさに打ち抜いて正極とする。
(負極の作製方法)
 グラファイト94重量部と、導電材としてのアセチレンブラック3重量部と、結着材としてのPVDF3重量部とを、Nメチルピロリドンに混合し、塗工スラリーを得る。このスラリーを幅100mm、厚さ20μmのCu箔集電体の片面にドクターブレード法にて塗工する。この塗工品をプレスロール処理し規定の大きさに打ち抜いて負極とする。
(非水系電池の作製方法)
 LiPF6(1M濃度)を電解質としたジエチレンカーボネート/エチレンカーボネートの1:1(体積比)電解液を、上記正極、負極及びセパレータに含浸させ、かしめ封口して2032型コインセル形状としたコイン型非水系電池とする。
(非水系電池の評価方法)
(初期充放電効率)
 作製した非水系電池は、30℃にて0.5Cレートで4.2Vまで定電流充電後、0.5Cレートで2.7V定電流放電して、充電容量と放電容量を求め、初期充放電効率を下式によって計算した。
 初期充放電効率(%)=(放電容量/充電容量)×100
 以下各種ショート不良の有無は作製した電池100個についてインピーダンスメータを用いて判定した。
(高温放置試験)
 高温放置試験は、作製した非水系電池を30℃にて0.5Cレートで4.2Vまで定電流充電後、200℃で10分間放置した後ショート不良確認を行なうことにより行う。
(充電性能評価)
 5Vで充電して充電評価を行う。5Vという過充電状態を実現するために行なうもので、通常の充電電圧より高くした場合のショート不良率より安全性の判断を行う。
 具体的には、作製した非水系電池を60℃にて1.0Cレートで5.0Vまで定電流充電を実施した場合のショート不良率で判定した。
(実施例1)
 繊維径1.0dtex、繊維長5mmである再生セルロースの平均繊維長を約0.4mm、フィブリル化率3.55%まで叩解した原料100%を、厚さ約20μmの多孔質シートとして抄造し、これを実施例1のセパレータとする。このセパレータを用いた電池について電池容量、初期ショート不良率、耐熱性を示す200℃10分間後のショート不良率、5V充電時のショート不良率を測定した。
 実施例1の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 繊維径2.0dtex、繊維長5mmである再生セルロースの平均繊維長を0.90mm、フィブリル化率5.51%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを実施例2のセパレータとする。このセパレータを用いた電池について同様に測定した。
 実施例2の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(比較例1)
 繊維径2.5dtex、繊維長5mmである再生セルロースの平均繊維長を1.45mm、フィブリル化率2.1%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを比較例1のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を上記表1に示す。
(実施例3)
 繊維径1.5dtex、繊維長2mmである再生セルロースの平均繊維長を0.80mm、まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを実施例3のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を上記表2に示す。
(実施例4)
 繊維径1.5dtex、繊維長8mmである再生セルロースの平均繊維長を1.2mm、フィブリル化率3.29%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを実施例4のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表2に示す。
(比較例2)
 繊維径1.5dtex、繊維長10mmである再生セルロースの平均繊維長を1.3mmフィブリル化率1.2%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを比較例2のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表2に示す。
(比較例3)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長を0.21mm、フィブリル化率52.1%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを比較例3のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例5)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長を約0.7mmフィブリル化率4.2%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを実施例5のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表3に示す。
(比較例4)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長を1.65mm、フィブリル化率2.0%まで叩解した原料100%を用い、厚さ約20μmの多孔質シートを抄造し、これを比較例4のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表3に示す。
(比較例5)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長を1.2mm、フィブリル化率0.9%未満まで叩解した原料100%を用い、厚さ約20μm、の多孔質シートを抄造し、これを比較例5のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例6)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.3mm、フィブリル化率4.9%まで叩解した原料100%を用い、厚さ約20μm、の多孔質シートを抄造し、これを実施例6のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表4に示す。
(実施例7)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.12mm、フィブリル化率約32.1%まで叩解した原料100%を用い、厚さ約20μm、の多孔質シートを抄造し、これを実施例7のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表4に示す。
