WO2017138382A1 - リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法 - Google Patents

リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法 Download PDF

Info

Publication number
WO2017138382A1
WO2017138382A1 PCT/JP2017/003135 JP2017003135W WO2017138382A1 WO 2017138382 A1 WO2017138382 A1 WO 2017138382A1 JP 2017003135 W JP2017003135 W JP 2017003135W WO 2017138382 A1 WO2017138382 A1 WO 2017138382A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2017/003135
Other languages
English (en)
French (fr)
Inventor
由美 斎藤
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2017566582A priority Critical patent/JP6917907B2/ja
Publication of WO2017138382A1 publication Critical patent/WO2017138382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing and evaluating a positive electrode for a lithium ion secondary battery.
  • lithium ion secondary batteries Since lithium ion secondary batteries have high energy density and excellent charge / discharge cycle characteristics, they are widely used as power sources for small mobile devices such as mobile phones and laptop computers. Also, in recent years, due to consideration for environmental problems and increased awareness of energy saving, a large capacity and long life such as a storage battery for a vehicle such as an electric vehicle or a hybrid electric vehicle, and a power storage system such as a household power storage system are required. Demand for large power supplies is also increasing.
  • Patent Document 1 discloses lithium hydroxide remaining in a lithium transition metal-containing composite oxide constituting a positive electrode active material in a positive electrode composition for a lithium secondary battery including a positive electrode active material, a conductive agent, a binder, and a solvent.
  • a positive electrode composition characterized in that the content is 0.4% by weight or less as measured by a neutralization titration method is described. It is described that such a composition is stable, and by using this composition, a lithium secondary battery excellent in discharge capacity and cycle characteristics can be obtained.
  • Patent Document 2 describes a method for producing a lithium ion secondary battery using, as a positive electrode active material, a lithium transition metal oxide containing LiOH at a ratio of 0.032 mass% or more and 0.050 mass% or less outside the composition. Has been. According to this manufacturing method, it is described that a lithium ion secondary battery excellent in durability against charge / discharge cycles can be manufactured.
  • Patent Document 3 discloses a current collector having an aluminum oxide film having a thickness of 0.02 to 1 ⁇ m for the purpose of preventing corrosion of the aluminum current collector even when an active material paste using water as a solvent is used. A method for producing a positive electrode for a lithium battery to be used is described.
  • Patent Document 4 describes a lithium ion battery using, as a current collector, an aluminum foil having a surface formed with an anodic oxide film having a thickness of 5 to 1000 nm. It describes that alkali resistance without variation is imparted to the surface of the aluminum foil, and elution of the aluminum foil by the active material paste is prevented to improve the adhesion between them.
  • Patent Document 5 discloses an electrode having a mixture containing active material particles capable of reversibly occluding and releasing lithium and a current collector carrying the mixture, and the surface of the current collector has a recess. And the ratio of the area which a recessed part occupies with respect to the mixture carrying
  • an aluminum foil is used as the current collector and a lithium-containing composite oxide is used as the active material.
  • Such an electrode has a plurality of recesses on the surface of the current collector, thereby improving the adhesion between the mixture and the current collector, and is suitable for achieving both battery safety and output characteristics. It is described.
  • An object of the present invention is to provide a lithium ion secondary battery with improved cycle characteristics, a positive electrode suitable for the battery, and a method for producing and evaluating the positive electrode.
  • an aluminum substrate whose surface is covered with a film
  • An electrode comprising an active material layer formed on the film of the aluminum substrate,
  • the active material layer includes active material particles and a binder,
  • the active material particles include at least lithium nickel-containing composite oxide particles having a layered crystal structure
  • An electrode for a lithium ion secondary battery that satisfies any of the following conditions A and B is provided.
  • Condition A In the surface of the aluminum base material on which the active material layer is formed, the number of recesses having a longest diameter of 5 ⁇ m or more in an arbitrary square region with a side of 100 ⁇ m does not exceed five.
  • Condition B The active material layer contains LiOH, and the content of LiOH is less than 0.5% by mass with respect to the entire active material particles.
  • a lithium ion secondary battery including the positive electrode, a negative electrode, a separator between the negative electrode and the positive electrode, and an electrolytic solution.
  • a method for producing an electrode for a lithium ion secondary battery comprising an aluminum substrate whose surface is covered with a film, and an active material layer formed on the film of the aluminum substrate. There, Forming a slurry containing active material particles, a binder, and a solvent; Applying the slurry onto the aluminum substrate, drying, pressing to form an active material layer,
  • the active material particles include at least lithium nickel-containing composite oxide particles having a layered crystal structure, On the surface of the aluminum base material on which the active material layer is formed, a product in which the number of recesses having a longest diameter of 5 ⁇ m or more in an arbitrary square region of 100 ⁇ m on one side does not exceed 5 is determined as a non-defective product
  • the manufacturing method of the electrode for lithium ion secondary batteries including the process to do is provided.
  • a method for evaluating an electrode for a lithium ion secondary battery comprising an aluminum substrate whose surface is covered with a film, and an active material layer formed on the film of the aluminum substrate.
  • the active material layer includes active material particles and a binder,
  • the active material particles include at least lithium nickel-containing composite oxide particles having a layered crystal structure,
  • On the surface of the aluminum base material on which the active material layer is formed a product in which the number of recesses having a longest diameter of 5 ⁇ m or more in an arbitrary square region of 100 ⁇ m on one side does not exceed 5 is determined as a non-defective product
  • a method for evaluating an electrode for a lithium ion secondary battery is provided.
  • a lithium ion secondary battery with improved cycle characteristics, a positive electrode suitable for the battery, and a method for manufacturing and evaluating the positive electrode.
  • a lithium ion secondary battery including a positive electrode using a lithium nickel composite oxide having a layered crystal structure (for example, LiNiO 2 ) as a positive electrode active material and using an aluminum foil (Al foil) as a current collector
  • charging / discharging is particularly important.
  • the capacity rapidly deteriorates during the cycle.
  • the inventor paid attention to this problem, and as a result of intensive studies, considered that this capacity deterioration follows the following mechanism, and completed the present invention.
  • This capacity degradation is caused by the corrosion of the Al foil, which is considered to be caused by LiOH.
  • LiOH the thing (residue) derived from the raw material contained in the secondary particle (between primary particles) of lithium nickel complex oxide is mentioned.
  • a thin film Al 2 O 3 passive film
  • the active material particles sink into the surface of the Al foil, and the film is destroyed at that portion, Al is exposed.
  • the exposed Al reacts with OH ⁇ ions dissociated from LiOH to corrode the Al foil and produce an insulator. It can be said that such corrosion of the Al foil causes deterioration of the cycle characteristics of the battery.
  • the cycle characteristics are not significantly reduced.
  • the active material particles are deeply embedded in the Al foil, large concave portions are formed on the surface of the Al foil according to the penetration, and when the number is large, the cycle characteristics are remarkably deteriorated.
  • the present inventor has thus found that the recess formed by the active material particles sinking into the surface of the Al foil is related to the cycle characteristics, thereby completing the present invention.
  • a positive electrode according to an embodiment of the present invention includes an aluminum substrate (for example, an Al foil) whose surface is covered with a film, and an active material layer formed on the film of the aluminum substrate. Contains active material particles and a binder. This active material layer can further contain a conductive additive.
  • the active material particles include at least lithium nickel-containing composite oxide particles having a layered crystal structure.
  • the lithium nickel-containing composite oxide particles can include secondary particles in which a plurality of primary particles of the lithium nickel-containing composite oxide are aggregated.
  • the lithium ion secondary battery In order to obtain the effect of improving the cycle characteristics of the lithium ion secondary battery, it is formed on the surface of the aluminum base material in an arbitrary square region of 100 ⁇ m on one side on the surface of the aluminum base material on which the active material layer is formed. It is preferable that the number of the concave portions having the longest diameter of the opening portion of the concave portion is 5 ⁇ m or more does not exceed 5, and more preferably does not exceed 3. Further, the ratio of the total area of the openings of the recesses (the recesses having a longest diameter of 5 ⁇ m or more) in the square region to the area of the square region is preferably 10% or less, more preferably 5% or less, 1% or less is more preferable.
  • the depth of the recess having the longest diameter of about 5 ⁇ m can be 1 ⁇ m or more, further 1.5 ⁇ m or more, and 2 ⁇ m. Such a recess can easily break a film having a thickness of about 1 to 10 nm.
  • overlap means that the area of the area where the square area and the opening of the recess overlap is 2/3 or more of the area of a circle having a diameter of 5 ⁇ m.
  • the longest diameter of the opening of the recess is a recess having a length of 1 ⁇ m or less, it may be present on the surface of the aluminum substrate. It is preferable that there is at least one recess of 1 ⁇ m or more and 1 ⁇ m or less, more preferably at least 2 (plural), and there may be 5 or more. If such a comparatively small-sized recessed part is formed, the adhesive improvement effect of an active material layer and an aluminum base material can be anticipated. The formation of such recesses indicates that sufficient pressing has been performed. As the recesses for counting the number of the recesses (recesses having an opening having a longest diameter of 0.1 ⁇ m or more and 1 ⁇ m or less), it is possible to count those having the entire opening in the square area.
  • the longest diameter of the opening of the concave portion can be determined from an image obtained by observing the surface of the aluminum base material after removing the active material layer from the electrode with an SEM (scanning electron microscope).
  • the diameter of the circle with the smallest area surrounding the contour corresponding to the opening of the recess is the longest diameter of the opening of the recess.
  • the depth of the concave portion means that in the SEM image of the cross section obtained by cutting the electrode perpendicular to the surface, along the active material layer side surface of the aluminum base material ) The longest length from the line segment A to the bottom of the recess, with respect to the line segment A, with reference to the line segment A extending over the recess.
  • the thickness of the aluminum base film is preferably in the range of 1 to 10 nm.
  • the coating preferably includes an oxide, and then with such oxide film can be mentioned Al 2 O 3 passivating film.
  • the thickness of the film is 1 nm or more, the stability of the surface of the aluminum substrate becomes better, and when the thickness of the film is 10 nm or less, the contact resistance can be suppressed.
  • the lithium nickel-containing composite oxide can contain LiOH as a component other than its composition.
  • This LiOH is derived from, for example, the lithium source (LiOH, Li 2 CO 3 ) used in the production process of the lithium nickel-containing composite oxide, and the reaction product with unreacted components, side reaction products, and moisture is present. included. LIOH is contained in the secondary particles as a residue between the primary particles.
  • the content of LiOH in the active material layer can be set in the range of 0.01 to 2% by mass with respect to the whole particles of the active material contained in the active material layer, and in the range of 0.02 to 2% by mass. Can be set.
  • the content of LiOH in the active material layer may be 0.5 to 2% by mass, and further may be 0.5 to 1.5% by mass.
  • an active material lithium nickel-containing composite oxide
  • LiOH lithium nickel-containing composite oxide
  • residual Li 2 Generation of CO 2 gas derived from CO 3 can be reduced.
  • the LiOH content can be determined by neutralization titration using hydrochloric acid.
  • the LiOH content can be set to 0.01% by mass or more and less than 0.5% by mass, and can be set to 0.02% by mass or more and less than 0.5% by mass.
  • an active material lithium nickel-containing composite oxide
  • CO 2 gas generation can be reduced.
  • the average particle size (D 50 ) of the active material particles is preferably 2 to 20 ⁇ m, more preferably 2 to 15 ⁇ m, and even more preferably 2 to 10 ⁇ m.
  • the average particle diameter is in this range, the formation of the recess due to the infiltration of the active material particles on the surface of the aluminum substrate is suppressed, and the size of the formed recess can be reduced, so that the destruction of the coating on the substrate can be suppressed, As a result, the cycle characteristics can be further improved.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the density of the active material layer is preferably 2.5 to 3.5 g / cm 3 .
  • electrode density is in such a range, a sufficient volume energy density is obtained, the contact between the active material particles and the contact between the active material and the conductive auxiliary agent are good, and a sufficient porosity is obtained. Therefore, a sufficient discharge capacity at a high rate can be obtained.
  • aluminum base material those conventionally used as electrode base materials for electrochemical devices can be used.
  • Pure aluminum foil purity of 99.9% by mass or more
  • aluminum alloy foil for example, Al—Cu alloy, Al—Mn alloy, Al—Si alloy, Al—Mg alloy, Al—Mg—Si alloy, Al—Zn—Mg alloy
  • the aluminum content in the aluminum substrate is preferably 95% by mass or more, more preferably 98% by mass or more, and further preferably 99% by mass or more.
  • the thickness of the aluminum substrate used in the embodiment of the present invention is preferably in the range of 5 ⁇ m to 20 ⁇ m.
  • the number of recesses having an opening having a longest diameter of 5 ⁇ m or more is determined to be a non-defective product.
  • a product whose number does not exceed 3 can be determined as a non-defective product.
  • the ratio of the total area of the openings of the recesses (the recesses having a longest diameter of 5 ⁇ m or more) in the square region to the area of the square region is preferably 10% or less. % Or less is more preferable, and 1% or less is more preferable.
  • region and the opening part overlap is counted similarly to the above-mentioned.
  • the negative electrode By determining at the stage of producing the negative electrode, the negative electrode can be evaluated and selected without producing a secondary battery and carrying out its cycle test. As a result, the efficiency of evaluation and selection can be improved, and productivity can be improved.
  • the active material layer of the produced electrode is removed, and the surface of the aluminum base material on which the active material layer is formed can be observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the result may be the evaluation result of the electrode to be evaluated, or evaluate any part of the electrode sheet before processing into a predetermined shape, size, The result may be an evaluation result of the processed electrode.
  • the number of recesses having a longest diameter of 0.1 ⁇ m or more and 1 ⁇ m or less is preferably at least one in a square region having an arbitrary side of 100 ⁇ m. More preferably.
  • the recesses for counting the number it is possible to count those having the entire opening in the square area as described above.
  • the LiOH content in the active material layer of the electrode to be produced is 0.5% by mass or more with respect to the entire active material particles in the active material layer. It is also suitable for pressing the electrode so that the active material layer has a high density (for example, 2.5 to 3.5 g / cm 3 ).
  • the lithium ion secondary battery of this example includes a positive electrode current collector 3 made of aluminum foil and a positive electrode made of a positive electrode active material layer 1 containing a positive electrode active material provided thereon, And a negative electrode current collector 4 made of a metal such as copper foil and a negative electrode active material layer 2 containing a negative electrode active material provided thereon.
  • the positive electrode and the negative electrode are laminated via a separator 5 made of a nonwoven fabric or a polypropylene microporous film so that the positive electrode active material layer 1 and the negative electrode active material layer 2 face each other.
  • This electrode pair is accommodated in a container formed by the outer casings 6 and 7 made of an aluminum laminate film.
  • a positive electrode tab 9 is connected to the positive electrode current collector 3, and a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
  • An electrolytic solution is injected into the container and sealed. It can also be set as the structure where the electrode group by which the several electrode pair was laminated
  • a lithium nickel composite oxide having at least a layered crystal structure is used. You may use together this lithium nickel complex oxide and another positive electrode active material.
  • Lithium nickelate LiNiO 2
  • a cobalt-substituted lithium nickelate obtained by substituting at least a part of nickel of lithium nickelate with cobalt A cobalt-substituted lithium nickelate obtained by substituting at least a part of nickel of lithium nickelate with cobalt; What substituted some nickel of cobalt substituted lithium nickelate with the other metal element (For example, at least 1 type of aluminum, magnesium, titanium, zinc, manganese) is mentioned.
  • Other positive electrode active materials include lithium manganate (LiMn 2 O 4 ); lithium cobaltate (LiCoO 2 ); at least part of the manganese and cobalt parts of these lithium compounds such as aluminum, magnesium, titanium, zinc, etc.
  • a metal element of Nickel-substituted lithium manganate in which a part of manganese of lithium manganate is substituted with at least nickel A nickel-substituted lithium manganate in which a part of manganese is substituted with another metal (for example, at least one of aluminum, magnesium, titanium, and zinc); and a lithium transition metal composite phosphorous oxide having an olivine structure.
  • a nickel site in which a part of nickel is substituted with another metal can be used.
  • the metal other than Ni occupying the nickel site include at least one metal selected from Mn, Co, Al, Mg, Fe, Cr, Ti, and In.
  • This lithium nickel-containing composite oxide preferably contains Co as a metal other than Ni occupying nickel sites.
  • the lithium nickel-containing composite oxide preferably contains Mn or Al in addition to Co, that is, lithium nickel cobalt manganese composite oxide (NCM) having a layered crystal structure, lithium nickel having a layered crystal structure Cobalt aluminum composite oxide (NCA) or a mixture thereof can be suitably used.
  • NCM lithium nickel cobalt manganese composite oxide
  • NCA Cobalt aluminum composite oxide
  • Li x Ni 2-xy M1 y O 2 + ⁇ (Wherein M1 includes at least one of Co, Mn, and Al, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, ⁇ 0.1 ⁇ ⁇ ⁇ 0.1)
  • x is preferably 0.6 ⁇ x ⁇ 1, and more preferably 0.8 ⁇ x ⁇ 1.
  • y is more preferably 0 ⁇ y ⁇ 0.5.
  • lithium nickel manganese-containing composite oxide having a spinel structure for example, one represented by the following formula can be used.
  • M2 includes at least one selected from B, Sn, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Mg, Ga, and Li, and 0 ⁇ x2 ⁇ 0. 5, 0 ⁇ y2 ⁇ 0.5, ⁇ 0.1 ⁇ ⁇ ⁇ 0.1)
  • the average particle diameter of the positive electrode active material is, for example, preferably from 0.1 to 50 ⁇ m, more preferably from 1 to 30 ⁇ m, and even more preferably from 2 to 25 ⁇ m, from the viewpoints of reactivity with the electrolytic solution and rate characteristics. Further, from the viewpoint of suppressing the formation of recesses due to the penetration of active material particles on the surface of the aluminum base material, the average particle size of the positive electrode active material is preferably 2 to 20 ⁇ m, more preferably 2 to 15 ⁇ m, and even more preferably 2 to 10 ⁇ m. .
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the positive electrode is composed of a positive electrode current collector and a positive electrode active material layer on the positive electrode current collector.
  • the positive electrode is disposed so that the active material layer faces the negative electrode active material layer on the negative electrode current collector through the separator.
  • the positive electrode active material layer can be formed as follows. First, it can be formed by preparing a slurry containing a positive electrode active material, a binder and a solvent (and if necessary, a conductive aid), applying the slurry onto a positive electrode current collector, drying, and pressing. N-methyl-2-pyrrolidone (NMP) can be used as a slurry solvent used in preparing the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • binder those usually used as a binder for positive electrodes such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the positive electrode active material layer can contain a conductive additive in addition to the positive electrode active material and the binder.
  • a conductive support agent There is no restriction
  • a higher proportion of the positive electrode active material in the positive electrode active material layer is preferable because the capacity per mass increases.
  • a conductive auxiliary agent from the viewpoint of electrode strength.
  • a binder it is preferable to add a binder. If the proportion of the conductive auxiliary agent is too small, it becomes difficult to maintain sufficient conductivity, and the resistance of the electrode is likely to increase. When the ratio of the binder is too small, it becomes difficult to maintain the adhesive force with the current collector, the active material, and the conductive additive, and electrode peeling may occur.
  • the content of the conductive additive in the active material layer is preferably 1 to 10% by mass
  • the content of the binder in the active material layer is preferably 1 to 10% by mass.
  • the porosity of the positive electrode active material layer (not including the current collector) is preferably 10 to 30%, more preferably 20 to 25%.
  • the porosity of the positive electrode active material layer is set to the above value, the discharge capacity during use at a high discharge rate is improved, which is preferable.
  • a carbonaceous material can be used as the negative electrode active material.
  • the carbonaceous material include graphite, amorphous carbon (for example, graphitizable carbon and non-graphitizable carbon), diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn.
  • graphite natural graphite and artificial graphite can be used, and cheap natural graphite is preferable from the viewpoint of material cost.
  • the amorphous carbon include those obtained by heat treatment of coal pitch coke, petroleum pitch coke, acetylene pitch coke, and the like.