(比較例6)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長0.88mm、フィブリル化率61.2%まで叩解した原料100%を用い、厚さ約20μm、の多孔質シートを抄造し、これをセパレータ比較例6とする。このセパレータを用いた電池について同様に測定した。その結果を表4に示す。
(比較例7)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.3mm、フィブリル化率5.44%まで叩解した原料100%を用い、厚さ約3μm、の多孔質シートを抄造し、これを比較例7のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例8)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長0.76mm、フィブリル化率6.0%まで叩解した原料100%を用い、厚さ約5μm、の多孔質シートを抄造し、これを実施例8のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表5に示す。
(実施例9)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長0.95mm、フィブリル化率7.21%まで叩解した原料100%を用い、厚さ約25μm、の多孔質シートを抄造し、これを実施例9のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表5に示す。
(実施例10)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.1mm、フィブリル化率6.11%まで叩解した原料100%を用い、厚さ約40μm、の多孔質シートを抄造し、これを実施例10のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表5に示す。
(比較例8)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.05mm、フィブリル化率5.63%まで叩解した原料100%を用い、厚さ約65μm、の多孔質シートを抄造し、これを比較例8のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表5に示す。
(比較例9)
 繊維径1dtex、繊維長2mmである再生セルロースの平均繊維長0.88mm、フィブリル化率52%まで叩解した原料100%の多孔質シートを抄造し、線圧800kg/cmでカレンダー処理を行い空隙率約25%、厚さ約20μmとし、これをセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
(実施例11)
 繊維径1dtex、繊維長5mmである再生セルロースの平均繊維長0.95mm、フィブリル化率25%まで叩解をした原料100%を用い、厚さ約20μm、空隙率約65%となるように多孔質シートを抄造し、これを実施例11のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表6に示す。
(実施例12)
 繊維径1.0dtex、繊維長5mmである再生セルロースの平均繊維長0.5mm、フィブリル化率約28%まで叩解をした原料100%を用い、厚さ約20μm、平均細孔径が約0.03μmとなるように多孔質シートを抄造し、これを実施例12のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
(実施例13)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長0.85mm、フィブリル化率10.5%まで叩解をした原料100%を用い、厚さ約20μm、平均細孔径が約0.4μmとなるように多孔質シートを抄造し、これを実施例13のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表7に示す。
(実施例14)
 繊維径2.0dtex、繊維長5mmである再生セルロースの平均繊維長1.1mm、フィブリル化率を3.2%まで叩解をした原料100%を用い、厚さ約20μm、平均細孔径が約0.9μmとなるように多孔質シートを抄造し、これを実施例14のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表7に示す。
(比較例10)
繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長0.78mm、フィブリル化率1.9%未満まで叩解をした原料100%を厚さ約20μm、平均細孔径が約1.5μmとなるように多孔質シートを抄造し、これをセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表7に示す。
(比較例11)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維径0.95mm、フィブリル化率を0.2%まで叩解をした原料100%を厚さ約20μm、平均細孔径が約5μmとなるように多孔質シートを抄造し、これをセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表7に示す。
(比較例12)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.81mm、フィブリル化率0.8%まで叩解をした原料100%を用い、厚さ約20μm、平均細孔径が約1μmで細孔集中度が約5%となるように多孔質シートを抄造し、これを比較例12のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
(比較例13)
 繊維径1.5dtex、繊維長5mmである再生セルロースの平均繊維長1.46mm、フィブリル化率1.2%まで叩解をした原料100%を用い、厚さ約20μm、平均細孔径が約0.8μmで細孔集中度が約25%となるように多孔質シートを抄造し、これを比較例13のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表8に示す。
(従来例1)
 ポリプロピレン微多孔フィルム(平均孔径0.05μm)をセパレータとして用いた電池について同様に電池特性を測定した。その結果を表8の従来例1に示す
(比較例14)
 繊維径1.5dtex、繊維長5mmである再生セルロース50%とマニラ麻50%を混合し平均繊維長1.4mm、フィブリル化率18.1%まで叩解をした原料を用い、厚さ約20μmとなるように多孔質シートを抄造し、これを比較例14のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