  • the average particle diameter of the negative electrode active material is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, from the viewpoint of suppressing side reactions during charge / discharge and suppressing reduction in charge / discharge efficiency, and from the viewpoint of input / output characteristics and electrode production In view of (smoothness of the electrode surface, etc.), it is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the negative electrode is prepared by applying a negative electrode active material, a binder, a solvent, and a slurry containing a conductive aid as necessary on the negative electrode current collector, drying, and pressing as necessary to form a negative electrode active material layer.
  • a negative electrode a current collector and a negative electrode active material layer thereon
  • Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method. You may add additives, such as an antifoamer and surfactant, to a slurry as needed.
  • the content of the binder in the negative electrode active material layer is preferably in the range of 0.5 to 30% by mass as the content with respect to the negative electrode active material from the viewpoint of the binding force and energy density that are in a trade-off relationship.
  • the range of 0.5 to 25% by mass is more preferable, and the range of 1 to 20% by mass is more preferable.
  • an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water
  • NMP N-methyl-2-pyrrolidone
  • a binder for organic solvents such as polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • a rubber-based binder for example, SBR (styrene-butadiene rubber)
  • acrylic binder can be used.
  • aqueous binder can be used in the form of an emulsion.
  • water it is preferable to use an aqueous binder and a thickener such as CMC (carboxymethylcellulose) in combination.
  • the negative electrode active material layer may contain a conductive aid as necessary.
  • a conductive material generally used as a negative electrode conductive auxiliary agent such as carbonaceous material such as carbon black, ketjen black, and acetylene black can be used.
  • the content of the conductive additive in the negative electrode active material layer is preferably in the range of 0.1 to 3.0% by mass as a content rate with respect to the negative electrode active material.
  • the content of the conductive auxiliary agent with respect to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.3% by mass or more from the viewpoint of forming a sufficient conductive path, resulting from excessive addition of the conductive auxiliary agent. 3.0 mass% or less is preferable and 1.0 mass% or less is more preferable from the point which suppresses the gas generation by electrolytic solution decomposition
  • the average particle diameter (primary particle diameter) of the conductive assistant is preferably in the range of 10 to 100 nm.
  • the average particle diameter (primary particle diameter) of the conductive assistant is preferably 10 nm or more, more preferably 30 nm or more, and a sufficient number of contact points from the viewpoint of uniformly dispersing the conductive assistant in the negative electrode while suppressing excessive aggregation of the conductive assistant.
  • 100 nm or less is preferable from the viewpoint of forming a good conductive path, and 80 nm or less is more preferable.
  • the conductive auxiliary agent is fibrous, those having an average diameter of 2 to 200 nm and an average fiber length of 0.1 to 20 ⁇ m can be mentioned.
  • the average particle diameter of the conductive auxiliary agent is the median diameter (D 50 ), and means the particle diameter at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.
  • the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • the shape include foil, flat plate, and mesh.
  • Electrode As the electrolytic solution, a nonaqueous electrolytic solution in which a lithium salt is dissolved in one or two or more nonaqueous solvents can be used.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), chain carbonates such as dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ⁇ -lactones such as ⁇ -butyrolactone; 1,2-ethoxy Examples include chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME); and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl
  • lithium salt dissolved in the nonaqueous solvent is not particularly limited, for example LiPF 6, LiAsF 6, LiAlCl 4 , LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and lithium bisoxalatoborate are included. These lithium salts can be used individually by 1 type or in combination of 2 or more types. Moreover, a polymer component may be included as a non-aqueous electrolyte. The concentration of the lithium salt can be set in the range of 0.8 to 1.2 mol / L, preferably 0.9 to 1.1 mol / L.
  • the electrolytic solution preferably contains a compound that is usually used as an additive for non-aqueous electrolytic solutions.
  • a compound that is usually used as an additive for non-aqueous electrolytic solutions for example, carbonate compounds such as vinylene carbonate and fluoroethylene carbonate; acid anhydrides such as maleic anhydride; boron additives such as boronic esters; sulfite compounds such as ethylene sulfite; 1,3-propane sultone 1,2-propane sultone, 1,4-butane sultone, 1,2-butane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,3-pentane sultone, and other cyclic monosulfonic acid esters; methylenemethane disulfonic acid Examples thereof include cyclic disulfonate compounds such as esters (1,5,2,4-dioxadithian-2,2,4,4-tetraoxide) and
  • additives may be used individually by 1 type, and may use 2 or more types together.
  • a cyclic sulfonic acid ester compound is preferable and a cyclic disulfonic acid compound is preferable from the viewpoint that a film can be more effectively formed on the positive electrode surface and battery characteristics can be improved.
  • the content of the additive in the electrolytic solution is preferably 0.01 to 10% by mass from the viewpoint of obtaining a sufficient addition effect while suppressing an increase in the viscosity and resistance of the electrolytic solution. More preferably, it is mass%.
  • a porous resin film, a woven fabric, a non-woven fabric, or the like can be used as the separator.
  • the resin constituting the porous film include polyolefin resins such as polypropylene and polyethylene, polyester resins, acrylic resins, styrene resins, and nylon resins.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the separator may be formed with a layer containing inorganic particles.
  • the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc. Among them, TiO. 2 or Al 2 O 3 is preferably included.
  • a case made of a flexible film, a can case, or the like can be used for the exterior container, and a flexible film is preferably used from the viewpoint of reducing the weight of the battery.
  • a film in which a resin layer is provided on the front and back surfaces of a metal layer serving as a base material can be used.
  • a metal layer having a barrier property such as prevention of leakage of the electrolytic solution or entry of moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • a heat-fusible resin layer such as a modified polyolefin is provided.
  • An exterior container is formed by making the heat-fusible resin layers of the flexible film face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body that is the surface opposite to the surface on which the heat-fusible resin layer is formed.
  • the positive electrode active material has an average particle size (D 50 ) of 9 ⁇ m and a crystal structure of spinel type lithium manganate (LMO), and an average particle size (D 50 ) of 6 ⁇ m and a layered structure of lithium nickelate (LNO) Positive electrode active material (the LiOH content is 0.65% by mass with respect to the total positive electrode active material, and the average particle diameter (D 50 ) of the mixed positive electrode active material particles is 8.3 ⁇ m). ) was dispersed in NMP in which PVDF was dissolved. This slurry is applied onto an aluminum foil (Al foil) having a thickness of 20 ⁇ m and dried. Similarly, the slurry is also applied to the other surface and dried, and the applied layer formed on both sides of the Al foil is compressed (pressed). And processed into a predetermined shape to obtain a positive electrode.
  • LiOH content 0.65% by mass with respect to the total positive electrode active material
  • LNO lithium nickelate
  • a slurry in which graphite was dispersed in NMP in which PVDF was dissolved was prepared. This slurry is applied to a copper foil having a thickness of 10 ⁇ m and dried. Similarly, the slurry is also applied to the other surface and dried, and the coating layer formed on both sides of the copper foil is compressed into a predetermined shape.
  • the negative electrode was obtained by processing.
  • Electrodes and 6 negative electrodes were alternately laminated via separators, and sealed in a laminate outer package together with an electrolytic solution to obtain a secondary battery.
  • FIG. 2A shows an SEM image of the surface of the Al foil from which the active material layer has been removed
  • FIG. 2B shows an SEM image of the cross section of the positive electrode. From these images, it can be seen that small concave portions are formed on the surface of the Al foil, but large concave portions having a longest diameter of 5 ⁇ m or more are hardly formed.
  • Example 2 A positive electrode and a battery were produced in the same manner as in Example 1 except that the positive electrode active material shown in Table 1 was used, and the cycle characteristics of the battery were evaluated. The results are shown in Table 1.
  • Example 3 A positive electrode and a battery were produced in the same manner as in Example 1 except that the positive electrode active material shown in Table 1 was used, and the cycle characteristics of the battery were evaluated. The results are shown in Table 1.
  • Example 1 A positive electrode and a battery were produced in the same manner as in Example 1 except that the positive electrode active material shown in Table 1 was used, and the cycle characteristics of the battery were evaluated. The results are shown in Table 1.
  • the Al foil surface from which the active material layer was removed and the cross section of the positive electrode were observed with an SEM.
  • the number of recesses having a longest diameter of 5 ⁇ m or more per square region with a side of 100 ⁇ m exceeded five.
  • FIG. 3A shows an SEM image of the surface of the Al foil from which the active material layer has been removed
  • FIG. 3B shows an SEM image of the cross section of the positive electrode. From the image of FIG. 3A, it can be seen that a large number of large concave portions having a longest diameter of 5 ⁇ m or more are formed on the surface of the Al foil. From the image of FIG. 3B, it can be seen that a concave portion deeper than the thickness (1 to 10 nm) of the oxide film on the Al foil is formed.
  • Example 2 A positive electrode and a battery were produced in the same manner as in Example 1 except that the positive electrode active material shown in Table 1 was used, and the cycle characteristics of the battery were evaluated. The results are shown in Table 1.
  • the Al foil surface from which the active material layer was removed was observed by SEM.
  • the number of recesses having a longest diameter of 5 ⁇ m or more per square region with a side of 100 ⁇ m exceeded five.
  • the obtained secondary battery was subjected to a cycle test under the following conditions. CC-CV charge (upper limit voltage 4.15V, current 1C, CV time 3 hours) and CC discharge (lower limit voltage 2.5V, current 1C) were performed 500 cycles at an environmental temperature of 45 ° C.
  • the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle is defined as the capacity retention rate (%), the capacity retention rate is 70% or more, the cycle characteristics are good: ⁇ , and the cycle characteristics less than 70% are poor: ⁇ It was.
  • the average particle diameter (D 50 ) of the active material particles (whole) is large (greater than 10 ⁇ m), many large concave portions (the longest diameter of the opening is 5 ⁇ m or more) are formed on the surface of the Al foil, and Since the amount of LiOH was large (0.5% by mass or more), the cycle characteristics were low.
  • Example 1 has a large amount of LiOH (0.5% by mass or more), the average particle diameter (D 50 ) of the active material particles (whole) is as small as 10 ⁇ m or less. The longest diameter of 5 ⁇ m or more) was hardly formed, and as a result, the cycle characteristics were good.
  • the average particle diameter (D 50 ) of the active material particles (whole) is large (greater than 10 ⁇ m), and a large recess may be formed on the Al foil surface. Since it was less than 0.5% by mass, the cycle characteristics were good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

表面が皮膜で覆われたアルミニウム基材と、このアルミニウム基材の皮膜上に形成された活物質層とを含む電極であって、この活物質層は活物質粒子および結着剤を含み、この活物質粒子は層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えない、又は前記活物質層中のLiOHの含有量が前記活物質粒子の全体に対して0.5質量%未満である、リチウムイオン二次電池用電極。

Description

リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法
 本発明は、リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法に関するものである。
 リチウムイオン二次電池は、エネルギー密度が高く、充放電サイクル特性に優れるため、携帯電話やノート型パソコン等の小型のモバイル機器用の電源として広く用いられている。また、近年では、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車やハイブリッド電気自動車等の車両用の蓄電池、家庭用蓄電システム等の電力貯蔵システムといった大容量で長寿命が要求される大型電源への需要も高まっている。
 リチウムイオン二次電池の特性改善のために、その電極について種々の検討が行われている。
 特許文献1には、正極活物質、導電剤、結合剤及び溶媒を含むリチウム二次電池用正極剤組成物において、正極活物質を構成するリチウム遷移金属含有複合酸化物中に残存する水酸化リチウム含有量が中和滴定法による測定値で0.4重量%以下であることを特徴とする正極剤組成物が記載されている。このような組成物は安定し、これを用いることにより放電容量及びサイクル特性に優れたリチウム二次電池を得ることができると記載されている。
 特許文献2には、正極活物質として、組成外にLiOHを0.032質量%以上0.050質量%以下の割合で含むリチウム遷移金属酸化物を用いる、リチウムイオン二次電池の製造方法が記載されている。この製造方法によれば、充放電サイクルに対する耐久性に優れたリチウムイオン二次電池を製造できることが記載されている。
 特許文献3には、水を溶媒に用いた活物質ペーストを用いてもアルミニウム集電体に腐食を生じさせないことを目的として、厚さ0.02~1μmの酸化アルミニウム被膜を有する集電体を用いる、リチウム電池用正極の製造方法が記載されている。
 特許文献4には、表面に厚さ5~1000nmの陽極酸化膜被膜が形成されたアルミ箔を集電体として用いたリチウムイオン電池が記載されている。アルミニウム箔表面にバラツキのない耐アルカリ性が付与され、活物質ペーストによるアルミニウム箔の溶出を防止して両者の密着性を向上することが記載されている。
 特許文献5には、可逆的にリチウムを吸蔵および放出できる活物質粒子を含む合剤と、この合剤を担持する集電体とを有する電極であって、集電体の表面は凹部を有し、集電体の合剤担持面積に対する、凹部が占める面積の割合が30%である、リチウムイオン二次電池用電極が記載されている。また、前記合剤と、この合剤を担持する集電体とを有する電極であって、集電体の表面は凹部を有し、前記の合剤と集電体とを電極面に垂直に切断した断面において、凹部の最大深さが1μm以上である、リチウムイオン二次電池用電極が記載されている。集電体としてはアルミニウム箔、活物質としてはリチウム含有複合酸化物を用いることが記載されている。このような電極は、集電体の表面に複数の凹部が存在することにより、合剤と集電体との密着性が向上し、電池の安全性と出力特性を両立するのに適していると記載されている。
特開平10-208728号公報 特開2013-131392号公報 特開2003-157852号公報 特開2007-250376号公報 特開2007-59387号公報
 本発明の目的は、サイクル特性が改善されたリチウムイオン二次電池及びその電池に好適な正極、並びにその正極の製造方法および評価方法を提供することにある。
 本発明の一態様によれば、表面が皮膜で覆われたアルミニウム基材と、
 前記アルミニウム基材の皮膜上に形成された活物質層とを含む電極であって、
 前記活物質層は、活物質粒子および結着剤を含み、
 前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、
 以下の条件A及びBのいずれかを満たす、リチウムイオン二次電池用電極が提供される。
 条件A:前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えない。
 条件B:前記活物質層がLiOHを含み、LiOHの含有量が前記活物質粒子の全体に対して0.5質量%未満である。
 本発明の他の態様によれば、上記の正極と、負極と、該負極と前記正極の間のセパレータと、電解液を含む、リチウムイオン二次電池が提供される。
 本発明の他の態様によれば、表面が皮膜で覆われたアルミニウム基材と、該アルミニウム基材の皮膜上に形成された活物質層とを含むリチウムイオン二次電池用電極の製造方法であって、
 活物質粒子と結着剤と溶媒を含むスラリーを形成する工程と、
 前記スラリーを前記アルミニウム基材上に塗布し、乾燥し、プレスして活物質層を形成する工程と、を含み、
 前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、
 前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えないものを良品と判定する工程を含む、リチウムイオン二次電池用電極の製造方法が提供される。
 本発明の他の態様によれば、表面が皮膜で覆われたアルミニウム基材と、該アルミニウム基材の皮膜上に形成された活物質層とを含むリチウムイオン二次電池用電極の評価方法であって、
 前記活物質層は、活物質粒子および結着剤を含み、
 前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、
 前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えないものを良品と判定する、リチウムイオン二次電池用電極の評価方法が提供される。
 本発明の実施形態によれば、サイクル特性が改善されたリチウムイオン二次電池及びその電池に好適な正極、並びにその正極の製造方法および評価方法を提供することができる。
本発明の実施形態によるリチウムイオン二次電池の一例を説明するための断面図である。 実施例1の正極の活物質層が除去されたAl箔表面のSEM画像である。 実施例1の正極の断面のSEM画像である。 比較例1の正極の活物質層が除去されたAl箔表面のSEM画像である。 比較例1の正極の断面のSEM画像である。
 正極活物質として層状結晶構造を有するリチウムニッケル複合酸化物(例えばLiNiO)を用い、集電体としてアルミニウム箔(Al箔)を用いた正極を含むリチウムイオン二次電池においては、特に、充放電サイクル中に急激に容量が劣化する問題がある。本発明者は、この問題に着目し、鋭意検討した結果、この容量劣化は次のメカニズムに従うと考え、本発明を完成した。
 この容量の劣化は、Al箔の腐食に原因があり、その腐食はLiOHに起因すると考えられる。LiOHとしては、リチウムニッケル複合酸化物の二次粒子内(一次粒子間)に含まれる原料由来のもの(残留物)が挙げられる。通常、Al箔の表面には薄い皮膜(Al不動態膜)が形成されているため、その表面は安定している。しかし、活物質粒子を含むスラリーをAl箔上に塗工し、乾燥した後、電極密度を高めるためにプレスを行うと、活物質粒子がAl箔表面にめり込み、その部分で皮膜が破壊され、Alが露出する。結果、露出したAlとLiOHから解離したOHイオンとが反応してAl箔が腐食し、絶縁物が生成する。このようなAl箔の腐食が、電池のサイクル特性の劣化の原因になっているといえる。
 活物質粒子のAl箔へのめり込みが小さい場合は、サイクル特性の著しい低下は観られない。一方、活物質粒子のAl箔へのめり込みが大きい場合、そのめり込みに応じてAl箔の表面に大きな凹部が形成され、またその数が多いときは、サイクル特性が著しく低下する。本発明者は、このように、活物質粒子がAl箔表面にめり込むことで形成された凹部がサイクル特性に関係することを見いだし、本発明を完成した。
 本発明の実施形態による正極は、表面が皮膜で覆われたアルミニウム基材(例えばAl箔)と、このアルミニウム基材の皮膜上に形成された活物質層とを含み、この活物質層は、活物質粒子および結着剤を含む。この活物質層は、さらに導電助剤を含むことができる。
 前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含む。このリチウムニッケル含有複合酸化物粒子は、リチウムニッケル含有複合酸化物の一次粒子が複数集合した二次粒子を含むことができる。
 リチウムイオン二次電池のサイクル特性の改善効果を得るためには、活物質層が形成されたアルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、このアルミニウム基材表面に形成された凹部であって当該凹部の開口部の最長径が5μm以上である凹部の個数が5個を超えないことが好ましく、3個を超えないことがより好ましい。また、当該正方形の領域の面積に対する、当該正方形の領域内の凹部(最長径が5μm以上の凹部)の開口部の開口面積の合計の割合は10%以下が好ましく、5%以下がより好ましく、1%以下がさらに好ましい。最長径が5μm程度の凹部の深さは、1μm以上となり得、さらに1.5μm以上になる得、2μmにもなり得る。このようなサイズの凹部は、厚み1~10nm程度の皮膜を容易に破壊することができる。