(実施例15)
 繊維径1.5dtex、繊維長5mmである再生セルロース65%とマニラ麻35%を混合し平均繊維長1.15mm、フィブリル化率12.1%まで叩解をした原料を用い、厚さ約20μmとなるように多孔質シートを抄造し、これを実施例15のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表9に示す。
(実施例16)
 繊維径1.5dtex、繊維長5mmである再生セルロース80%とマニラ麻20%を混合し平均繊維長1.11mm、フィブリル化率8.5%まで叩解をした原料を用い、厚さ約20μmとなるように多孔質シートを抄造し、これを実施例16のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表9に示す。
(比較例15)
 繊維径1.5dtex、繊維長5mmである再生セルロース50%と繊維径0.2dtex繊維長5mmのPET細繊維50%を混合し平均繊維長1.35mm、フィブリル化率4.6%まで叩解をした原料を用い、厚さ約20μmとなるように多孔質シートを抄造し、これを比較例15のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
(実施例17)
 繊維径1.5dtex、繊維長5mmである再生セルロース65%と繊維径0.2dtex繊維長5mmのPET細繊維35%を混合し平均繊維長1.20mm、フィブリル化率8.2%まで叩解をした原料を用い、厚さ約20μmとなるように多孔質シートを抄造し、これを実施例17のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表10に示す。
(実施例18)
 繊維径1.5dtex、繊維長5mmである再生セルロース65%と繊維径0.2dtex繊維長5mmのPET細繊維35%を混合し平均繊維長1.02mm、フィブリル化率4.9%まで叩解をした原料を用い、厚さ約20μmとなるように多孔質シートを抄造し、これを実施例18のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表10に示す。
(実施例19)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を平均繊維長0.92mm、フィブリル化率8.8%まで叩解をした原料を用い、厚さ約10μmの多孔質シートを抄造し、これにさらに25℃の条件で線圧750kg/cmでカレンダー処理をしたシートを実施例19のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
(実施例20)
 繊維径2.0dtex、繊維長8mmである再生セルロース100%の原料を平均繊維長0.80mm、フィブリル化率10.5%まで叩解をした原料を用い、厚さ約25μmの多孔質シートを抄造し、これにさらに25℃の条件で線圧400kg/cmでカレンダー処理をしたシートを実施例20のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(実施例21)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を平均繊維長0.92mm、フィブリル化率8.8%まで叩解をした原料を用い、25μm厚さの多孔質シートを抄造し、これにさらに25℃の条件で線圧30kg/cmでカレンダー処理をしたシートを実施例21のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(実施例22)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を平均繊維長0.92mm、フィブリル化率8.8%まで叩解をした原料を用い、25μm厚さの多孔質シートを抄造し、これにさらに25℃の条件で線圧70kg/cmでカレンダー処理をしたシートを実施例22のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(実施例23)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を平均繊維長0.92mm、フィブリル化率8.8%まで叩解をした原料を用い、厚さ約25μmの多孔質シートを抄造し、これにさらに25℃の条件で線圧400Kg/cmでカレンダー処理をしたシートを実施例23のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(実施例24)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を平均繊維長0.80mm、フィブリル化率10.5%まで叩解をした原料を用い、多孔質シートを抄造し、これにさらに60℃の条件で線圧400kg/cmでカレンダー処理をしたシートを実施例24のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(実施例25)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を平均繊維長0.80mm、フィブリル化率10.5%まで叩解をした原料を用い、多孔質シートを抄造し、これにさらに160℃の条件で線圧400kg/cmでカレンダー処理をしたシートを実施例25のセパレータとする。このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(比較例16)
 繊維径1.5dtex、繊維長5mmである再生セルロース100%の原料を用い、平均繊維長0.80mm、フィブリル化率10.5%まで叩解をした原料で多孔質シートを抄造し、これにさらに200℃の条件で線圧400kg/cmでカレンダー処理をして比較例16とした。比較例16では、カレンダー処理をしたところ、セルロースが分解し、シートが得られなかった。
(比較例17)
 ポリプロピレン微多孔フィルム(平均孔径0.05μm)を、25℃の条件で線圧100kg/cmでカレンダー処理をしたシートをセパレータとし、このセパレータを用いた電池について同様に測定した。その結果を表11に示す。
(評価)
 表1に示す実施例1及び実施例2は、原料繊維径を1.0dtex、2.0dtexとした場合であり、フィブリル化も良好であったが、比較例1に示すように2.5dtexとするとフィブリル化率が上昇せず平均細孔径が1.8μm、細孔集中度21%となった。比較例1の電池特性において、初期ショートは生起しなかったものの5V充電でショート不良が多発したことから、原料繊維径は2dtex以下で本実施の形態例の効果が得られることが判る。