 個数をカウントする凹部については、当該正方形の領域と開口部が重なっている凹部をカウントする。ここで重なるとは、当該正方形の領域と当該凹部の開口部とが重なっている領域の面積が、直径5μmの円の面積の2/3以上の場合とする。
 一方、凹部の開口部の最長径が1μm以下の凹部であればアルミニウム基材表面に存在していてもよく、任意の1辺100μmの正方形の領域において、凹部の開口部の最長径が0.1μm以上1μm以下の凹部が少なくとも1個あることが好ましく、少なくとも2個(複数個)あることがより好ましく、5個以上あってもよい。このような比較的小さいサイズの凹部が形成されていると、活物質層とアルミニウム基材との密着性の向上効果が期待できる。このような凹部が形成されていることは十分なプレスが行われていることを示している。個数をカウントする凹部(開口部の最長径が0.1μm以上1μm以下の凹部)としては、その開口部の全体が当該正方形の領域内にあるものをカウントすることができる。
 ここで、凹部の開口部の最長径は、電極から活物質層をとり除いた後のアルミニウム基材表面をSEM(走査型電子顕微鏡)により観察して得られた画像から決定することができる。この観察画像において、凹部の開口部に相当する輪郭を囲む最小面積の円の直径を凹部の開口部の最長径とする。
 また、凹部の深さとは、電極をその表面に垂直に切断した断面のSEM画像において、アルミニウム基材の活物質層側表面に沿って(断面画像においては凹部両側の基材表面をむすぶように)凹部上に延在させた線分Aを基準とし、線分Aに対する垂線の、線分Aから凹部の底までの最長の長さをいう。
 アルミニウム基材の皮膜の厚みは1~10nmの範囲にあることが好ましい。また、皮膜は酸化物を含むことが好ましく、このような酸化皮膜とししてはAl不動態膜が挙げられる。皮膜の厚みが1nm以上であると、アルミニウム基材の表面の安定性がより良好になり、皮膜の厚みが10nm以下であると、接触抵抗を抑えることができる。
 リチウムニッケル含有複合酸化物は、その組成以外の成分としてLiOHを含むことができる。このLiOHは、例えば、リチウムニッケル含有複合酸化物の製造過程において使用したリチウム源(LiOH、LiCO)に由来するものであり、未反応分や副反応物、水分との反応生成物が含まれる。LIOHは、一次粒子間に残留物として二次粒子に含まれる。
 活物質層中のLiOHの含有量は、この活物質層に含まれる活物質の粒子全体に対して0.01~2質量%の範囲に設定でき、また0.02~2質量%の範囲に設定できる。
 条件Aを満たす場合は、活物質層中のLiOHの含有量は0.5~2質量%であってもよく、さらに0.5~1.5質量%であってもよい。条件Aを満たし且つLiOHを含有する場合は、リチウム源としてLiOHを用いLiCOの使用量を抑えて作製した活物質(リチウムニッケル含有複合酸化物)を使用することができ、残留LiCOに由来のCOガス発生を低減できる。また、LiOHの含有量が上記範囲内にあることにより、LiOH含有分による容量減少を抑えることができる。LiOHの含有量は、塩酸を用いた中和滴定で求めることができる。
 一方、条件Bを満たす場合、すなわち活物質層中のLiOHの含有量が、活物質粒子の全体に対して0.5質量%より少ない場合は、アルミニウム基材表面の凹部形成による容量劣化を抑えることができる。この場合のLiOHの含有量は、0.01質量%以上0.5質量%未満に設定でき、また0.02質量%以上0.5質量%未満に設定できる。LiOHを含有する場合は、リチウム源としてLiOHを用いLiCOの使用量を抑えて作製した活物質(リチウムニッケル含有複合酸化物)を使用することができ、残留LiCOに由来のCOガス発生を低減できる。
 活物質の粒子の平均粒径(D50)は、2~20μmが好ましく、2~15μmがより好ましく、2~10μmがさらに好ましい。平均粒径がこの範囲にあると、アルミニウム基材表面への活物質粒子のめり込みによる凹部の形成が抑えられ、また形成された凹部のサイズも小さくできるため、基材の皮膜の破壊が抑えられ、結果、サイクル特性をより改善できる。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
 活物質層の密度(電極密度)は、2.5~3.5g/cmであることが好ましい。電極密度がこのような範囲にあると、十分な体積エネルギー密度が得られ、また、活物質粒子同士の接触や活物質と導電助剤との接触が良好になり、また十分な空孔率を確保できるため、高レートでの十分な放電容量を得ることができる。
 電極密度は次のようにして求めることができる。まず、所定の大きさ(例えば5cm×5cm)の電極に対して、厚さと重さを測定する。アルミニウム基材(Al箔からなる集電体)の厚さ及び重さは既知のため、測定した電極の重さ及び厚さからそれぞれ差し引く。得られた活物質層のみの重さを体積(=厚さ×面積(5cm×5cm))で割って、密度を得ることができる。
 アルミニウム基材は、電気化学素子の電極基材として従来から用いられているものを用いることができ、純アルミニウム箔(純度99.9質量%以上)や、アルミニウム合金箔(例えばAl-Cu合金、Al-Mn合金、Al-Si合金、Al-Mg合金、Al-Mg-Si合金、Al-Zn-Mg合金)を使用することができる。アルミニウム基材中のアルミニウム含有量は95質量%以上が好ましく、98質量%以上がより好ましく、99質量%以上がさらに好ましい。
 本発明の実施形態に用いられるアルミニウム基材の厚さは、5μm~20μmの範囲が好ましい。
 本発明の実施形態による正極の製造方法および評価方法では、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えないものを良品と判定する工程を含む。さらに、この個数が3個を超えないものを良品と判定することもできる。この判定工程において、当該正方形の領域の面積に対する、当該正方形の領域内の凹部(開口部の最長径が5μm以上の凹部)の開口部の開口面積の合計の割合は10%以下が好ましく、5%以下がより好ましく、1%以下がさらに好ましい。個数をカウントする凹部については、前述と同様に、当該正方形の領域と開口部が重なっている凹部をカウントする。
 この判定工程で良品と判定したものを選別することができる。負極を作製した段階で判定することにより、二次電池を作製してそのサイクル試験を実施することなく、負極を評価し選別できる。その結果、評価選別の効率を向上することができ、生産性を向上することができる。評価の際は、作製した電極の活物質層を除去し、活物質層が形成されたアルミニウム基材の表面を走査型電子顕微鏡(SEM)を用いて観察することができる。その際、同条件で別途に作製した電極について評価し、その結果を評価対象の電極の評価結果としてもよいし、所定の形状、サイズに加工する前の電極シートの任意の箇所について評価し、その結果を加工後の電極の評価結果としてもよい。
 この評価において、アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が0.1μm以上1μm以下の凹部の個数が少なくとも1個であることが好ましく、複数個あることがより好ましい。個数をカウントする凹部(開口部の最長径が0.1μm以上1μm以下の凹部)については、前述と同様に、その開口部の全体が当該正方形の領域内にあるものをカウントすることができる。
 本発明の実施形態による製造方法および評価方法は、作製する電極の活物質層中のLiOHの含有量が、当該活物質層中の活物質粒子全体に対して0.5質量%以上である場合に好適であり、また活物質層が高密度(例えば2.5~3.5g/cm)になるように電極をプレスする場合に好適である。
 以下に、本発明の実施形態によるリチウムイオン二次電池用正極及びその製造方法、並びにリチウムイオン二次電池及びその構成について、さらに詳細に説明する。
 (リチウムイオン二次電池)
 リチウムイオン二次電池の一例(ラミネート型)の断面図を図1に示す。図1に示すように、本例のリチウムイオン二次電池は、アルミニウム箔からなる正極集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、及び銅箔等の金属からなる負極集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。正極および負極は、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜などからなるセパレータ5を介して積層されている。この電極対は、アルミニウムラミネートフィルムからなる外装体6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続けられ、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。容器内には電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。
 (正極)
 正極活物質としては、少なくとも層状結晶構造(層状岩塩型構造)を有するリチウムニッケル複合酸化物を用いる。このリチウムニッケル複合酸化物と他の正極活物質とを併用してもよい。
 層状結晶構造(層状岩塩型構造)を有するリチウムニッケル複合酸化物としては、
 ニッケル酸リチウム(LiNiO);
 ニッケル酸リチウムのニッケルの部分の少なくとも一部をアルミニウム、マグネシウム、チタン、亜鉛など他の金属元素で置換したもの;
 ニッケル酸リチウムのニッケルの一部を少なくともコバルトで置換したコバルト置換ニッケル酸リチウム;
 コバルト置換ニッケル酸リチウムのニッケルの一部を他の金属元素(例えばアルミニウム、マグネシウム、チタン、亜鉛、マンガンの少なくとも一種)で置換したものが挙げられる。
 その他の正極活物質としては、マンガン酸リチウム(LiMn);コバルト酸リチウム(LiCoO);これらのリチウム化合物のマンガン、コバルトの部分の少なくとも一部をアルミニウム、マグネシウム、チタン、亜鉛など他の金属元素で置換したもの;
 マンガン酸リチウムのマンガンの一部を少なくともニッケルで置換したニッケル置換マンガン酸リチウム;
 ニッケル置換マンガン酸リチウムのマンガンの一部を他の金属(例えばアルミニウム、マグネシウム、チタン、亜鉛の少なくとも一種)で置換したもの;及び
 オリビン構造を有するリチウム遷移金属複合リン酸化物が挙げられる。
 層状結晶構造を有するリチウムニッケル含有複合酸化物は、ニッケルサイトのニッケルの一部が他の金属で置換されたものを用いることができる。ニッケルサイトを占めるNi以外の金属としては、例えば、Mn、Co、Al、Mg、Fe、Cr,Ti、Inから選ばれる少なくとも一種の金属が挙げられる。
 このリチウムニッケル含有複合酸化物は、ニッケルサイトを占めるNi以外の金属としてCoを含むことが好ましい。また、このリチウムニッケル含有複合酸化物は、Coに加えてMn又はAlを含むことがより好ましく、すなわち、層状結晶構造を有するリチウムニッケルコバルトマンガン複合酸化物(NCM)、層状結晶構造を有するリチウムニッケルコバルトアルミニウム複合酸化物(NCA)、又はこれらの混合物を好適に用いることができる。
 層状結晶構造を有するリチウムニッケル含有複合酸化物は、例えば、下記式で示されるものを用いることができる。
  LiNi2-x-yM12+α
 (式中、M1はCo、Mn、Alの少なくとも1種を含み、0<x≦1、0≦y<1、-0.1≦α≦0.1)
 xは、0.6<x≦1が好ましく、0.8≦x≦1がより好ましい。yは、0≦y<0.5がより好ましい。
 スピネル構造を有するリチウムニッケルマンガン含有複合酸化物は、例えば、下記式で示されるものを用いることができる。
 Li1+x2Mn2-x2-y2M2y24+β
 (式中、M2は、B、Sn、Al、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Mg、Ga、Liから選択される少なくとも1種を含み、0≦x2≦0.5、0≦y2≦0.5、-0.1≦β≦0.1)
 正極活物質の平均粒径は、電解液との反応性やレート特性等の観点から、例えば0.1~50μmが好ましく、1~30μmがより好ましく、2~25μmがさらに好ましい。さらに、アルミニウム基材表面への活物質粒子のめり込みによる凹部の形成を抑制する観点から、正極活物質の平均粒径は、2~20μmが好ましく、2~15μmがより好ましく、2~10μmがさらに好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
 正極は、正極集電体と、正極集電体上の正極活物質層から構成されている。この正極は、活物質層がセパレータを介して、負極集電体上の負極活物質層と対向するように配置される。
 正極活物質層は、次のようにして形成することができる。まず、正極活物質、結着剤及び溶媒(さらに必要により導電助剤)を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥し、プレスすることにより形成することができる。正極作製時に用いるスラリー溶媒としては、N-メチル-2-ピロリドン(NMP)を用いることができる。
 結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常正極用結着剤として用いられるものを使用できる。
 正極活物質層は、正極活物質と結着剤の他に導電助剤を含むことができる。導電助剤としては特に制限は無く、カーボンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等の炭素質材料などの通常正極用導電助剤として用いられる導電性材料を使用できる。
 正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極の低抵抗化の点からは導電助剤を添加することが好ましく、電極強度の点からは結着剤を添加することが好ましい。導電助剤の割合が少なすぎると十分な導電性を保つことが困難になり、電極の抵抗増加につながりやすくなる。結着剤の割合が少なすぎると集電体や活物質、導電助剤との接着力が保つことが困難になり、電極剥離が生じる場合がある。以上の点から、導電助剤の活物質層中の含有量は、1~10質量%が好ましく、結着剤の活物質層中の含有量は、1~10質量%が好ましい。
 正極活物質層(集電体は含まない)の空孔率は10~30%が好ましく、20~25%がより好ましい。正極活物質層の空孔率を上記値とすると、高放電レートでの使用時における放電容量が向上するため好ましい。
 (負極)
 負極活物質としては、炭素質材料を用いることができる。炭素質材料としては、黒鉛、非晶質炭素(例えば易黒鉛化性炭素、難黒鉛化性炭素)、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが挙げられる。黒鉛としては、天然黒鉛、人造黒鉛を用いることができ、材料コストの観点から安価な天然黒鉛が好ましい。非晶質炭素としては、例えば、石炭ピッチコークス、石油ピッチコークス、アセチレンピッチコークス等を熱処理して得られるものが挙げられる。
 負極活物質の平均粒径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、2μm以上が好ましく、5μm以上がより好ましく、入出力特性の観点や電極作製上の観点(電極表面の平滑性等)から、40μm以下が好ましく、30μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 負極の作製は、負極活物質と結着剤、溶媒、必要に応じて導電助剤を含むスラリーを負極集電体上に塗布し、乾燥し、必要に応じてプレスして負極活物質層を形成することで負極(集電体とその上の負極活物質層)を得ることができる。負極スラリーの塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法が挙げられる。スラリーには、必要に応じて、消泡剤や界面活性剤等の添加剤を加えてもよい。
 負極活物質層中の結着剤の含有率は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質に対する含有率として0.5~30質量%の範囲にあることが好ましく、0.5~25質量%の範囲がより好ましく、1~20質量%の範囲がさらに好ましい。
 溶媒としては、N-メチル-2-ピロリドン(NMP)等の有機溶媒や、水を用いることができる。溶媒として有機溶媒を用いた場合は、ポリフッ化ビニリデン(PVDF)等の有機溶媒用の結着剤を用いることができる。溶媒として水を用いた場合は、ゴム系結着剤(例えばSBR(styrene-butadiene rubber))やアクリル系結着剤を用いることができる。このような水系結着剤はエマルジョンの形態のものを用いることができる。溶媒として水を用いる場合は、水系結着剤とCMC(カルボキシメチルセルロース)等の増粘剤とを併用することが好ましい。
 負極活物質層は、必要に応じて導電助剤を含有してもよい。この導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料などの一般に負極の導電助剤として使用されている導電性材料を用いることができる。負極活物質層中の導電助剤の含有量は、負極活物質に対する含有率として0.1~3.0質量%の範囲にあることが好ましい。負極活物質に対する導電助剤の含有率は、十分な導電経路を形成する観点から0.1質量%以上が好ましく、0.3質量%以上がより好ましく、導電助剤の過剰な添加に起因する電解液分解によるガス発生や剥離強度の低下を抑える点から3.0質量%以下が好ましく、1.0質量%以下がより好ましい。
 導電助剤の平均粒子径(一次粒子径)は10~100nmの範囲にあることが好ましい。導電助剤の平均粒子径(一次粒子径)は、導電助剤の過度な凝集を抑えて負極中に均一に分散させる観点から10nm以上が好ましく、30nm以上がより好ましく、十分な数の接触点が形成でき、良好な導電経路を形成する観点から100nm以下が好ましく、80nm以下がより好ましい。導電助剤が繊維状の場合は、平均直径が2~200nm、平均繊維長が0.1~20μmのものが挙げられる。