 表2に示す実施例3及び実施例4は、原料繊維長2mm、8mmとした場合であり、セパレータ特性は良好であった。しかしながら、比較例2のように原料繊維長を10mmとした場合には、繊維の絡み合いが生じ、不均一なシートとなってしまうため細孔集中度が25%となり、結果として5V充電におけるショート不良が多発したと考えられる。このことから原料繊維は8mm以下で本実施の形態例の効果が得られることが判る。
 表3に示す比較例3の様に、平均繊維長が0.21mmと短い場合には、セパレータ抵抗が大きく上昇しており、セパレータとして適当でないと判断できる。また比較例4の様に平均繊維長を1.65mmと長くした場合、平均細孔径が大きくなり初期ショート不良が多発している。それに対し、実施例5及び表1、2に示す実施例2、実施例4では良好な電池特性が得られていることからフィブリル化原料繊維長は概ね0.3mm乃至1.5mmの範囲が好ましいといえる。
 表4に示す比較例5の様に、フィブリル化率が0.9%と小さい場合は、平均細孔径が1.8mmとなり、5Vでの充電不良が多発している。また比較例6の様にフィブリル化率を61.2%と大きくした場合、ショート不良は無いもののセパレータ抵抗が上昇してしまい、非水系電池用セパレータとしては好ましくないと判断できる。それに対して実施例6及び実施例7ではフィブリル化率を低くした結果電池特性が良好であることからフィブリル化率は3乃至50%がより好ましいことが判る。
 表5に示す比較例7では、セパレータの厚さを3.1μmと薄くした結果、遮蔽性に乏しく初期ショート不良が多発した。実施例8のように厚さを5.1μmとすれば遮蔽性は確保できる。しかしながら細孔径は0.9μmで大きめとなる。実施例9及び実施例10では、電池特性は良好でセパレータ抵抗も低く良好である。
 これに対して、比較例8に示す様にセパレータ厚さを65.4μmとすると、セパレータ抵抗が上昇し非水電池用セパレータとしては好ましくない結果となった。このように、表5の結果よりセパレータ厚さは5μm乃至60μmの範囲であることが好ましいことが判る。
 表6の比較例9に示すように、カレンダー処理等で空隙率を25.4%とした場合は、遮蔽性には有効な効果となるが、セパレータ抵抗が上昇するため非水系電池用セパレータとしては適当でない。それに対して空隙率を65.3%とした実施例11では良好な電池特性を示している。また実施例20なども参照するとセパレータの空隙率は35~80%の範囲であれば確実に良好な結果が得られることが判る。
 表7に示す実施例12乃至14では平均細孔径が0.03乃至0.94μmで良好な電池特性となることが判る。それに対して比較例10及び比較例11では、平均細孔径が大きくなると初期充電効率が低下し、ショート不良が多発する。このことよりセパレータの細孔径は0.03乃至1.0μmの範囲で本発明の効果が十分得られることが判る。
 表8の比較例12及び比較例13に示すように細孔集中度が25%より小さいとショート不良が多発する。ショート不良を避けるためには細孔集中度は約30%以上が好ましいことが判る。従来例1ではポリプロピレン微多孔膜を挙げたが、セパレータ抵抗が比較的高く、200℃10分放置で全数不良となり安全性の点では実施例1乃至18全てが有効であることが判る。
 表9に示すマニラ麻を配合した実施例15及び実施例16では若干セパレータ抵抗は高めであるが、その他は良好な電池特性を示している。しかし比較例15ではセパレータ抵抗が著しく上昇し非水系電池用セパレータとしては好ましくない。
 表10に示すPET繊維を配合した実施例17及び実施例18では、良好な電池特性を示している。しかし比較例15では平均細孔径が大きくなったことが原因でショート不良が生じている。表9及び表10の結果より再生セルロースの配合率は60%以上が好ましいことが判る。
 表11に示すカレンダー処理の効果を評価した実施例19乃至25では、電池特性としては全て特性を満足している。しかし実施例19のようにプレス線圧を750kg/cmまで大きくするとセパレータ抵抗は1.15Ωとなり他の水準より大きくなっている。また逆に実施例21に示すようにプレス線圧を30kg/cmと低くすると厚さがほとんど薄くなっておらずプレス効果は小さい。よってプレス線圧は50kg/cm乃至750kg/cmがより好ましいプレス圧であることが判る。
 また実施例20と実施例23乃至実施例25を比較すると、プレス線圧が同じでも温度をかけるにしたがってプレス効果が強く現れている。これは熱カレンダーによる効果と考えられる。またカレンダー条件温度を200℃とした比較例16ではセルロース材料は分解しシートが得られなかった。よって本実施の形態例におけるカレンダー処理に当たってはセルロースが分解しない程度の温度でカレンダー処理を行なうことができる。
 比較例17のポリプロピレン微多孔フィルムをカレンダー処理した場合は、比較的温和な条件である25℃、100kg/cmの線圧でカレンダー処理を行なってセパレータ抵抗は無限大となることから、閉孔していると判断できる。よってカレンダー処理はポリオレフィン微多孔フィルムではセパレータとならないが、前記再生セルロース繊維ではセパレータとして有効であり、厚さや空隙率制御に用いることが出来る。
 以上説明したように本実施の形態例によれば、高出力特性を備え、かつ高信頼性を有し、且つ耐熱性を有する非水系電池に最適なセパレータを提供できる。さらに、本実施の形態例のセパレータを用いた電池とすることにより、安全性が重視される電気自動車用電源用途に最適な電池が提供できる。
 例えば、一般的なフィルムベースの微多孔膜セパレータは40~50%前後の空隙率を有するが、本実施の形態例のセパレータによれば、30~80%以上の空隙率を有することが可能となる。
 このように本実施の形態例のセパレータは優れた耐熱性を示し、通常のポリオレフィン系微多孔膜セパレータがメルトダウンする180℃の温度でもセパレータ形状形態を保持し、セパレータ機能を維持することができる。したがって、前記セパレータを組み込むことで高出力化が可能で、かつ高温でも内部短絡することがない安全性の高い非水系電池を得られる。
 さらに前記セパレータは従来の不織布では困難であった平均孔径が1μm以下でかつ分布がシャープであることから耐ショート性、耐デンドライト性が向上し非水系電池の安全性を大幅に改善することが出来る。
 このように、原料繊維であるセルロース繊維のフィブリル化状態を規定した原料を用いることによって、厚さ、気孔率及び貫通孔の平均孔径が制御された多孔質シート(=セパレータ)とすることができ、これを組みこむことによって耐ショート性と耐熱性を向上させた非水系電池を提供できる。
 高出力特性を備え、安全性、耐熱性に優れた本発明に係る一発明の実施の形態例のセパレータ及び非水系電池は、安全性が重視される電気自動車用電源用途に最適である。