 ここで、導電助剤の平均粒子径は、メジアン径(D50)であり、レーザー回折散乱法による粒度分布(体積基準)における積算値50%での粒子径を意味する。
 負極集電体としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。
 (電解液)
 電解液としては、1種又は2種以上の非水溶媒に、リチウム塩を溶解させた非水系電解液を用いることができる。
 非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル類が挙げられる。これらの非水溶媒のうちの1種を単独で、または2種以上の混合物を使用することができる。
 非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、リチウムビスオキサラトボレートが挙げられる。これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解質としてポリマー成分を含んでもよい。リチウム塩の濃度は、0.8~1.2mol/Lの範囲に設定することができ、0.9~1.1mol/Lが好ましい。
 (添加剤)
 電解液には、非水電解液用添加剤として通常使用されている化合物を含むことが好ましい。例えば、ビニレンカーボネート、フルオロエチレンカーボネート等のカーボネート系化合物;マレイン酸無水物等の酸無水物;ボロン酸エステル等のホウ素系添加剤;エチレンサルファイト等のサルファイト系化合物;1,3-プロパンスルトン、1,2-プロパンスルトン、1,4-ブタンスルトン、1,2-ブタンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,3-ペンタンスルトン等の環状モノスルホン酸エステル;メチレンメタンジスルホン酸エステル(1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド)、エチレンメタンジスルホン酸エステル等の環状ジスルホン酸エステル化合物が挙げられる。これらの添加剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。特に、正極表面に被膜をより効果的に形成でき、電池特性を向上できる点から、環状スルホン酸エステル化合物が好ましく、環状ジスルホン酸化合物が好ましい。
 添加剤の電解液中の含有量は、電解液の粘性や抵抗の増加等を抑えながら十分な添加効果を得る点から、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。
 (セパレータ)
 セパレータとしては、樹脂製の多孔質膜、織布、不織布等を用いることができる。多孔質膜を構成する樹脂としては、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等が挙げられる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータには無機物粒子を含む層を形成してもよく、無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。
 (外装容器)
 外装容器には可撓性フィルムからなるケースや、缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルムを用いることが好ましい。
 可撓性フィルムには、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼などを用いることができる。金属層の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルムの熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
 (実施例1)
 正極活物質に平均粒子径(D50)が9μmで結晶構造がスピネル型のマンガン酸リチウム(LMO)と、平均粒子径(D50)が6μmで結晶構造が層状系のニッケル酸リチウム(LNO)を3:1の割合(質量比)で含む混合正極活物質(正極活物質全体に対するLiOHの含有量が0.65質量%、混合正極活物質粒子の平均粒子径(D50)が8.3μm)を、PVDFが溶解したNMP中に分散したスラリーを調製した。このスラリーを厚さ20μmのアルミニウム箔(Al箔)上に塗布、乾燥し、同様にもう一方の面にもスラリーを塗布、乾燥し、Al箔の両面上に形成された塗布層を圧縮(プレス)し、所定の形状に加工し、正極を得た。
 一方、黒鉛を、PVDFが溶解したNMP中に分散したスラリーを調製した。このスラリーを厚さ10μmの銅箔上に塗布、乾燥し、同様にもう一方の面にもスラリーを塗布、乾燥し、銅箔の両面上に形成された塗布層を圧縮し、所定の形状に加工し、負極を得た。
 これらの正極5枚と負極6枚とをセパレータを介して交互に積層し、電解液とともにラミネート外装材に封入して二次電池とした。電解液としては、ECとDECの混合溶媒にリチウム塩を溶解した電解液(容量比EC:DEC=3:7、LiPF濃度1mol/L)を用いた。
 これらの電池を5つ準備し、それぞれの電池についてサイクル特性の評価を行った。結果を表1に示す。
 一方、これらの電池の作製とは別に、同様にして、電池を組み立てる前の圧縮後の正極を5つ作製した。それぞれの正極について、活物質層を除去したAl箔表面と正極の断面を走査型電子顕微鏡(SEM)で観察した。活物質層を除去したAl箔表面における任意の3箇所において、1辺100μmの正方形の領域あたりの、開口部の最長径が0.1μm以上1μm以下の凹部の個数はいずれも複数あり、開口部の最長径が5μm以上の凹部は観測されなかった。
 図2Aに活物質層が除去されたAl箔表面のSEM画像を示し、図2Bに正極の断面のSEM画像を示す。これらの画像から、Al箔表面には、小さな凹部は形成されているが、開口部の最長径が5μm以上の大きな凹部はほとんど形成されていないことがわかる。
 (実施例2)
 正極活物質として表1に示すものを用いた以外は、実施例1と同様にして正極及び電池を作製し、電池のサイクル特性の評価を行った。結果を表1に示す。
 (実施例3)
 正極活物質を表1に示すものを用いた以外は、実施例1と同様にして正極及び電池を作製し、電池のサイクル特性の評価を行った。結果を表1に示す。
 (比較例1)
 正極活物質として表1に示すものを用いた以外は、実施例1と同様にして正極及び電池を作製し、電池のサイクル特性の評価を行った。結果を表1に示す。
 また、作製した正極について、活物質層を除去したAl箔表面と正極の断面をSEMで観察した。そのAl箔表面における任意の3箇所において、1辺100μmの正方形の領域あたりの、開口部の最長径が5μm以上の凹部の数は5個を超えていた。
 図3Aに活物質層が除去されたAl箔表面のSEM画像を示し、図3Bに正極の断面のSEM画像を示す。図3Aの画像から、Al箔表面には、開口部の最長径が5μm以上の大きな凹部が多数形成されていることがわかる。図3Bの画像から、Al箔上の酸化皮膜の厚み(1~10nm)より深い凹部が形成されていることが分かる。
 (比較例2)
 正極活物質として表1に示すものを用いた以外は、実施例1と同様にして正極及び電池を作製し、電池のサイクル特性の評価を行った。結果を表1に示す。
 また、作製した正極について、活物質層を除去したAl箔表面をSEMで観察した。そのAl箔表面における任意の3箇所において、1辺100μmの正方形の領域あたりの、開口部の最長径が5μm以上の凹部の数は5個を超えていた。
 (サイクル特性の評価)
 得られた二次電池について次の条件でサイクル試験を行った。
 CC-CV充電(上限電圧4.15V、電流1C、CV時間3時間)とCC放電(下限電圧2.5V、電流1C)を、環境温度:45℃において、500サイクル行った。
 1サイクル目の放電容量に対する500サイクル目の放電容量の割合を容量維持率(%)とし、容量維持率が70%以上をサイクル特性が良好:○とし、70%未満をサイクル特性が不良:×とした。
Figure JPOXMLDOC01-appb-T000001
 比較例1及び2は、活物質粒子(全体)の平均粒径(D50)が大きく(10μmより大)、Al箔表面に大きな凹部(開口の最長径が5μm以上)が多く形成され、且つLiOH量が多いため(0.5質量%以上)、サイクル特性が低かった。
 一方、実施例1は、LiOH量が多いが(0.5質量%以上)、活物質粒子(全体)の平均粒径(D50)が10μm以下と小さいため、Al箔表面に大きな凹部(開口の最長径が5μm以上)がほとんど形成されず、結果、サイクル特性が良好であった。
 また、実施例2及び3は、活物質粒子(全体)の平均粒径(D50)が大きく(10μmより大)、Al箔表面に大きな凹部が形成される可能性があるが、LiOH量が0.5質量%より少ないため、サイクル特性が良好であった。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年2月12日に出願された日本出願特願2016-024969を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 正極活物質層
 2 負極活物質層
 3 正極集電体
 4 負極集電体
 5 セパレータ
 6 ラミネート外装体
 7 ラミネート外装体
 8 負極タブ
 9 正極タブ

Claims (17)

  1.  表面が皮膜で覆われたアルミニウム基材と、
     前記アルミニウム基材の皮膜上に形成された活物質層とを含む電極であって、
     前記活物質層は、活物質粒子および結着剤を含み、
     前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、
     以下の条件A及びBのいずれかを満たす、リチウムイオン二次電池用電極。
     条件A:前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えない。
     条件B:前記活物質層がLiOHを含み、LiOHの含有量が前記活物質粒子の全体に対して0.5質量%未満である。
  2.  前記皮膜の厚みが1~10nmである、請求項1に記載の電極。
  3.  前記皮膜が酸化物を含む、請求項1又は2に記載の電極。
  4.  前記活物質粒子の平均粒径(D50)が、2~20μmである、請求項1から3のいずれか一項に記載の電極。
  5.  前記条件Aを満たし、前記活物質層がLiOHを含む、1から4のいずれか一項に記載の電極。
  6.  前記活物質層中のLiOHの含有量が、前記活物質粒子の全体に対して0.5質量%以上2質量%以下である、請求項5に記載の電極。
  7.  前記活物質粒子の平均粒径(D50)が、2~10μmである、請求項5又は6に記載の電極。
  8.  前記アルミニウム基材の表面における任意の1辺100μmの正方形の領域に、開口部の最長径が0.1μm以上1μm以下の凹部が形成されている、請求項1から7のいずれか一項に記載の電極。
  9.  前記活物質層の密度が2.5~3.5g/cmである、請求項1から8のいずれか一項に記載の電極。
  10.  前記活物質粒子が、スピネル結晶構造を有するリチウムマンガン含有複合酸化物の粒子をさらに含む、請求項1から9のいずれか一項に記載の電極。
  11.  請求項1から10のいずれか一項に記載の正極と、負極と、該負極と前記正極の間のセパレータと、電解液を含む、リチウムイオン二次電池。
  12.  表面が皮膜で覆われたアルミニウム基材と、該アルミニウム基材の皮膜上に形成された活物質層とを含むリチウムイオン二次電池用電極の製造方法であって、
     活物質粒子と結着剤と溶媒を含むスラリーを形成する工程と、
     前記スラリーを前記アルミニウム基材上に塗布し、乾燥し、プレスして活物質層を形成する工程と、を含み、
     前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、
     前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えないものを良品と判定する工程を含む、リチウムイオン二次電池用電極の製造方法。
  13.  前記皮膜の厚みが1~10nmである、請求項12に記載の製造方法。
  14.  前記皮膜が酸化物を含む、請求項12又は13に記載の製造方法。
  15.  表面が皮膜で覆われたアルミニウム基材と、該アルミニウム基材の皮膜上に形成された活物質層とを含むリチウムイオン二次電池用電極の評価方法であって、
     前記活物質層は、活物質粒子および結着剤を含み、
     前記活物質粒子は、層状結晶構造を有するリチウムニッケル含有複合酸化物の粒子を少なくとも含み、
     前記活物質層が形成された前記アルミニウム基材の表面において、任意の1辺100μmの正方形の領域における、開口部の最長径が5μm以上の凹部の個数が5個を超えないものを良品と判定する、リチウムイオン二次電池用電極の評価方法。
  16.  前記皮膜の厚みが1~10nmである、請求項15に記載の評価方法。
  17.  前記皮膜が酸化物を含む、請求項15又は16に記載の評価方法。
PCT/JP2017/003135 2016-02-12 2017-01-30 リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法 WO2017138382A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017566582A JP6917907B2 (ja) 2016-02-12 2017-01-30 リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法及び評価方法、及びリチウムイオン二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024969 2016-02-12
JP2016024969 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138382A1 true WO2017138382A1 (ja) 2017-08-17

Family

ID=59563899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003135 WO2017138382A1 (ja) 2016-02-12 2017-01-30 リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法

Country Status (2)

Country Link
JP (1) JP6917907B2 (ja)
WO (1) WO2017138382A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061478A1 (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
WO2018235659A1 (ja) * 2017-06-21 2018-12-27 富士フイルム株式会社 アルミニウム複合材料
WO2020162092A1 (ja) * 2019-02-08 2020-08-13 クニミネ工業株式会社 蓄電デバイス
WO2022113682A1 (ja) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 電極、及び電極の製造方法
CN115000340A (zh) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 二次电池用电极和该电极的制造方法
JP2022553462A (ja) * 2020-09-23 2022-12-23 寧徳新能源科技有限公司 複合集電体、電極シート及び電気化学デバイス
WO2024024332A1 (ja) * 2022-01-12 2024-02-01 株式会社豊田中央研究所 分離方法及び分離装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216513A (ja) * 2011-03-29 2012-11-08 Fujifilm Corp 集電体用アルミニウム基材、集電体、正極、負極および二次電池
JP2012253009A (ja) * 2011-05-10 2012-12-20 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質粉体、その製造方法及びリチウム二次電池
JP2013101919A (ja) * 2011-10-14 2013-05-23 National Institute Of Advanced Industrial & Technology 蓄電デバイス用集電体材料およびその製造方法、蓄電デバイス用電極、ならびに、蓄電デバイス
WO2015132844A1 (ja) * 2014-03-03 2015-09-11 株式会社日立製作所 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125915A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 リチウムイオン二次電池用の正極
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216513A (ja) * 2011-03-29 2012-11-08 Fujifilm Corp 集電体用アルミニウム基材、集電体、正極、負極および二次電池
JP2012253009A (ja) * 2011-05-10 2012-12-20 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質粉体、その製造方法及びリチウム二次電池
JP2013101919A (ja) * 2011-10-14 2013-05-23 National Institute Of Advanced Industrial & Technology 蓄電デバイス用集電体材料およびその製造方法、蓄電デバイス用電極、ならびに、蓄電デバイス
WO2015132844A1 (ja) * 2014-03-03 2015-09-11 株式会社日立製作所 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061478A1 (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
WO2018235659A1 (ja) * 2017-06-21 2018-12-27 富士フイルム株式会社 アルミニウム複合材料
JPWO2018235659A1 (ja) * 2017-06-21 2020-04-16 富士フイルム株式会社 アルミニウム複合材料
US11718533B2 (en) 2019-02-08 2023-08-08 Kunimine Industries Co., Ltd. Power storage device
JP2020129625A (ja) * 2019-02-08 2020-08-27 クニミネ工業株式会社 蓄電デバイス
JP7235292B2 (ja) 2019-02-08 2023-03-08 クニミネ工業株式会社 蓄電デバイス
WO2020162092A1 (ja) * 2019-02-08 2020-08-13 クニミネ工業株式会社 蓄電デバイス
JP2022553462A (ja) * 2020-09-23 2022-12-23 寧徳新能源科技有限公司 複合集電体、電極シート及び電気化学デバイス
JP7414813B2 (ja) 2020-09-23 2024-01-16 寧徳新能源科技有限公司 複合集電体、電極シート及び電気化学デバイス
WO2022113682A1 (ja) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 電極、及び電極の製造方法
CN115000340A (zh) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 二次电池用电极和该电极的制造方法
CN115000340B (zh) * 2021-03-01 2024-03-01 泰星能源解决方案有限公司 二次电池用电极和该电极的制造方法
WO2024024332A1 (ja) * 2022-01-12 2024-02-01 株式会社豊田中央研究所 分離方法及び分離装置

Also Published As

Publication number Publication date
JPWO2017138382A1 (ja) 2018-12-06
JP6917907B2 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
CN110137442B (zh) 基于石墨的负电极活性材料、负电极和锂离子二次电池
WO2017138382A1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極の製造方法および評価方法
WO2016035289A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6685940B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2017057123A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6560879B2 (ja) リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7281570B2 (ja) 非水電解液二次電池およびその製造方法
JPWO2011115247A1 (ja) リチウムイオン二次電池
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
JP2010267540A (ja) 非水電解質二次電池
US20120135312A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP6995738B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
US10135095B2 (en) Lithium secondary battery
US20170256801A1 (en) Nonaqueous electrolyte secondary battery
US10418634B2 (en) Cathode active material for lithium secondary batteries surface-treated with fluorine copolymer and method of manufacturing the same
WO2015152114A1 (ja) 黒鉛系活物質材料、負極及びリチウムイオン二次電池
JP6697377B2 (ja) リチウムイオン二次電池
US20150255794A1 (en) Lithium secondary battery
US10340514B2 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20180233735A1 (en) Method for producing negative electrode for lithium ion secondary batteries
WO2017056585A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
CN108028361B (zh) 用于锂离子二次电池的正极以及锂离子二次电池
JP6607388B2 (ja) リチウムイオン二次電池用正極及びその製造方法
WO2020026310A1 (ja) 電極、非水電解質電池及び電池パック
JP2013239356A (ja) リチウムイオン二次電池用負極保護剤、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017566582

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750107

Country of ref document: EP

Kind code of ref document: A1