Claims (5)

  1.  繊維径2.0dtex以下、繊維長8mm以下の再生セルロース繊維をフィブリル化処理した原料を用いて、厚さを5~60μm、空隙率を30~80%でかつ貫通孔の平均孔径が0.03μm以上乃至1.0μm以下の多孔質シートを含むことを特徴とするセパレータ。
  2.  前記平均孔径の±50%以内の範囲に全貫通孔数の30%以上が分布していることを特徴とする請求項1記載のセパレータ。
  3.  前記原料は再生セルロース繊維を60~100%含有することを特徴とする請求項1または請求項2記載のセパレータ。
  4.  前記多孔質シートをプレス処理したことを特徴とする請求項1乃至請求項3のいずれかに記載のセパレータ。
  5.  請求項1乃至請求項4のいずれかに記載のセパレータを用いてなる非水系電池。
PCT/JP2016/057251 2015-03-09 2016-03-08 セパレータ及び非水系電池 WO2016143801A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017505361A JPWO2016143801A1 (ja) 2015-03-09 2016-03-08 セパレータ及び非水系電池
EP16761769.5A EP3270441A4 (en) 2015-03-09 2016-03-08 Separator and nonaqueous battery
CN201680013839.6A CN107431168A (zh) 2015-03-09 2016-03-08 隔膜以及非水系电池
KR1020177027250A KR20170127480A (ko) 2015-03-09 2016-03-08 세퍼레이터 및 비 수계 전지
US15/696,703 US20170373294A1 (en) 2015-03-09 2017-09-06 Separator and nonaqueous battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015046520 2015-03-09
JP2015-046520 2015-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/696,703 Continuation US20170373294A1 (en) 2015-03-09 2017-09-06 Separator and nonaqueous battery

Publications (1)

Publication Number Publication Date
WO2016143801A1 true WO2016143801A1 (ja) 2016-09-15

Family

ID=56879182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057251 WO2016143801A1 (ja) 2015-03-09 2016-03-08 セパレータ及び非水系電池

Country Status (6)

Country Link
US (1) US20170373294A1 (ja)
EP (1) EP3270441A4 (ja)
JP (1) JPWO2016143801A1 (ja)
KR (1) KR20170127480A (ja)
CN (1) CN107431168A (ja)
WO (1) WO2016143801A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265567B1 (ja) * 2016-10-26 2018-01-24 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータおよびアルミニウム電解コンデンサ
JP6313496B1 (ja) * 2017-03-10 2018-04-18 ニッポン高度紙工業株式会社 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハブリッド電解コンデンサ
WO2018193915A1 (ja) * 2017-04-19 2018-10-25 ニッポン高度紙工業株式会社 電気化学素子用セパレータ及び電気化学素子
WO2019230573A1 (ja) * 2018-05-31 2019-12-05 大王製紙株式会社 繊維状セルロース及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020126899A1 (de) 2020-10-13 2022-04-14 Delfortgroup Ag Cellulosefaser-basierter Separator für elektrochemische Elemente
DE102021102055A1 (de) * 2021-01-29 2022-08-04 Delfortgroup Ag Dimensionsstabiler Separator für elektrochemische Elemente

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134024A (ja) * 2010-12-22 2012-07-12 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2012142246A (ja) * 2011-01-06 2012-07-26 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2013157230A (ja) * 2012-01-31 2013-08-15 Nippon Kodoshi Corp アルカリ電池用セパレータ及びアルカリ電池
JP2013206591A (ja) * 2012-03-27 2013-10-07 Daicel Corp 蓄電素子用セパレータ及びその製造方法
JP2014186915A (ja) * 2013-03-25 2014-10-02 Nippon Kodoshi Corp セパレータ及び非水系電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008559A1 (ja) * 2010-07-14 2012-01-19 三菱製紙株式会社 リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池
JP5844067B2 (ja) * 2011-05-02 2016-01-13 株式会社ダイセル 不織繊維積層体及びその製造方法並びにセパレータ
EP2858141B1 (en) * 2012-05-28 2018-04-11 Kuraray Co., Ltd. Nonaqueous cell with a separator
JP2014053259A (ja) * 2012-09-10 2014-03-20 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ及びリチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134024A (ja) * 2010-12-22 2012-07-12 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2012142246A (ja) * 2011-01-06 2012-07-26 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2013157230A (ja) * 2012-01-31 2013-08-15 Nippon Kodoshi Corp アルカリ電池用セパレータ及びアルカリ電池
JP2013206591A (ja) * 2012-03-27 2013-10-07 Daicel Corp 蓄電素子用セパレータ及びその製造方法
JP2014186915A (ja) * 2013-03-25 2014-10-02 Nippon Kodoshi Corp セパレータ及び非水系電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270441A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265567B1 (ja) * 2016-10-26 2018-01-24 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータおよびアルミニウム電解コンデンサ
JP6313496B1 (ja) * 2017-03-10 2018-04-18 ニッポン高度紙工業株式会社 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハブリッド電解コンデンサ
JP2018152440A (ja) * 2017-03-10 2018-09-27 ニッポン高度紙工業株式会社 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハブリッド電解コンデンサ
WO2018193915A1 (ja) * 2017-04-19 2018-10-25 ニッポン高度紙工業株式会社 電気化学素子用セパレータ及び電気化学素子
US11588207B2 (en) 2017-04-19 2023-02-21 Nippon Kodoshi Corporation Separator for electrochemical element and electrochemical element
WO2019230573A1 (ja) * 2018-05-31 2019-12-05 大王製紙株式会社 繊維状セルロース及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法
JP2019210332A (ja) * 2018-05-31 2019-12-12 大王製紙株式会社 繊維状セルロース及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法
US12012469B2 (en) 2018-05-31 2024-06-18 Daio Paper Corporation Fibrous cellulose and method for manufacturing the same, and fibrous cellulose composite resin and method for manufacturing the same

Also Published As

Publication number Publication date
CN107431168A (zh) 2017-12-01
EP3270441A1 (en) 2018-01-17
EP3270441A4 (en) 2018-09-19
KR20170127480A (ko) 2017-11-21
JPWO2016143801A1 (ja) 2017-12-21
US20170373294A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2016143801A1 (ja) セパレータ及び非水系電池
JP4920423B2 (ja) リチウムイオン二次電池
JP4215718B2 (ja) 非水系二次電池及びこれに用いるセパレータ
WO2013168755A1 (ja) 電気化学素子用セパレータ及びその製造方法
JP5171150B2 (ja) リチウムイオン二次電池用セパレータ
JP5717461B2 (ja) 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
JP2009081048A (ja) 二次電池、電池パック及び車
JP2011029079A (ja) 非水電解質二次電池
JP2001210366A (ja) 非水電気化学装置およびその電解液
WO2017138382A1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法
JP3661104B2 (ja) 非水系電池
JP6317556B2 (ja) リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池
CN110462910A (zh) 二次电池及其制造方法
KR20190088217A (ko) 리튬 이차 전지
WO2013038702A1 (ja) 非水電解質二次電池
JP6616726B2 (ja) 複合膜、非水二次電池用セパレータおよび非水二次電池
JP2019175631A (ja) リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
JP6169624B2 (ja) 非水電解質二次電池用セパレータ及び非水電解質二次電池
JP2017039250A (ja) 積層体
JP2014149985A (ja) 非水系電池用セパレータ及び非水系電池
JP2008077996A (ja) 巻回電池
JPH09274901A (ja) 非水系電池
JP6607388B2 (ja) リチウムイオン二次電池用正極及びその製造方法
JP2014186915A (ja) セパレータ及び非水系電池
CN110521044A (zh) 二次电池及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027250

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761769

Country of ref document: EP